1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Maple Tree implementation 4 * Copyright (c) 2018-2022 Oracle Corporation 5 * Authors: Liam R. Howlett <Liam.Howlett@oracle.com> 6 * Matthew Wilcox <willy@infradead.org> 7 */ 8 9 /* 10 * DOC: Interesting implementation details of the Maple Tree 11 * 12 * Each node type has a number of slots for entries and a number of slots for 13 * pivots. In the case of dense nodes, the pivots are implied by the position 14 * and are simply the slot index + the minimum of the node. 15 * 16 * In regular B-Tree terms, pivots are called keys. The term pivot is used to 17 * indicate that the tree is specifying ranges, Pivots may appear in the 18 * subtree with an entry attached to the value where as keys are unique to a 19 * specific position of a B-tree. Pivot values are inclusive of the slot with 20 * the same index. 21 * 22 * 23 * The following illustrates the layout of a range64 nodes slots and pivots. 24 * 25 * 26 * Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 | 27 * ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ 28 * │ │ │ │ │ │ │ │ └─ Implied maximum 29 * │ │ │ │ │ │ │ └─ Pivot 14 30 * │ │ │ │ │ │ └─ Pivot 13 31 * │ │ │ │ │ └─ Pivot 12 32 * │ │ │ │ └─ Pivot 11 33 * │ │ │ └─ Pivot 2 34 * │ │ └─ Pivot 1 35 * │ └─ Pivot 0 36 * └─ Implied minimum 37 * 38 * Slot contents: 39 * Internal (non-leaf) nodes contain pointers to other nodes. 40 * Leaf nodes contain entries. 41 * 42 * The location of interest is often referred to as an offset. All offsets have 43 * a slot, but the last offset has an implied pivot from the node above (or 44 * UINT_MAX for the root node. 45 * 46 * Ranges complicate certain write activities. When modifying any of 47 * the B-tree variants, it is known that one entry will either be added or 48 * deleted. When modifying the Maple Tree, one store operation may overwrite 49 * the entire data set, or one half of the tree, or the middle half of the tree. 50 * 51 */ 52 53 54 #include <linux/maple_tree.h> 55 #include <linux/xarray.h> 56 #include <linux/types.h> 57 #include <linux/export.h> 58 #include <linux/slab.h> 59 #include <linux/limits.h> 60 #include <asm/barrier.h> 61 62 #define CREATE_TRACE_POINTS 63 #include <trace/events/maple_tree.h> 64 65 #define MA_ROOT_PARENT 1 66 67 /* 68 * Maple state flags 69 * * MA_STATE_BULK - Bulk insert mode 70 * * MA_STATE_REBALANCE - Indicate a rebalance during bulk insert 71 * * MA_STATE_PREALLOC - Preallocated nodes, WARN_ON allocation 72 */ 73 #define MA_STATE_BULK 1 74 #define MA_STATE_REBALANCE 2 75 #define MA_STATE_PREALLOC 4 76 77 #define ma_parent_ptr(x) ((struct maple_pnode *)(x)) 78 #define ma_mnode_ptr(x) ((struct maple_node *)(x)) 79 #define ma_enode_ptr(x) ((struct maple_enode *)(x)) 80 static struct kmem_cache *maple_node_cache; 81 82 #ifdef CONFIG_DEBUG_MAPLE_TREE 83 static const unsigned long mt_max[] = { 84 [maple_dense] = MAPLE_NODE_SLOTS, 85 [maple_leaf_64] = ULONG_MAX, 86 [maple_range_64] = ULONG_MAX, 87 [maple_arange_64] = ULONG_MAX, 88 }; 89 #define mt_node_max(x) mt_max[mte_node_type(x)] 90 #endif 91 92 static const unsigned char mt_slots[] = { 93 [maple_dense] = MAPLE_NODE_SLOTS, 94 [maple_leaf_64] = MAPLE_RANGE64_SLOTS, 95 [maple_range_64] = MAPLE_RANGE64_SLOTS, 96 [maple_arange_64] = MAPLE_ARANGE64_SLOTS, 97 }; 98 #define mt_slot_count(x) mt_slots[mte_node_type(x)] 99 100 static const unsigned char mt_pivots[] = { 101 [maple_dense] = 0, 102 [maple_leaf_64] = MAPLE_RANGE64_SLOTS - 1, 103 [maple_range_64] = MAPLE_RANGE64_SLOTS - 1, 104 [maple_arange_64] = MAPLE_ARANGE64_SLOTS - 1, 105 }; 106 #define mt_pivot_count(x) mt_pivots[mte_node_type(x)] 107 108 static const unsigned char mt_min_slots[] = { 109 [maple_dense] = MAPLE_NODE_SLOTS / 2, 110 [maple_leaf_64] = (MAPLE_RANGE64_SLOTS / 2) - 2, 111 [maple_range_64] = (MAPLE_RANGE64_SLOTS / 2) - 2, 112 [maple_arange_64] = (MAPLE_ARANGE64_SLOTS / 2) - 1, 113 }; 114 #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)] 115 116 #define MAPLE_BIG_NODE_SLOTS (MAPLE_RANGE64_SLOTS * 2 + 2) 117 #define MAPLE_BIG_NODE_GAPS (MAPLE_ARANGE64_SLOTS * 2 + 1) 118 119 struct maple_big_node { 120 struct maple_pnode *parent; 121 unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1]; 122 union { 123 struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS]; 124 struct { 125 unsigned long padding[MAPLE_BIG_NODE_GAPS]; 126 unsigned long gap[MAPLE_BIG_NODE_GAPS]; 127 }; 128 }; 129 unsigned char b_end; 130 enum maple_type type; 131 }; 132 133 /* 134 * The maple_subtree_state is used to build a tree to replace a segment of an 135 * existing tree in a more atomic way. Any walkers of the older tree will hit a 136 * dead node and restart on updates. 137 */ 138 struct maple_subtree_state { 139 struct ma_state *orig_l; /* Original left side of subtree */ 140 struct ma_state *orig_r; /* Original right side of subtree */ 141 struct ma_state *l; /* New left side of subtree */ 142 struct ma_state *m; /* New middle of subtree (rare) */ 143 struct ma_state *r; /* New right side of subtree */ 144 struct ma_topiary *free; /* nodes to be freed */ 145 struct ma_topiary *destroy; /* Nodes to be destroyed (walked and freed) */ 146 struct maple_big_node *bn; 147 }; 148 149 #ifdef CONFIG_KASAN_STACK 150 /* Prevent mas_wr_bnode() from exceeding the stack frame limit */ 151 #define noinline_for_kasan noinline_for_stack 152 #else 153 #define noinline_for_kasan inline 154 #endif 155 156 /* Functions */ 157 static inline struct maple_node *mt_alloc_one(gfp_t gfp) 158 { 159 return kmem_cache_alloc(maple_node_cache, gfp); 160 } 161 162 static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes) 163 { 164 return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes); 165 } 166 167 static inline void mt_free_bulk(size_t size, void __rcu **nodes) 168 { 169 kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes); 170 } 171 172 static void mt_free_rcu(struct rcu_head *head) 173 { 174 struct maple_node *node = container_of(head, struct maple_node, rcu); 175 176 kmem_cache_free(maple_node_cache, node); 177 } 178 179 /* 180 * ma_free_rcu() - Use rcu callback to free a maple node 181 * @node: The node to free 182 * 183 * The maple tree uses the parent pointer to indicate this node is no longer in 184 * use and will be freed. 185 */ 186 static void ma_free_rcu(struct maple_node *node) 187 { 188 WARN_ON(node->parent != ma_parent_ptr(node)); 189 call_rcu(&node->rcu, mt_free_rcu); 190 } 191 192 static void mas_set_height(struct ma_state *mas) 193 { 194 unsigned int new_flags = mas->tree->ma_flags; 195 196 new_flags &= ~MT_FLAGS_HEIGHT_MASK; 197 BUG_ON(mas->depth > MAPLE_HEIGHT_MAX); 198 new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET; 199 mas->tree->ma_flags = new_flags; 200 } 201 202 static unsigned int mas_mt_height(struct ma_state *mas) 203 { 204 return mt_height(mas->tree); 205 } 206 207 static inline enum maple_type mte_node_type(const struct maple_enode *entry) 208 { 209 return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) & 210 MAPLE_NODE_TYPE_MASK; 211 } 212 213 static inline bool ma_is_dense(const enum maple_type type) 214 { 215 return type < maple_leaf_64; 216 } 217 218 static inline bool ma_is_leaf(const enum maple_type type) 219 { 220 return type < maple_range_64; 221 } 222 223 static inline bool mte_is_leaf(const struct maple_enode *entry) 224 { 225 return ma_is_leaf(mte_node_type(entry)); 226 } 227 228 /* 229 * We also reserve values with the bottom two bits set to '10' which are 230 * below 4096 231 */ 232 static inline bool mt_is_reserved(const void *entry) 233 { 234 return ((unsigned long)entry < MAPLE_RESERVED_RANGE) && 235 xa_is_internal(entry); 236 } 237 238 static inline void mas_set_err(struct ma_state *mas, long err) 239 { 240 mas->node = MA_ERROR(err); 241 } 242 243 static inline bool mas_is_ptr(struct ma_state *mas) 244 { 245 return mas->node == MAS_ROOT; 246 } 247 248 static inline bool mas_is_start(struct ma_state *mas) 249 { 250 return mas->node == MAS_START; 251 } 252 253 bool mas_is_err(struct ma_state *mas) 254 { 255 return xa_is_err(mas->node); 256 } 257 258 static inline bool mas_searchable(struct ma_state *mas) 259 { 260 if (mas_is_none(mas)) 261 return false; 262 263 if (mas_is_ptr(mas)) 264 return false; 265 266 return true; 267 } 268 269 static inline struct maple_node *mte_to_node(const struct maple_enode *entry) 270 { 271 return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK); 272 } 273 274 /* 275 * mte_to_mat() - Convert a maple encoded node to a maple topiary node. 276 * @entry: The maple encoded node 277 * 278 * Return: a maple topiary pointer 279 */ 280 static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry) 281 { 282 return (struct maple_topiary *) 283 ((unsigned long)entry & ~MAPLE_NODE_MASK); 284 } 285 286 /* 287 * mas_mn() - Get the maple state node. 288 * @mas: The maple state 289 * 290 * Return: the maple node (not encoded - bare pointer). 291 */ 292 static inline struct maple_node *mas_mn(const struct ma_state *mas) 293 { 294 return mte_to_node(mas->node); 295 } 296 297 /* 298 * mte_set_node_dead() - Set a maple encoded node as dead. 299 * @mn: The maple encoded node. 300 */ 301 static inline void mte_set_node_dead(struct maple_enode *mn) 302 { 303 mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn)); 304 smp_wmb(); /* Needed for RCU */ 305 } 306 307 /* Bit 1 indicates the root is a node */ 308 #define MAPLE_ROOT_NODE 0x02 309 /* maple_type stored bit 3-6 */ 310 #define MAPLE_ENODE_TYPE_SHIFT 0x03 311 /* Bit 2 means a NULL somewhere below */ 312 #define MAPLE_ENODE_NULL 0x04 313 314 static inline struct maple_enode *mt_mk_node(const struct maple_node *node, 315 enum maple_type type) 316 { 317 return (void *)((unsigned long)node | 318 (type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL); 319 } 320 321 static inline void *mte_mk_root(const struct maple_enode *node) 322 { 323 return (void *)((unsigned long)node | MAPLE_ROOT_NODE); 324 } 325 326 static inline void *mte_safe_root(const struct maple_enode *node) 327 { 328 return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE); 329 } 330 331 static inline void *mte_set_full(const struct maple_enode *node) 332 { 333 return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL); 334 } 335 336 static inline void *mte_clear_full(const struct maple_enode *node) 337 { 338 return (void *)((unsigned long)node | MAPLE_ENODE_NULL); 339 } 340 341 static inline bool mte_has_null(const struct maple_enode *node) 342 { 343 return (unsigned long)node & MAPLE_ENODE_NULL; 344 } 345 346 static inline bool ma_is_root(struct maple_node *node) 347 { 348 return ((unsigned long)node->parent & MA_ROOT_PARENT); 349 } 350 351 static inline bool mte_is_root(const struct maple_enode *node) 352 { 353 return ma_is_root(mte_to_node(node)); 354 } 355 356 static inline bool mas_is_root_limits(const struct ma_state *mas) 357 { 358 return !mas->min && mas->max == ULONG_MAX; 359 } 360 361 static inline bool mt_is_alloc(struct maple_tree *mt) 362 { 363 return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE); 364 } 365 366 /* 367 * The Parent Pointer 368 * Excluding root, the parent pointer is 256B aligned like all other tree nodes. 369 * When storing a 32 or 64 bit values, the offset can fit into 5 bits. The 16 370 * bit values need an extra bit to store the offset. This extra bit comes from 371 * a reuse of the last bit in the node type. This is possible by using bit 1 to 372 * indicate if bit 2 is part of the type or the slot. 373 * 374 * Note types: 375 * 0x??1 = Root 376 * 0x?00 = 16 bit nodes 377 * 0x010 = 32 bit nodes 378 * 0x110 = 64 bit nodes 379 * 380 * Slot size and alignment 381 * 0b??1 : Root 382 * 0b?00 : 16 bit values, type in 0-1, slot in 2-7 383 * 0b010 : 32 bit values, type in 0-2, slot in 3-7 384 * 0b110 : 64 bit values, type in 0-2, slot in 3-7 385 */ 386 387 #define MAPLE_PARENT_ROOT 0x01 388 389 #define MAPLE_PARENT_SLOT_SHIFT 0x03 390 #define MAPLE_PARENT_SLOT_MASK 0xF8 391 392 #define MAPLE_PARENT_16B_SLOT_SHIFT 0x02 393 #define MAPLE_PARENT_16B_SLOT_MASK 0xFC 394 395 #define MAPLE_PARENT_RANGE64 0x06 396 #define MAPLE_PARENT_RANGE32 0x04 397 #define MAPLE_PARENT_NOT_RANGE16 0x02 398 399 /* 400 * mte_parent_shift() - Get the parent shift for the slot storage. 401 * @parent: The parent pointer cast as an unsigned long 402 * Return: The shift into that pointer to the star to of the slot 403 */ 404 static inline unsigned long mte_parent_shift(unsigned long parent) 405 { 406 /* Note bit 1 == 0 means 16B */ 407 if (likely(parent & MAPLE_PARENT_NOT_RANGE16)) 408 return MAPLE_PARENT_SLOT_SHIFT; 409 410 return MAPLE_PARENT_16B_SLOT_SHIFT; 411 } 412 413 /* 414 * mte_parent_slot_mask() - Get the slot mask for the parent. 415 * @parent: The parent pointer cast as an unsigned long. 416 * Return: The slot mask for that parent. 417 */ 418 static inline unsigned long mte_parent_slot_mask(unsigned long parent) 419 { 420 /* Note bit 1 == 0 means 16B */ 421 if (likely(parent & MAPLE_PARENT_NOT_RANGE16)) 422 return MAPLE_PARENT_SLOT_MASK; 423 424 return MAPLE_PARENT_16B_SLOT_MASK; 425 } 426 427 /* 428 * mas_parent_enum() - Return the maple_type of the parent from the stored 429 * parent type. 430 * @mas: The maple state 431 * @node: The maple_enode to extract the parent's enum 432 * Return: The node->parent maple_type 433 */ 434 static inline 435 enum maple_type mte_parent_enum(struct maple_enode *p_enode, 436 struct maple_tree *mt) 437 { 438 unsigned long p_type; 439 440 p_type = (unsigned long)p_enode; 441 if (p_type & MAPLE_PARENT_ROOT) 442 return 0; /* Validated in the caller. */ 443 444 p_type &= MAPLE_NODE_MASK; 445 p_type = p_type & ~(MAPLE_PARENT_ROOT | mte_parent_slot_mask(p_type)); 446 447 switch (p_type) { 448 case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */ 449 if (mt_is_alloc(mt)) 450 return maple_arange_64; 451 return maple_range_64; 452 } 453 454 return 0; 455 } 456 457 static inline 458 enum maple_type mas_parent_enum(struct ma_state *mas, struct maple_enode *enode) 459 { 460 return mte_parent_enum(ma_enode_ptr(mte_to_node(enode)->parent), mas->tree); 461 } 462 463 /* 464 * mte_set_parent() - Set the parent node and encode the slot 465 * @enode: The encoded maple node. 466 * @parent: The encoded maple node that is the parent of @enode. 467 * @slot: The slot that @enode resides in @parent. 468 * 469 * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the 470 * parent type. 471 */ 472 static inline 473 void mte_set_parent(struct maple_enode *enode, const struct maple_enode *parent, 474 unsigned char slot) 475 { 476 unsigned long val = (unsigned long)parent; 477 unsigned long shift; 478 unsigned long type; 479 enum maple_type p_type = mte_node_type(parent); 480 481 BUG_ON(p_type == maple_dense); 482 BUG_ON(p_type == maple_leaf_64); 483 484 switch (p_type) { 485 case maple_range_64: 486 case maple_arange_64: 487 shift = MAPLE_PARENT_SLOT_SHIFT; 488 type = MAPLE_PARENT_RANGE64; 489 break; 490 default: 491 case maple_dense: 492 case maple_leaf_64: 493 shift = type = 0; 494 break; 495 } 496 497 val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */ 498 val |= (slot << shift) | type; 499 mte_to_node(enode)->parent = ma_parent_ptr(val); 500 } 501 502 /* 503 * mte_parent_slot() - get the parent slot of @enode. 504 * @enode: The encoded maple node. 505 * 506 * Return: The slot in the parent node where @enode resides. 507 */ 508 static inline unsigned int mte_parent_slot(const struct maple_enode *enode) 509 { 510 unsigned long val = (unsigned long)mte_to_node(enode)->parent; 511 512 if (val & MA_ROOT_PARENT) 513 return 0; 514 515 /* 516 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost 517 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT 518 */ 519 return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val); 520 } 521 522 /* 523 * mte_parent() - Get the parent of @node. 524 * @node: The encoded maple node. 525 * 526 * Return: The parent maple node. 527 */ 528 static inline struct maple_node *mte_parent(const struct maple_enode *enode) 529 { 530 return (void *)((unsigned long) 531 (mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK); 532 } 533 534 /* 535 * ma_dead_node() - check if the @enode is dead. 536 * @enode: The encoded maple node 537 * 538 * Return: true if dead, false otherwise. 539 */ 540 static inline bool ma_dead_node(const struct maple_node *node) 541 { 542 struct maple_node *parent; 543 544 /* Do not reorder reads from the node prior to the parent check */ 545 smp_rmb(); 546 parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK); 547 return (parent == node); 548 } 549 550 /* 551 * mte_dead_node() - check if the @enode is dead. 552 * @enode: The encoded maple node 553 * 554 * Return: true if dead, false otherwise. 555 */ 556 static inline bool mte_dead_node(const struct maple_enode *enode) 557 { 558 struct maple_node *parent, *node; 559 560 node = mte_to_node(enode); 561 /* Do not reorder reads from the node prior to the parent check */ 562 smp_rmb(); 563 parent = mte_parent(enode); 564 return (parent == node); 565 } 566 567 /* 568 * mas_allocated() - Get the number of nodes allocated in a maple state. 569 * @mas: The maple state 570 * 571 * The ma_state alloc member is overloaded to hold a pointer to the first 572 * allocated node or to the number of requested nodes to allocate. If bit 0 is 573 * set, then the alloc contains the number of requested nodes. If there is an 574 * allocated node, then the total allocated nodes is in that node. 575 * 576 * Return: The total number of nodes allocated 577 */ 578 static inline unsigned long mas_allocated(const struct ma_state *mas) 579 { 580 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) 581 return 0; 582 583 return mas->alloc->total; 584 } 585 586 /* 587 * mas_set_alloc_req() - Set the requested number of allocations. 588 * @mas: the maple state 589 * @count: the number of allocations. 590 * 591 * The requested number of allocations is either in the first allocated node, 592 * located in @mas->alloc->request_count, or directly in @mas->alloc if there is 593 * no allocated node. Set the request either in the node or do the necessary 594 * encoding to store in @mas->alloc directly. 595 */ 596 static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count) 597 { 598 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) { 599 if (!count) 600 mas->alloc = NULL; 601 else 602 mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U); 603 return; 604 } 605 606 mas->alloc->request_count = count; 607 } 608 609 /* 610 * mas_alloc_req() - get the requested number of allocations. 611 * @mas: The maple state 612 * 613 * The alloc count is either stored directly in @mas, or in 614 * @mas->alloc->request_count if there is at least one node allocated. Decode 615 * the request count if it's stored directly in @mas->alloc. 616 * 617 * Return: The allocation request count. 618 */ 619 static inline unsigned int mas_alloc_req(const struct ma_state *mas) 620 { 621 if ((unsigned long)mas->alloc & 0x1) 622 return (unsigned long)(mas->alloc) >> 1; 623 else if (mas->alloc) 624 return mas->alloc->request_count; 625 return 0; 626 } 627 628 /* 629 * ma_pivots() - Get a pointer to the maple node pivots. 630 * @node - the maple node 631 * @type - the node type 632 * 633 * In the event of a dead node, this array may be %NULL 634 * 635 * Return: A pointer to the maple node pivots 636 */ 637 static inline unsigned long *ma_pivots(struct maple_node *node, 638 enum maple_type type) 639 { 640 switch (type) { 641 case maple_arange_64: 642 return node->ma64.pivot; 643 case maple_range_64: 644 case maple_leaf_64: 645 return node->mr64.pivot; 646 case maple_dense: 647 return NULL; 648 } 649 return NULL; 650 } 651 652 /* 653 * ma_gaps() - Get a pointer to the maple node gaps. 654 * @node - the maple node 655 * @type - the node type 656 * 657 * Return: A pointer to the maple node gaps 658 */ 659 static inline unsigned long *ma_gaps(struct maple_node *node, 660 enum maple_type type) 661 { 662 switch (type) { 663 case maple_arange_64: 664 return node->ma64.gap; 665 case maple_range_64: 666 case maple_leaf_64: 667 case maple_dense: 668 return NULL; 669 } 670 return NULL; 671 } 672 673 /* 674 * mte_pivot() - Get the pivot at @piv of the maple encoded node. 675 * @mn: The maple encoded node. 676 * @piv: The pivot. 677 * 678 * Return: the pivot at @piv of @mn. 679 */ 680 static inline unsigned long mte_pivot(const struct maple_enode *mn, 681 unsigned char piv) 682 { 683 struct maple_node *node = mte_to_node(mn); 684 enum maple_type type = mte_node_type(mn); 685 686 if (piv >= mt_pivots[type]) { 687 WARN_ON(1); 688 return 0; 689 } 690 switch (type) { 691 case maple_arange_64: 692 return node->ma64.pivot[piv]; 693 case maple_range_64: 694 case maple_leaf_64: 695 return node->mr64.pivot[piv]; 696 case maple_dense: 697 return 0; 698 } 699 return 0; 700 } 701 702 /* 703 * mas_safe_pivot() - get the pivot at @piv or mas->max. 704 * @mas: The maple state 705 * @pivots: The pointer to the maple node pivots 706 * @piv: The pivot to fetch 707 * @type: The maple node type 708 * 709 * Return: The pivot at @piv within the limit of the @pivots array, @mas->max 710 * otherwise. 711 */ 712 static inline unsigned long 713 mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots, 714 unsigned char piv, enum maple_type type) 715 { 716 if (piv >= mt_pivots[type]) 717 return mas->max; 718 719 return pivots[piv]; 720 } 721 722 /* 723 * mas_safe_min() - Return the minimum for a given offset. 724 * @mas: The maple state 725 * @pivots: The pointer to the maple node pivots 726 * @offset: The offset into the pivot array 727 * 728 * Return: The minimum range value that is contained in @offset. 729 */ 730 static inline unsigned long 731 mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset) 732 { 733 if (likely(offset)) 734 return pivots[offset - 1] + 1; 735 736 return mas->min; 737 } 738 739 /* 740 * mas_logical_pivot() - Get the logical pivot of a given offset. 741 * @mas: The maple state 742 * @pivots: The pointer to the maple node pivots 743 * @offset: The offset into the pivot array 744 * @type: The maple node type 745 * 746 * When there is no value at a pivot (beyond the end of the data), then the 747 * pivot is actually @mas->max. 748 * 749 * Return: the logical pivot of a given @offset. 750 */ 751 static inline unsigned long 752 mas_logical_pivot(struct ma_state *mas, unsigned long *pivots, 753 unsigned char offset, enum maple_type type) 754 { 755 unsigned long lpiv = mas_safe_pivot(mas, pivots, offset, type); 756 757 if (likely(lpiv)) 758 return lpiv; 759 760 if (likely(offset)) 761 return mas->max; 762 763 return lpiv; 764 } 765 766 /* 767 * mte_set_pivot() - Set a pivot to a value in an encoded maple node. 768 * @mn: The encoded maple node 769 * @piv: The pivot offset 770 * @val: The value of the pivot 771 */ 772 static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv, 773 unsigned long val) 774 { 775 struct maple_node *node = mte_to_node(mn); 776 enum maple_type type = mte_node_type(mn); 777 778 BUG_ON(piv >= mt_pivots[type]); 779 switch (type) { 780 default: 781 case maple_range_64: 782 case maple_leaf_64: 783 node->mr64.pivot[piv] = val; 784 break; 785 case maple_arange_64: 786 node->ma64.pivot[piv] = val; 787 break; 788 case maple_dense: 789 break; 790 } 791 792 } 793 794 /* 795 * ma_slots() - Get a pointer to the maple node slots. 796 * @mn: The maple node 797 * @mt: The maple node type 798 * 799 * Return: A pointer to the maple node slots 800 */ 801 static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt) 802 { 803 switch (mt) { 804 default: 805 case maple_arange_64: 806 return mn->ma64.slot; 807 case maple_range_64: 808 case maple_leaf_64: 809 return mn->mr64.slot; 810 case maple_dense: 811 return mn->slot; 812 } 813 } 814 815 static inline bool mt_locked(const struct maple_tree *mt) 816 { 817 return mt_external_lock(mt) ? mt_lock_is_held(mt) : 818 lockdep_is_held(&mt->ma_lock); 819 } 820 821 static inline void *mt_slot(const struct maple_tree *mt, 822 void __rcu **slots, unsigned char offset) 823 { 824 return rcu_dereference_check(slots[offset], mt_locked(mt)); 825 } 826 827 static inline void *mt_slot_locked(struct maple_tree *mt, void __rcu **slots, 828 unsigned char offset) 829 { 830 return rcu_dereference_protected(slots[offset], mt_locked(mt)); 831 } 832 /* 833 * mas_slot_locked() - Get the slot value when holding the maple tree lock. 834 * @mas: The maple state 835 * @slots: The pointer to the slots 836 * @offset: The offset into the slots array to fetch 837 * 838 * Return: The entry stored in @slots at the @offset. 839 */ 840 static inline void *mas_slot_locked(struct ma_state *mas, void __rcu **slots, 841 unsigned char offset) 842 { 843 return mt_slot_locked(mas->tree, slots, offset); 844 } 845 846 /* 847 * mas_slot() - Get the slot value when not holding the maple tree lock. 848 * @mas: The maple state 849 * @slots: The pointer to the slots 850 * @offset: The offset into the slots array to fetch 851 * 852 * Return: The entry stored in @slots at the @offset 853 */ 854 static inline void *mas_slot(struct ma_state *mas, void __rcu **slots, 855 unsigned char offset) 856 { 857 return mt_slot(mas->tree, slots, offset); 858 } 859 860 /* 861 * mas_root() - Get the maple tree root. 862 * @mas: The maple state. 863 * 864 * Return: The pointer to the root of the tree 865 */ 866 static inline void *mas_root(struct ma_state *mas) 867 { 868 return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree)); 869 } 870 871 static inline void *mt_root_locked(struct maple_tree *mt) 872 { 873 return rcu_dereference_protected(mt->ma_root, mt_locked(mt)); 874 } 875 876 /* 877 * mas_root_locked() - Get the maple tree root when holding the maple tree lock. 878 * @mas: The maple state. 879 * 880 * Return: The pointer to the root of the tree 881 */ 882 static inline void *mas_root_locked(struct ma_state *mas) 883 { 884 return mt_root_locked(mas->tree); 885 } 886 887 static inline struct maple_metadata *ma_meta(struct maple_node *mn, 888 enum maple_type mt) 889 { 890 switch (mt) { 891 case maple_arange_64: 892 return &mn->ma64.meta; 893 default: 894 return &mn->mr64.meta; 895 } 896 } 897 898 /* 899 * ma_set_meta() - Set the metadata information of a node. 900 * @mn: The maple node 901 * @mt: The maple node type 902 * @offset: The offset of the highest sub-gap in this node. 903 * @end: The end of the data in this node. 904 */ 905 static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt, 906 unsigned char offset, unsigned char end) 907 { 908 struct maple_metadata *meta = ma_meta(mn, mt); 909 910 meta->gap = offset; 911 meta->end = end; 912 } 913 914 /* 915 * mt_clear_meta() - clear the metadata information of a node, if it exists 916 * @mt: The maple tree 917 * @mn: The maple node 918 * @type: The maple node type 919 * @offset: The offset of the highest sub-gap in this node. 920 * @end: The end of the data in this node. 921 */ 922 static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn, 923 enum maple_type type) 924 { 925 struct maple_metadata *meta; 926 unsigned long *pivots; 927 void __rcu **slots; 928 void *next; 929 930 switch (type) { 931 case maple_range_64: 932 pivots = mn->mr64.pivot; 933 if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) { 934 slots = mn->mr64.slot; 935 next = mt_slot_locked(mt, slots, 936 MAPLE_RANGE64_SLOTS - 1); 937 if (unlikely((mte_to_node(next) && 938 mte_node_type(next)))) 939 return; /* no metadata, could be node */ 940 } 941 fallthrough; 942 case maple_arange_64: 943 meta = ma_meta(mn, type); 944 break; 945 default: 946 return; 947 } 948 949 meta->gap = 0; 950 meta->end = 0; 951 } 952 953 /* 954 * ma_meta_end() - Get the data end of a node from the metadata 955 * @mn: The maple node 956 * @mt: The maple node type 957 */ 958 static inline unsigned char ma_meta_end(struct maple_node *mn, 959 enum maple_type mt) 960 { 961 struct maple_metadata *meta = ma_meta(mn, mt); 962 963 return meta->end; 964 } 965 966 /* 967 * ma_meta_gap() - Get the largest gap location of a node from the metadata 968 * @mn: The maple node 969 * @mt: The maple node type 970 */ 971 static inline unsigned char ma_meta_gap(struct maple_node *mn, 972 enum maple_type mt) 973 { 974 BUG_ON(mt != maple_arange_64); 975 976 return mn->ma64.meta.gap; 977 } 978 979 /* 980 * ma_set_meta_gap() - Set the largest gap location in a nodes metadata 981 * @mn: The maple node 982 * @mn: The maple node type 983 * @offset: The location of the largest gap. 984 */ 985 static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt, 986 unsigned char offset) 987 { 988 989 struct maple_metadata *meta = ma_meta(mn, mt); 990 991 meta->gap = offset; 992 } 993 994 /* 995 * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes. 996 * @mat - the ma_topiary, a linked list of dead nodes. 997 * @dead_enode - the node to be marked as dead and added to the tail of the list 998 * 999 * Add the @dead_enode to the linked list in @mat. 1000 */ 1001 static inline void mat_add(struct ma_topiary *mat, 1002 struct maple_enode *dead_enode) 1003 { 1004 mte_set_node_dead(dead_enode); 1005 mte_to_mat(dead_enode)->next = NULL; 1006 if (!mat->tail) { 1007 mat->tail = mat->head = dead_enode; 1008 return; 1009 } 1010 1011 mte_to_mat(mat->tail)->next = dead_enode; 1012 mat->tail = dead_enode; 1013 } 1014 1015 static void mte_destroy_walk(struct maple_enode *, struct maple_tree *); 1016 static inline void mas_free(struct ma_state *mas, struct maple_enode *used); 1017 1018 /* 1019 * mas_mat_free() - Free all nodes in a dead list. 1020 * @mas - the maple state 1021 * @mat - the ma_topiary linked list of dead nodes to free. 1022 * 1023 * Free walk a dead list. 1024 */ 1025 static void mas_mat_free(struct ma_state *mas, struct ma_topiary *mat) 1026 { 1027 struct maple_enode *next; 1028 1029 while (mat->head) { 1030 next = mte_to_mat(mat->head)->next; 1031 mas_free(mas, mat->head); 1032 mat->head = next; 1033 } 1034 } 1035 1036 /* 1037 * mas_mat_destroy() - Free all nodes and subtrees in a dead list. 1038 * @mas - the maple state 1039 * @mat - the ma_topiary linked list of dead nodes to free. 1040 * 1041 * Destroy walk a dead list. 1042 */ 1043 static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat) 1044 { 1045 struct maple_enode *next; 1046 1047 while (mat->head) { 1048 next = mte_to_mat(mat->head)->next; 1049 mte_destroy_walk(mat->head, mat->mtree); 1050 mat->head = next; 1051 } 1052 } 1053 /* 1054 * mas_descend() - Descend into the slot stored in the ma_state. 1055 * @mas - the maple state. 1056 * 1057 * Note: Not RCU safe, only use in write side or debug code. 1058 */ 1059 static inline void mas_descend(struct ma_state *mas) 1060 { 1061 enum maple_type type; 1062 unsigned long *pivots; 1063 struct maple_node *node; 1064 void __rcu **slots; 1065 1066 node = mas_mn(mas); 1067 type = mte_node_type(mas->node); 1068 pivots = ma_pivots(node, type); 1069 slots = ma_slots(node, type); 1070 1071 if (mas->offset) 1072 mas->min = pivots[mas->offset - 1] + 1; 1073 mas->max = mas_safe_pivot(mas, pivots, mas->offset, type); 1074 mas->node = mas_slot(mas, slots, mas->offset); 1075 } 1076 1077 /* 1078 * mte_set_gap() - Set a maple node gap. 1079 * @mn: The encoded maple node 1080 * @gap: The offset of the gap to set 1081 * @val: The gap value 1082 */ 1083 static inline void mte_set_gap(const struct maple_enode *mn, 1084 unsigned char gap, unsigned long val) 1085 { 1086 switch (mte_node_type(mn)) { 1087 default: 1088 break; 1089 case maple_arange_64: 1090 mte_to_node(mn)->ma64.gap[gap] = val; 1091 break; 1092 } 1093 } 1094 1095 /* 1096 * mas_ascend() - Walk up a level of the tree. 1097 * @mas: The maple state 1098 * 1099 * Sets the @mas->max and @mas->min to the correct values when walking up. This 1100 * may cause several levels of walking up to find the correct min and max. 1101 * May find a dead node which will cause a premature return. 1102 * Return: 1 on dead node, 0 otherwise 1103 */ 1104 static int mas_ascend(struct ma_state *mas) 1105 { 1106 struct maple_enode *p_enode; /* parent enode. */ 1107 struct maple_enode *a_enode; /* ancestor enode. */ 1108 struct maple_node *a_node; /* ancestor node. */ 1109 struct maple_node *p_node; /* parent node. */ 1110 unsigned char a_slot; 1111 enum maple_type a_type; 1112 unsigned long min, max; 1113 unsigned long *pivots; 1114 unsigned char offset; 1115 bool set_max = false, set_min = false; 1116 1117 a_node = mas_mn(mas); 1118 if (ma_is_root(a_node)) { 1119 mas->offset = 0; 1120 return 0; 1121 } 1122 1123 p_node = mte_parent(mas->node); 1124 if (unlikely(a_node == p_node)) 1125 return 1; 1126 a_type = mas_parent_enum(mas, mas->node); 1127 offset = mte_parent_slot(mas->node); 1128 a_enode = mt_mk_node(p_node, a_type); 1129 1130 /* Check to make sure all parent information is still accurate */ 1131 if (p_node != mte_parent(mas->node)) 1132 return 1; 1133 1134 mas->node = a_enode; 1135 mas->offset = offset; 1136 1137 if (mte_is_root(a_enode)) { 1138 mas->max = ULONG_MAX; 1139 mas->min = 0; 1140 return 0; 1141 } 1142 1143 min = 0; 1144 max = ULONG_MAX; 1145 do { 1146 p_enode = a_enode; 1147 a_type = mas_parent_enum(mas, p_enode); 1148 a_node = mte_parent(p_enode); 1149 a_slot = mte_parent_slot(p_enode); 1150 a_enode = mt_mk_node(a_node, a_type); 1151 pivots = ma_pivots(a_node, a_type); 1152 1153 if (unlikely(ma_dead_node(a_node))) 1154 return 1; 1155 1156 if (!set_min && a_slot) { 1157 set_min = true; 1158 min = pivots[a_slot - 1] + 1; 1159 } 1160 1161 if (!set_max && a_slot < mt_pivots[a_type]) { 1162 set_max = true; 1163 max = pivots[a_slot]; 1164 } 1165 1166 if (unlikely(ma_dead_node(a_node))) 1167 return 1; 1168 1169 if (unlikely(ma_is_root(a_node))) 1170 break; 1171 1172 } while (!set_min || !set_max); 1173 1174 mas->max = max; 1175 mas->min = min; 1176 return 0; 1177 } 1178 1179 /* 1180 * mas_pop_node() - Get a previously allocated maple node from the maple state. 1181 * @mas: The maple state 1182 * 1183 * Return: A pointer to a maple node. 1184 */ 1185 static inline struct maple_node *mas_pop_node(struct ma_state *mas) 1186 { 1187 struct maple_alloc *ret, *node = mas->alloc; 1188 unsigned long total = mas_allocated(mas); 1189 unsigned int req = mas_alloc_req(mas); 1190 1191 /* nothing or a request pending. */ 1192 if (WARN_ON(!total)) 1193 return NULL; 1194 1195 if (total == 1) { 1196 /* single allocation in this ma_state */ 1197 mas->alloc = NULL; 1198 ret = node; 1199 goto single_node; 1200 } 1201 1202 if (node->node_count == 1) { 1203 /* Single allocation in this node. */ 1204 mas->alloc = node->slot[0]; 1205 mas->alloc->total = node->total - 1; 1206 ret = node; 1207 goto new_head; 1208 } 1209 node->total--; 1210 ret = node->slot[--node->node_count]; 1211 node->slot[node->node_count] = NULL; 1212 1213 single_node: 1214 new_head: 1215 if (req) { 1216 req++; 1217 mas_set_alloc_req(mas, req); 1218 } 1219 1220 memset(ret, 0, sizeof(*ret)); 1221 return (struct maple_node *)ret; 1222 } 1223 1224 /* 1225 * mas_push_node() - Push a node back on the maple state allocation. 1226 * @mas: The maple state 1227 * @used: The used maple node 1228 * 1229 * Stores the maple node back into @mas->alloc for reuse. Updates allocated and 1230 * requested node count as necessary. 1231 */ 1232 static inline void mas_push_node(struct ma_state *mas, struct maple_node *used) 1233 { 1234 struct maple_alloc *reuse = (struct maple_alloc *)used; 1235 struct maple_alloc *head = mas->alloc; 1236 unsigned long count; 1237 unsigned int requested = mas_alloc_req(mas); 1238 1239 count = mas_allocated(mas); 1240 1241 reuse->request_count = 0; 1242 reuse->node_count = 0; 1243 if (count && (head->node_count < MAPLE_ALLOC_SLOTS)) { 1244 head->slot[head->node_count++] = reuse; 1245 head->total++; 1246 goto done; 1247 } 1248 1249 reuse->total = 1; 1250 if ((head) && !((unsigned long)head & 0x1)) { 1251 reuse->slot[0] = head; 1252 reuse->node_count = 1; 1253 reuse->total += head->total; 1254 } 1255 1256 mas->alloc = reuse; 1257 done: 1258 if (requested > 1) 1259 mas_set_alloc_req(mas, requested - 1); 1260 } 1261 1262 /* 1263 * mas_alloc_nodes() - Allocate nodes into a maple state 1264 * @mas: The maple state 1265 * @gfp: The GFP Flags 1266 */ 1267 static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp) 1268 { 1269 struct maple_alloc *node; 1270 unsigned long allocated = mas_allocated(mas); 1271 unsigned int requested = mas_alloc_req(mas); 1272 unsigned int count; 1273 void **slots = NULL; 1274 unsigned int max_req = 0; 1275 1276 if (!requested) 1277 return; 1278 1279 mas_set_alloc_req(mas, 0); 1280 if (mas->mas_flags & MA_STATE_PREALLOC) { 1281 if (allocated) 1282 return; 1283 WARN_ON(!allocated); 1284 } 1285 1286 if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) { 1287 node = (struct maple_alloc *)mt_alloc_one(gfp); 1288 if (!node) 1289 goto nomem_one; 1290 1291 if (allocated) { 1292 node->slot[0] = mas->alloc; 1293 node->node_count = 1; 1294 } else { 1295 node->node_count = 0; 1296 } 1297 1298 mas->alloc = node; 1299 node->total = ++allocated; 1300 requested--; 1301 } 1302 1303 node = mas->alloc; 1304 node->request_count = 0; 1305 while (requested) { 1306 max_req = MAPLE_ALLOC_SLOTS - node->node_count; 1307 slots = (void **)&node->slot[node->node_count]; 1308 max_req = min(requested, max_req); 1309 count = mt_alloc_bulk(gfp, max_req, slots); 1310 if (!count) 1311 goto nomem_bulk; 1312 1313 if (node->node_count == 0) { 1314 node->slot[0]->node_count = 0; 1315 node->slot[0]->request_count = 0; 1316 } 1317 1318 node->node_count += count; 1319 allocated += count; 1320 node = node->slot[0]; 1321 requested -= count; 1322 } 1323 mas->alloc->total = allocated; 1324 return; 1325 1326 nomem_bulk: 1327 /* Clean up potential freed allocations on bulk failure */ 1328 memset(slots, 0, max_req * sizeof(unsigned long)); 1329 nomem_one: 1330 mas_set_alloc_req(mas, requested); 1331 if (mas->alloc && !(((unsigned long)mas->alloc & 0x1))) 1332 mas->alloc->total = allocated; 1333 mas_set_err(mas, -ENOMEM); 1334 } 1335 1336 /* 1337 * mas_free() - Free an encoded maple node 1338 * @mas: The maple state 1339 * @used: The encoded maple node to free. 1340 * 1341 * Uses rcu free if necessary, pushes @used back on the maple state allocations 1342 * otherwise. 1343 */ 1344 static inline void mas_free(struct ma_state *mas, struct maple_enode *used) 1345 { 1346 struct maple_node *tmp = mte_to_node(used); 1347 1348 if (mt_in_rcu(mas->tree)) 1349 ma_free_rcu(tmp); 1350 else 1351 mas_push_node(mas, tmp); 1352 } 1353 1354 /* 1355 * mas_node_count() - Check if enough nodes are allocated and request more if 1356 * there is not enough nodes. 1357 * @mas: The maple state 1358 * @count: The number of nodes needed 1359 * @gfp: the gfp flags 1360 */ 1361 static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp) 1362 { 1363 unsigned long allocated = mas_allocated(mas); 1364 1365 if (allocated < count) { 1366 mas_set_alloc_req(mas, count - allocated); 1367 mas_alloc_nodes(mas, gfp); 1368 } 1369 } 1370 1371 /* 1372 * mas_node_count() - Check if enough nodes are allocated and request more if 1373 * there is not enough nodes. 1374 * @mas: The maple state 1375 * @count: The number of nodes needed 1376 * 1377 * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags. 1378 */ 1379 static void mas_node_count(struct ma_state *mas, int count) 1380 { 1381 return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN); 1382 } 1383 1384 /* 1385 * mas_start() - Sets up maple state for operations. 1386 * @mas: The maple state. 1387 * 1388 * If mas->node == MAS_START, then set the min, max and depth to 1389 * defaults. 1390 * 1391 * Return: 1392 * - If mas->node is an error or not MAS_START, return NULL. 1393 * - If it's an empty tree: NULL & mas->node == MAS_NONE 1394 * - If it's a single entry: The entry & mas->node == MAS_ROOT 1395 * - If it's a tree: NULL & mas->node == safe root node. 1396 */ 1397 static inline struct maple_enode *mas_start(struct ma_state *mas) 1398 { 1399 if (likely(mas_is_start(mas))) { 1400 struct maple_enode *root; 1401 1402 mas->min = 0; 1403 mas->max = ULONG_MAX; 1404 mas->depth = 0; 1405 1406 retry: 1407 root = mas_root(mas); 1408 /* Tree with nodes */ 1409 if (likely(xa_is_node(root))) { 1410 mas->depth = 1; 1411 mas->node = mte_safe_root(root); 1412 mas->offset = 0; 1413 if (mte_dead_node(mas->node)) 1414 goto retry; 1415 1416 return NULL; 1417 } 1418 1419 /* empty tree */ 1420 if (unlikely(!root)) { 1421 mas->node = MAS_NONE; 1422 mas->offset = MAPLE_NODE_SLOTS; 1423 return NULL; 1424 } 1425 1426 /* Single entry tree */ 1427 mas->node = MAS_ROOT; 1428 mas->offset = MAPLE_NODE_SLOTS; 1429 1430 /* Single entry tree. */ 1431 if (mas->index > 0) 1432 return NULL; 1433 1434 return root; 1435 } 1436 1437 return NULL; 1438 } 1439 1440 /* 1441 * ma_data_end() - Find the end of the data in a node. 1442 * @node: The maple node 1443 * @type: The maple node type 1444 * @pivots: The array of pivots in the node 1445 * @max: The maximum value in the node 1446 * 1447 * Uses metadata to find the end of the data when possible. 1448 * Return: The zero indexed last slot with data (may be null). 1449 */ 1450 static inline unsigned char ma_data_end(struct maple_node *node, 1451 enum maple_type type, 1452 unsigned long *pivots, 1453 unsigned long max) 1454 { 1455 unsigned char offset; 1456 1457 if (!pivots) 1458 return 0; 1459 1460 if (type == maple_arange_64) 1461 return ma_meta_end(node, type); 1462 1463 offset = mt_pivots[type] - 1; 1464 if (likely(!pivots[offset])) 1465 return ma_meta_end(node, type); 1466 1467 if (likely(pivots[offset] == max)) 1468 return offset; 1469 1470 return mt_pivots[type]; 1471 } 1472 1473 /* 1474 * mas_data_end() - Find the end of the data (slot). 1475 * @mas: the maple state 1476 * 1477 * This method is optimized to check the metadata of a node if the node type 1478 * supports data end metadata. 1479 * 1480 * Return: The zero indexed last slot with data (may be null). 1481 */ 1482 static inline unsigned char mas_data_end(struct ma_state *mas) 1483 { 1484 enum maple_type type; 1485 struct maple_node *node; 1486 unsigned char offset; 1487 unsigned long *pivots; 1488 1489 type = mte_node_type(mas->node); 1490 node = mas_mn(mas); 1491 if (type == maple_arange_64) 1492 return ma_meta_end(node, type); 1493 1494 pivots = ma_pivots(node, type); 1495 if (unlikely(ma_dead_node(node))) 1496 return 0; 1497 1498 offset = mt_pivots[type] - 1; 1499 if (likely(!pivots[offset])) 1500 return ma_meta_end(node, type); 1501 1502 if (likely(pivots[offset] == mas->max)) 1503 return offset; 1504 1505 return mt_pivots[type]; 1506 } 1507 1508 /* 1509 * mas_leaf_max_gap() - Returns the largest gap in a leaf node 1510 * @mas - the maple state 1511 * 1512 * Return: The maximum gap in the leaf. 1513 */ 1514 static unsigned long mas_leaf_max_gap(struct ma_state *mas) 1515 { 1516 enum maple_type mt; 1517 unsigned long pstart, gap, max_gap; 1518 struct maple_node *mn; 1519 unsigned long *pivots; 1520 void __rcu **slots; 1521 unsigned char i; 1522 unsigned char max_piv; 1523 1524 mt = mte_node_type(mas->node); 1525 mn = mas_mn(mas); 1526 slots = ma_slots(mn, mt); 1527 max_gap = 0; 1528 if (unlikely(ma_is_dense(mt))) { 1529 gap = 0; 1530 for (i = 0; i < mt_slots[mt]; i++) { 1531 if (slots[i]) { 1532 if (gap > max_gap) 1533 max_gap = gap; 1534 gap = 0; 1535 } else { 1536 gap++; 1537 } 1538 } 1539 if (gap > max_gap) 1540 max_gap = gap; 1541 return max_gap; 1542 } 1543 1544 /* 1545 * Check the first implied pivot optimizes the loop below and slot 1 may 1546 * be skipped if there is a gap in slot 0. 1547 */ 1548 pivots = ma_pivots(mn, mt); 1549 if (likely(!slots[0])) { 1550 max_gap = pivots[0] - mas->min + 1; 1551 i = 2; 1552 } else { 1553 i = 1; 1554 } 1555 1556 /* reduce max_piv as the special case is checked before the loop */ 1557 max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1; 1558 /* 1559 * Check end implied pivot which can only be a gap on the right most 1560 * node. 1561 */ 1562 if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) { 1563 gap = ULONG_MAX - pivots[max_piv]; 1564 if (gap > max_gap) 1565 max_gap = gap; 1566 } 1567 1568 for (; i <= max_piv; i++) { 1569 /* data == no gap. */ 1570 if (likely(slots[i])) 1571 continue; 1572 1573 pstart = pivots[i - 1]; 1574 gap = pivots[i] - pstart; 1575 if (gap > max_gap) 1576 max_gap = gap; 1577 1578 /* There cannot be two gaps in a row. */ 1579 i++; 1580 } 1581 return max_gap; 1582 } 1583 1584 /* 1585 * ma_max_gap() - Get the maximum gap in a maple node (non-leaf) 1586 * @node: The maple node 1587 * @gaps: The pointer to the gaps 1588 * @mt: The maple node type 1589 * @*off: Pointer to store the offset location of the gap. 1590 * 1591 * Uses the metadata data end to scan backwards across set gaps. 1592 * 1593 * Return: The maximum gap value 1594 */ 1595 static inline unsigned long 1596 ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt, 1597 unsigned char *off) 1598 { 1599 unsigned char offset, i; 1600 unsigned long max_gap = 0; 1601 1602 i = offset = ma_meta_end(node, mt); 1603 do { 1604 if (gaps[i] > max_gap) { 1605 max_gap = gaps[i]; 1606 offset = i; 1607 } 1608 } while (i--); 1609 1610 *off = offset; 1611 return max_gap; 1612 } 1613 1614 /* 1615 * mas_max_gap() - find the largest gap in a non-leaf node and set the slot. 1616 * @mas: The maple state. 1617 * 1618 * If the metadata gap is set to MAPLE_ARANGE64_META_MAX, there is no gap. 1619 * 1620 * Return: The gap value. 1621 */ 1622 static inline unsigned long mas_max_gap(struct ma_state *mas) 1623 { 1624 unsigned long *gaps; 1625 unsigned char offset; 1626 enum maple_type mt; 1627 struct maple_node *node; 1628 1629 mt = mte_node_type(mas->node); 1630 if (ma_is_leaf(mt)) 1631 return mas_leaf_max_gap(mas); 1632 1633 node = mas_mn(mas); 1634 offset = ma_meta_gap(node, mt); 1635 if (offset == MAPLE_ARANGE64_META_MAX) 1636 return 0; 1637 1638 gaps = ma_gaps(node, mt); 1639 return gaps[offset]; 1640 } 1641 1642 /* 1643 * mas_parent_gap() - Set the parent gap and any gaps above, as needed 1644 * @mas: The maple state 1645 * @offset: The gap offset in the parent to set 1646 * @new: The new gap value. 1647 * 1648 * Set the parent gap then continue to set the gap upwards, using the metadata 1649 * of the parent to see if it is necessary to check the node above. 1650 */ 1651 static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset, 1652 unsigned long new) 1653 { 1654 unsigned long meta_gap = 0; 1655 struct maple_node *pnode; 1656 struct maple_enode *penode; 1657 unsigned long *pgaps; 1658 unsigned char meta_offset; 1659 enum maple_type pmt; 1660 1661 pnode = mte_parent(mas->node); 1662 pmt = mas_parent_enum(mas, mas->node); 1663 penode = mt_mk_node(pnode, pmt); 1664 pgaps = ma_gaps(pnode, pmt); 1665 1666 ascend: 1667 meta_offset = ma_meta_gap(pnode, pmt); 1668 if (meta_offset == MAPLE_ARANGE64_META_MAX) 1669 meta_gap = 0; 1670 else 1671 meta_gap = pgaps[meta_offset]; 1672 1673 pgaps[offset] = new; 1674 1675 if (meta_gap == new) 1676 return; 1677 1678 if (offset != meta_offset) { 1679 if (meta_gap > new) 1680 return; 1681 1682 ma_set_meta_gap(pnode, pmt, offset); 1683 } else if (new < meta_gap) { 1684 meta_offset = 15; 1685 new = ma_max_gap(pnode, pgaps, pmt, &meta_offset); 1686 ma_set_meta_gap(pnode, pmt, meta_offset); 1687 } 1688 1689 if (ma_is_root(pnode)) 1690 return; 1691 1692 /* Go to the parent node. */ 1693 pnode = mte_parent(penode); 1694 pmt = mas_parent_enum(mas, penode); 1695 pgaps = ma_gaps(pnode, pmt); 1696 offset = mte_parent_slot(penode); 1697 penode = mt_mk_node(pnode, pmt); 1698 goto ascend; 1699 } 1700 1701 /* 1702 * mas_update_gap() - Update a nodes gaps and propagate up if necessary. 1703 * @mas - the maple state. 1704 */ 1705 static inline void mas_update_gap(struct ma_state *mas) 1706 { 1707 unsigned char pslot; 1708 unsigned long p_gap; 1709 unsigned long max_gap; 1710 1711 if (!mt_is_alloc(mas->tree)) 1712 return; 1713 1714 if (mte_is_root(mas->node)) 1715 return; 1716 1717 max_gap = mas_max_gap(mas); 1718 1719 pslot = mte_parent_slot(mas->node); 1720 p_gap = ma_gaps(mte_parent(mas->node), 1721 mas_parent_enum(mas, mas->node))[pslot]; 1722 1723 if (p_gap != max_gap) 1724 mas_parent_gap(mas, pslot, max_gap); 1725 } 1726 1727 /* 1728 * mas_adopt_children() - Set the parent pointer of all nodes in @parent to 1729 * @parent with the slot encoded. 1730 * @mas - the maple state (for the tree) 1731 * @parent - the maple encoded node containing the children. 1732 */ 1733 static inline void mas_adopt_children(struct ma_state *mas, 1734 struct maple_enode *parent) 1735 { 1736 enum maple_type type = mte_node_type(parent); 1737 struct maple_node *node = mas_mn(mas); 1738 void __rcu **slots = ma_slots(node, type); 1739 unsigned long *pivots = ma_pivots(node, type); 1740 struct maple_enode *child; 1741 unsigned char offset; 1742 1743 offset = ma_data_end(node, type, pivots, mas->max); 1744 do { 1745 child = mas_slot_locked(mas, slots, offset); 1746 mte_set_parent(child, parent, offset); 1747 } while (offset--); 1748 } 1749 1750 /* 1751 * mas_replace() - Replace a maple node in the tree with mas->node. Uses the 1752 * parent encoding to locate the maple node in the tree. 1753 * @mas - the ma_state to use for operations. 1754 * @advanced - boolean to adopt the child nodes and free the old node (false) or 1755 * leave the node (true) and handle the adoption and free elsewhere. 1756 */ 1757 static inline void mas_replace(struct ma_state *mas, bool advanced) 1758 __must_hold(mas->tree->lock) 1759 { 1760 struct maple_node *mn = mas_mn(mas); 1761 struct maple_enode *old_enode; 1762 unsigned char offset = 0; 1763 void __rcu **slots = NULL; 1764 1765 if (ma_is_root(mn)) { 1766 old_enode = mas_root_locked(mas); 1767 } else { 1768 offset = mte_parent_slot(mas->node); 1769 slots = ma_slots(mte_parent(mas->node), 1770 mas_parent_enum(mas, mas->node)); 1771 old_enode = mas_slot_locked(mas, slots, offset); 1772 } 1773 1774 if (!advanced && !mte_is_leaf(mas->node)) 1775 mas_adopt_children(mas, mas->node); 1776 1777 if (mte_is_root(mas->node)) { 1778 mn->parent = ma_parent_ptr( 1779 ((unsigned long)mas->tree | MA_ROOT_PARENT)); 1780 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); 1781 mas_set_height(mas); 1782 } else { 1783 rcu_assign_pointer(slots[offset], mas->node); 1784 } 1785 1786 if (!advanced) { 1787 mte_set_node_dead(old_enode); 1788 mas_free(mas, old_enode); 1789 } 1790 } 1791 1792 /* 1793 * mas_new_child() - Find the new child of a node. 1794 * @mas: the maple state 1795 * @child: the maple state to store the child. 1796 */ 1797 static inline bool mas_new_child(struct ma_state *mas, struct ma_state *child) 1798 __must_hold(mas->tree->lock) 1799 { 1800 enum maple_type mt; 1801 unsigned char offset; 1802 unsigned char end; 1803 unsigned long *pivots; 1804 struct maple_enode *entry; 1805 struct maple_node *node; 1806 void __rcu **slots; 1807 1808 mt = mte_node_type(mas->node); 1809 node = mas_mn(mas); 1810 slots = ma_slots(node, mt); 1811 pivots = ma_pivots(node, mt); 1812 end = ma_data_end(node, mt, pivots, mas->max); 1813 for (offset = mas->offset; offset <= end; offset++) { 1814 entry = mas_slot_locked(mas, slots, offset); 1815 if (mte_parent(entry) == node) { 1816 *child = *mas; 1817 mas->offset = offset + 1; 1818 child->offset = offset; 1819 mas_descend(child); 1820 child->offset = 0; 1821 return true; 1822 } 1823 } 1824 return false; 1825 } 1826 1827 /* 1828 * mab_shift_right() - Shift the data in mab right. Note, does not clean out the 1829 * old data or set b_node->b_end. 1830 * @b_node: the maple_big_node 1831 * @shift: the shift count 1832 */ 1833 static inline void mab_shift_right(struct maple_big_node *b_node, 1834 unsigned char shift) 1835 { 1836 unsigned long size = b_node->b_end * sizeof(unsigned long); 1837 1838 memmove(b_node->pivot + shift, b_node->pivot, size); 1839 memmove(b_node->slot + shift, b_node->slot, size); 1840 if (b_node->type == maple_arange_64) 1841 memmove(b_node->gap + shift, b_node->gap, size); 1842 } 1843 1844 /* 1845 * mab_middle_node() - Check if a middle node is needed (unlikely) 1846 * @b_node: the maple_big_node that contains the data. 1847 * @size: the amount of data in the b_node 1848 * @split: the potential split location 1849 * @slot_count: the size that can be stored in a single node being considered. 1850 * 1851 * Return: true if a middle node is required. 1852 */ 1853 static inline bool mab_middle_node(struct maple_big_node *b_node, int split, 1854 unsigned char slot_count) 1855 { 1856 unsigned char size = b_node->b_end; 1857 1858 if (size >= 2 * slot_count) 1859 return true; 1860 1861 if (!b_node->slot[split] && (size >= 2 * slot_count - 1)) 1862 return true; 1863 1864 return false; 1865 } 1866 1867 /* 1868 * mab_no_null_split() - ensure the split doesn't fall on a NULL 1869 * @b_node: the maple_big_node with the data 1870 * @split: the suggested split location 1871 * @slot_count: the number of slots in the node being considered. 1872 * 1873 * Return: the split location. 1874 */ 1875 static inline int mab_no_null_split(struct maple_big_node *b_node, 1876 unsigned char split, unsigned char slot_count) 1877 { 1878 if (!b_node->slot[split]) { 1879 /* 1880 * If the split is less than the max slot && the right side will 1881 * still be sufficient, then increment the split on NULL. 1882 */ 1883 if ((split < slot_count - 1) && 1884 (b_node->b_end - split) > (mt_min_slots[b_node->type])) 1885 split++; 1886 else 1887 split--; 1888 } 1889 return split; 1890 } 1891 1892 /* 1893 * mab_calc_split() - Calculate the split location and if there needs to be two 1894 * splits. 1895 * @bn: The maple_big_node with the data 1896 * @mid_split: The second split, if required. 0 otherwise. 1897 * 1898 * Return: The first split location. The middle split is set in @mid_split. 1899 */ 1900 static inline int mab_calc_split(struct ma_state *mas, 1901 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min) 1902 { 1903 unsigned char b_end = bn->b_end; 1904 int split = b_end / 2; /* Assume equal split. */ 1905 unsigned char slot_min, slot_count = mt_slots[bn->type]; 1906 1907 /* 1908 * To support gap tracking, all NULL entries are kept together and a node cannot 1909 * end on a NULL entry, with the exception of the left-most leaf. The 1910 * limitation means that the split of a node must be checked for this condition 1911 * and be able to put more data in one direction or the other. 1912 */ 1913 if (unlikely((mas->mas_flags & MA_STATE_BULK))) { 1914 *mid_split = 0; 1915 split = b_end - mt_min_slots[bn->type]; 1916 1917 if (!ma_is_leaf(bn->type)) 1918 return split; 1919 1920 mas->mas_flags |= MA_STATE_REBALANCE; 1921 if (!bn->slot[split]) 1922 split--; 1923 return split; 1924 } 1925 1926 /* 1927 * Although extremely rare, it is possible to enter what is known as the 3-way 1928 * split scenario. The 3-way split comes about by means of a store of a range 1929 * that overwrites the end and beginning of two full nodes. The result is a set 1930 * of entries that cannot be stored in 2 nodes. Sometimes, these two nodes can 1931 * also be located in different parent nodes which are also full. This can 1932 * carry upwards all the way to the root in the worst case. 1933 */ 1934 if (unlikely(mab_middle_node(bn, split, slot_count))) { 1935 split = b_end / 3; 1936 *mid_split = split * 2; 1937 } else { 1938 slot_min = mt_min_slots[bn->type]; 1939 1940 *mid_split = 0; 1941 /* 1942 * Avoid having a range less than the slot count unless it 1943 * causes one node to be deficient. 1944 * NOTE: mt_min_slots is 1 based, b_end and split are zero. 1945 */ 1946 while (((bn->pivot[split] - min) < slot_count - 1) && 1947 (split < slot_count - 1) && (b_end - split > slot_min)) 1948 split++; 1949 } 1950 1951 /* Avoid ending a node on a NULL entry */ 1952 split = mab_no_null_split(bn, split, slot_count); 1953 1954 if (unlikely(*mid_split)) 1955 *mid_split = mab_no_null_split(bn, *mid_split, slot_count); 1956 1957 return split; 1958 } 1959 1960 /* 1961 * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node 1962 * and set @b_node->b_end to the next free slot. 1963 * @mas: The maple state 1964 * @mas_start: The starting slot to copy 1965 * @mas_end: The end slot to copy (inclusively) 1966 * @b_node: The maple_big_node to place the data 1967 * @mab_start: The starting location in maple_big_node to store the data. 1968 */ 1969 static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start, 1970 unsigned char mas_end, struct maple_big_node *b_node, 1971 unsigned char mab_start) 1972 { 1973 enum maple_type mt; 1974 struct maple_node *node; 1975 void __rcu **slots; 1976 unsigned long *pivots, *gaps; 1977 int i = mas_start, j = mab_start; 1978 unsigned char piv_end; 1979 1980 node = mas_mn(mas); 1981 mt = mte_node_type(mas->node); 1982 pivots = ma_pivots(node, mt); 1983 if (!i) { 1984 b_node->pivot[j] = pivots[i++]; 1985 if (unlikely(i > mas_end)) 1986 goto complete; 1987 j++; 1988 } 1989 1990 piv_end = min(mas_end, mt_pivots[mt]); 1991 for (; i < piv_end; i++, j++) { 1992 b_node->pivot[j] = pivots[i]; 1993 if (unlikely(!b_node->pivot[j])) 1994 break; 1995 1996 if (unlikely(mas->max == b_node->pivot[j])) 1997 goto complete; 1998 } 1999 2000 if (likely(i <= mas_end)) 2001 b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt); 2002 2003 complete: 2004 b_node->b_end = ++j; 2005 j -= mab_start; 2006 slots = ma_slots(node, mt); 2007 memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j); 2008 if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) { 2009 gaps = ma_gaps(node, mt); 2010 memcpy(b_node->gap + mab_start, gaps + mas_start, 2011 sizeof(unsigned long) * j); 2012 } 2013 } 2014 2015 /* 2016 * mas_leaf_set_meta() - Set the metadata of a leaf if possible. 2017 * @mas: The maple state 2018 * @node: The maple node 2019 * @pivots: pointer to the maple node pivots 2020 * @mt: The maple type 2021 * @end: The assumed end 2022 * 2023 * Note, end may be incremented within this function but not modified at the 2024 * source. This is fine since the metadata is the last thing to be stored in a 2025 * node during a write. 2026 */ 2027 static inline void mas_leaf_set_meta(struct ma_state *mas, 2028 struct maple_node *node, unsigned long *pivots, 2029 enum maple_type mt, unsigned char end) 2030 { 2031 /* There is no room for metadata already */ 2032 if (mt_pivots[mt] <= end) 2033 return; 2034 2035 if (pivots[end] && pivots[end] < mas->max) 2036 end++; 2037 2038 if (end < mt_slots[mt] - 1) 2039 ma_set_meta(node, mt, 0, end); 2040 } 2041 2042 /* 2043 * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node. 2044 * @b_node: the maple_big_node that has the data 2045 * @mab_start: the start location in @b_node. 2046 * @mab_end: The end location in @b_node (inclusively) 2047 * @mas: The maple state with the maple encoded node. 2048 */ 2049 static inline void mab_mas_cp(struct maple_big_node *b_node, 2050 unsigned char mab_start, unsigned char mab_end, 2051 struct ma_state *mas, bool new_max) 2052 { 2053 int i, j = 0; 2054 enum maple_type mt = mte_node_type(mas->node); 2055 struct maple_node *node = mte_to_node(mas->node); 2056 void __rcu **slots = ma_slots(node, mt); 2057 unsigned long *pivots = ma_pivots(node, mt); 2058 unsigned long *gaps = NULL; 2059 unsigned char end; 2060 2061 if (mab_end - mab_start > mt_pivots[mt]) 2062 mab_end--; 2063 2064 if (!pivots[mt_pivots[mt] - 1]) 2065 slots[mt_pivots[mt]] = NULL; 2066 2067 i = mab_start; 2068 do { 2069 pivots[j++] = b_node->pivot[i++]; 2070 } while (i <= mab_end && likely(b_node->pivot[i])); 2071 2072 memcpy(slots, b_node->slot + mab_start, 2073 sizeof(void *) * (i - mab_start)); 2074 2075 if (new_max) 2076 mas->max = b_node->pivot[i - 1]; 2077 2078 end = j - 1; 2079 if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) { 2080 unsigned long max_gap = 0; 2081 unsigned char offset = 15; 2082 2083 gaps = ma_gaps(node, mt); 2084 do { 2085 gaps[--j] = b_node->gap[--i]; 2086 if (gaps[j] > max_gap) { 2087 offset = j; 2088 max_gap = gaps[j]; 2089 } 2090 } while (j); 2091 2092 ma_set_meta(node, mt, offset, end); 2093 } else { 2094 mas_leaf_set_meta(mas, node, pivots, mt, end); 2095 } 2096 } 2097 2098 /* 2099 * mas_descend_adopt() - Descend through a sub-tree and adopt children. 2100 * @mas: the maple state with the maple encoded node of the sub-tree. 2101 * 2102 * Descend through a sub-tree and adopt children who do not have the correct 2103 * parents set. Follow the parents which have the correct parents as they are 2104 * the new entries which need to be followed to find other incorrectly set 2105 * parents. 2106 */ 2107 static inline void mas_descend_adopt(struct ma_state *mas) 2108 { 2109 struct ma_state list[3], next[3]; 2110 int i, n; 2111 2112 /* 2113 * At each level there may be up to 3 correct parent pointers which indicates 2114 * the new nodes which need to be walked to find any new nodes at a lower level. 2115 */ 2116 2117 for (i = 0; i < 3; i++) { 2118 list[i] = *mas; 2119 list[i].offset = 0; 2120 next[i].offset = 0; 2121 } 2122 next[0] = *mas; 2123 2124 while (!mte_is_leaf(list[0].node)) { 2125 n = 0; 2126 for (i = 0; i < 3; i++) { 2127 if (mas_is_none(&list[i])) 2128 continue; 2129 2130 if (i && list[i-1].node == list[i].node) 2131 continue; 2132 2133 while ((n < 3) && (mas_new_child(&list[i], &next[n]))) 2134 n++; 2135 2136 mas_adopt_children(&list[i], list[i].node); 2137 } 2138 2139 while (n < 3) 2140 next[n++].node = MAS_NONE; 2141 2142 /* descend by setting the list to the children */ 2143 for (i = 0; i < 3; i++) 2144 list[i] = next[i]; 2145 } 2146 } 2147 2148 /* 2149 * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert. 2150 * @mas: The maple state 2151 * @end: The maple node end 2152 * @mt: The maple node type 2153 */ 2154 static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end, 2155 enum maple_type mt) 2156 { 2157 if (!(mas->mas_flags & MA_STATE_BULK)) 2158 return; 2159 2160 if (mte_is_root(mas->node)) 2161 return; 2162 2163 if (end > mt_min_slots[mt]) { 2164 mas->mas_flags &= ~MA_STATE_REBALANCE; 2165 return; 2166 } 2167 } 2168 2169 /* 2170 * mas_store_b_node() - Store an @entry into the b_node while also copying the 2171 * data from a maple encoded node. 2172 * @wr_mas: the maple write state 2173 * @b_node: the maple_big_node to fill with data 2174 * @offset_end: the offset to end copying 2175 * 2176 * Return: The actual end of the data stored in @b_node 2177 */ 2178 static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas, 2179 struct maple_big_node *b_node, unsigned char offset_end) 2180 { 2181 unsigned char slot; 2182 unsigned char b_end; 2183 /* Possible underflow of piv will wrap back to 0 before use. */ 2184 unsigned long piv; 2185 struct ma_state *mas = wr_mas->mas; 2186 2187 b_node->type = wr_mas->type; 2188 b_end = 0; 2189 slot = mas->offset; 2190 if (slot) { 2191 /* Copy start data up to insert. */ 2192 mas_mab_cp(mas, 0, slot - 1, b_node, 0); 2193 b_end = b_node->b_end; 2194 piv = b_node->pivot[b_end - 1]; 2195 } else 2196 piv = mas->min - 1; 2197 2198 if (piv + 1 < mas->index) { 2199 /* Handle range starting after old range */ 2200 b_node->slot[b_end] = wr_mas->content; 2201 if (!wr_mas->content) 2202 b_node->gap[b_end] = mas->index - 1 - piv; 2203 b_node->pivot[b_end++] = mas->index - 1; 2204 } 2205 2206 /* Store the new entry. */ 2207 mas->offset = b_end; 2208 b_node->slot[b_end] = wr_mas->entry; 2209 b_node->pivot[b_end] = mas->last; 2210 2211 /* Appended. */ 2212 if (mas->last >= mas->max) 2213 goto b_end; 2214 2215 /* Handle new range ending before old range ends */ 2216 piv = mas_logical_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type); 2217 if (piv > mas->last) { 2218 if (piv == ULONG_MAX) 2219 mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type); 2220 2221 if (offset_end != slot) 2222 wr_mas->content = mas_slot_locked(mas, wr_mas->slots, 2223 offset_end); 2224 2225 b_node->slot[++b_end] = wr_mas->content; 2226 if (!wr_mas->content) 2227 b_node->gap[b_end] = piv - mas->last + 1; 2228 b_node->pivot[b_end] = piv; 2229 } 2230 2231 slot = offset_end + 1; 2232 if (slot > wr_mas->node_end) 2233 goto b_end; 2234 2235 /* Copy end data to the end of the node. */ 2236 mas_mab_cp(mas, slot, wr_mas->node_end + 1, b_node, ++b_end); 2237 b_node->b_end--; 2238 return; 2239 2240 b_end: 2241 b_node->b_end = b_end; 2242 } 2243 2244 /* 2245 * mas_prev_sibling() - Find the previous node with the same parent. 2246 * @mas: the maple state 2247 * 2248 * Return: True if there is a previous sibling, false otherwise. 2249 */ 2250 static inline bool mas_prev_sibling(struct ma_state *mas) 2251 { 2252 unsigned int p_slot = mte_parent_slot(mas->node); 2253 2254 if (mte_is_root(mas->node)) 2255 return false; 2256 2257 if (!p_slot) 2258 return false; 2259 2260 mas_ascend(mas); 2261 mas->offset = p_slot - 1; 2262 mas_descend(mas); 2263 return true; 2264 } 2265 2266 /* 2267 * mas_next_sibling() - Find the next node with the same parent. 2268 * @mas: the maple state 2269 * 2270 * Return: true if there is a next sibling, false otherwise. 2271 */ 2272 static inline bool mas_next_sibling(struct ma_state *mas) 2273 { 2274 MA_STATE(parent, mas->tree, mas->index, mas->last); 2275 2276 if (mte_is_root(mas->node)) 2277 return false; 2278 2279 parent = *mas; 2280 mas_ascend(&parent); 2281 parent.offset = mte_parent_slot(mas->node) + 1; 2282 if (parent.offset > mas_data_end(&parent)) 2283 return false; 2284 2285 *mas = parent; 2286 mas_descend(mas); 2287 return true; 2288 } 2289 2290 /* 2291 * mte_node_or_node() - Return the encoded node or MAS_NONE. 2292 * @enode: The encoded maple node. 2293 * 2294 * Shorthand to avoid setting %NULLs in the tree or maple_subtree_state. 2295 * 2296 * Return: @enode or MAS_NONE 2297 */ 2298 static inline struct maple_enode *mte_node_or_none(struct maple_enode *enode) 2299 { 2300 if (enode) 2301 return enode; 2302 2303 return ma_enode_ptr(MAS_NONE); 2304 } 2305 2306 /* 2307 * mas_wr_node_walk() - Find the correct offset for the index in the @mas. 2308 * @wr_mas: The maple write state 2309 * 2310 * Uses mas_slot_locked() and does not need to worry about dead nodes. 2311 */ 2312 static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas) 2313 { 2314 struct ma_state *mas = wr_mas->mas; 2315 unsigned char count, offset; 2316 2317 if (unlikely(ma_is_dense(wr_mas->type))) { 2318 wr_mas->r_max = wr_mas->r_min = mas->index; 2319 mas->offset = mas->index = mas->min; 2320 return; 2321 } 2322 2323 wr_mas->node = mas_mn(wr_mas->mas); 2324 wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type); 2325 count = wr_mas->node_end = ma_data_end(wr_mas->node, wr_mas->type, 2326 wr_mas->pivots, mas->max); 2327 offset = mas->offset; 2328 2329 while (offset < count && mas->index > wr_mas->pivots[offset]) 2330 offset++; 2331 2332 wr_mas->r_max = offset < count ? wr_mas->pivots[offset] : mas->max; 2333 wr_mas->r_min = mas_safe_min(mas, wr_mas->pivots, offset); 2334 wr_mas->offset_end = mas->offset = offset; 2335 } 2336 2337 /* 2338 * mas_topiary_range() - Add a range of slots to the topiary. 2339 * @mas: The maple state 2340 * @destroy: The topiary to add the slots (usually destroy) 2341 * @start: The starting slot inclusively 2342 * @end: The end slot inclusively 2343 */ 2344 static inline void mas_topiary_range(struct ma_state *mas, 2345 struct ma_topiary *destroy, unsigned char start, unsigned char end) 2346 { 2347 void __rcu **slots; 2348 unsigned char offset; 2349 2350 MT_BUG_ON(mas->tree, mte_is_leaf(mas->node)); 2351 slots = ma_slots(mas_mn(mas), mte_node_type(mas->node)); 2352 for (offset = start; offset <= end; offset++) { 2353 struct maple_enode *enode = mas_slot_locked(mas, slots, offset); 2354 2355 if (mte_dead_node(enode)) 2356 continue; 2357 2358 mat_add(destroy, enode); 2359 } 2360 } 2361 2362 /* 2363 * mast_topiary() - Add the portions of the tree to the removal list; either to 2364 * be freed or discarded (destroy walk). 2365 * @mast: The maple_subtree_state. 2366 */ 2367 static inline void mast_topiary(struct maple_subtree_state *mast) 2368 { 2369 MA_WR_STATE(wr_mas, mast->orig_l, NULL); 2370 unsigned char r_start, r_end; 2371 unsigned char l_start, l_end; 2372 void __rcu **l_slots, **r_slots; 2373 2374 wr_mas.type = mte_node_type(mast->orig_l->node); 2375 mast->orig_l->index = mast->orig_l->last; 2376 mas_wr_node_walk(&wr_mas); 2377 l_start = mast->orig_l->offset + 1; 2378 l_end = mas_data_end(mast->orig_l); 2379 r_start = 0; 2380 r_end = mast->orig_r->offset; 2381 2382 if (r_end) 2383 r_end--; 2384 2385 l_slots = ma_slots(mas_mn(mast->orig_l), 2386 mte_node_type(mast->orig_l->node)); 2387 2388 r_slots = ma_slots(mas_mn(mast->orig_r), 2389 mte_node_type(mast->orig_r->node)); 2390 2391 if ((l_start < l_end) && 2392 mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_start))) { 2393 l_start++; 2394 } 2395 2396 if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_end))) { 2397 if (r_end) 2398 r_end--; 2399 } 2400 2401 if ((l_start > r_end) && (mast->orig_l->node == mast->orig_r->node)) 2402 return; 2403 2404 /* At the node where left and right sides meet, add the parts between */ 2405 if (mast->orig_l->node == mast->orig_r->node) { 2406 return mas_topiary_range(mast->orig_l, mast->destroy, 2407 l_start, r_end); 2408 } 2409 2410 /* mast->orig_r is different and consumed. */ 2411 if (mte_is_leaf(mast->orig_r->node)) 2412 return; 2413 2414 if (mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_end))) 2415 l_end--; 2416 2417 2418 if (l_start <= l_end) 2419 mas_topiary_range(mast->orig_l, mast->destroy, l_start, l_end); 2420 2421 if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_start))) 2422 r_start++; 2423 2424 if (r_start <= r_end) 2425 mas_topiary_range(mast->orig_r, mast->destroy, 0, r_end); 2426 } 2427 2428 /* 2429 * mast_rebalance_next() - Rebalance against the next node 2430 * @mast: The maple subtree state 2431 * @old_r: The encoded maple node to the right (next node). 2432 */ 2433 static inline void mast_rebalance_next(struct maple_subtree_state *mast) 2434 { 2435 unsigned char b_end = mast->bn->b_end; 2436 2437 mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node), 2438 mast->bn, b_end); 2439 mast->orig_r->last = mast->orig_r->max; 2440 } 2441 2442 /* 2443 * mast_rebalance_prev() - Rebalance against the previous node 2444 * @mast: The maple subtree state 2445 * @old_l: The encoded maple node to the left (previous node) 2446 */ 2447 static inline void mast_rebalance_prev(struct maple_subtree_state *mast) 2448 { 2449 unsigned char end = mas_data_end(mast->orig_l) + 1; 2450 unsigned char b_end = mast->bn->b_end; 2451 2452 mab_shift_right(mast->bn, end); 2453 mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0); 2454 mast->l->min = mast->orig_l->min; 2455 mast->orig_l->index = mast->orig_l->min; 2456 mast->bn->b_end = end + b_end; 2457 mast->l->offset += end; 2458 } 2459 2460 /* 2461 * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring 2462 * the node to the right. Checking the nodes to the right then the left at each 2463 * level upwards until root is reached. Free and destroy as needed. 2464 * Data is copied into the @mast->bn. 2465 * @mast: The maple_subtree_state. 2466 */ 2467 static inline 2468 bool mast_spanning_rebalance(struct maple_subtree_state *mast) 2469 { 2470 struct ma_state r_tmp = *mast->orig_r; 2471 struct ma_state l_tmp = *mast->orig_l; 2472 struct maple_enode *ancestor = NULL; 2473 unsigned char start, end; 2474 unsigned char depth = 0; 2475 2476 r_tmp = *mast->orig_r; 2477 l_tmp = *mast->orig_l; 2478 do { 2479 mas_ascend(mast->orig_r); 2480 mas_ascend(mast->orig_l); 2481 depth++; 2482 if (!ancestor && 2483 (mast->orig_r->node == mast->orig_l->node)) { 2484 ancestor = mast->orig_r->node; 2485 end = mast->orig_r->offset - 1; 2486 start = mast->orig_l->offset + 1; 2487 } 2488 2489 if (mast->orig_r->offset < mas_data_end(mast->orig_r)) { 2490 if (!ancestor) { 2491 ancestor = mast->orig_r->node; 2492 start = 0; 2493 } 2494 2495 mast->orig_r->offset++; 2496 do { 2497 mas_descend(mast->orig_r); 2498 mast->orig_r->offset = 0; 2499 depth--; 2500 } while (depth); 2501 2502 mast_rebalance_next(mast); 2503 do { 2504 unsigned char l_off = 0; 2505 struct maple_enode *child = r_tmp.node; 2506 2507 mas_ascend(&r_tmp); 2508 if (ancestor == r_tmp.node) 2509 l_off = start; 2510 2511 if (r_tmp.offset) 2512 r_tmp.offset--; 2513 2514 if (l_off < r_tmp.offset) 2515 mas_topiary_range(&r_tmp, mast->destroy, 2516 l_off, r_tmp.offset); 2517 2518 if (l_tmp.node != child) 2519 mat_add(mast->free, child); 2520 2521 } while (r_tmp.node != ancestor); 2522 2523 *mast->orig_l = l_tmp; 2524 return true; 2525 2526 } else if (mast->orig_l->offset != 0) { 2527 if (!ancestor) { 2528 ancestor = mast->orig_l->node; 2529 end = mas_data_end(mast->orig_l); 2530 } 2531 2532 mast->orig_l->offset--; 2533 do { 2534 mas_descend(mast->orig_l); 2535 mast->orig_l->offset = 2536 mas_data_end(mast->orig_l); 2537 depth--; 2538 } while (depth); 2539 2540 mast_rebalance_prev(mast); 2541 do { 2542 unsigned char r_off; 2543 struct maple_enode *child = l_tmp.node; 2544 2545 mas_ascend(&l_tmp); 2546 if (ancestor == l_tmp.node) 2547 r_off = end; 2548 else 2549 r_off = mas_data_end(&l_tmp); 2550 2551 if (l_tmp.offset < r_off) 2552 l_tmp.offset++; 2553 2554 if (l_tmp.offset < r_off) 2555 mas_topiary_range(&l_tmp, mast->destroy, 2556 l_tmp.offset, r_off); 2557 2558 if (r_tmp.node != child) 2559 mat_add(mast->free, child); 2560 2561 } while (l_tmp.node != ancestor); 2562 2563 *mast->orig_r = r_tmp; 2564 return true; 2565 } 2566 } while (!mte_is_root(mast->orig_r->node)); 2567 2568 *mast->orig_r = r_tmp; 2569 *mast->orig_l = l_tmp; 2570 return false; 2571 } 2572 2573 /* 2574 * mast_ascend_free() - Add current original maple state nodes to the free list 2575 * and ascend. 2576 * @mast: the maple subtree state. 2577 * 2578 * Ascend the original left and right sides and add the previous nodes to the 2579 * free list. Set the slots to point to the correct location in the new nodes. 2580 */ 2581 static inline void 2582 mast_ascend_free(struct maple_subtree_state *mast) 2583 { 2584 MA_WR_STATE(wr_mas, mast->orig_r, NULL); 2585 struct maple_enode *left = mast->orig_l->node; 2586 struct maple_enode *right = mast->orig_r->node; 2587 2588 mas_ascend(mast->orig_l); 2589 mas_ascend(mast->orig_r); 2590 mat_add(mast->free, left); 2591 2592 if (left != right) 2593 mat_add(mast->free, right); 2594 2595 mast->orig_r->offset = 0; 2596 mast->orig_r->index = mast->r->max; 2597 /* last should be larger than or equal to index */ 2598 if (mast->orig_r->last < mast->orig_r->index) 2599 mast->orig_r->last = mast->orig_r->index; 2600 /* 2601 * The node may not contain the value so set slot to ensure all 2602 * of the nodes contents are freed or destroyed. 2603 */ 2604 wr_mas.type = mte_node_type(mast->orig_r->node); 2605 mas_wr_node_walk(&wr_mas); 2606 /* Set up the left side of things */ 2607 mast->orig_l->offset = 0; 2608 mast->orig_l->index = mast->l->min; 2609 wr_mas.mas = mast->orig_l; 2610 wr_mas.type = mte_node_type(mast->orig_l->node); 2611 mas_wr_node_walk(&wr_mas); 2612 2613 mast->bn->type = wr_mas.type; 2614 } 2615 2616 /* 2617 * mas_new_ma_node() - Create and return a new maple node. Helper function. 2618 * @mas: the maple state with the allocations. 2619 * @b_node: the maple_big_node with the type encoding. 2620 * 2621 * Use the node type from the maple_big_node to allocate a new node from the 2622 * ma_state. This function exists mainly for code readability. 2623 * 2624 * Return: A new maple encoded node 2625 */ 2626 static inline struct maple_enode 2627 *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node) 2628 { 2629 return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type); 2630 } 2631 2632 /* 2633 * mas_mab_to_node() - Set up right and middle nodes 2634 * 2635 * @mas: the maple state that contains the allocations. 2636 * @b_node: the node which contains the data. 2637 * @left: The pointer which will have the left node 2638 * @right: The pointer which may have the right node 2639 * @middle: the pointer which may have the middle node (rare) 2640 * @mid_split: the split location for the middle node 2641 * 2642 * Return: the split of left. 2643 */ 2644 static inline unsigned char mas_mab_to_node(struct ma_state *mas, 2645 struct maple_big_node *b_node, struct maple_enode **left, 2646 struct maple_enode **right, struct maple_enode **middle, 2647 unsigned char *mid_split, unsigned long min) 2648 { 2649 unsigned char split = 0; 2650 unsigned char slot_count = mt_slots[b_node->type]; 2651 2652 *left = mas_new_ma_node(mas, b_node); 2653 *right = NULL; 2654 *middle = NULL; 2655 *mid_split = 0; 2656 2657 if (b_node->b_end < slot_count) { 2658 split = b_node->b_end; 2659 } else { 2660 split = mab_calc_split(mas, b_node, mid_split, min); 2661 *right = mas_new_ma_node(mas, b_node); 2662 } 2663 2664 if (*mid_split) 2665 *middle = mas_new_ma_node(mas, b_node); 2666 2667 return split; 2668 2669 } 2670 2671 /* 2672 * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end 2673 * pointer. 2674 * @b_node - the big node to add the entry 2675 * @mas - the maple state to get the pivot (mas->max) 2676 * @entry - the entry to add, if NULL nothing happens. 2677 */ 2678 static inline void mab_set_b_end(struct maple_big_node *b_node, 2679 struct ma_state *mas, 2680 void *entry) 2681 { 2682 if (!entry) 2683 return; 2684 2685 b_node->slot[b_node->b_end] = entry; 2686 if (mt_is_alloc(mas->tree)) 2687 b_node->gap[b_node->b_end] = mas_max_gap(mas); 2688 b_node->pivot[b_node->b_end++] = mas->max; 2689 } 2690 2691 /* 2692 * mas_set_split_parent() - combine_then_separate helper function. Sets the parent 2693 * of @mas->node to either @left or @right, depending on @slot and @split 2694 * 2695 * @mas - the maple state with the node that needs a parent 2696 * @left - possible parent 1 2697 * @right - possible parent 2 2698 * @slot - the slot the mas->node was placed 2699 * @split - the split location between @left and @right 2700 */ 2701 static inline void mas_set_split_parent(struct ma_state *mas, 2702 struct maple_enode *left, 2703 struct maple_enode *right, 2704 unsigned char *slot, unsigned char split) 2705 { 2706 if (mas_is_none(mas)) 2707 return; 2708 2709 if ((*slot) <= split) 2710 mte_set_parent(mas->node, left, *slot); 2711 else if (right) 2712 mte_set_parent(mas->node, right, (*slot) - split - 1); 2713 2714 (*slot)++; 2715 } 2716 2717 /* 2718 * mte_mid_split_check() - Check if the next node passes the mid-split 2719 * @**l: Pointer to left encoded maple node. 2720 * @**m: Pointer to middle encoded maple node. 2721 * @**r: Pointer to right encoded maple node. 2722 * @slot: The offset 2723 * @*split: The split location. 2724 * @mid_split: The middle split. 2725 */ 2726 static inline void mte_mid_split_check(struct maple_enode **l, 2727 struct maple_enode **r, 2728 struct maple_enode *right, 2729 unsigned char slot, 2730 unsigned char *split, 2731 unsigned char mid_split) 2732 { 2733 if (*r == right) 2734 return; 2735 2736 if (slot < mid_split) 2737 return; 2738 2739 *l = *r; 2740 *r = right; 2741 *split = mid_split; 2742 } 2743 2744 /* 2745 * mast_set_split_parents() - Helper function to set three nodes parents. Slot 2746 * is taken from @mast->l. 2747 * @mast - the maple subtree state 2748 * @left - the left node 2749 * @right - the right node 2750 * @split - the split location. 2751 */ 2752 static inline void mast_set_split_parents(struct maple_subtree_state *mast, 2753 struct maple_enode *left, 2754 struct maple_enode *middle, 2755 struct maple_enode *right, 2756 unsigned char split, 2757 unsigned char mid_split) 2758 { 2759 unsigned char slot; 2760 struct maple_enode *l = left; 2761 struct maple_enode *r = right; 2762 2763 if (mas_is_none(mast->l)) 2764 return; 2765 2766 if (middle) 2767 r = middle; 2768 2769 slot = mast->l->offset; 2770 2771 mte_mid_split_check(&l, &r, right, slot, &split, mid_split); 2772 mas_set_split_parent(mast->l, l, r, &slot, split); 2773 2774 mte_mid_split_check(&l, &r, right, slot, &split, mid_split); 2775 mas_set_split_parent(mast->m, l, r, &slot, split); 2776 2777 mte_mid_split_check(&l, &r, right, slot, &split, mid_split); 2778 mas_set_split_parent(mast->r, l, r, &slot, split); 2779 } 2780 2781 /* 2782 * mas_wmb_replace() - Write memory barrier and replace 2783 * @mas: The maple state 2784 * @free: the maple topiary list of nodes to free 2785 * @destroy: The maple topiary list of nodes to destroy (walk and free) 2786 * 2787 * Updates gap as necessary. 2788 */ 2789 static inline void mas_wmb_replace(struct ma_state *mas, 2790 struct ma_topiary *free, 2791 struct ma_topiary *destroy) 2792 { 2793 /* All nodes must see old data as dead prior to replacing that data */ 2794 smp_wmb(); /* Needed for RCU */ 2795 2796 /* Insert the new data in the tree */ 2797 mas_replace(mas, true); 2798 2799 if (!mte_is_leaf(mas->node)) 2800 mas_descend_adopt(mas); 2801 2802 mas_mat_free(mas, free); 2803 2804 if (destroy) 2805 mas_mat_destroy(mas, destroy); 2806 2807 if (mte_is_leaf(mas->node)) 2808 return; 2809 2810 mas_update_gap(mas); 2811 } 2812 2813 /* 2814 * mast_new_root() - Set a new tree root during subtree creation 2815 * @mast: The maple subtree state 2816 * @mas: The maple state 2817 */ 2818 static inline void mast_new_root(struct maple_subtree_state *mast, 2819 struct ma_state *mas) 2820 { 2821 mas_mn(mast->l)->parent = 2822 ma_parent_ptr(((unsigned long)mas->tree | MA_ROOT_PARENT)); 2823 if (!mte_dead_node(mast->orig_l->node) && 2824 !mte_is_root(mast->orig_l->node)) { 2825 do { 2826 mast_ascend_free(mast); 2827 mast_topiary(mast); 2828 } while (!mte_is_root(mast->orig_l->node)); 2829 } 2830 if ((mast->orig_l->node != mas->node) && 2831 (mast->l->depth > mas_mt_height(mas))) { 2832 mat_add(mast->free, mas->node); 2833 } 2834 } 2835 2836 /* 2837 * mast_cp_to_nodes() - Copy data out to nodes. 2838 * @mast: The maple subtree state 2839 * @left: The left encoded maple node 2840 * @middle: The middle encoded maple node 2841 * @right: The right encoded maple node 2842 * @split: The location to split between left and (middle ? middle : right) 2843 * @mid_split: The location to split between middle and right. 2844 */ 2845 static inline void mast_cp_to_nodes(struct maple_subtree_state *mast, 2846 struct maple_enode *left, struct maple_enode *middle, 2847 struct maple_enode *right, unsigned char split, unsigned char mid_split) 2848 { 2849 bool new_lmax = true; 2850 2851 mast->l->node = mte_node_or_none(left); 2852 mast->m->node = mte_node_or_none(middle); 2853 mast->r->node = mte_node_or_none(right); 2854 2855 mast->l->min = mast->orig_l->min; 2856 if (split == mast->bn->b_end) { 2857 mast->l->max = mast->orig_r->max; 2858 new_lmax = false; 2859 } 2860 2861 mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax); 2862 2863 if (middle) { 2864 mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true); 2865 mast->m->min = mast->bn->pivot[split] + 1; 2866 split = mid_split; 2867 } 2868 2869 mast->r->max = mast->orig_r->max; 2870 if (right) { 2871 mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false); 2872 mast->r->min = mast->bn->pivot[split] + 1; 2873 } 2874 } 2875 2876 /* 2877 * mast_combine_cp_left - Copy in the original left side of the tree into the 2878 * combined data set in the maple subtree state big node. 2879 * @mast: The maple subtree state 2880 */ 2881 static inline void mast_combine_cp_left(struct maple_subtree_state *mast) 2882 { 2883 unsigned char l_slot = mast->orig_l->offset; 2884 2885 if (!l_slot) 2886 return; 2887 2888 mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0); 2889 } 2890 2891 /* 2892 * mast_combine_cp_right: Copy in the original right side of the tree into the 2893 * combined data set in the maple subtree state big node. 2894 * @mast: The maple subtree state 2895 */ 2896 static inline void mast_combine_cp_right(struct maple_subtree_state *mast) 2897 { 2898 if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max) 2899 return; 2900 2901 mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1, 2902 mt_slot_count(mast->orig_r->node), mast->bn, 2903 mast->bn->b_end); 2904 mast->orig_r->last = mast->orig_r->max; 2905 } 2906 2907 /* 2908 * mast_sufficient: Check if the maple subtree state has enough data in the big 2909 * node to create at least one sufficient node 2910 * @mast: the maple subtree state 2911 */ 2912 static inline bool mast_sufficient(struct maple_subtree_state *mast) 2913 { 2914 if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node)) 2915 return true; 2916 2917 return false; 2918 } 2919 2920 /* 2921 * mast_overflow: Check if there is too much data in the subtree state for a 2922 * single node. 2923 * @mast: The maple subtree state 2924 */ 2925 static inline bool mast_overflow(struct maple_subtree_state *mast) 2926 { 2927 if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node)) 2928 return true; 2929 2930 return false; 2931 } 2932 2933 static inline void *mtree_range_walk(struct ma_state *mas) 2934 { 2935 unsigned long *pivots; 2936 unsigned char offset; 2937 struct maple_node *node; 2938 struct maple_enode *next, *last; 2939 enum maple_type type; 2940 void __rcu **slots; 2941 unsigned char end; 2942 unsigned long max, min; 2943 unsigned long prev_max, prev_min; 2944 2945 next = mas->node; 2946 min = mas->min; 2947 max = mas->max; 2948 do { 2949 offset = 0; 2950 last = next; 2951 node = mte_to_node(next); 2952 type = mte_node_type(next); 2953 pivots = ma_pivots(node, type); 2954 end = ma_data_end(node, type, pivots, max); 2955 if (unlikely(ma_dead_node(node))) 2956 goto dead_node; 2957 2958 if (pivots[offset] >= mas->index) { 2959 prev_max = max; 2960 prev_min = min; 2961 max = pivots[offset]; 2962 goto next; 2963 } 2964 2965 do { 2966 offset++; 2967 } while ((offset < end) && (pivots[offset] < mas->index)); 2968 2969 prev_min = min; 2970 min = pivots[offset - 1] + 1; 2971 prev_max = max; 2972 if (likely(offset < end && pivots[offset])) 2973 max = pivots[offset]; 2974 2975 next: 2976 slots = ma_slots(node, type); 2977 next = mt_slot(mas->tree, slots, offset); 2978 if (unlikely(ma_dead_node(node))) 2979 goto dead_node; 2980 } while (!ma_is_leaf(type)); 2981 2982 mas->offset = offset; 2983 mas->index = min; 2984 mas->last = max; 2985 mas->min = prev_min; 2986 mas->max = prev_max; 2987 mas->node = last; 2988 return (void *)next; 2989 2990 dead_node: 2991 mas_reset(mas); 2992 return NULL; 2993 } 2994 2995 /* 2996 * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers. 2997 * @mas: The starting maple state 2998 * @mast: The maple_subtree_state, keeps track of 4 maple states. 2999 * @count: The estimated count of iterations needed. 3000 * 3001 * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root 3002 * is hit. First @b_node is split into two entries which are inserted into the 3003 * next iteration of the loop. @b_node is returned populated with the final 3004 * iteration. @mas is used to obtain allocations. orig_l_mas keeps track of the 3005 * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last 3006 * to account of what has been copied into the new sub-tree. The update of 3007 * orig_l_mas->last is used in mas_consume to find the slots that will need to 3008 * be either freed or destroyed. orig_l_mas->depth keeps track of the height of 3009 * the new sub-tree in case the sub-tree becomes the full tree. 3010 * 3011 * Return: the number of elements in b_node during the last loop. 3012 */ 3013 static int mas_spanning_rebalance(struct ma_state *mas, 3014 struct maple_subtree_state *mast, unsigned char count) 3015 { 3016 unsigned char split, mid_split; 3017 unsigned char slot = 0; 3018 struct maple_enode *left = NULL, *middle = NULL, *right = NULL; 3019 3020 MA_STATE(l_mas, mas->tree, mas->index, mas->index); 3021 MA_STATE(r_mas, mas->tree, mas->index, mas->last); 3022 MA_STATE(m_mas, mas->tree, mas->index, mas->index); 3023 MA_TOPIARY(free, mas->tree); 3024 MA_TOPIARY(destroy, mas->tree); 3025 3026 /* 3027 * The tree needs to be rebalanced and leaves need to be kept at the same level. 3028 * Rebalancing is done by use of the ``struct maple_topiary``. 3029 */ 3030 mast->l = &l_mas; 3031 mast->m = &m_mas; 3032 mast->r = &r_mas; 3033 mast->free = &free; 3034 mast->destroy = &destroy; 3035 l_mas.node = r_mas.node = m_mas.node = MAS_NONE; 3036 3037 /* Check if this is not root and has sufficient data. */ 3038 if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) && 3039 unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type])) 3040 mast_spanning_rebalance(mast); 3041 3042 mast->orig_l->depth = 0; 3043 3044 /* 3045 * Each level of the tree is examined and balanced, pushing data to the left or 3046 * right, or rebalancing against left or right nodes is employed to avoid 3047 * rippling up the tree to limit the amount of churn. Once a new sub-section of 3048 * the tree is created, there may be a mix of new and old nodes. The old nodes 3049 * will have the incorrect parent pointers and currently be in two trees: the 3050 * original tree and the partially new tree. To remedy the parent pointers in 3051 * the old tree, the new data is swapped into the active tree and a walk down 3052 * the tree is performed and the parent pointers are updated. 3053 * See mas_descend_adopt() for more information.. 3054 */ 3055 while (count--) { 3056 mast->bn->b_end--; 3057 mast->bn->type = mte_node_type(mast->orig_l->node); 3058 split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle, 3059 &mid_split, mast->orig_l->min); 3060 mast_set_split_parents(mast, left, middle, right, split, 3061 mid_split); 3062 mast_cp_to_nodes(mast, left, middle, right, split, mid_split); 3063 3064 /* 3065 * Copy data from next level in the tree to mast->bn from next 3066 * iteration 3067 */ 3068 memset(mast->bn, 0, sizeof(struct maple_big_node)); 3069 mast->bn->type = mte_node_type(left); 3070 mast->orig_l->depth++; 3071 3072 /* Root already stored in l->node. */ 3073 if (mas_is_root_limits(mast->l)) 3074 goto new_root; 3075 3076 mast_ascend_free(mast); 3077 mast_combine_cp_left(mast); 3078 l_mas.offset = mast->bn->b_end; 3079 mab_set_b_end(mast->bn, &l_mas, left); 3080 mab_set_b_end(mast->bn, &m_mas, middle); 3081 mab_set_b_end(mast->bn, &r_mas, right); 3082 3083 /* Copy anything necessary out of the right node. */ 3084 mast_combine_cp_right(mast); 3085 mast_topiary(mast); 3086 mast->orig_l->last = mast->orig_l->max; 3087 3088 if (mast_sufficient(mast)) 3089 continue; 3090 3091 if (mast_overflow(mast)) 3092 continue; 3093 3094 /* May be a new root stored in mast->bn */ 3095 if (mas_is_root_limits(mast->orig_l)) 3096 break; 3097 3098 mast_spanning_rebalance(mast); 3099 3100 /* rebalancing from other nodes may require another loop. */ 3101 if (!count) 3102 count++; 3103 } 3104 3105 l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), 3106 mte_node_type(mast->orig_l->node)); 3107 mast->orig_l->depth++; 3108 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true); 3109 mte_set_parent(left, l_mas.node, slot); 3110 if (middle) 3111 mte_set_parent(middle, l_mas.node, ++slot); 3112 3113 if (right) 3114 mte_set_parent(right, l_mas.node, ++slot); 3115 3116 if (mas_is_root_limits(mast->l)) { 3117 new_root: 3118 mast_new_root(mast, mas); 3119 } else { 3120 mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent; 3121 } 3122 3123 if (!mte_dead_node(mast->orig_l->node)) 3124 mat_add(&free, mast->orig_l->node); 3125 3126 mas->depth = mast->orig_l->depth; 3127 *mast->orig_l = l_mas; 3128 mte_set_node_dead(mas->node); 3129 3130 /* Set up mas for insertion. */ 3131 mast->orig_l->depth = mas->depth; 3132 mast->orig_l->alloc = mas->alloc; 3133 *mas = *mast->orig_l; 3134 mas_wmb_replace(mas, &free, &destroy); 3135 mtree_range_walk(mas); 3136 return mast->bn->b_end; 3137 } 3138 3139 /* 3140 * mas_rebalance() - Rebalance a given node. 3141 * @mas: The maple state 3142 * @b_node: The big maple node. 3143 * 3144 * Rebalance two nodes into a single node or two new nodes that are sufficient. 3145 * Continue upwards until tree is sufficient. 3146 * 3147 * Return: the number of elements in b_node during the last loop. 3148 */ 3149 static inline int mas_rebalance(struct ma_state *mas, 3150 struct maple_big_node *b_node) 3151 { 3152 char empty_count = mas_mt_height(mas); 3153 struct maple_subtree_state mast; 3154 unsigned char shift, b_end = ++b_node->b_end; 3155 3156 MA_STATE(l_mas, mas->tree, mas->index, mas->last); 3157 MA_STATE(r_mas, mas->tree, mas->index, mas->last); 3158 3159 trace_ma_op(__func__, mas); 3160 3161 /* 3162 * Rebalancing occurs if a node is insufficient. Data is rebalanced 3163 * against the node to the right if it exists, otherwise the node to the 3164 * left of this node is rebalanced against this node. If rebalancing 3165 * causes just one node to be produced instead of two, then the parent 3166 * is also examined and rebalanced if it is insufficient. Every level 3167 * tries to combine the data in the same way. If one node contains the 3168 * entire range of the tree, then that node is used as a new root node. 3169 */ 3170 mas_node_count(mas, 1 + empty_count * 3); 3171 if (mas_is_err(mas)) 3172 return 0; 3173 3174 mast.orig_l = &l_mas; 3175 mast.orig_r = &r_mas; 3176 mast.bn = b_node; 3177 mast.bn->type = mte_node_type(mas->node); 3178 3179 l_mas = r_mas = *mas; 3180 3181 if (mas_next_sibling(&r_mas)) { 3182 mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end); 3183 r_mas.last = r_mas.index = r_mas.max; 3184 } else { 3185 mas_prev_sibling(&l_mas); 3186 shift = mas_data_end(&l_mas) + 1; 3187 mab_shift_right(b_node, shift); 3188 mas->offset += shift; 3189 mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0); 3190 b_node->b_end = shift + b_end; 3191 l_mas.index = l_mas.last = l_mas.min; 3192 } 3193 3194 return mas_spanning_rebalance(mas, &mast, empty_count); 3195 } 3196 3197 /* 3198 * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple 3199 * state. 3200 * @mas: The maple state 3201 * @end: The end of the left-most node. 3202 * 3203 * During a mass-insert event (such as forking), it may be necessary to 3204 * rebalance the left-most node when it is not sufficient. 3205 */ 3206 static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end) 3207 { 3208 enum maple_type mt = mte_node_type(mas->node); 3209 struct maple_node reuse, *newnode, *parent, *new_left, *left, *node; 3210 struct maple_enode *eparent; 3211 unsigned char offset, tmp, split = mt_slots[mt] / 2; 3212 void __rcu **l_slots, **slots; 3213 unsigned long *l_pivs, *pivs, gap; 3214 bool in_rcu = mt_in_rcu(mas->tree); 3215 3216 MA_STATE(l_mas, mas->tree, mas->index, mas->last); 3217 3218 l_mas = *mas; 3219 mas_prev_sibling(&l_mas); 3220 3221 /* set up node. */ 3222 if (in_rcu) { 3223 /* Allocate for both left and right as well as parent. */ 3224 mas_node_count(mas, 3); 3225 if (mas_is_err(mas)) 3226 return; 3227 3228 newnode = mas_pop_node(mas); 3229 } else { 3230 newnode = &reuse; 3231 } 3232 3233 node = mas_mn(mas); 3234 newnode->parent = node->parent; 3235 slots = ma_slots(newnode, mt); 3236 pivs = ma_pivots(newnode, mt); 3237 left = mas_mn(&l_mas); 3238 l_slots = ma_slots(left, mt); 3239 l_pivs = ma_pivots(left, mt); 3240 if (!l_slots[split]) 3241 split++; 3242 tmp = mas_data_end(&l_mas) - split; 3243 3244 memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp); 3245 memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp); 3246 pivs[tmp] = l_mas.max; 3247 memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end); 3248 memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end); 3249 3250 l_mas.max = l_pivs[split]; 3251 mas->min = l_mas.max + 1; 3252 eparent = mt_mk_node(mte_parent(l_mas.node), 3253 mas_parent_enum(&l_mas, l_mas.node)); 3254 tmp += end; 3255 if (!in_rcu) { 3256 unsigned char max_p = mt_pivots[mt]; 3257 unsigned char max_s = mt_slots[mt]; 3258 3259 if (tmp < max_p) 3260 memset(pivs + tmp, 0, 3261 sizeof(unsigned long) * (max_p - tmp)); 3262 3263 if (tmp < mt_slots[mt]) 3264 memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp)); 3265 3266 memcpy(node, newnode, sizeof(struct maple_node)); 3267 ma_set_meta(node, mt, 0, tmp - 1); 3268 mte_set_pivot(eparent, mte_parent_slot(l_mas.node), 3269 l_pivs[split]); 3270 3271 /* Remove data from l_pivs. */ 3272 tmp = split + 1; 3273 memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp)); 3274 memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp)); 3275 ma_set_meta(left, mt, 0, split); 3276 3277 goto done; 3278 } 3279 3280 /* RCU requires replacing both l_mas, mas, and parent. */ 3281 mas->node = mt_mk_node(newnode, mt); 3282 ma_set_meta(newnode, mt, 0, tmp); 3283 3284 new_left = mas_pop_node(mas); 3285 new_left->parent = left->parent; 3286 mt = mte_node_type(l_mas.node); 3287 slots = ma_slots(new_left, mt); 3288 pivs = ma_pivots(new_left, mt); 3289 memcpy(slots, l_slots, sizeof(void *) * split); 3290 memcpy(pivs, l_pivs, sizeof(unsigned long) * split); 3291 ma_set_meta(new_left, mt, 0, split); 3292 l_mas.node = mt_mk_node(new_left, mt); 3293 3294 /* replace parent. */ 3295 offset = mte_parent_slot(mas->node); 3296 mt = mas_parent_enum(&l_mas, l_mas.node); 3297 parent = mas_pop_node(mas); 3298 slots = ma_slots(parent, mt); 3299 pivs = ma_pivots(parent, mt); 3300 memcpy(parent, mte_to_node(eparent), sizeof(struct maple_node)); 3301 rcu_assign_pointer(slots[offset], mas->node); 3302 rcu_assign_pointer(slots[offset - 1], l_mas.node); 3303 pivs[offset - 1] = l_mas.max; 3304 eparent = mt_mk_node(parent, mt); 3305 done: 3306 gap = mas_leaf_max_gap(mas); 3307 mte_set_gap(eparent, mte_parent_slot(mas->node), gap); 3308 gap = mas_leaf_max_gap(&l_mas); 3309 mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap); 3310 mas_ascend(mas); 3311 3312 if (in_rcu) 3313 mas_replace(mas, false); 3314 3315 mas_update_gap(mas); 3316 } 3317 3318 /* 3319 * mas_split_final_node() - Split the final node in a subtree operation. 3320 * @mast: the maple subtree state 3321 * @mas: The maple state 3322 * @height: The height of the tree in case it's a new root. 3323 */ 3324 static inline bool mas_split_final_node(struct maple_subtree_state *mast, 3325 struct ma_state *mas, int height) 3326 { 3327 struct maple_enode *ancestor; 3328 3329 if (mte_is_root(mas->node)) { 3330 if (mt_is_alloc(mas->tree)) 3331 mast->bn->type = maple_arange_64; 3332 else 3333 mast->bn->type = maple_range_64; 3334 mas->depth = height; 3335 } 3336 /* 3337 * Only a single node is used here, could be root. 3338 * The Big_node data should just fit in a single node. 3339 */ 3340 ancestor = mas_new_ma_node(mas, mast->bn); 3341 mte_set_parent(mast->l->node, ancestor, mast->l->offset); 3342 mte_set_parent(mast->r->node, ancestor, mast->r->offset); 3343 mte_to_node(ancestor)->parent = mas_mn(mas)->parent; 3344 3345 mast->l->node = ancestor; 3346 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true); 3347 mas->offset = mast->bn->b_end - 1; 3348 return true; 3349 } 3350 3351 /* 3352 * mast_fill_bnode() - Copy data into the big node in the subtree state 3353 * @mast: The maple subtree state 3354 * @mas: the maple state 3355 * @skip: The number of entries to skip for new nodes insertion. 3356 */ 3357 static inline void mast_fill_bnode(struct maple_subtree_state *mast, 3358 struct ma_state *mas, 3359 unsigned char skip) 3360 { 3361 bool cp = true; 3362 struct maple_enode *old = mas->node; 3363 unsigned char split; 3364 3365 memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap)); 3366 memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot)); 3367 memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot)); 3368 mast->bn->b_end = 0; 3369 3370 if (mte_is_root(mas->node)) { 3371 cp = false; 3372 } else { 3373 mas_ascend(mas); 3374 mat_add(mast->free, old); 3375 mas->offset = mte_parent_slot(mas->node); 3376 } 3377 3378 if (cp && mast->l->offset) 3379 mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0); 3380 3381 split = mast->bn->b_end; 3382 mab_set_b_end(mast->bn, mast->l, mast->l->node); 3383 mast->r->offset = mast->bn->b_end; 3384 mab_set_b_end(mast->bn, mast->r, mast->r->node); 3385 if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max) 3386 cp = false; 3387 3388 if (cp) 3389 mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1, 3390 mast->bn, mast->bn->b_end); 3391 3392 mast->bn->b_end--; 3393 mast->bn->type = mte_node_type(mas->node); 3394 } 3395 3396 /* 3397 * mast_split_data() - Split the data in the subtree state big node into regular 3398 * nodes. 3399 * @mast: The maple subtree state 3400 * @mas: The maple state 3401 * @split: The location to split the big node 3402 */ 3403 static inline void mast_split_data(struct maple_subtree_state *mast, 3404 struct ma_state *mas, unsigned char split) 3405 { 3406 unsigned char p_slot; 3407 3408 mab_mas_cp(mast->bn, 0, split, mast->l, true); 3409 mte_set_pivot(mast->r->node, 0, mast->r->max); 3410 mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false); 3411 mast->l->offset = mte_parent_slot(mas->node); 3412 mast->l->max = mast->bn->pivot[split]; 3413 mast->r->min = mast->l->max + 1; 3414 if (mte_is_leaf(mas->node)) 3415 return; 3416 3417 p_slot = mast->orig_l->offset; 3418 mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node, 3419 &p_slot, split); 3420 mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node, 3421 &p_slot, split); 3422 } 3423 3424 /* 3425 * mas_push_data() - Instead of splitting a node, it is beneficial to push the 3426 * data to the right or left node if there is room. 3427 * @mas: The maple state 3428 * @height: The current height of the maple state 3429 * @mast: The maple subtree state 3430 * @left: Push left or not. 3431 * 3432 * Keeping the height of the tree low means faster lookups. 3433 * 3434 * Return: True if pushed, false otherwise. 3435 */ 3436 static inline bool mas_push_data(struct ma_state *mas, int height, 3437 struct maple_subtree_state *mast, bool left) 3438 { 3439 unsigned char slot_total = mast->bn->b_end; 3440 unsigned char end, space, split; 3441 3442 MA_STATE(tmp_mas, mas->tree, mas->index, mas->last); 3443 tmp_mas = *mas; 3444 tmp_mas.depth = mast->l->depth; 3445 3446 if (left && !mas_prev_sibling(&tmp_mas)) 3447 return false; 3448 else if (!left && !mas_next_sibling(&tmp_mas)) 3449 return false; 3450 3451 end = mas_data_end(&tmp_mas); 3452 slot_total += end; 3453 space = 2 * mt_slot_count(mas->node) - 2; 3454 /* -2 instead of -1 to ensure there isn't a triple split */ 3455 if (ma_is_leaf(mast->bn->type)) 3456 space--; 3457 3458 if (mas->max == ULONG_MAX) 3459 space--; 3460 3461 if (slot_total >= space) 3462 return false; 3463 3464 /* Get the data; Fill mast->bn */ 3465 mast->bn->b_end++; 3466 if (left) { 3467 mab_shift_right(mast->bn, end + 1); 3468 mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0); 3469 mast->bn->b_end = slot_total + 1; 3470 } else { 3471 mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end); 3472 } 3473 3474 /* Configure mast for splitting of mast->bn */ 3475 split = mt_slots[mast->bn->type] - 2; 3476 if (left) { 3477 /* Switch mas to prev node */ 3478 mat_add(mast->free, mas->node); 3479 *mas = tmp_mas; 3480 /* Start using mast->l for the left side. */ 3481 tmp_mas.node = mast->l->node; 3482 *mast->l = tmp_mas; 3483 } else { 3484 mat_add(mast->free, tmp_mas.node); 3485 tmp_mas.node = mast->r->node; 3486 *mast->r = tmp_mas; 3487 split = slot_total - split; 3488 } 3489 split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]); 3490 /* Update parent slot for split calculation. */ 3491 if (left) 3492 mast->orig_l->offset += end + 1; 3493 3494 mast_split_data(mast, mas, split); 3495 mast_fill_bnode(mast, mas, 2); 3496 mas_split_final_node(mast, mas, height + 1); 3497 return true; 3498 } 3499 3500 /* 3501 * mas_split() - Split data that is too big for one node into two. 3502 * @mas: The maple state 3503 * @b_node: The maple big node 3504 * Return: 1 on success, 0 on failure. 3505 */ 3506 static int mas_split(struct ma_state *mas, struct maple_big_node *b_node) 3507 { 3508 struct maple_subtree_state mast; 3509 int height = 0; 3510 unsigned char mid_split, split = 0; 3511 3512 /* 3513 * Splitting is handled differently from any other B-tree; the Maple 3514 * Tree splits upwards. Splitting up means that the split operation 3515 * occurs when the walk of the tree hits the leaves and not on the way 3516 * down. The reason for splitting up is that it is impossible to know 3517 * how much space will be needed until the leaf is (or leaves are) 3518 * reached. Since overwriting data is allowed and a range could 3519 * overwrite more than one range or result in changing one entry into 3 3520 * entries, it is impossible to know if a split is required until the 3521 * data is examined. 3522 * 3523 * Splitting is a balancing act between keeping allocations to a minimum 3524 * and avoiding a 'jitter' event where a tree is expanded to make room 3525 * for an entry followed by a contraction when the entry is removed. To 3526 * accomplish the balance, there are empty slots remaining in both left 3527 * and right nodes after a split. 3528 */ 3529 MA_STATE(l_mas, mas->tree, mas->index, mas->last); 3530 MA_STATE(r_mas, mas->tree, mas->index, mas->last); 3531 MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last); 3532 MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last); 3533 MA_TOPIARY(mat, mas->tree); 3534 3535 trace_ma_op(__func__, mas); 3536 mas->depth = mas_mt_height(mas); 3537 /* Allocation failures will happen early. */ 3538 mas_node_count(mas, 1 + mas->depth * 2); 3539 if (mas_is_err(mas)) 3540 return 0; 3541 3542 mast.l = &l_mas; 3543 mast.r = &r_mas; 3544 mast.orig_l = &prev_l_mas; 3545 mast.orig_r = &prev_r_mas; 3546 mast.free = &mat; 3547 mast.bn = b_node; 3548 3549 while (height++ <= mas->depth) { 3550 if (mt_slots[b_node->type] > b_node->b_end) { 3551 mas_split_final_node(&mast, mas, height); 3552 break; 3553 } 3554 3555 l_mas = r_mas = *mas; 3556 l_mas.node = mas_new_ma_node(mas, b_node); 3557 r_mas.node = mas_new_ma_node(mas, b_node); 3558 /* 3559 * Another way that 'jitter' is avoided is to terminate a split up early if the 3560 * left or right node has space to spare. This is referred to as "pushing left" 3561 * or "pushing right" and is similar to the B* tree, except the nodes left or 3562 * right can rarely be reused due to RCU, but the ripple upwards is halted which 3563 * is a significant savings. 3564 */ 3565 /* Try to push left. */ 3566 if (mas_push_data(mas, height, &mast, true)) 3567 break; 3568 3569 /* Try to push right. */ 3570 if (mas_push_data(mas, height, &mast, false)) 3571 break; 3572 3573 split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min); 3574 mast_split_data(&mast, mas, split); 3575 /* 3576 * Usually correct, mab_mas_cp in the above call overwrites 3577 * r->max. 3578 */ 3579 mast.r->max = mas->max; 3580 mast_fill_bnode(&mast, mas, 1); 3581 prev_l_mas = *mast.l; 3582 prev_r_mas = *mast.r; 3583 } 3584 3585 /* Set the original node as dead */ 3586 mat_add(mast.free, mas->node); 3587 mas->node = l_mas.node; 3588 mas_wmb_replace(mas, mast.free, NULL); 3589 mtree_range_walk(mas); 3590 return 1; 3591 } 3592 3593 /* 3594 * mas_reuse_node() - Reuse the node to store the data. 3595 * @wr_mas: The maple write state 3596 * @bn: The maple big node 3597 * @end: The end of the data. 3598 * 3599 * Will always return false in RCU mode. 3600 * 3601 * Return: True if node was reused, false otherwise. 3602 */ 3603 static inline bool mas_reuse_node(struct ma_wr_state *wr_mas, 3604 struct maple_big_node *bn, unsigned char end) 3605 { 3606 /* Need to be rcu safe. */ 3607 if (mt_in_rcu(wr_mas->mas->tree)) 3608 return false; 3609 3610 if (end > bn->b_end) { 3611 int clear = mt_slots[wr_mas->type] - bn->b_end; 3612 3613 memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--); 3614 memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear); 3615 } 3616 mab_mas_cp(bn, 0, bn->b_end, wr_mas->mas, false); 3617 return true; 3618 } 3619 3620 /* 3621 * mas_commit_b_node() - Commit the big node into the tree. 3622 * @wr_mas: The maple write state 3623 * @b_node: The maple big node 3624 * @end: The end of the data. 3625 */ 3626 static noinline_for_kasan int mas_commit_b_node(struct ma_wr_state *wr_mas, 3627 struct maple_big_node *b_node, unsigned char end) 3628 { 3629 struct maple_node *node; 3630 unsigned char b_end = b_node->b_end; 3631 enum maple_type b_type = b_node->type; 3632 3633 if ((b_end < mt_min_slots[b_type]) && 3634 (!mte_is_root(wr_mas->mas->node)) && 3635 (mas_mt_height(wr_mas->mas) > 1)) 3636 return mas_rebalance(wr_mas->mas, b_node); 3637 3638 if (b_end >= mt_slots[b_type]) 3639 return mas_split(wr_mas->mas, b_node); 3640 3641 if (mas_reuse_node(wr_mas, b_node, end)) 3642 goto reuse_node; 3643 3644 mas_node_count(wr_mas->mas, 1); 3645 if (mas_is_err(wr_mas->mas)) 3646 return 0; 3647 3648 node = mas_pop_node(wr_mas->mas); 3649 node->parent = mas_mn(wr_mas->mas)->parent; 3650 wr_mas->mas->node = mt_mk_node(node, b_type); 3651 mab_mas_cp(b_node, 0, b_end, wr_mas->mas, false); 3652 mas_replace(wr_mas->mas, false); 3653 reuse_node: 3654 mas_update_gap(wr_mas->mas); 3655 return 1; 3656 } 3657 3658 /* 3659 * mas_root_expand() - Expand a root to a node 3660 * @mas: The maple state 3661 * @entry: The entry to store into the tree 3662 */ 3663 static inline int mas_root_expand(struct ma_state *mas, void *entry) 3664 { 3665 void *contents = mas_root_locked(mas); 3666 enum maple_type type = maple_leaf_64; 3667 struct maple_node *node; 3668 void __rcu **slots; 3669 unsigned long *pivots; 3670 int slot = 0; 3671 3672 mas_node_count(mas, 1); 3673 if (unlikely(mas_is_err(mas))) 3674 return 0; 3675 3676 node = mas_pop_node(mas); 3677 pivots = ma_pivots(node, type); 3678 slots = ma_slots(node, type); 3679 node->parent = ma_parent_ptr( 3680 ((unsigned long)mas->tree | MA_ROOT_PARENT)); 3681 mas->node = mt_mk_node(node, type); 3682 3683 if (mas->index) { 3684 if (contents) { 3685 rcu_assign_pointer(slots[slot], contents); 3686 if (likely(mas->index > 1)) 3687 slot++; 3688 } 3689 pivots[slot++] = mas->index - 1; 3690 } 3691 3692 rcu_assign_pointer(slots[slot], entry); 3693 mas->offset = slot; 3694 pivots[slot] = mas->last; 3695 if (mas->last != ULONG_MAX) 3696 slot++; 3697 mas->depth = 1; 3698 mas_set_height(mas); 3699 ma_set_meta(node, maple_leaf_64, 0, slot); 3700 /* swap the new root into the tree */ 3701 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); 3702 return slot; 3703 } 3704 3705 static inline void mas_store_root(struct ma_state *mas, void *entry) 3706 { 3707 if (likely((mas->last != 0) || (mas->index != 0))) 3708 mas_root_expand(mas, entry); 3709 else if (((unsigned long) (entry) & 3) == 2) 3710 mas_root_expand(mas, entry); 3711 else { 3712 rcu_assign_pointer(mas->tree->ma_root, entry); 3713 mas->node = MAS_START; 3714 } 3715 } 3716 3717 /* 3718 * mas_is_span_wr() - Check if the write needs to be treated as a write that 3719 * spans the node. 3720 * @mas: The maple state 3721 * @piv: The pivot value being written 3722 * @type: The maple node type 3723 * @entry: The data to write 3724 * 3725 * Spanning writes are writes that start in one node and end in another OR if 3726 * the write of a %NULL will cause the node to end with a %NULL. 3727 * 3728 * Return: True if this is a spanning write, false otherwise. 3729 */ 3730 static bool mas_is_span_wr(struct ma_wr_state *wr_mas) 3731 { 3732 unsigned long max; 3733 unsigned long last = wr_mas->mas->last; 3734 unsigned long piv = wr_mas->r_max; 3735 enum maple_type type = wr_mas->type; 3736 void *entry = wr_mas->entry; 3737 3738 /* Contained in this pivot */ 3739 if (piv > last) 3740 return false; 3741 3742 max = wr_mas->mas->max; 3743 if (unlikely(ma_is_leaf(type))) { 3744 /* Fits in the node, but may span slots. */ 3745 if (last < max) 3746 return false; 3747 3748 /* Writes to the end of the node but not null. */ 3749 if ((last == max) && entry) 3750 return false; 3751 3752 /* 3753 * Writing ULONG_MAX is not a spanning write regardless of the 3754 * value being written as long as the range fits in the node. 3755 */ 3756 if ((last == ULONG_MAX) && (last == max)) 3757 return false; 3758 } else if (piv == last) { 3759 if (entry) 3760 return false; 3761 3762 /* Detect spanning store wr walk */ 3763 if (last == ULONG_MAX) 3764 return false; 3765 } 3766 3767 trace_ma_write(__func__, wr_mas->mas, piv, entry); 3768 3769 return true; 3770 } 3771 3772 static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas) 3773 { 3774 wr_mas->type = mte_node_type(wr_mas->mas->node); 3775 mas_wr_node_walk(wr_mas); 3776 wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type); 3777 } 3778 3779 static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas) 3780 { 3781 wr_mas->mas->max = wr_mas->r_max; 3782 wr_mas->mas->min = wr_mas->r_min; 3783 wr_mas->mas->node = wr_mas->content; 3784 wr_mas->mas->offset = 0; 3785 wr_mas->mas->depth++; 3786 } 3787 /* 3788 * mas_wr_walk() - Walk the tree for a write. 3789 * @wr_mas: The maple write state 3790 * 3791 * Uses mas_slot_locked() and does not need to worry about dead nodes. 3792 * 3793 * Return: True if it's contained in a node, false on spanning write. 3794 */ 3795 static bool mas_wr_walk(struct ma_wr_state *wr_mas) 3796 { 3797 struct ma_state *mas = wr_mas->mas; 3798 3799 while (true) { 3800 mas_wr_walk_descend(wr_mas); 3801 if (unlikely(mas_is_span_wr(wr_mas))) 3802 return false; 3803 3804 wr_mas->content = mas_slot_locked(mas, wr_mas->slots, 3805 mas->offset); 3806 if (ma_is_leaf(wr_mas->type)) 3807 return true; 3808 3809 mas_wr_walk_traverse(wr_mas); 3810 } 3811 3812 return true; 3813 } 3814 3815 static bool mas_wr_walk_index(struct ma_wr_state *wr_mas) 3816 { 3817 struct ma_state *mas = wr_mas->mas; 3818 3819 while (true) { 3820 mas_wr_walk_descend(wr_mas); 3821 wr_mas->content = mas_slot_locked(mas, wr_mas->slots, 3822 mas->offset); 3823 if (ma_is_leaf(wr_mas->type)) 3824 return true; 3825 mas_wr_walk_traverse(wr_mas); 3826 3827 } 3828 return true; 3829 } 3830 /* 3831 * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs. 3832 * @l_wr_mas: The left maple write state 3833 * @r_wr_mas: The right maple write state 3834 */ 3835 static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas, 3836 struct ma_wr_state *r_wr_mas) 3837 { 3838 struct ma_state *r_mas = r_wr_mas->mas; 3839 struct ma_state *l_mas = l_wr_mas->mas; 3840 unsigned char l_slot; 3841 3842 l_slot = l_mas->offset; 3843 if (!l_wr_mas->content) 3844 l_mas->index = l_wr_mas->r_min; 3845 3846 if ((l_mas->index == l_wr_mas->r_min) && 3847 (l_slot && 3848 !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) { 3849 if (l_slot > 1) 3850 l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1; 3851 else 3852 l_mas->index = l_mas->min; 3853 3854 l_mas->offset = l_slot - 1; 3855 } 3856 3857 if (!r_wr_mas->content) { 3858 if (r_mas->last < r_wr_mas->r_max) 3859 r_mas->last = r_wr_mas->r_max; 3860 r_mas->offset++; 3861 } else if ((r_mas->last == r_wr_mas->r_max) && 3862 (r_mas->last < r_mas->max) && 3863 !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) { 3864 r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots, 3865 r_wr_mas->type, r_mas->offset + 1); 3866 r_mas->offset++; 3867 } 3868 } 3869 3870 static inline void *mas_state_walk(struct ma_state *mas) 3871 { 3872 void *entry; 3873 3874 entry = mas_start(mas); 3875 if (mas_is_none(mas)) 3876 return NULL; 3877 3878 if (mas_is_ptr(mas)) 3879 return entry; 3880 3881 return mtree_range_walk(mas); 3882 } 3883 3884 /* 3885 * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up 3886 * to date. 3887 * 3888 * @mas: The maple state. 3889 * 3890 * Note: Leaves mas in undesirable state. 3891 * Return: The entry for @mas->index or %NULL on dead node. 3892 */ 3893 static inline void *mtree_lookup_walk(struct ma_state *mas) 3894 { 3895 unsigned long *pivots; 3896 unsigned char offset; 3897 struct maple_node *node; 3898 struct maple_enode *next; 3899 enum maple_type type; 3900 void __rcu **slots; 3901 unsigned char end; 3902 unsigned long max; 3903 3904 next = mas->node; 3905 max = ULONG_MAX; 3906 do { 3907 offset = 0; 3908 node = mte_to_node(next); 3909 type = mte_node_type(next); 3910 pivots = ma_pivots(node, type); 3911 end = ma_data_end(node, type, pivots, max); 3912 if (unlikely(ma_dead_node(node))) 3913 goto dead_node; 3914 do { 3915 if (pivots[offset] >= mas->index) { 3916 max = pivots[offset]; 3917 break; 3918 } 3919 } while (++offset < end); 3920 3921 slots = ma_slots(node, type); 3922 next = mt_slot(mas->tree, slots, offset); 3923 if (unlikely(ma_dead_node(node))) 3924 goto dead_node; 3925 } while (!ma_is_leaf(type)); 3926 3927 return (void *)next; 3928 3929 dead_node: 3930 mas_reset(mas); 3931 return NULL; 3932 } 3933 3934 /* 3935 * mas_new_root() - Create a new root node that only contains the entry passed 3936 * in. 3937 * @mas: The maple state 3938 * @entry: The entry to store. 3939 * 3940 * Only valid when the index == 0 and the last == ULONG_MAX 3941 * 3942 * Return 0 on error, 1 on success. 3943 */ 3944 static inline int mas_new_root(struct ma_state *mas, void *entry) 3945 { 3946 struct maple_enode *root = mas_root_locked(mas); 3947 enum maple_type type = maple_leaf_64; 3948 struct maple_node *node; 3949 void __rcu **slots; 3950 unsigned long *pivots; 3951 3952 if (!entry && !mas->index && mas->last == ULONG_MAX) { 3953 mas->depth = 0; 3954 mas_set_height(mas); 3955 rcu_assign_pointer(mas->tree->ma_root, entry); 3956 mas->node = MAS_START; 3957 goto done; 3958 } 3959 3960 mas_node_count(mas, 1); 3961 if (mas_is_err(mas)) 3962 return 0; 3963 3964 node = mas_pop_node(mas); 3965 pivots = ma_pivots(node, type); 3966 slots = ma_slots(node, type); 3967 node->parent = ma_parent_ptr( 3968 ((unsigned long)mas->tree | MA_ROOT_PARENT)); 3969 mas->node = mt_mk_node(node, type); 3970 rcu_assign_pointer(slots[0], entry); 3971 pivots[0] = mas->last; 3972 mas->depth = 1; 3973 mas_set_height(mas); 3974 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); 3975 3976 done: 3977 if (xa_is_node(root)) 3978 mte_destroy_walk(root, mas->tree); 3979 3980 return 1; 3981 } 3982 /* 3983 * mas_wr_spanning_store() - Create a subtree with the store operation completed 3984 * and new nodes where necessary, then place the sub-tree in the actual tree. 3985 * Note that mas is expected to point to the node which caused the store to 3986 * span. 3987 * @wr_mas: The maple write state 3988 * 3989 * Return: 0 on error, positive on success. 3990 */ 3991 static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas) 3992 { 3993 struct maple_subtree_state mast; 3994 struct maple_big_node b_node; 3995 struct ma_state *mas; 3996 unsigned char height; 3997 3998 /* Left and Right side of spanning store */ 3999 MA_STATE(l_mas, NULL, 0, 0); 4000 MA_STATE(r_mas, NULL, 0, 0); 4001 4002 MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry); 4003 MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry); 4004 4005 /* 4006 * A store operation that spans multiple nodes is called a spanning 4007 * store and is handled early in the store call stack by the function 4008 * mas_is_span_wr(). When a spanning store is identified, the maple 4009 * state is duplicated. The first maple state walks the left tree path 4010 * to ``index``, the duplicate walks the right tree path to ``last``. 4011 * The data in the two nodes are combined into a single node, two nodes, 4012 * or possibly three nodes (see the 3-way split above). A ``NULL`` 4013 * written to the last entry of a node is considered a spanning store as 4014 * a rebalance is required for the operation to complete and an overflow 4015 * of data may happen. 4016 */ 4017 mas = wr_mas->mas; 4018 trace_ma_op(__func__, mas); 4019 4020 if (unlikely(!mas->index && mas->last == ULONG_MAX)) 4021 return mas_new_root(mas, wr_mas->entry); 4022 /* 4023 * Node rebalancing may occur due to this store, so there may be three new 4024 * entries per level plus a new root. 4025 */ 4026 height = mas_mt_height(mas); 4027 mas_node_count(mas, 1 + height * 3); 4028 if (mas_is_err(mas)) 4029 return 0; 4030 4031 /* 4032 * Set up right side. Need to get to the next offset after the spanning 4033 * store to ensure it's not NULL and to combine both the next node and 4034 * the node with the start together. 4035 */ 4036 r_mas = *mas; 4037 /* Avoid overflow, walk to next slot in the tree. */ 4038 if (r_mas.last + 1) 4039 r_mas.last++; 4040 4041 r_mas.index = r_mas.last; 4042 mas_wr_walk_index(&r_wr_mas); 4043 r_mas.last = r_mas.index = mas->last; 4044 4045 /* Set up left side. */ 4046 l_mas = *mas; 4047 mas_wr_walk_index(&l_wr_mas); 4048 4049 if (!wr_mas->entry) { 4050 mas_extend_spanning_null(&l_wr_mas, &r_wr_mas); 4051 mas->offset = l_mas.offset; 4052 mas->index = l_mas.index; 4053 mas->last = l_mas.last = r_mas.last; 4054 } 4055 4056 /* expanding NULLs may make this cover the entire range */ 4057 if (!l_mas.index && r_mas.last == ULONG_MAX) { 4058 mas_set_range(mas, 0, ULONG_MAX); 4059 return mas_new_root(mas, wr_mas->entry); 4060 } 4061 4062 memset(&b_node, 0, sizeof(struct maple_big_node)); 4063 /* Copy l_mas and store the value in b_node. */ 4064 mas_store_b_node(&l_wr_mas, &b_node, l_wr_mas.node_end); 4065 /* Copy r_mas into b_node. */ 4066 if (r_mas.offset <= r_wr_mas.node_end) 4067 mas_mab_cp(&r_mas, r_mas.offset, r_wr_mas.node_end, 4068 &b_node, b_node.b_end + 1); 4069 else 4070 b_node.b_end++; 4071 4072 /* Stop spanning searches by searching for just index. */ 4073 l_mas.index = l_mas.last = mas->index; 4074 4075 mast.bn = &b_node; 4076 mast.orig_l = &l_mas; 4077 mast.orig_r = &r_mas; 4078 /* Combine l_mas and r_mas and split them up evenly again. */ 4079 return mas_spanning_rebalance(mas, &mast, height + 1); 4080 } 4081 4082 /* 4083 * mas_wr_node_store() - Attempt to store the value in a node 4084 * @wr_mas: The maple write state 4085 * 4086 * Attempts to reuse the node, but may allocate. 4087 * 4088 * Return: True if stored, false otherwise 4089 */ 4090 static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas) 4091 { 4092 struct ma_state *mas = wr_mas->mas; 4093 void __rcu **dst_slots; 4094 unsigned long *dst_pivots; 4095 unsigned char dst_offset; 4096 unsigned char new_end = wr_mas->node_end; 4097 unsigned char offset; 4098 unsigned char node_slots = mt_slots[wr_mas->type]; 4099 struct maple_node reuse, *newnode; 4100 unsigned char copy_size, max_piv = mt_pivots[wr_mas->type]; 4101 bool in_rcu = mt_in_rcu(mas->tree); 4102 4103 offset = mas->offset; 4104 if (mas->last == wr_mas->r_max) { 4105 /* runs right to the end of the node */ 4106 if (mas->last == mas->max) 4107 new_end = offset; 4108 /* don't copy this offset */ 4109 wr_mas->offset_end++; 4110 } else if (mas->last < wr_mas->r_max) { 4111 /* new range ends in this range */ 4112 if (unlikely(wr_mas->r_max == ULONG_MAX)) 4113 mas_bulk_rebalance(mas, wr_mas->node_end, wr_mas->type); 4114 4115 new_end++; 4116 } else { 4117 if (wr_mas->end_piv == mas->last) 4118 wr_mas->offset_end++; 4119 4120 new_end -= wr_mas->offset_end - offset - 1; 4121 } 4122 4123 /* new range starts within a range */ 4124 if (wr_mas->r_min < mas->index) 4125 new_end++; 4126 4127 /* Not enough room */ 4128 if (new_end >= node_slots) 4129 return false; 4130 4131 /* Not enough data. */ 4132 if (!mte_is_root(mas->node) && (new_end <= mt_min_slots[wr_mas->type]) && 4133 !(mas->mas_flags & MA_STATE_BULK)) 4134 return false; 4135 4136 /* set up node. */ 4137 if (in_rcu) { 4138 mas_node_count(mas, 1); 4139 if (mas_is_err(mas)) 4140 return false; 4141 4142 newnode = mas_pop_node(mas); 4143 } else { 4144 memset(&reuse, 0, sizeof(struct maple_node)); 4145 newnode = &reuse; 4146 } 4147 4148 newnode->parent = mas_mn(mas)->parent; 4149 dst_pivots = ma_pivots(newnode, wr_mas->type); 4150 dst_slots = ma_slots(newnode, wr_mas->type); 4151 /* Copy from start to insert point */ 4152 memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * (offset + 1)); 4153 memcpy(dst_slots, wr_mas->slots, sizeof(void *) * (offset + 1)); 4154 dst_offset = offset; 4155 4156 /* Handle insert of new range starting after old range */ 4157 if (wr_mas->r_min < mas->index) { 4158 mas->offset++; 4159 rcu_assign_pointer(dst_slots[dst_offset], wr_mas->content); 4160 dst_pivots[dst_offset++] = mas->index - 1; 4161 } 4162 4163 /* Store the new entry and range end. */ 4164 if (dst_offset < max_piv) 4165 dst_pivots[dst_offset] = mas->last; 4166 mas->offset = dst_offset; 4167 rcu_assign_pointer(dst_slots[dst_offset], wr_mas->entry); 4168 4169 /* 4170 * this range wrote to the end of the node or it overwrote the rest of 4171 * the data 4172 */ 4173 if (wr_mas->offset_end > wr_mas->node_end || mas->last >= mas->max) { 4174 new_end = dst_offset; 4175 goto done; 4176 } 4177 4178 dst_offset++; 4179 /* Copy to the end of node if necessary. */ 4180 copy_size = wr_mas->node_end - wr_mas->offset_end + 1; 4181 memcpy(dst_slots + dst_offset, wr_mas->slots + wr_mas->offset_end, 4182 sizeof(void *) * copy_size); 4183 if (dst_offset < max_piv) { 4184 if (copy_size > max_piv - dst_offset) 4185 copy_size = max_piv - dst_offset; 4186 4187 memcpy(dst_pivots + dst_offset, 4188 wr_mas->pivots + wr_mas->offset_end, 4189 sizeof(unsigned long) * copy_size); 4190 } 4191 4192 if ((wr_mas->node_end == node_slots - 1) && (new_end < node_slots - 1)) 4193 dst_pivots[new_end] = mas->max; 4194 4195 done: 4196 mas_leaf_set_meta(mas, newnode, dst_pivots, maple_leaf_64, new_end); 4197 if (in_rcu) { 4198 mte_set_node_dead(mas->node); 4199 mas->node = mt_mk_node(newnode, wr_mas->type); 4200 mas_replace(mas, false); 4201 } else { 4202 memcpy(wr_mas->node, newnode, sizeof(struct maple_node)); 4203 } 4204 trace_ma_write(__func__, mas, 0, wr_mas->entry); 4205 mas_update_gap(mas); 4206 return true; 4207 } 4208 4209 /* 4210 * mas_wr_slot_store: Attempt to store a value in a slot. 4211 * @wr_mas: the maple write state 4212 * 4213 * Return: True if stored, false otherwise 4214 */ 4215 static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas) 4216 { 4217 struct ma_state *mas = wr_mas->mas; 4218 unsigned long lmax; /* Logical max. */ 4219 unsigned char offset = mas->offset; 4220 4221 if ((wr_mas->r_max > mas->last) && ((wr_mas->r_min != mas->index) || 4222 (offset != wr_mas->node_end))) 4223 return false; 4224 4225 if (offset == wr_mas->node_end - 1) 4226 lmax = mas->max; 4227 else 4228 lmax = wr_mas->pivots[offset + 1]; 4229 4230 /* going to overwrite too many slots. */ 4231 if (lmax < mas->last) 4232 return false; 4233 4234 if (wr_mas->r_min == mas->index) { 4235 /* overwriting two or more ranges with one. */ 4236 if (lmax == mas->last) 4237 return false; 4238 4239 /* Overwriting all of offset and a portion of offset + 1. */ 4240 rcu_assign_pointer(wr_mas->slots[offset], wr_mas->entry); 4241 wr_mas->pivots[offset] = mas->last; 4242 goto done; 4243 } 4244 4245 /* Doesn't end on the next range end. */ 4246 if (lmax != mas->last) 4247 return false; 4248 4249 /* Overwriting a portion of offset and all of offset + 1 */ 4250 if ((offset + 1 < mt_pivots[wr_mas->type]) && 4251 (wr_mas->entry || wr_mas->pivots[offset + 1])) 4252 wr_mas->pivots[offset + 1] = mas->last; 4253 4254 rcu_assign_pointer(wr_mas->slots[offset + 1], wr_mas->entry); 4255 wr_mas->pivots[offset] = mas->index - 1; 4256 mas->offset++; /* Keep mas accurate. */ 4257 4258 done: 4259 trace_ma_write(__func__, mas, 0, wr_mas->entry); 4260 mas_update_gap(mas); 4261 return true; 4262 } 4263 4264 static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas) 4265 { 4266 while ((wr_mas->offset_end < wr_mas->node_end) && 4267 (wr_mas->mas->last > wr_mas->pivots[wr_mas->offset_end])) 4268 wr_mas->offset_end++; 4269 4270 if (wr_mas->offset_end < wr_mas->node_end) 4271 wr_mas->end_piv = wr_mas->pivots[wr_mas->offset_end]; 4272 else 4273 wr_mas->end_piv = wr_mas->mas->max; 4274 } 4275 4276 static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas) 4277 { 4278 struct ma_state *mas = wr_mas->mas; 4279 4280 if (mas->last < wr_mas->end_piv && !wr_mas->slots[wr_mas->offset_end]) 4281 mas->last = wr_mas->end_piv; 4282 4283 /* Check next slot(s) if we are overwriting the end */ 4284 if ((mas->last == wr_mas->end_piv) && 4285 (wr_mas->node_end != wr_mas->offset_end) && 4286 !wr_mas->slots[wr_mas->offset_end + 1]) { 4287 wr_mas->offset_end++; 4288 if (wr_mas->offset_end == wr_mas->node_end) 4289 mas->last = mas->max; 4290 else 4291 mas->last = wr_mas->pivots[wr_mas->offset_end]; 4292 wr_mas->end_piv = mas->last; 4293 } 4294 4295 if (!wr_mas->content) { 4296 /* If this one is null, the next and prev are not */ 4297 mas->index = wr_mas->r_min; 4298 } else { 4299 /* Check prev slot if we are overwriting the start */ 4300 if (mas->index == wr_mas->r_min && mas->offset && 4301 !wr_mas->slots[mas->offset - 1]) { 4302 mas->offset--; 4303 wr_mas->r_min = mas->index = 4304 mas_safe_min(mas, wr_mas->pivots, mas->offset); 4305 wr_mas->r_max = wr_mas->pivots[mas->offset]; 4306 } 4307 } 4308 } 4309 4310 static inline bool mas_wr_append(struct ma_wr_state *wr_mas) 4311 { 4312 unsigned char end = wr_mas->node_end; 4313 unsigned char new_end = end + 1; 4314 struct ma_state *mas = wr_mas->mas; 4315 unsigned char node_pivots = mt_pivots[wr_mas->type]; 4316 4317 if ((mas->index != wr_mas->r_min) && (mas->last == wr_mas->r_max)) { 4318 if (new_end < node_pivots) 4319 wr_mas->pivots[new_end] = wr_mas->pivots[end]; 4320 4321 if (new_end < node_pivots) 4322 ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end); 4323 4324 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->entry); 4325 mas->offset = new_end; 4326 wr_mas->pivots[end] = mas->index - 1; 4327 4328 return true; 4329 } 4330 4331 if ((mas->index == wr_mas->r_min) && (mas->last < wr_mas->r_max)) { 4332 if (new_end < node_pivots) 4333 wr_mas->pivots[new_end] = wr_mas->pivots[end]; 4334 4335 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->content); 4336 if (new_end < node_pivots) 4337 ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end); 4338 4339 wr_mas->pivots[end] = mas->last; 4340 rcu_assign_pointer(wr_mas->slots[end], wr_mas->entry); 4341 return true; 4342 } 4343 4344 return false; 4345 } 4346 4347 /* 4348 * mas_wr_bnode() - Slow path for a modification. 4349 * @wr_mas: The write maple state 4350 * 4351 * This is where split, rebalance end up. 4352 */ 4353 static void mas_wr_bnode(struct ma_wr_state *wr_mas) 4354 { 4355 struct maple_big_node b_node; 4356 4357 trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry); 4358 memset(&b_node, 0, sizeof(struct maple_big_node)); 4359 mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end); 4360 mas_commit_b_node(wr_mas, &b_node, wr_mas->node_end); 4361 } 4362 4363 static inline void mas_wr_modify(struct ma_wr_state *wr_mas) 4364 { 4365 unsigned char node_slots; 4366 unsigned char node_size; 4367 struct ma_state *mas = wr_mas->mas; 4368 4369 /* Direct replacement */ 4370 if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) { 4371 rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry); 4372 if (!!wr_mas->entry ^ !!wr_mas->content) 4373 mas_update_gap(mas); 4374 return; 4375 } 4376 4377 /* Attempt to append */ 4378 node_slots = mt_slots[wr_mas->type]; 4379 node_size = wr_mas->node_end - wr_mas->offset_end + mas->offset + 2; 4380 if (mas->max == ULONG_MAX) 4381 node_size++; 4382 4383 /* slot and node store will not fit, go to the slow path */ 4384 if (unlikely(node_size >= node_slots)) 4385 goto slow_path; 4386 4387 if (wr_mas->entry && (wr_mas->node_end < node_slots - 1) && 4388 (mas->offset == wr_mas->node_end) && mas_wr_append(wr_mas)) { 4389 if (!wr_mas->content || !wr_mas->entry) 4390 mas_update_gap(mas); 4391 return; 4392 } 4393 4394 if ((wr_mas->offset_end - mas->offset <= 1) && mas_wr_slot_store(wr_mas)) 4395 return; 4396 else if (mas_wr_node_store(wr_mas)) 4397 return; 4398 4399 if (mas_is_err(mas)) 4400 return; 4401 4402 slow_path: 4403 mas_wr_bnode(wr_mas); 4404 } 4405 4406 /* 4407 * mas_wr_store_entry() - Internal call to store a value 4408 * @mas: The maple state 4409 * @entry: The entry to store. 4410 * 4411 * Return: The contents that was stored at the index. 4412 */ 4413 static inline void *mas_wr_store_entry(struct ma_wr_state *wr_mas) 4414 { 4415 struct ma_state *mas = wr_mas->mas; 4416 4417 wr_mas->content = mas_start(mas); 4418 if (mas_is_none(mas) || mas_is_ptr(mas)) { 4419 mas_store_root(mas, wr_mas->entry); 4420 return wr_mas->content; 4421 } 4422 4423 if (unlikely(!mas_wr_walk(wr_mas))) { 4424 mas_wr_spanning_store(wr_mas); 4425 return wr_mas->content; 4426 } 4427 4428 /* At this point, we are at the leaf node that needs to be altered. */ 4429 mas_wr_end_piv(wr_mas); 4430 4431 if (!wr_mas->entry) 4432 mas_wr_extend_null(wr_mas); 4433 4434 /* New root for a single pointer */ 4435 if (unlikely(!mas->index && mas->last == ULONG_MAX)) { 4436 mas_new_root(mas, wr_mas->entry); 4437 return wr_mas->content; 4438 } 4439 4440 mas_wr_modify(wr_mas); 4441 return wr_mas->content; 4442 } 4443 4444 /** 4445 * mas_insert() - Internal call to insert a value 4446 * @mas: The maple state 4447 * @entry: The entry to store 4448 * 4449 * Return: %NULL or the contents that already exists at the requested index 4450 * otherwise. The maple state needs to be checked for error conditions. 4451 */ 4452 static inline void *mas_insert(struct ma_state *mas, void *entry) 4453 { 4454 MA_WR_STATE(wr_mas, mas, entry); 4455 4456 /* 4457 * Inserting a new range inserts either 0, 1, or 2 pivots within the 4458 * tree. If the insert fits exactly into an existing gap with a value 4459 * of NULL, then the slot only needs to be written with the new value. 4460 * If the range being inserted is adjacent to another range, then only a 4461 * single pivot needs to be inserted (as well as writing the entry). If 4462 * the new range is within a gap but does not touch any other ranges, 4463 * then two pivots need to be inserted: the start - 1, and the end. As 4464 * usual, the entry must be written. Most operations require a new node 4465 * to be allocated and replace an existing node to ensure RCU safety, 4466 * when in RCU mode. The exception to requiring a newly allocated node 4467 * is when inserting at the end of a node (appending). When done 4468 * carefully, appending can reuse the node in place. 4469 */ 4470 wr_mas.content = mas_start(mas); 4471 if (wr_mas.content) 4472 goto exists; 4473 4474 if (mas_is_none(mas) || mas_is_ptr(mas)) { 4475 mas_store_root(mas, entry); 4476 return NULL; 4477 } 4478 4479 /* spanning writes always overwrite something */ 4480 if (!mas_wr_walk(&wr_mas)) 4481 goto exists; 4482 4483 /* At this point, we are at the leaf node that needs to be altered. */ 4484 wr_mas.offset_end = mas->offset; 4485 wr_mas.end_piv = wr_mas.r_max; 4486 4487 if (wr_mas.content || (mas->last > wr_mas.r_max)) 4488 goto exists; 4489 4490 if (!entry) 4491 return NULL; 4492 4493 mas_wr_modify(&wr_mas); 4494 return wr_mas.content; 4495 4496 exists: 4497 mas_set_err(mas, -EEXIST); 4498 return wr_mas.content; 4499 4500 } 4501 4502 /* 4503 * mas_prev_node() - Find the prev non-null entry at the same level in the 4504 * tree. The prev value will be mas->node[mas->offset] or MAS_NONE. 4505 * @mas: The maple state 4506 * @min: The lower limit to search 4507 * 4508 * The prev node value will be mas->node[mas->offset] or MAS_NONE. 4509 * Return: 1 if the node is dead, 0 otherwise. 4510 */ 4511 static inline int mas_prev_node(struct ma_state *mas, unsigned long min) 4512 { 4513 enum maple_type mt; 4514 int offset, level; 4515 void __rcu **slots; 4516 struct maple_node *node; 4517 struct maple_enode *enode; 4518 unsigned long *pivots; 4519 4520 if (mas_is_none(mas)) 4521 return 0; 4522 4523 level = 0; 4524 do { 4525 node = mas_mn(mas); 4526 if (ma_is_root(node)) 4527 goto no_entry; 4528 4529 /* Walk up. */ 4530 if (unlikely(mas_ascend(mas))) 4531 return 1; 4532 offset = mas->offset; 4533 level++; 4534 } while (!offset); 4535 4536 offset--; 4537 mt = mte_node_type(mas->node); 4538 node = mas_mn(mas); 4539 slots = ma_slots(node, mt); 4540 pivots = ma_pivots(node, mt); 4541 if (unlikely(ma_dead_node(node))) 4542 return 1; 4543 4544 mas->max = pivots[offset]; 4545 if (offset) 4546 mas->min = pivots[offset - 1] + 1; 4547 if (unlikely(ma_dead_node(node))) 4548 return 1; 4549 4550 if (mas->max < min) 4551 goto no_entry_min; 4552 4553 while (level > 1) { 4554 level--; 4555 enode = mas_slot(mas, slots, offset); 4556 if (unlikely(ma_dead_node(node))) 4557 return 1; 4558 4559 mas->node = enode; 4560 mt = mte_node_type(mas->node); 4561 node = mas_mn(mas); 4562 slots = ma_slots(node, mt); 4563 pivots = ma_pivots(node, mt); 4564 offset = ma_data_end(node, mt, pivots, mas->max); 4565 if (unlikely(ma_dead_node(node))) 4566 return 1; 4567 4568 if (offset) 4569 mas->min = pivots[offset - 1] + 1; 4570 4571 if (offset < mt_pivots[mt]) 4572 mas->max = pivots[offset]; 4573 4574 if (mas->max < min) 4575 goto no_entry; 4576 } 4577 4578 mas->node = mas_slot(mas, slots, offset); 4579 if (unlikely(ma_dead_node(node))) 4580 return 1; 4581 4582 mas->offset = mas_data_end(mas); 4583 if (unlikely(mte_dead_node(mas->node))) 4584 return 1; 4585 4586 return 0; 4587 4588 no_entry_min: 4589 mas->offset = offset; 4590 if (offset) 4591 mas->min = pivots[offset - 1] + 1; 4592 no_entry: 4593 if (unlikely(ma_dead_node(node))) 4594 return 1; 4595 4596 mas->node = MAS_NONE; 4597 return 0; 4598 } 4599 4600 /* 4601 * mas_next_node() - Get the next node at the same level in the tree. 4602 * @mas: The maple state 4603 * @max: The maximum pivot value to check. 4604 * 4605 * The next value will be mas->node[mas->offset] or MAS_NONE. 4606 * Return: 1 on dead node, 0 otherwise. 4607 */ 4608 static inline int mas_next_node(struct ma_state *mas, struct maple_node *node, 4609 unsigned long max) 4610 { 4611 unsigned long min, pivot; 4612 unsigned long *pivots; 4613 struct maple_enode *enode; 4614 int level = 0; 4615 unsigned char offset; 4616 unsigned char node_end; 4617 enum maple_type mt; 4618 void __rcu **slots; 4619 4620 if (mas->max >= max) 4621 goto no_entry; 4622 4623 level = 0; 4624 do { 4625 if (ma_is_root(node)) 4626 goto no_entry; 4627 4628 min = mas->max + 1; 4629 if (min > max) 4630 goto no_entry; 4631 4632 if (unlikely(mas_ascend(mas))) 4633 return 1; 4634 4635 offset = mas->offset; 4636 level++; 4637 node = mas_mn(mas); 4638 mt = mte_node_type(mas->node); 4639 pivots = ma_pivots(node, mt); 4640 node_end = ma_data_end(node, mt, pivots, mas->max); 4641 if (unlikely(ma_dead_node(node))) 4642 return 1; 4643 4644 } while (unlikely(offset == node_end)); 4645 4646 slots = ma_slots(node, mt); 4647 pivot = mas_safe_pivot(mas, pivots, ++offset, mt); 4648 while (unlikely(level > 1)) { 4649 /* Descend, if necessary */ 4650 enode = mas_slot(mas, slots, offset); 4651 if (unlikely(ma_dead_node(node))) 4652 return 1; 4653 4654 mas->node = enode; 4655 level--; 4656 node = mas_mn(mas); 4657 mt = mte_node_type(mas->node); 4658 slots = ma_slots(node, mt); 4659 pivots = ma_pivots(node, mt); 4660 if (unlikely(ma_dead_node(node))) 4661 return 1; 4662 4663 offset = 0; 4664 pivot = pivots[0]; 4665 } 4666 4667 enode = mas_slot(mas, slots, offset); 4668 if (unlikely(ma_dead_node(node))) 4669 return 1; 4670 4671 mas->node = enode; 4672 mas->min = min; 4673 mas->max = pivot; 4674 return 0; 4675 4676 no_entry: 4677 if (unlikely(ma_dead_node(node))) 4678 return 1; 4679 4680 mas->node = MAS_NONE; 4681 return 0; 4682 } 4683 4684 /* 4685 * mas_next_nentry() - Get the next node entry 4686 * @mas: The maple state 4687 * @max: The maximum value to check 4688 * @*range_start: Pointer to store the start of the range. 4689 * 4690 * Sets @mas->offset to the offset of the next node entry, @mas->last to the 4691 * pivot of the entry. 4692 * 4693 * Return: The next entry, %NULL otherwise 4694 */ 4695 static inline void *mas_next_nentry(struct ma_state *mas, 4696 struct maple_node *node, unsigned long max, enum maple_type type) 4697 { 4698 unsigned char count; 4699 unsigned long pivot; 4700 unsigned long *pivots; 4701 void __rcu **slots; 4702 void *entry; 4703 4704 if (mas->last == mas->max) { 4705 mas->index = mas->max; 4706 return NULL; 4707 } 4708 4709 slots = ma_slots(node, type); 4710 pivots = ma_pivots(node, type); 4711 count = ma_data_end(node, type, pivots, mas->max); 4712 if (unlikely(ma_dead_node(node))) 4713 return NULL; 4714 4715 mas->index = mas_safe_min(mas, pivots, mas->offset); 4716 if (unlikely(ma_dead_node(node))) 4717 return NULL; 4718 4719 if (mas->index > max) 4720 return NULL; 4721 4722 if (mas->offset > count) 4723 return NULL; 4724 4725 while (mas->offset < count) { 4726 pivot = pivots[mas->offset]; 4727 entry = mas_slot(mas, slots, mas->offset); 4728 if (ma_dead_node(node)) 4729 return NULL; 4730 4731 if (entry) 4732 goto found; 4733 4734 if (pivot >= max) 4735 return NULL; 4736 4737 mas->index = pivot + 1; 4738 mas->offset++; 4739 } 4740 4741 if (mas->index > mas->max) { 4742 mas->index = mas->last; 4743 return NULL; 4744 } 4745 4746 pivot = mas_safe_pivot(mas, pivots, mas->offset, type); 4747 entry = mas_slot(mas, slots, mas->offset); 4748 if (ma_dead_node(node)) 4749 return NULL; 4750 4751 if (!pivot) 4752 return NULL; 4753 4754 if (!entry) 4755 return NULL; 4756 4757 found: 4758 mas->last = pivot; 4759 return entry; 4760 } 4761 4762 static inline void mas_rewalk(struct ma_state *mas, unsigned long index) 4763 { 4764 retry: 4765 mas_set(mas, index); 4766 mas_state_walk(mas); 4767 if (mas_is_start(mas)) 4768 goto retry; 4769 } 4770 4771 /* 4772 * mas_next_entry() - Internal function to get the next entry. 4773 * @mas: The maple state 4774 * @limit: The maximum range start. 4775 * 4776 * Set the @mas->node to the next entry and the range_start to 4777 * the beginning value for the entry. Does not check beyond @limit. 4778 * Sets @mas->index and @mas->last to the limit if it is hit. 4779 * Restarts on dead nodes. 4780 * 4781 * Return: the next entry or %NULL. 4782 */ 4783 static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit) 4784 { 4785 void *entry = NULL; 4786 struct maple_enode *prev_node; 4787 struct maple_node *node; 4788 unsigned char offset; 4789 unsigned long last; 4790 enum maple_type mt; 4791 4792 if (mas->index > limit) { 4793 mas->index = mas->last = limit; 4794 mas_pause(mas); 4795 return NULL; 4796 } 4797 last = mas->last; 4798 retry: 4799 offset = mas->offset; 4800 prev_node = mas->node; 4801 node = mas_mn(mas); 4802 mt = mte_node_type(mas->node); 4803 mas->offset++; 4804 if (unlikely(mas->offset >= mt_slots[mt])) { 4805 mas->offset = mt_slots[mt] - 1; 4806 goto next_node; 4807 } 4808 4809 while (!mas_is_none(mas)) { 4810 entry = mas_next_nentry(mas, node, limit, mt); 4811 if (unlikely(ma_dead_node(node))) { 4812 mas_rewalk(mas, last); 4813 goto retry; 4814 } 4815 4816 if (likely(entry)) 4817 return entry; 4818 4819 if (unlikely((mas->index > limit))) 4820 break; 4821 4822 next_node: 4823 prev_node = mas->node; 4824 offset = mas->offset; 4825 if (unlikely(mas_next_node(mas, node, limit))) { 4826 mas_rewalk(mas, last); 4827 goto retry; 4828 } 4829 mas->offset = 0; 4830 node = mas_mn(mas); 4831 mt = mte_node_type(mas->node); 4832 } 4833 4834 mas->index = mas->last = limit; 4835 mas->offset = offset; 4836 mas->node = prev_node; 4837 return NULL; 4838 } 4839 4840 /* 4841 * mas_prev_nentry() - Get the previous node entry. 4842 * @mas: The maple state. 4843 * @limit: The lower limit to check for a value. 4844 * 4845 * Return: the entry, %NULL otherwise. 4846 */ 4847 static inline void *mas_prev_nentry(struct ma_state *mas, unsigned long limit, 4848 unsigned long index) 4849 { 4850 unsigned long pivot, min; 4851 unsigned char offset; 4852 struct maple_node *mn; 4853 enum maple_type mt; 4854 unsigned long *pivots; 4855 void __rcu **slots; 4856 void *entry; 4857 4858 retry: 4859 if (!mas->offset) 4860 return NULL; 4861 4862 mn = mas_mn(mas); 4863 mt = mte_node_type(mas->node); 4864 offset = mas->offset - 1; 4865 if (offset >= mt_slots[mt]) 4866 offset = mt_slots[mt] - 1; 4867 4868 slots = ma_slots(mn, mt); 4869 pivots = ma_pivots(mn, mt); 4870 if (unlikely(ma_dead_node(mn))) { 4871 mas_rewalk(mas, index); 4872 goto retry; 4873 } 4874 4875 if (offset == mt_pivots[mt]) 4876 pivot = mas->max; 4877 else 4878 pivot = pivots[offset]; 4879 4880 if (unlikely(ma_dead_node(mn))) { 4881 mas_rewalk(mas, index); 4882 goto retry; 4883 } 4884 4885 while (offset && ((!mas_slot(mas, slots, offset) && pivot >= limit) || 4886 !pivot)) 4887 pivot = pivots[--offset]; 4888 4889 min = mas_safe_min(mas, pivots, offset); 4890 entry = mas_slot(mas, slots, offset); 4891 if (unlikely(ma_dead_node(mn))) { 4892 mas_rewalk(mas, index); 4893 goto retry; 4894 } 4895 4896 if (likely(entry)) { 4897 mas->offset = offset; 4898 mas->last = pivot; 4899 mas->index = min; 4900 } 4901 return entry; 4902 } 4903 4904 static inline void *mas_prev_entry(struct ma_state *mas, unsigned long min) 4905 { 4906 void *entry; 4907 4908 if (mas->index < min) { 4909 mas->index = mas->last = min; 4910 mas->node = MAS_NONE; 4911 return NULL; 4912 } 4913 retry: 4914 while (likely(!mas_is_none(mas))) { 4915 entry = mas_prev_nentry(mas, min, mas->index); 4916 if (unlikely(mas->last < min)) 4917 goto not_found; 4918 4919 if (likely(entry)) 4920 return entry; 4921 4922 if (unlikely(mas_prev_node(mas, min))) { 4923 mas_rewalk(mas, mas->index); 4924 goto retry; 4925 } 4926 4927 mas->offset++; 4928 } 4929 4930 mas->offset--; 4931 not_found: 4932 mas->index = mas->last = min; 4933 return NULL; 4934 } 4935 4936 /* 4937 * mas_rev_awalk() - Internal function. Reverse allocation walk. Find the 4938 * highest gap address of a given size in a given node and descend. 4939 * @mas: The maple state 4940 * @size: The needed size. 4941 * 4942 * Return: True if found in a leaf, false otherwise. 4943 * 4944 */ 4945 static bool mas_rev_awalk(struct ma_state *mas, unsigned long size, 4946 unsigned long *gap_min, unsigned long *gap_max) 4947 { 4948 enum maple_type type = mte_node_type(mas->node); 4949 struct maple_node *node = mas_mn(mas); 4950 unsigned long *pivots, *gaps; 4951 void __rcu **slots; 4952 unsigned long gap = 0; 4953 unsigned long max, min; 4954 unsigned char offset; 4955 4956 if (unlikely(mas_is_err(mas))) 4957 return true; 4958 4959 if (ma_is_dense(type)) { 4960 /* dense nodes. */ 4961 mas->offset = (unsigned char)(mas->index - mas->min); 4962 return true; 4963 } 4964 4965 pivots = ma_pivots(node, type); 4966 slots = ma_slots(node, type); 4967 gaps = ma_gaps(node, type); 4968 offset = mas->offset; 4969 min = mas_safe_min(mas, pivots, offset); 4970 /* Skip out of bounds. */ 4971 while (mas->last < min) 4972 min = mas_safe_min(mas, pivots, --offset); 4973 4974 max = mas_safe_pivot(mas, pivots, offset, type); 4975 while (mas->index <= max) { 4976 gap = 0; 4977 if (gaps) 4978 gap = gaps[offset]; 4979 else if (!mas_slot(mas, slots, offset)) 4980 gap = max - min + 1; 4981 4982 if (gap) { 4983 if ((size <= gap) && (size <= mas->last - min + 1)) 4984 break; 4985 4986 if (!gaps) { 4987 /* Skip the next slot, it cannot be a gap. */ 4988 if (offset < 2) 4989 goto ascend; 4990 4991 offset -= 2; 4992 max = pivots[offset]; 4993 min = mas_safe_min(mas, pivots, offset); 4994 continue; 4995 } 4996 } 4997 4998 if (!offset) 4999 goto ascend; 5000 5001 offset--; 5002 max = min - 1; 5003 min = mas_safe_min(mas, pivots, offset); 5004 } 5005 5006 if (unlikely((mas->index > max) || (size - 1 > max - mas->index))) 5007 goto no_space; 5008 5009 if (unlikely(ma_is_leaf(type))) { 5010 mas->offset = offset; 5011 *gap_min = min; 5012 *gap_max = min + gap - 1; 5013 return true; 5014 } 5015 5016 /* descend, only happens under lock. */ 5017 mas->node = mas_slot(mas, slots, offset); 5018 mas->min = min; 5019 mas->max = max; 5020 mas->offset = mas_data_end(mas); 5021 return false; 5022 5023 ascend: 5024 if (!mte_is_root(mas->node)) 5025 return false; 5026 5027 no_space: 5028 mas_set_err(mas, -EBUSY); 5029 return false; 5030 } 5031 5032 static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size) 5033 { 5034 enum maple_type type = mte_node_type(mas->node); 5035 unsigned long pivot, min, gap = 0; 5036 unsigned char offset, data_end; 5037 unsigned long *gaps, *pivots; 5038 void __rcu **slots; 5039 struct maple_node *node; 5040 bool found = false; 5041 5042 if (ma_is_dense(type)) { 5043 mas->offset = (unsigned char)(mas->index - mas->min); 5044 return true; 5045 } 5046 5047 node = mas_mn(mas); 5048 pivots = ma_pivots(node, type); 5049 slots = ma_slots(node, type); 5050 gaps = ma_gaps(node, type); 5051 offset = mas->offset; 5052 min = mas_safe_min(mas, pivots, offset); 5053 data_end = ma_data_end(node, type, pivots, mas->max); 5054 for (; offset <= data_end; offset++) { 5055 pivot = mas_logical_pivot(mas, pivots, offset, type); 5056 5057 /* Not within lower bounds */ 5058 if (mas->index > pivot) 5059 goto next_slot; 5060 5061 if (gaps) 5062 gap = gaps[offset]; 5063 else if (!mas_slot(mas, slots, offset)) 5064 gap = min(pivot, mas->last) - max(mas->index, min) + 1; 5065 else 5066 goto next_slot; 5067 5068 if (gap >= size) { 5069 if (ma_is_leaf(type)) { 5070 found = true; 5071 goto done; 5072 } 5073 if (mas->index <= pivot) { 5074 mas->node = mas_slot(mas, slots, offset); 5075 mas->min = min; 5076 mas->max = pivot; 5077 offset = 0; 5078 break; 5079 } 5080 } 5081 next_slot: 5082 min = pivot + 1; 5083 if (mas->last <= pivot) { 5084 mas_set_err(mas, -EBUSY); 5085 return true; 5086 } 5087 } 5088 5089 if (mte_is_root(mas->node)) 5090 found = true; 5091 done: 5092 mas->offset = offset; 5093 return found; 5094 } 5095 5096 /** 5097 * mas_walk() - Search for @mas->index in the tree. 5098 * @mas: The maple state. 5099 * 5100 * mas->index and mas->last will be set to the range if there is a value. If 5101 * mas->node is MAS_NONE, reset to MAS_START. 5102 * 5103 * Return: the entry at the location or %NULL. 5104 */ 5105 void *mas_walk(struct ma_state *mas) 5106 { 5107 void *entry; 5108 5109 retry: 5110 entry = mas_state_walk(mas); 5111 if (mas_is_start(mas)) 5112 goto retry; 5113 5114 if (mas_is_ptr(mas)) { 5115 if (!mas->index) { 5116 mas->last = 0; 5117 } else { 5118 mas->index = 1; 5119 mas->last = ULONG_MAX; 5120 } 5121 return entry; 5122 } 5123 5124 if (mas_is_none(mas)) { 5125 mas->index = 0; 5126 mas->last = ULONG_MAX; 5127 } 5128 5129 return entry; 5130 } 5131 EXPORT_SYMBOL_GPL(mas_walk); 5132 5133 static inline bool mas_rewind_node(struct ma_state *mas) 5134 { 5135 unsigned char slot; 5136 5137 do { 5138 if (mte_is_root(mas->node)) { 5139 slot = mas->offset; 5140 if (!slot) 5141 return false; 5142 } else { 5143 mas_ascend(mas); 5144 slot = mas->offset; 5145 } 5146 } while (!slot); 5147 5148 mas->offset = --slot; 5149 return true; 5150 } 5151 5152 /* 5153 * mas_skip_node() - Internal function. Skip over a node. 5154 * @mas: The maple state. 5155 * 5156 * Return: true if there is another node, false otherwise. 5157 */ 5158 static inline bool mas_skip_node(struct ma_state *mas) 5159 { 5160 if (mas_is_err(mas)) 5161 return false; 5162 5163 do { 5164 if (mte_is_root(mas->node)) { 5165 if (mas->offset >= mas_data_end(mas)) { 5166 mas_set_err(mas, -EBUSY); 5167 return false; 5168 } 5169 } else { 5170 mas_ascend(mas); 5171 } 5172 } while (mas->offset >= mas_data_end(mas)); 5173 5174 mas->offset++; 5175 return true; 5176 } 5177 5178 /* 5179 * mas_awalk() - Allocation walk. Search from low address to high, for a gap of 5180 * @size 5181 * @mas: The maple state 5182 * @size: The size of the gap required 5183 * 5184 * Search between @mas->index and @mas->last for a gap of @size. 5185 */ 5186 static inline void mas_awalk(struct ma_state *mas, unsigned long size) 5187 { 5188 struct maple_enode *last = NULL; 5189 5190 /* 5191 * There are 4 options: 5192 * go to child (descend) 5193 * go back to parent (ascend) 5194 * no gap found. (return, slot == MAPLE_NODE_SLOTS) 5195 * found the gap. (return, slot != MAPLE_NODE_SLOTS) 5196 */ 5197 while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) { 5198 if (last == mas->node) 5199 mas_skip_node(mas); 5200 else 5201 last = mas->node; 5202 } 5203 } 5204 5205 /* 5206 * mas_fill_gap() - Fill a located gap with @entry. 5207 * @mas: The maple state 5208 * @entry: The value to store 5209 * @slot: The offset into the node to store the @entry 5210 * @size: The size of the entry 5211 * @index: The start location 5212 */ 5213 static inline void mas_fill_gap(struct ma_state *mas, void *entry, 5214 unsigned char slot, unsigned long size, unsigned long *index) 5215 { 5216 MA_WR_STATE(wr_mas, mas, entry); 5217 unsigned char pslot = mte_parent_slot(mas->node); 5218 struct maple_enode *mn = mas->node; 5219 unsigned long *pivots; 5220 enum maple_type ptype; 5221 /* 5222 * mas->index is the start address for the search 5223 * which may no longer be needed. 5224 * mas->last is the end address for the search 5225 */ 5226 5227 *index = mas->index; 5228 mas->last = mas->index + size - 1; 5229 5230 /* 5231 * It is possible that using mas->max and mas->min to correctly 5232 * calculate the index and last will cause an issue in the gap 5233 * calculation, so fix the ma_state here 5234 */ 5235 mas_ascend(mas); 5236 ptype = mte_node_type(mas->node); 5237 pivots = ma_pivots(mas_mn(mas), ptype); 5238 mas->max = mas_safe_pivot(mas, pivots, pslot, ptype); 5239 mas->min = mas_safe_min(mas, pivots, pslot); 5240 mas->node = mn; 5241 mas->offset = slot; 5242 mas_wr_store_entry(&wr_mas); 5243 } 5244 5245 /* 5246 * mas_sparse_area() - Internal function. Return upper or lower limit when 5247 * searching for a gap in an empty tree. 5248 * @mas: The maple state 5249 * @min: the minimum range 5250 * @max: The maximum range 5251 * @size: The size of the gap 5252 * @fwd: Searching forward or back 5253 */ 5254 static inline int mas_sparse_area(struct ma_state *mas, unsigned long min, 5255 unsigned long max, unsigned long size, bool fwd) 5256 { 5257 if (!unlikely(mas_is_none(mas)) && min == 0) { 5258 min++; 5259 /* 5260 * At this time, min is increased, we need to recheck whether 5261 * the size is satisfied. 5262 */ 5263 if (min > max || max - min + 1 < size) 5264 return -EBUSY; 5265 } 5266 /* mas_is_ptr */ 5267 5268 if (fwd) { 5269 mas->index = min; 5270 mas->last = min + size - 1; 5271 } else { 5272 mas->last = max; 5273 mas->index = max - size + 1; 5274 } 5275 return 0; 5276 } 5277 5278 /* 5279 * mas_empty_area() - Get the lowest address within the range that is 5280 * sufficient for the size requested. 5281 * @mas: The maple state 5282 * @min: The lowest value of the range 5283 * @max: The highest value of the range 5284 * @size: The size needed 5285 */ 5286 int mas_empty_area(struct ma_state *mas, unsigned long min, 5287 unsigned long max, unsigned long size) 5288 { 5289 unsigned char offset; 5290 unsigned long *pivots; 5291 enum maple_type mt; 5292 5293 if (min >= max) 5294 return -EINVAL; 5295 5296 if (mas_is_start(mas)) 5297 mas_start(mas); 5298 else if (mas->offset >= 2) 5299 mas->offset -= 2; 5300 else if (!mas_skip_node(mas)) 5301 return -EBUSY; 5302 5303 /* Empty set */ 5304 if (mas_is_none(mas) || mas_is_ptr(mas)) 5305 return mas_sparse_area(mas, min, max, size, true); 5306 5307 /* The start of the window can only be within these values */ 5308 mas->index = min; 5309 mas->last = max; 5310 mas_awalk(mas, size); 5311 5312 if (unlikely(mas_is_err(mas))) 5313 return xa_err(mas->node); 5314 5315 offset = mas->offset; 5316 if (unlikely(offset == MAPLE_NODE_SLOTS)) 5317 return -EBUSY; 5318 5319 mt = mte_node_type(mas->node); 5320 pivots = ma_pivots(mas_mn(mas), mt); 5321 min = mas_safe_min(mas, pivots, offset); 5322 if (mas->index < min) 5323 mas->index = min; 5324 mas->last = mas->index + size - 1; 5325 return 0; 5326 } 5327 EXPORT_SYMBOL_GPL(mas_empty_area); 5328 5329 /* 5330 * mas_empty_area_rev() - Get the highest address within the range that is 5331 * sufficient for the size requested. 5332 * @mas: The maple state 5333 * @min: The lowest value of the range 5334 * @max: The highest value of the range 5335 * @size: The size needed 5336 */ 5337 int mas_empty_area_rev(struct ma_state *mas, unsigned long min, 5338 unsigned long max, unsigned long size) 5339 { 5340 struct maple_enode *last = mas->node; 5341 5342 if (min >= max) 5343 return -EINVAL; 5344 5345 if (mas_is_start(mas)) { 5346 mas_start(mas); 5347 mas->offset = mas_data_end(mas); 5348 } else if (mas->offset >= 2) { 5349 mas->offset -= 2; 5350 } else if (!mas_rewind_node(mas)) { 5351 return -EBUSY; 5352 } 5353 5354 /* Empty set. */ 5355 if (mas_is_none(mas) || mas_is_ptr(mas)) 5356 return mas_sparse_area(mas, min, max, size, false); 5357 5358 /* The start of the window can only be within these values. */ 5359 mas->index = min; 5360 mas->last = max; 5361 5362 while (!mas_rev_awalk(mas, size, &min, &max)) { 5363 if (last == mas->node) { 5364 if (!mas_rewind_node(mas)) 5365 return -EBUSY; 5366 } else { 5367 last = mas->node; 5368 } 5369 } 5370 5371 if (mas_is_err(mas)) 5372 return xa_err(mas->node); 5373 5374 if (unlikely(mas->offset == MAPLE_NODE_SLOTS)) 5375 return -EBUSY; 5376 5377 /* Trim the upper limit to the max. */ 5378 if (max <= mas->last) 5379 mas->last = max; 5380 5381 mas->index = mas->last - size + 1; 5382 return 0; 5383 } 5384 EXPORT_SYMBOL_GPL(mas_empty_area_rev); 5385 5386 static inline int mas_alloc(struct ma_state *mas, void *entry, 5387 unsigned long size, unsigned long *index) 5388 { 5389 unsigned long min; 5390 5391 mas_start(mas); 5392 if (mas_is_none(mas) || mas_is_ptr(mas)) { 5393 mas_root_expand(mas, entry); 5394 if (mas_is_err(mas)) 5395 return xa_err(mas->node); 5396 5397 if (!mas->index) 5398 return mte_pivot(mas->node, 0); 5399 return mte_pivot(mas->node, 1); 5400 } 5401 5402 /* Must be walking a tree. */ 5403 mas_awalk(mas, size); 5404 if (mas_is_err(mas)) 5405 return xa_err(mas->node); 5406 5407 if (mas->offset == MAPLE_NODE_SLOTS) 5408 goto no_gap; 5409 5410 /* 5411 * At this point, mas->node points to the right node and we have an 5412 * offset that has a sufficient gap. 5413 */ 5414 min = mas->min; 5415 if (mas->offset) 5416 min = mte_pivot(mas->node, mas->offset - 1) + 1; 5417 5418 if (mas->index < min) 5419 mas->index = min; 5420 5421 mas_fill_gap(mas, entry, mas->offset, size, index); 5422 return 0; 5423 5424 no_gap: 5425 return -EBUSY; 5426 } 5427 5428 static inline int mas_rev_alloc(struct ma_state *mas, unsigned long min, 5429 unsigned long max, void *entry, 5430 unsigned long size, unsigned long *index) 5431 { 5432 int ret = 0; 5433 5434 ret = mas_empty_area_rev(mas, min, max, size); 5435 if (ret) 5436 return ret; 5437 5438 if (mas_is_err(mas)) 5439 return xa_err(mas->node); 5440 5441 if (mas->offset == MAPLE_NODE_SLOTS) 5442 goto no_gap; 5443 5444 mas_fill_gap(mas, entry, mas->offset, size, index); 5445 return 0; 5446 5447 no_gap: 5448 return -EBUSY; 5449 } 5450 5451 /* 5452 * mte_dead_leaves() - Mark all leaves of a node as dead. 5453 * @mas: The maple state 5454 * @slots: Pointer to the slot array 5455 * @type: The maple node type 5456 * 5457 * Must hold the write lock. 5458 * 5459 * Return: The number of leaves marked as dead. 5460 */ 5461 static inline 5462 unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt, 5463 void __rcu **slots) 5464 { 5465 struct maple_node *node; 5466 enum maple_type type; 5467 void *entry; 5468 int offset; 5469 5470 for (offset = 0; offset < mt_slot_count(enode); offset++) { 5471 entry = mt_slot(mt, slots, offset); 5472 type = mte_node_type(entry); 5473 node = mte_to_node(entry); 5474 /* Use both node and type to catch LE & BE metadata */ 5475 if (!node || !type) 5476 break; 5477 5478 mte_set_node_dead(entry); 5479 node->type = type; 5480 rcu_assign_pointer(slots[offset], node); 5481 } 5482 5483 return offset; 5484 } 5485 5486 /** 5487 * mte_dead_walk() - Walk down a dead tree to just before the leaves 5488 * @enode: The maple encoded node 5489 * @offset: The starting offset 5490 * 5491 * Note: This can only be used from the RCU callback context. 5492 */ 5493 static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset) 5494 { 5495 struct maple_node *node, *next; 5496 void __rcu **slots = NULL; 5497 5498 next = mte_to_node(*enode); 5499 do { 5500 *enode = ma_enode_ptr(next); 5501 node = mte_to_node(*enode); 5502 slots = ma_slots(node, node->type); 5503 next = rcu_dereference_protected(slots[offset], 5504 lock_is_held(&rcu_callback_map)); 5505 offset = 0; 5506 } while (!ma_is_leaf(next->type)); 5507 5508 return slots; 5509 } 5510 5511 /** 5512 * mt_free_walk() - Walk & free a tree in the RCU callback context 5513 * @head: The RCU head that's within the node. 5514 * 5515 * Note: This can only be used from the RCU callback context. 5516 */ 5517 static void mt_free_walk(struct rcu_head *head) 5518 { 5519 void __rcu **slots; 5520 struct maple_node *node, *start; 5521 struct maple_enode *enode; 5522 unsigned char offset; 5523 enum maple_type type; 5524 5525 node = container_of(head, struct maple_node, rcu); 5526 5527 if (ma_is_leaf(node->type)) 5528 goto free_leaf; 5529 5530 start = node; 5531 enode = mt_mk_node(node, node->type); 5532 slots = mte_dead_walk(&enode, 0); 5533 node = mte_to_node(enode); 5534 do { 5535 mt_free_bulk(node->slot_len, slots); 5536 offset = node->parent_slot + 1; 5537 enode = node->piv_parent; 5538 if (mte_to_node(enode) == node) 5539 goto free_leaf; 5540 5541 type = mte_node_type(enode); 5542 slots = ma_slots(mte_to_node(enode), type); 5543 if ((offset < mt_slots[type]) && 5544 rcu_dereference_protected(slots[offset], 5545 lock_is_held(&rcu_callback_map))) 5546 slots = mte_dead_walk(&enode, offset); 5547 node = mte_to_node(enode); 5548 } while ((node != start) || (node->slot_len < offset)); 5549 5550 slots = ma_slots(node, node->type); 5551 mt_free_bulk(node->slot_len, slots); 5552 5553 free_leaf: 5554 mt_free_rcu(&node->rcu); 5555 } 5556 5557 static inline void __rcu **mte_destroy_descend(struct maple_enode **enode, 5558 struct maple_tree *mt, struct maple_enode *prev, unsigned char offset) 5559 { 5560 struct maple_node *node; 5561 struct maple_enode *next = *enode; 5562 void __rcu **slots = NULL; 5563 enum maple_type type; 5564 unsigned char next_offset = 0; 5565 5566 do { 5567 *enode = next; 5568 node = mte_to_node(*enode); 5569 type = mte_node_type(*enode); 5570 slots = ma_slots(node, type); 5571 next = mt_slot_locked(mt, slots, next_offset); 5572 if ((mte_dead_node(next))) 5573 next = mt_slot_locked(mt, slots, ++next_offset); 5574 5575 mte_set_node_dead(*enode); 5576 node->type = type; 5577 node->piv_parent = prev; 5578 node->parent_slot = offset; 5579 offset = next_offset; 5580 next_offset = 0; 5581 prev = *enode; 5582 } while (!mte_is_leaf(next)); 5583 5584 return slots; 5585 } 5586 5587 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt, 5588 bool free) 5589 { 5590 void __rcu **slots; 5591 struct maple_node *node = mte_to_node(enode); 5592 struct maple_enode *start; 5593 5594 if (mte_is_leaf(enode)) { 5595 node->type = mte_node_type(enode); 5596 goto free_leaf; 5597 } 5598 5599 start = enode; 5600 slots = mte_destroy_descend(&enode, mt, start, 0); 5601 node = mte_to_node(enode); // Updated in the above call. 5602 do { 5603 enum maple_type type; 5604 unsigned char offset; 5605 struct maple_enode *parent, *tmp; 5606 5607 node->slot_len = mte_dead_leaves(enode, mt, slots); 5608 if (free) 5609 mt_free_bulk(node->slot_len, slots); 5610 offset = node->parent_slot + 1; 5611 enode = node->piv_parent; 5612 if (mte_to_node(enode) == node) 5613 goto free_leaf; 5614 5615 type = mte_node_type(enode); 5616 slots = ma_slots(mte_to_node(enode), type); 5617 if (offset >= mt_slots[type]) 5618 goto next; 5619 5620 tmp = mt_slot_locked(mt, slots, offset); 5621 if (mte_node_type(tmp) && mte_to_node(tmp)) { 5622 parent = enode; 5623 enode = tmp; 5624 slots = mte_destroy_descend(&enode, mt, parent, offset); 5625 } 5626 next: 5627 node = mte_to_node(enode); 5628 } while (start != enode); 5629 5630 node = mte_to_node(enode); 5631 node->slot_len = mte_dead_leaves(enode, mt, slots); 5632 if (free) 5633 mt_free_bulk(node->slot_len, slots); 5634 5635 free_leaf: 5636 if (free) 5637 mt_free_rcu(&node->rcu); 5638 else 5639 mt_clear_meta(mt, node, node->type); 5640 } 5641 5642 /* 5643 * mte_destroy_walk() - Free a tree or sub-tree. 5644 * @enode: the encoded maple node (maple_enode) to start 5645 * @mt: the tree to free - needed for node types. 5646 * 5647 * Must hold the write lock. 5648 */ 5649 static inline void mte_destroy_walk(struct maple_enode *enode, 5650 struct maple_tree *mt) 5651 { 5652 struct maple_node *node = mte_to_node(enode); 5653 5654 if (mt_in_rcu(mt)) { 5655 mt_destroy_walk(enode, mt, false); 5656 call_rcu(&node->rcu, mt_free_walk); 5657 } else { 5658 mt_destroy_walk(enode, mt, true); 5659 } 5660 } 5661 5662 static void mas_wr_store_setup(struct ma_wr_state *wr_mas) 5663 { 5664 if (unlikely(mas_is_paused(wr_mas->mas))) 5665 mas_reset(wr_mas->mas); 5666 5667 if (!mas_is_start(wr_mas->mas)) { 5668 if (mas_is_none(wr_mas->mas)) { 5669 mas_reset(wr_mas->mas); 5670 } else { 5671 wr_mas->r_max = wr_mas->mas->max; 5672 wr_mas->type = mte_node_type(wr_mas->mas->node); 5673 if (mas_is_span_wr(wr_mas)) 5674 mas_reset(wr_mas->mas); 5675 } 5676 } 5677 } 5678 5679 /* Interface */ 5680 5681 /** 5682 * mas_store() - Store an @entry. 5683 * @mas: The maple state. 5684 * @entry: The entry to store. 5685 * 5686 * The @mas->index and @mas->last is used to set the range for the @entry. 5687 * Note: The @mas should have pre-allocated entries to ensure there is memory to 5688 * store the entry. Please see mas_expected_entries()/mas_destroy() for more details. 5689 * 5690 * Return: the first entry between mas->index and mas->last or %NULL. 5691 */ 5692 void *mas_store(struct ma_state *mas, void *entry) 5693 { 5694 MA_WR_STATE(wr_mas, mas, entry); 5695 5696 trace_ma_write(__func__, mas, 0, entry); 5697 #ifdef CONFIG_DEBUG_MAPLE_TREE 5698 if (mas->index > mas->last) 5699 pr_err("Error %lu > %lu %p\n", mas->index, mas->last, entry); 5700 MT_BUG_ON(mas->tree, mas->index > mas->last); 5701 if (mas->index > mas->last) { 5702 mas_set_err(mas, -EINVAL); 5703 return NULL; 5704 } 5705 5706 #endif 5707 5708 /* 5709 * Storing is the same operation as insert with the added caveat that it 5710 * can overwrite entries. Although this seems simple enough, one may 5711 * want to examine what happens if a single store operation was to 5712 * overwrite multiple entries within a self-balancing B-Tree. 5713 */ 5714 mas_wr_store_setup(&wr_mas); 5715 mas_wr_store_entry(&wr_mas); 5716 return wr_mas.content; 5717 } 5718 EXPORT_SYMBOL_GPL(mas_store); 5719 5720 /** 5721 * mas_store_gfp() - Store a value into the tree. 5722 * @mas: The maple state 5723 * @entry: The entry to store 5724 * @gfp: The GFP_FLAGS to use for allocations if necessary. 5725 * 5726 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not 5727 * be allocated. 5728 */ 5729 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp) 5730 { 5731 MA_WR_STATE(wr_mas, mas, entry); 5732 5733 mas_wr_store_setup(&wr_mas); 5734 trace_ma_write(__func__, mas, 0, entry); 5735 retry: 5736 mas_wr_store_entry(&wr_mas); 5737 if (unlikely(mas_nomem(mas, gfp))) 5738 goto retry; 5739 5740 if (unlikely(mas_is_err(mas))) 5741 return xa_err(mas->node); 5742 5743 return 0; 5744 } 5745 EXPORT_SYMBOL_GPL(mas_store_gfp); 5746 5747 /** 5748 * mas_store_prealloc() - Store a value into the tree using memory 5749 * preallocated in the maple state. 5750 * @mas: The maple state 5751 * @entry: The entry to store. 5752 */ 5753 void mas_store_prealloc(struct ma_state *mas, void *entry) 5754 { 5755 MA_WR_STATE(wr_mas, mas, entry); 5756 5757 mas_wr_store_setup(&wr_mas); 5758 trace_ma_write(__func__, mas, 0, entry); 5759 mas_wr_store_entry(&wr_mas); 5760 BUG_ON(mas_is_err(mas)); 5761 mas_destroy(mas); 5762 } 5763 EXPORT_SYMBOL_GPL(mas_store_prealloc); 5764 5765 /** 5766 * mas_preallocate() - Preallocate enough nodes for a store operation 5767 * @mas: The maple state 5768 * @gfp: The GFP_FLAGS to use for allocations. 5769 * 5770 * Return: 0 on success, -ENOMEM if memory could not be allocated. 5771 */ 5772 int mas_preallocate(struct ma_state *mas, gfp_t gfp) 5773 { 5774 int ret; 5775 5776 mas_node_count_gfp(mas, 1 + mas_mt_height(mas) * 3, gfp); 5777 mas->mas_flags |= MA_STATE_PREALLOC; 5778 if (likely(!mas_is_err(mas))) 5779 return 0; 5780 5781 mas_set_alloc_req(mas, 0); 5782 ret = xa_err(mas->node); 5783 mas_reset(mas); 5784 mas_destroy(mas); 5785 mas_reset(mas); 5786 return ret; 5787 } 5788 EXPORT_SYMBOL_GPL(mas_preallocate); 5789 5790 /* 5791 * mas_destroy() - destroy a maple state. 5792 * @mas: The maple state 5793 * 5794 * Upon completion, check the left-most node and rebalance against the node to 5795 * the right if necessary. Frees any allocated nodes associated with this maple 5796 * state. 5797 */ 5798 void mas_destroy(struct ma_state *mas) 5799 { 5800 struct maple_alloc *node; 5801 unsigned long total; 5802 5803 /* 5804 * When using mas_for_each() to insert an expected number of elements, 5805 * it is possible that the number inserted is less than the expected 5806 * number. To fix an invalid final node, a check is performed here to 5807 * rebalance the previous node with the final node. 5808 */ 5809 if (mas->mas_flags & MA_STATE_REBALANCE) { 5810 unsigned char end; 5811 5812 if (mas_is_start(mas)) 5813 mas_start(mas); 5814 5815 mtree_range_walk(mas); 5816 end = mas_data_end(mas) + 1; 5817 if (end < mt_min_slot_count(mas->node) - 1) 5818 mas_destroy_rebalance(mas, end); 5819 5820 mas->mas_flags &= ~MA_STATE_REBALANCE; 5821 } 5822 mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC); 5823 5824 total = mas_allocated(mas); 5825 while (total) { 5826 node = mas->alloc; 5827 mas->alloc = node->slot[0]; 5828 if (node->node_count > 1) { 5829 size_t count = node->node_count - 1; 5830 5831 mt_free_bulk(count, (void __rcu **)&node->slot[1]); 5832 total -= count; 5833 } 5834 kmem_cache_free(maple_node_cache, node); 5835 total--; 5836 } 5837 5838 mas->alloc = NULL; 5839 } 5840 EXPORT_SYMBOL_GPL(mas_destroy); 5841 5842 /* 5843 * mas_expected_entries() - Set the expected number of entries that will be inserted. 5844 * @mas: The maple state 5845 * @nr_entries: The number of expected entries. 5846 * 5847 * This will attempt to pre-allocate enough nodes to store the expected number 5848 * of entries. The allocations will occur using the bulk allocator interface 5849 * for speed. Please call mas_destroy() on the @mas after inserting the entries 5850 * to ensure any unused nodes are freed. 5851 * 5852 * Return: 0 on success, -ENOMEM if memory could not be allocated. 5853 */ 5854 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries) 5855 { 5856 int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2; 5857 struct maple_enode *enode = mas->node; 5858 int nr_nodes; 5859 int ret; 5860 5861 /* 5862 * Sometimes it is necessary to duplicate a tree to a new tree, such as 5863 * forking a process and duplicating the VMAs from one tree to a new 5864 * tree. When such a situation arises, it is known that the new tree is 5865 * not going to be used until the entire tree is populated. For 5866 * performance reasons, it is best to use a bulk load with RCU disabled. 5867 * This allows for optimistic splitting that favours the left and reuse 5868 * of nodes during the operation. 5869 */ 5870 5871 /* Optimize splitting for bulk insert in-order */ 5872 mas->mas_flags |= MA_STATE_BULK; 5873 5874 /* 5875 * Avoid overflow, assume a gap between each entry and a trailing null. 5876 * If this is wrong, it just means allocation can happen during 5877 * insertion of entries. 5878 */ 5879 nr_nodes = max(nr_entries, nr_entries * 2 + 1); 5880 if (!mt_is_alloc(mas->tree)) 5881 nonleaf_cap = MAPLE_RANGE64_SLOTS - 2; 5882 5883 /* Leaves; reduce slots to keep space for expansion */ 5884 nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2); 5885 /* Internal nodes */ 5886 nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap); 5887 /* Add working room for split (2 nodes) + new parents */ 5888 mas_node_count(mas, nr_nodes + 3); 5889 5890 /* Detect if allocations run out */ 5891 mas->mas_flags |= MA_STATE_PREALLOC; 5892 5893 if (!mas_is_err(mas)) 5894 return 0; 5895 5896 ret = xa_err(mas->node); 5897 mas->node = enode; 5898 mas_destroy(mas); 5899 return ret; 5900 5901 } 5902 EXPORT_SYMBOL_GPL(mas_expected_entries); 5903 5904 /** 5905 * mas_next() - Get the next entry. 5906 * @mas: The maple state 5907 * @max: The maximum index to check. 5908 * 5909 * Returns the next entry after @mas->index. 5910 * Must hold rcu_read_lock or the write lock. 5911 * Can return the zero entry. 5912 * 5913 * Return: The next entry or %NULL 5914 */ 5915 void *mas_next(struct ma_state *mas, unsigned long max) 5916 { 5917 if (mas_is_none(mas) || mas_is_paused(mas)) 5918 mas->node = MAS_START; 5919 5920 if (mas_is_start(mas)) 5921 mas_walk(mas); /* Retries on dead nodes handled by mas_walk */ 5922 5923 if (mas_is_ptr(mas)) { 5924 if (!mas->index) { 5925 mas->index = 1; 5926 mas->last = ULONG_MAX; 5927 } 5928 return NULL; 5929 } 5930 5931 if (mas->last == ULONG_MAX) 5932 return NULL; 5933 5934 /* Retries on dead nodes handled by mas_next_entry */ 5935 return mas_next_entry(mas, max); 5936 } 5937 EXPORT_SYMBOL_GPL(mas_next); 5938 5939 /** 5940 * mt_next() - get the next value in the maple tree 5941 * @mt: The maple tree 5942 * @index: The start index 5943 * @max: The maximum index to check 5944 * 5945 * Return: The entry at @index or higher, or %NULL if nothing is found. 5946 */ 5947 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max) 5948 { 5949 void *entry = NULL; 5950 MA_STATE(mas, mt, index, index); 5951 5952 rcu_read_lock(); 5953 entry = mas_next(&mas, max); 5954 rcu_read_unlock(); 5955 return entry; 5956 } 5957 EXPORT_SYMBOL_GPL(mt_next); 5958 5959 /** 5960 * mas_prev() - Get the previous entry 5961 * @mas: The maple state 5962 * @min: The minimum value to check. 5963 * 5964 * Must hold rcu_read_lock or the write lock. 5965 * Will reset mas to MAS_START if the node is MAS_NONE. Will stop on not 5966 * searchable nodes. 5967 * 5968 * Return: the previous value or %NULL. 5969 */ 5970 void *mas_prev(struct ma_state *mas, unsigned long min) 5971 { 5972 if (!mas->index) { 5973 /* Nothing comes before 0 */ 5974 mas->last = 0; 5975 mas->node = MAS_NONE; 5976 return NULL; 5977 } 5978 5979 if (unlikely(mas_is_ptr(mas))) 5980 return NULL; 5981 5982 if (mas_is_none(mas) || mas_is_paused(mas)) 5983 mas->node = MAS_START; 5984 5985 if (mas_is_start(mas)) { 5986 mas_walk(mas); 5987 if (!mas->index) 5988 return NULL; 5989 } 5990 5991 if (mas_is_ptr(mas)) { 5992 if (!mas->index) { 5993 mas->last = 0; 5994 return NULL; 5995 } 5996 5997 mas->index = mas->last = 0; 5998 return mas_root_locked(mas); 5999 } 6000 return mas_prev_entry(mas, min); 6001 } 6002 EXPORT_SYMBOL_GPL(mas_prev); 6003 6004 /** 6005 * mt_prev() - get the previous value in the maple tree 6006 * @mt: The maple tree 6007 * @index: The start index 6008 * @min: The minimum index to check 6009 * 6010 * Return: The entry at @index or lower, or %NULL if nothing is found. 6011 */ 6012 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min) 6013 { 6014 void *entry = NULL; 6015 MA_STATE(mas, mt, index, index); 6016 6017 rcu_read_lock(); 6018 entry = mas_prev(&mas, min); 6019 rcu_read_unlock(); 6020 return entry; 6021 } 6022 EXPORT_SYMBOL_GPL(mt_prev); 6023 6024 /** 6025 * mas_pause() - Pause a mas_find/mas_for_each to drop the lock. 6026 * @mas: The maple state to pause 6027 * 6028 * Some users need to pause a walk and drop the lock they're holding in 6029 * order to yield to a higher priority thread or carry out an operation 6030 * on an entry. Those users should call this function before they drop 6031 * the lock. It resets the @mas to be suitable for the next iteration 6032 * of the loop after the user has reacquired the lock. If most entries 6033 * found during a walk require you to call mas_pause(), the mt_for_each() 6034 * iterator may be more appropriate. 6035 * 6036 */ 6037 void mas_pause(struct ma_state *mas) 6038 { 6039 mas->node = MAS_PAUSE; 6040 } 6041 EXPORT_SYMBOL_GPL(mas_pause); 6042 6043 /** 6044 * mas_find() - On the first call, find the entry at or after mas->index up to 6045 * %max. Otherwise, find the entry after mas->index. 6046 * @mas: The maple state 6047 * @max: The maximum value to check. 6048 * 6049 * Must hold rcu_read_lock or the write lock. 6050 * If an entry exists, last and index are updated accordingly. 6051 * May set @mas->node to MAS_NONE. 6052 * 6053 * Return: The entry or %NULL. 6054 */ 6055 void *mas_find(struct ma_state *mas, unsigned long max) 6056 { 6057 if (unlikely(mas_is_paused(mas))) { 6058 if (unlikely(mas->last == ULONG_MAX)) { 6059 mas->node = MAS_NONE; 6060 return NULL; 6061 } 6062 mas->node = MAS_START; 6063 mas->index = ++mas->last; 6064 } 6065 6066 if (unlikely(mas_is_none(mas))) 6067 mas->node = MAS_START; 6068 6069 if (unlikely(mas_is_start(mas))) { 6070 /* First run or continue */ 6071 void *entry; 6072 6073 if (mas->index > max) 6074 return NULL; 6075 6076 entry = mas_walk(mas); 6077 if (entry) 6078 return entry; 6079 } 6080 6081 if (unlikely(!mas_searchable(mas))) 6082 return NULL; 6083 6084 /* Retries on dead nodes handled by mas_next_entry */ 6085 return mas_next_entry(mas, max); 6086 } 6087 EXPORT_SYMBOL_GPL(mas_find); 6088 6089 /** 6090 * mas_find_rev: On the first call, find the first non-null entry at or below 6091 * mas->index down to %min. Otherwise find the first non-null entry below 6092 * mas->index down to %min. 6093 * @mas: The maple state 6094 * @min: The minimum value to check. 6095 * 6096 * Must hold rcu_read_lock or the write lock. 6097 * If an entry exists, last and index are updated accordingly. 6098 * May set @mas->node to MAS_NONE. 6099 * 6100 * Return: The entry or %NULL. 6101 */ 6102 void *mas_find_rev(struct ma_state *mas, unsigned long min) 6103 { 6104 if (unlikely(mas_is_paused(mas))) { 6105 if (unlikely(mas->last == ULONG_MAX)) { 6106 mas->node = MAS_NONE; 6107 return NULL; 6108 } 6109 mas->node = MAS_START; 6110 mas->last = --mas->index; 6111 } 6112 6113 if (unlikely(mas_is_start(mas))) { 6114 /* First run or continue */ 6115 void *entry; 6116 6117 if (mas->index < min) 6118 return NULL; 6119 6120 entry = mas_walk(mas); 6121 if (entry) 6122 return entry; 6123 } 6124 6125 if (unlikely(!mas_searchable(mas))) 6126 return NULL; 6127 6128 if (mas->index < min) 6129 return NULL; 6130 6131 /* Retries on dead nodes handled by mas_prev_entry */ 6132 return mas_prev_entry(mas, min); 6133 } 6134 EXPORT_SYMBOL_GPL(mas_find_rev); 6135 6136 /** 6137 * mas_erase() - Find the range in which index resides and erase the entire 6138 * range. 6139 * @mas: The maple state 6140 * 6141 * Must hold the write lock. 6142 * Searches for @mas->index, sets @mas->index and @mas->last to the range and 6143 * erases that range. 6144 * 6145 * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated. 6146 */ 6147 void *mas_erase(struct ma_state *mas) 6148 { 6149 void *entry; 6150 MA_WR_STATE(wr_mas, mas, NULL); 6151 6152 if (mas_is_none(mas) || mas_is_paused(mas)) 6153 mas->node = MAS_START; 6154 6155 /* Retry unnecessary when holding the write lock. */ 6156 entry = mas_state_walk(mas); 6157 if (!entry) 6158 return NULL; 6159 6160 write_retry: 6161 /* Must reset to ensure spanning writes of last slot are detected */ 6162 mas_reset(mas); 6163 mas_wr_store_setup(&wr_mas); 6164 mas_wr_store_entry(&wr_mas); 6165 if (mas_nomem(mas, GFP_KERNEL)) 6166 goto write_retry; 6167 6168 return entry; 6169 } 6170 EXPORT_SYMBOL_GPL(mas_erase); 6171 6172 /** 6173 * mas_nomem() - Check if there was an error allocating and do the allocation 6174 * if necessary If there are allocations, then free them. 6175 * @mas: The maple state 6176 * @gfp: The GFP_FLAGS to use for allocations 6177 * Return: true on allocation, false otherwise. 6178 */ 6179 bool mas_nomem(struct ma_state *mas, gfp_t gfp) 6180 __must_hold(mas->tree->lock) 6181 { 6182 if (likely(mas->node != MA_ERROR(-ENOMEM))) { 6183 mas_destroy(mas); 6184 return false; 6185 } 6186 6187 if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) { 6188 mtree_unlock(mas->tree); 6189 mas_alloc_nodes(mas, gfp); 6190 mtree_lock(mas->tree); 6191 } else { 6192 mas_alloc_nodes(mas, gfp); 6193 } 6194 6195 if (!mas_allocated(mas)) 6196 return false; 6197 6198 mas->node = MAS_START; 6199 return true; 6200 } 6201 6202 void __init maple_tree_init(void) 6203 { 6204 maple_node_cache = kmem_cache_create("maple_node", 6205 sizeof(struct maple_node), sizeof(struct maple_node), 6206 SLAB_PANIC, NULL); 6207 } 6208 6209 /** 6210 * mtree_load() - Load a value stored in a maple tree 6211 * @mt: The maple tree 6212 * @index: The index to load 6213 * 6214 * Return: the entry or %NULL 6215 */ 6216 void *mtree_load(struct maple_tree *mt, unsigned long index) 6217 { 6218 MA_STATE(mas, mt, index, index); 6219 void *entry; 6220 6221 trace_ma_read(__func__, &mas); 6222 rcu_read_lock(); 6223 retry: 6224 entry = mas_start(&mas); 6225 if (unlikely(mas_is_none(&mas))) 6226 goto unlock; 6227 6228 if (unlikely(mas_is_ptr(&mas))) { 6229 if (index) 6230 entry = NULL; 6231 6232 goto unlock; 6233 } 6234 6235 entry = mtree_lookup_walk(&mas); 6236 if (!entry && unlikely(mas_is_start(&mas))) 6237 goto retry; 6238 unlock: 6239 rcu_read_unlock(); 6240 if (xa_is_zero(entry)) 6241 return NULL; 6242 6243 return entry; 6244 } 6245 EXPORT_SYMBOL(mtree_load); 6246 6247 /** 6248 * mtree_store_range() - Store an entry at a given range. 6249 * @mt: The maple tree 6250 * @index: The start of the range 6251 * @last: The end of the range 6252 * @entry: The entry to store 6253 * @gfp: The GFP_FLAGS to use for allocations 6254 * 6255 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not 6256 * be allocated. 6257 */ 6258 int mtree_store_range(struct maple_tree *mt, unsigned long index, 6259 unsigned long last, void *entry, gfp_t gfp) 6260 { 6261 MA_STATE(mas, mt, index, last); 6262 MA_WR_STATE(wr_mas, &mas, entry); 6263 6264 trace_ma_write(__func__, &mas, 0, entry); 6265 if (WARN_ON_ONCE(xa_is_advanced(entry))) 6266 return -EINVAL; 6267 6268 if (index > last) 6269 return -EINVAL; 6270 6271 mtree_lock(mt); 6272 retry: 6273 mas_wr_store_entry(&wr_mas); 6274 if (mas_nomem(&mas, gfp)) 6275 goto retry; 6276 6277 mtree_unlock(mt); 6278 if (mas_is_err(&mas)) 6279 return xa_err(mas.node); 6280 6281 return 0; 6282 } 6283 EXPORT_SYMBOL(mtree_store_range); 6284 6285 /** 6286 * mtree_store() - Store an entry at a given index. 6287 * @mt: The maple tree 6288 * @index: The index to store the value 6289 * @entry: The entry to store 6290 * @gfp: The GFP_FLAGS to use for allocations 6291 * 6292 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not 6293 * be allocated. 6294 */ 6295 int mtree_store(struct maple_tree *mt, unsigned long index, void *entry, 6296 gfp_t gfp) 6297 { 6298 return mtree_store_range(mt, index, index, entry, gfp); 6299 } 6300 EXPORT_SYMBOL(mtree_store); 6301 6302 /** 6303 * mtree_insert_range() - Insert an entry at a give range if there is no value. 6304 * @mt: The maple tree 6305 * @first: The start of the range 6306 * @last: The end of the range 6307 * @entry: The entry to store 6308 * @gfp: The GFP_FLAGS to use for allocations. 6309 * 6310 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid 6311 * request, -ENOMEM if memory could not be allocated. 6312 */ 6313 int mtree_insert_range(struct maple_tree *mt, unsigned long first, 6314 unsigned long last, void *entry, gfp_t gfp) 6315 { 6316 MA_STATE(ms, mt, first, last); 6317 6318 if (WARN_ON_ONCE(xa_is_advanced(entry))) 6319 return -EINVAL; 6320 6321 if (first > last) 6322 return -EINVAL; 6323 6324 mtree_lock(mt); 6325 retry: 6326 mas_insert(&ms, entry); 6327 if (mas_nomem(&ms, gfp)) 6328 goto retry; 6329 6330 mtree_unlock(mt); 6331 if (mas_is_err(&ms)) 6332 return xa_err(ms.node); 6333 6334 return 0; 6335 } 6336 EXPORT_SYMBOL(mtree_insert_range); 6337 6338 /** 6339 * mtree_insert() - Insert an entry at a give index if there is no value. 6340 * @mt: The maple tree 6341 * @index : The index to store the value 6342 * @entry: The entry to store 6343 * @gfp: The FGP_FLAGS to use for allocations. 6344 * 6345 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid 6346 * request, -ENOMEM if memory could not be allocated. 6347 */ 6348 int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry, 6349 gfp_t gfp) 6350 { 6351 return mtree_insert_range(mt, index, index, entry, gfp); 6352 } 6353 EXPORT_SYMBOL(mtree_insert); 6354 6355 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp, 6356 void *entry, unsigned long size, unsigned long min, 6357 unsigned long max, gfp_t gfp) 6358 { 6359 int ret = 0; 6360 6361 MA_STATE(mas, mt, min, max - size); 6362 if (!mt_is_alloc(mt)) 6363 return -EINVAL; 6364 6365 if (WARN_ON_ONCE(mt_is_reserved(entry))) 6366 return -EINVAL; 6367 6368 if (min > max) 6369 return -EINVAL; 6370 6371 if (max < size) 6372 return -EINVAL; 6373 6374 if (!size) 6375 return -EINVAL; 6376 6377 mtree_lock(mt); 6378 retry: 6379 mas.offset = 0; 6380 mas.index = min; 6381 mas.last = max - size; 6382 ret = mas_alloc(&mas, entry, size, startp); 6383 if (mas_nomem(&mas, gfp)) 6384 goto retry; 6385 6386 mtree_unlock(mt); 6387 return ret; 6388 } 6389 EXPORT_SYMBOL(mtree_alloc_range); 6390 6391 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp, 6392 void *entry, unsigned long size, unsigned long min, 6393 unsigned long max, gfp_t gfp) 6394 { 6395 int ret = 0; 6396 6397 MA_STATE(mas, mt, min, max - size); 6398 if (!mt_is_alloc(mt)) 6399 return -EINVAL; 6400 6401 if (WARN_ON_ONCE(mt_is_reserved(entry))) 6402 return -EINVAL; 6403 6404 if (min >= max) 6405 return -EINVAL; 6406 6407 if (max < size - 1) 6408 return -EINVAL; 6409 6410 if (!size) 6411 return -EINVAL; 6412 6413 mtree_lock(mt); 6414 retry: 6415 ret = mas_rev_alloc(&mas, min, max, entry, size, startp); 6416 if (mas_nomem(&mas, gfp)) 6417 goto retry; 6418 6419 mtree_unlock(mt); 6420 return ret; 6421 } 6422 EXPORT_SYMBOL(mtree_alloc_rrange); 6423 6424 /** 6425 * mtree_erase() - Find an index and erase the entire range. 6426 * @mt: The maple tree 6427 * @index: The index to erase 6428 * 6429 * Erasing is the same as a walk to an entry then a store of a NULL to that 6430 * ENTIRE range. In fact, it is implemented as such using the advanced API. 6431 * 6432 * Return: The entry stored at the @index or %NULL 6433 */ 6434 void *mtree_erase(struct maple_tree *mt, unsigned long index) 6435 { 6436 void *entry = NULL; 6437 6438 MA_STATE(mas, mt, index, index); 6439 trace_ma_op(__func__, &mas); 6440 6441 mtree_lock(mt); 6442 entry = mas_erase(&mas); 6443 mtree_unlock(mt); 6444 6445 return entry; 6446 } 6447 EXPORT_SYMBOL(mtree_erase); 6448 6449 /** 6450 * __mt_destroy() - Walk and free all nodes of a locked maple tree. 6451 * @mt: The maple tree 6452 * 6453 * Note: Does not handle locking. 6454 */ 6455 void __mt_destroy(struct maple_tree *mt) 6456 { 6457 void *root = mt_root_locked(mt); 6458 6459 rcu_assign_pointer(mt->ma_root, NULL); 6460 if (xa_is_node(root)) 6461 mte_destroy_walk(root, mt); 6462 6463 mt->ma_flags = 0; 6464 } 6465 EXPORT_SYMBOL_GPL(__mt_destroy); 6466 6467 /** 6468 * mtree_destroy() - Destroy a maple tree 6469 * @mt: The maple tree 6470 * 6471 * Frees all resources used by the tree. Handles locking. 6472 */ 6473 void mtree_destroy(struct maple_tree *mt) 6474 { 6475 mtree_lock(mt); 6476 __mt_destroy(mt); 6477 mtree_unlock(mt); 6478 } 6479 EXPORT_SYMBOL(mtree_destroy); 6480 6481 /** 6482 * mt_find() - Search from the start up until an entry is found. 6483 * @mt: The maple tree 6484 * @index: Pointer which contains the start location of the search 6485 * @max: The maximum value to check 6486 * 6487 * Handles locking. @index will be incremented to one beyond the range. 6488 * 6489 * Return: The entry at or after the @index or %NULL 6490 */ 6491 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max) 6492 { 6493 MA_STATE(mas, mt, *index, *index); 6494 void *entry; 6495 #ifdef CONFIG_DEBUG_MAPLE_TREE 6496 unsigned long copy = *index; 6497 #endif 6498 6499 trace_ma_read(__func__, &mas); 6500 6501 if ((*index) > max) 6502 return NULL; 6503 6504 rcu_read_lock(); 6505 retry: 6506 entry = mas_state_walk(&mas); 6507 if (mas_is_start(&mas)) 6508 goto retry; 6509 6510 if (unlikely(xa_is_zero(entry))) 6511 entry = NULL; 6512 6513 if (entry) 6514 goto unlock; 6515 6516 while (mas_searchable(&mas) && (mas.index < max)) { 6517 entry = mas_next_entry(&mas, max); 6518 if (likely(entry && !xa_is_zero(entry))) 6519 break; 6520 } 6521 6522 if (unlikely(xa_is_zero(entry))) 6523 entry = NULL; 6524 unlock: 6525 rcu_read_unlock(); 6526 if (likely(entry)) { 6527 *index = mas.last + 1; 6528 #ifdef CONFIG_DEBUG_MAPLE_TREE 6529 if ((*index) && (*index) <= copy) 6530 pr_err("index not increased! %lx <= %lx\n", 6531 *index, copy); 6532 MT_BUG_ON(mt, (*index) && ((*index) <= copy)); 6533 #endif 6534 } 6535 6536 return entry; 6537 } 6538 EXPORT_SYMBOL(mt_find); 6539 6540 /** 6541 * mt_find_after() - Search from the start up until an entry is found. 6542 * @mt: The maple tree 6543 * @index: Pointer which contains the start location of the search 6544 * @max: The maximum value to check 6545 * 6546 * Handles locking, detects wrapping on index == 0 6547 * 6548 * Return: The entry at or after the @index or %NULL 6549 */ 6550 void *mt_find_after(struct maple_tree *mt, unsigned long *index, 6551 unsigned long max) 6552 { 6553 if (!(*index)) 6554 return NULL; 6555 6556 return mt_find(mt, index, max); 6557 } 6558 EXPORT_SYMBOL(mt_find_after); 6559 6560 #ifdef CONFIG_DEBUG_MAPLE_TREE 6561 atomic_t maple_tree_tests_run; 6562 EXPORT_SYMBOL_GPL(maple_tree_tests_run); 6563 atomic_t maple_tree_tests_passed; 6564 EXPORT_SYMBOL_GPL(maple_tree_tests_passed); 6565 6566 #ifndef __KERNEL__ 6567 extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int); 6568 void mt_set_non_kernel(unsigned int val) 6569 { 6570 kmem_cache_set_non_kernel(maple_node_cache, val); 6571 } 6572 6573 extern unsigned long kmem_cache_get_alloc(struct kmem_cache *); 6574 unsigned long mt_get_alloc_size(void) 6575 { 6576 return kmem_cache_get_alloc(maple_node_cache); 6577 } 6578 6579 extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *); 6580 void mt_zero_nr_tallocated(void) 6581 { 6582 kmem_cache_zero_nr_tallocated(maple_node_cache); 6583 } 6584 6585 extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *); 6586 unsigned int mt_nr_tallocated(void) 6587 { 6588 return kmem_cache_nr_tallocated(maple_node_cache); 6589 } 6590 6591 extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *); 6592 unsigned int mt_nr_allocated(void) 6593 { 6594 return kmem_cache_nr_allocated(maple_node_cache); 6595 } 6596 6597 /* 6598 * mas_dead_node() - Check if the maple state is pointing to a dead node. 6599 * @mas: The maple state 6600 * @index: The index to restore in @mas. 6601 * 6602 * Used in test code. 6603 * Return: 1 if @mas has been reset to MAS_START, 0 otherwise. 6604 */ 6605 static inline int mas_dead_node(struct ma_state *mas, unsigned long index) 6606 { 6607 if (unlikely(!mas_searchable(mas) || mas_is_start(mas))) 6608 return 0; 6609 6610 if (likely(!mte_dead_node(mas->node))) 6611 return 0; 6612 6613 mas_rewalk(mas, index); 6614 return 1; 6615 } 6616 6617 void mt_cache_shrink(void) 6618 { 6619 } 6620 #else 6621 /* 6622 * mt_cache_shrink() - For testing, don't use this. 6623 * 6624 * Certain testcases can trigger an OOM when combined with other memory 6625 * debugging configuration options. This function is used to reduce the 6626 * possibility of an out of memory even due to kmem_cache objects remaining 6627 * around for longer than usual. 6628 */ 6629 void mt_cache_shrink(void) 6630 { 6631 kmem_cache_shrink(maple_node_cache); 6632 6633 } 6634 EXPORT_SYMBOL_GPL(mt_cache_shrink); 6635 6636 #endif /* not defined __KERNEL__ */ 6637 /* 6638 * mas_get_slot() - Get the entry in the maple state node stored at @offset. 6639 * @mas: The maple state 6640 * @offset: The offset into the slot array to fetch. 6641 * 6642 * Return: The entry stored at @offset. 6643 */ 6644 static inline struct maple_enode *mas_get_slot(struct ma_state *mas, 6645 unsigned char offset) 6646 { 6647 return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)), 6648 offset); 6649 } 6650 6651 6652 /* 6653 * mas_first_entry() - Go the first leaf and find the first entry. 6654 * @mas: the maple state. 6655 * @limit: the maximum index to check. 6656 * @*r_start: Pointer to set to the range start. 6657 * 6658 * Sets mas->offset to the offset of the entry, r_start to the range minimum. 6659 * 6660 * Return: The first entry or MAS_NONE. 6661 */ 6662 static inline void *mas_first_entry(struct ma_state *mas, struct maple_node *mn, 6663 unsigned long limit, enum maple_type mt) 6664 6665 { 6666 unsigned long max; 6667 unsigned long *pivots; 6668 void __rcu **slots; 6669 void *entry = NULL; 6670 6671 mas->index = mas->min; 6672 if (mas->index > limit) 6673 goto none; 6674 6675 max = mas->max; 6676 mas->offset = 0; 6677 while (likely(!ma_is_leaf(mt))) { 6678 MT_BUG_ON(mas->tree, mte_dead_node(mas->node)); 6679 slots = ma_slots(mn, mt); 6680 entry = mas_slot(mas, slots, 0); 6681 pivots = ma_pivots(mn, mt); 6682 if (unlikely(ma_dead_node(mn))) 6683 return NULL; 6684 max = pivots[0]; 6685 mas->node = entry; 6686 mn = mas_mn(mas); 6687 mt = mte_node_type(mas->node); 6688 } 6689 MT_BUG_ON(mas->tree, mte_dead_node(mas->node)); 6690 6691 mas->max = max; 6692 slots = ma_slots(mn, mt); 6693 entry = mas_slot(mas, slots, 0); 6694 if (unlikely(ma_dead_node(mn))) 6695 return NULL; 6696 6697 /* Slot 0 or 1 must be set */ 6698 if (mas->index > limit) 6699 goto none; 6700 6701 if (likely(entry)) 6702 return entry; 6703 6704 mas->offset = 1; 6705 entry = mas_slot(mas, slots, 1); 6706 pivots = ma_pivots(mn, mt); 6707 if (unlikely(ma_dead_node(mn))) 6708 return NULL; 6709 6710 mas->index = pivots[0] + 1; 6711 if (mas->index > limit) 6712 goto none; 6713 6714 if (likely(entry)) 6715 return entry; 6716 6717 none: 6718 if (likely(!ma_dead_node(mn))) 6719 mas->node = MAS_NONE; 6720 return NULL; 6721 } 6722 6723 /* Depth first search, post-order */ 6724 static void mas_dfs_postorder(struct ma_state *mas, unsigned long max) 6725 { 6726 6727 struct maple_enode *p = MAS_NONE, *mn = mas->node; 6728 unsigned long p_min, p_max; 6729 6730 mas_next_node(mas, mas_mn(mas), max); 6731 if (!mas_is_none(mas)) 6732 return; 6733 6734 if (mte_is_root(mn)) 6735 return; 6736 6737 mas->node = mn; 6738 mas_ascend(mas); 6739 while (mas->node != MAS_NONE) { 6740 p = mas->node; 6741 p_min = mas->min; 6742 p_max = mas->max; 6743 mas_prev_node(mas, 0); 6744 } 6745 6746 if (p == MAS_NONE) 6747 return; 6748 6749 mas->node = p; 6750 mas->max = p_max; 6751 mas->min = p_min; 6752 } 6753 6754 /* Tree validations */ 6755 static void mt_dump_node(const struct maple_tree *mt, void *entry, 6756 unsigned long min, unsigned long max, unsigned int depth); 6757 static void mt_dump_range(unsigned long min, unsigned long max, 6758 unsigned int depth) 6759 { 6760 static const char spaces[] = " "; 6761 6762 if (min == max) 6763 pr_info("%.*s%lu: ", depth * 2, spaces, min); 6764 else 6765 pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max); 6766 } 6767 6768 static void mt_dump_entry(void *entry, unsigned long min, unsigned long max, 6769 unsigned int depth) 6770 { 6771 mt_dump_range(min, max, depth); 6772 6773 if (xa_is_value(entry)) 6774 pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry), 6775 xa_to_value(entry), entry); 6776 else if (xa_is_zero(entry)) 6777 pr_cont("zero (%ld)\n", xa_to_internal(entry)); 6778 else if (mt_is_reserved(entry)) 6779 pr_cont("UNKNOWN ENTRY (%p)\n", entry); 6780 else 6781 pr_cont("%p\n", entry); 6782 } 6783 6784 static void mt_dump_range64(const struct maple_tree *mt, void *entry, 6785 unsigned long min, unsigned long max, unsigned int depth) 6786 { 6787 struct maple_range_64 *node = &mte_to_node(entry)->mr64; 6788 bool leaf = mte_is_leaf(entry); 6789 unsigned long first = min; 6790 int i; 6791 6792 pr_cont(" contents: "); 6793 for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++) 6794 pr_cont("%p %lu ", node->slot[i], node->pivot[i]); 6795 pr_cont("%p\n", node->slot[i]); 6796 for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) { 6797 unsigned long last = max; 6798 6799 if (i < (MAPLE_RANGE64_SLOTS - 1)) 6800 last = node->pivot[i]; 6801 else if (!node->slot[i] && max != mt_node_max(entry)) 6802 break; 6803 if (last == 0 && i > 0) 6804 break; 6805 if (leaf) 6806 mt_dump_entry(mt_slot(mt, node->slot, i), 6807 first, last, depth + 1); 6808 else if (node->slot[i]) 6809 mt_dump_node(mt, mt_slot(mt, node->slot, i), 6810 first, last, depth + 1); 6811 6812 if (last == max) 6813 break; 6814 if (last > max) { 6815 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n", 6816 node, last, max, i); 6817 break; 6818 } 6819 first = last + 1; 6820 } 6821 } 6822 6823 static void mt_dump_arange64(const struct maple_tree *mt, void *entry, 6824 unsigned long min, unsigned long max, unsigned int depth) 6825 { 6826 struct maple_arange_64 *node = &mte_to_node(entry)->ma64; 6827 bool leaf = mte_is_leaf(entry); 6828 unsigned long first = min; 6829 int i; 6830 6831 pr_cont(" contents: "); 6832 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) 6833 pr_cont("%lu ", node->gap[i]); 6834 pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap); 6835 for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++) 6836 pr_cont("%p %lu ", node->slot[i], node->pivot[i]); 6837 pr_cont("%p\n", node->slot[i]); 6838 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) { 6839 unsigned long last = max; 6840 6841 if (i < (MAPLE_ARANGE64_SLOTS - 1)) 6842 last = node->pivot[i]; 6843 else if (!node->slot[i]) 6844 break; 6845 if (last == 0 && i > 0) 6846 break; 6847 if (leaf) 6848 mt_dump_entry(mt_slot(mt, node->slot, i), 6849 first, last, depth + 1); 6850 else if (node->slot[i]) 6851 mt_dump_node(mt, mt_slot(mt, node->slot, i), 6852 first, last, depth + 1); 6853 6854 if (last == max) 6855 break; 6856 if (last > max) { 6857 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n", 6858 node, last, max, i); 6859 break; 6860 } 6861 first = last + 1; 6862 } 6863 } 6864 6865 static void mt_dump_node(const struct maple_tree *mt, void *entry, 6866 unsigned long min, unsigned long max, unsigned int depth) 6867 { 6868 struct maple_node *node = mte_to_node(entry); 6869 unsigned int type = mte_node_type(entry); 6870 unsigned int i; 6871 6872 mt_dump_range(min, max, depth); 6873 6874 pr_cont("node %p depth %d type %d parent %p", node, depth, type, 6875 node ? node->parent : NULL); 6876 switch (type) { 6877 case maple_dense: 6878 pr_cont("\n"); 6879 for (i = 0; i < MAPLE_NODE_SLOTS; i++) { 6880 if (min + i > max) 6881 pr_cont("OUT OF RANGE: "); 6882 mt_dump_entry(mt_slot(mt, node->slot, i), 6883 min + i, min + i, depth); 6884 } 6885 break; 6886 case maple_leaf_64: 6887 case maple_range_64: 6888 mt_dump_range64(mt, entry, min, max, depth); 6889 break; 6890 case maple_arange_64: 6891 mt_dump_arange64(mt, entry, min, max, depth); 6892 break; 6893 6894 default: 6895 pr_cont(" UNKNOWN TYPE\n"); 6896 } 6897 } 6898 6899 void mt_dump(const struct maple_tree *mt) 6900 { 6901 void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt)); 6902 6903 pr_info("maple_tree(%p) flags %X, height %u root %p\n", 6904 mt, mt->ma_flags, mt_height(mt), entry); 6905 if (!xa_is_node(entry)) 6906 mt_dump_entry(entry, 0, 0, 0); 6907 else if (entry) 6908 mt_dump_node(mt, entry, 0, mt_node_max(entry), 0); 6909 } 6910 EXPORT_SYMBOL_GPL(mt_dump); 6911 6912 /* 6913 * Calculate the maximum gap in a node and check if that's what is reported in 6914 * the parent (unless root). 6915 */ 6916 static void mas_validate_gaps(struct ma_state *mas) 6917 { 6918 struct maple_enode *mte = mas->node; 6919 struct maple_node *p_mn; 6920 unsigned long gap = 0, max_gap = 0; 6921 unsigned long p_end, p_start = mas->min; 6922 unsigned char p_slot; 6923 unsigned long *gaps = NULL; 6924 unsigned long *pivots = ma_pivots(mte_to_node(mte), mte_node_type(mte)); 6925 int i; 6926 6927 if (ma_is_dense(mte_node_type(mte))) { 6928 for (i = 0; i < mt_slot_count(mte); i++) { 6929 if (mas_get_slot(mas, i)) { 6930 if (gap > max_gap) 6931 max_gap = gap; 6932 gap = 0; 6933 continue; 6934 } 6935 gap++; 6936 } 6937 goto counted; 6938 } 6939 6940 gaps = ma_gaps(mte_to_node(mte), mte_node_type(mte)); 6941 for (i = 0; i < mt_slot_count(mte); i++) { 6942 p_end = mas_logical_pivot(mas, pivots, i, mte_node_type(mte)); 6943 6944 if (!gaps) { 6945 if (mas_get_slot(mas, i)) { 6946 gap = 0; 6947 goto not_empty; 6948 } 6949 6950 gap += p_end - p_start + 1; 6951 } else { 6952 void *entry = mas_get_slot(mas, i); 6953 6954 gap = gaps[i]; 6955 if (!entry) { 6956 if (gap != p_end - p_start + 1) { 6957 pr_err("%p[%u] -> %p %lu != %lu - %lu + 1\n", 6958 mas_mn(mas), i, 6959 mas_get_slot(mas, i), gap, 6960 p_end, p_start); 6961 mt_dump(mas->tree); 6962 6963 MT_BUG_ON(mas->tree, 6964 gap != p_end - p_start + 1); 6965 } 6966 } else { 6967 if (gap > p_end - p_start + 1) { 6968 pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n", 6969 mas_mn(mas), i, gap, p_end, p_start, 6970 p_end - p_start + 1); 6971 MT_BUG_ON(mas->tree, 6972 gap > p_end - p_start + 1); 6973 } 6974 } 6975 } 6976 6977 if (gap > max_gap) 6978 max_gap = gap; 6979 not_empty: 6980 p_start = p_end + 1; 6981 if (p_end >= mas->max) 6982 break; 6983 } 6984 6985 counted: 6986 if (mte_is_root(mte)) 6987 return; 6988 6989 p_slot = mte_parent_slot(mas->node); 6990 p_mn = mte_parent(mte); 6991 MT_BUG_ON(mas->tree, max_gap > mas->max); 6992 if (ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap) { 6993 pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap); 6994 mt_dump(mas->tree); 6995 } 6996 6997 MT_BUG_ON(mas->tree, 6998 ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap); 6999 } 7000 7001 static void mas_validate_parent_slot(struct ma_state *mas) 7002 { 7003 struct maple_node *parent; 7004 struct maple_enode *node; 7005 enum maple_type p_type = mas_parent_enum(mas, mas->node); 7006 unsigned char p_slot = mte_parent_slot(mas->node); 7007 void __rcu **slots; 7008 int i; 7009 7010 if (mte_is_root(mas->node)) 7011 return; 7012 7013 parent = mte_parent(mas->node); 7014 slots = ma_slots(parent, p_type); 7015 MT_BUG_ON(mas->tree, mas_mn(mas) == parent); 7016 7017 /* Check prev/next parent slot for duplicate node entry */ 7018 7019 for (i = 0; i < mt_slots[p_type]; i++) { 7020 node = mas_slot(mas, slots, i); 7021 if (i == p_slot) { 7022 if (node != mas->node) 7023 pr_err("parent %p[%u] does not have %p\n", 7024 parent, i, mas_mn(mas)); 7025 MT_BUG_ON(mas->tree, node != mas->node); 7026 } else if (node == mas->node) { 7027 pr_err("Invalid child %p at parent %p[%u] p_slot %u\n", 7028 mas_mn(mas), parent, i, p_slot); 7029 MT_BUG_ON(mas->tree, node == mas->node); 7030 } 7031 } 7032 } 7033 7034 static void mas_validate_child_slot(struct ma_state *mas) 7035 { 7036 enum maple_type type = mte_node_type(mas->node); 7037 void __rcu **slots = ma_slots(mte_to_node(mas->node), type); 7038 unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type); 7039 struct maple_enode *child; 7040 unsigned char i; 7041 7042 if (mte_is_leaf(mas->node)) 7043 return; 7044 7045 for (i = 0; i < mt_slots[type]; i++) { 7046 child = mas_slot(mas, slots, i); 7047 if (!pivots[i] || pivots[i] == mas->max) 7048 break; 7049 7050 if (!child) 7051 break; 7052 7053 if (mte_parent_slot(child) != i) { 7054 pr_err("Slot error at %p[%u]: child %p has pslot %u\n", 7055 mas_mn(mas), i, mte_to_node(child), 7056 mte_parent_slot(child)); 7057 MT_BUG_ON(mas->tree, 1); 7058 } 7059 7060 if (mte_parent(child) != mte_to_node(mas->node)) { 7061 pr_err("child %p has parent %p not %p\n", 7062 mte_to_node(child), mte_parent(child), 7063 mte_to_node(mas->node)); 7064 MT_BUG_ON(mas->tree, 1); 7065 } 7066 } 7067 } 7068 7069 /* 7070 * Validate all pivots are within mas->min and mas->max. 7071 */ 7072 static void mas_validate_limits(struct ma_state *mas) 7073 { 7074 int i; 7075 unsigned long prev_piv = 0; 7076 enum maple_type type = mte_node_type(mas->node); 7077 void __rcu **slots = ma_slots(mte_to_node(mas->node), type); 7078 unsigned long *pivots = ma_pivots(mas_mn(mas), type); 7079 7080 /* all limits are fine here. */ 7081 if (mte_is_root(mas->node)) 7082 return; 7083 7084 for (i = 0; i < mt_slots[type]; i++) { 7085 unsigned long piv; 7086 7087 piv = mas_safe_pivot(mas, pivots, i, type); 7088 7089 if (!piv && (i != 0)) 7090 break; 7091 7092 if (!mte_is_leaf(mas->node)) { 7093 void *entry = mas_slot(mas, slots, i); 7094 7095 if (!entry) 7096 pr_err("%p[%u] cannot be null\n", 7097 mas_mn(mas), i); 7098 7099 MT_BUG_ON(mas->tree, !entry); 7100 } 7101 7102 if (prev_piv > piv) { 7103 pr_err("%p[%u] piv %lu < prev_piv %lu\n", 7104 mas_mn(mas), i, piv, prev_piv); 7105 MT_BUG_ON(mas->tree, piv < prev_piv); 7106 } 7107 7108 if (piv < mas->min) { 7109 pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i, 7110 piv, mas->min); 7111 MT_BUG_ON(mas->tree, piv < mas->min); 7112 } 7113 if (piv > mas->max) { 7114 pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i, 7115 piv, mas->max); 7116 MT_BUG_ON(mas->tree, piv > mas->max); 7117 } 7118 prev_piv = piv; 7119 if (piv == mas->max) 7120 break; 7121 } 7122 for (i += 1; i < mt_slots[type]; i++) { 7123 void *entry = mas_slot(mas, slots, i); 7124 7125 if (entry && (i != mt_slots[type] - 1)) { 7126 pr_err("%p[%u] should not have entry %p\n", mas_mn(mas), 7127 i, entry); 7128 MT_BUG_ON(mas->tree, entry != NULL); 7129 } 7130 7131 if (i < mt_pivots[type]) { 7132 unsigned long piv = pivots[i]; 7133 7134 if (!piv) 7135 continue; 7136 7137 pr_err("%p[%u] should not have piv %lu\n", 7138 mas_mn(mas), i, piv); 7139 MT_BUG_ON(mas->tree, i < mt_pivots[type] - 1); 7140 } 7141 } 7142 } 7143 7144 static void mt_validate_nulls(struct maple_tree *mt) 7145 { 7146 void *entry, *last = (void *)1; 7147 unsigned char offset = 0; 7148 void __rcu **slots; 7149 MA_STATE(mas, mt, 0, 0); 7150 7151 mas_start(&mas); 7152 if (mas_is_none(&mas) || (mas.node == MAS_ROOT)) 7153 return; 7154 7155 while (!mte_is_leaf(mas.node)) 7156 mas_descend(&mas); 7157 7158 slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node)); 7159 do { 7160 entry = mas_slot(&mas, slots, offset); 7161 if (!last && !entry) { 7162 pr_err("Sequential nulls end at %p[%u]\n", 7163 mas_mn(&mas), offset); 7164 } 7165 MT_BUG_ON(mt, !last && !entry); 7166 last = entry; 7167 if (offset == mas_data_end(&mas)) { 7168 mas_next_node(&mas, mas_mn(&mas), ULONG_MAX); 7169 if (mas_is_none(&mas)) 7170 return; 7171 offset = 0; 7172 slots = ma_slots(mte_to_node(mas.node), 7173 mte_node_type(mas.node)); 7174 } else { 7175 offset++; 7176 } 7177 7178 } while (!mas_is_none(&mas)); 7179 } 7180 7181 /* 7182 * validate a maple tree by checking: 7183 * 1. The limits (pivots are within mas->min to mas->max) 7184 * 2. The gap is correctly set in the parents 7185 */ 7186 void mt_validate(struct maple_tree *mt) 7187 { 7188 unsigned char end; 7189 7190 MA_STATE(mas, mt, 0, 0); 7191 rcu_read_lock(); 7192 mas_start(&mas); 7193 if (!mas_searchable(&mas)) 7194 goto done; 7195 7196 mas_first_entry(&mas, mas_mn(&mas), ULONG_MAX, mte_node_type(mas.node)); 7197 while (!mas_is_none(&mas)) { 7198 MT_BUG_ON(mas.tree, mte_dead_node(mas.node)); 7199 if (!mte_is_root(mas.node)) { 7200 end = mas_data_end(&mas); 7201 if ((end < mt_min_slot_count(mas.node)) && 7202 (mas.max != ULONG_MAX)) { 7203 pr_err("Invalid size %u of %p\n", end, 7204 mas_mn(&mas)); 7205 MT_BUG_ON(mas.tree, 1); 7206 } 7207 7208 } 7209 mas_validate_parent_slot(&mas); 7210 mas_validate_child_slot(&mas); 7211 mas_validate_limits(&mas); 7212 if (mt_is_alloc(mt)) 7213 mas_validate_gaps(&mas); 7214 mas_dfs_postorder(&mas, ULONG_MAX); 7215 } 7216 mt_validate_nulls(mt); 7217 done: 7218 rcu_read_unlock(); 7219 7220 } 7221 EXPORT_SYMBOL_GPL(mt_validate); 7222 7223 #endif /* CONFIG_DEBUG_MAPLE_TREE */ 7224