1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Maple Tree implementation 4 * Copyright (c) 2018-2022 Oracle Corporation 5 * Authors: Liam R. Howlett <Liam.Howlett@oracle.com> 6 * Matthew Wilcox <willy@infradead.org> 7 */ 8 9 /* 10 * DOC: Interesting implementation details of the Maple Tree 11 * 12 * Each node type has a number of slots for entries and a number of slots for 13 * pivots. In the case of dense nodes, the pivots are implied by the position 14 * and are simply the slot index + the minimum of the node. 15 * 16 * In regular B-Tree terms, pivots are called keys. The term pivot is used to 17 * indicate that the tree is specifying ranges, Pivots may appear in the 18 * subtree with an entry attached to the value where as keys are unique to a 19 * specific position of a B-tree. Pivot values are inclusive of the slot with 20 * the same index. 21 * 22 * 23 * The following illustrates the layout of a range64 nodes slots and pivots. 24 * 25 * 26 * Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 | 27 * ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ 28 * │ │ │ │ │ │ │ │ └─ Implied maximum 29 * │ │ │ │ │ │ │ └─ Pivot 14 30 * │ │ │ │ │ │ └─ Pivot 13 31 * │ │ │ │ │ └─ Pivot 12 32 * │ │ │ │ └─ Pivot 11 33 * │ │ │ └─ Pivot 2 34 * │ │ └─ Pivot 1 35 * │ └─ Pivot 0 36 * └─ Implied minimum 37 * 38 * Slot contents: 39 * Internal (non-leaf) nodes contain pointers to other nodes. 40 * Leaf nodes contain entries. 41 * 42 * The location of interest is often referred to as an offset. All offsets have 43 * a slot, but the last offset has an implied pivot from the node above (or 44 * UINT_MAX for the root node. 45 * 46 * Ranges complicate certain write activities. When modifying any of 47 * the B-tree variants, it is known that one entry will either be added or 48 * deleted. When modifying the Maple Tree, one store operation may overwrite 49 * the entire data set, or one half of the tree, or the middle half of the tree. 50 * 51 */ 52 53 54 #include <linux/maple_tree.h> 55 #include <linux/xarray.h> 56 #include <linux/types.h> 57 #include <linux/export.h> 58 #include <linux/slab.h> 59 #include <linux/limits.h> 60 #include <asm/barrier.h> 61 62 #define CREATE_TRACE_POINTS 63 #include <trace/events/maple_tree.h> 64 65 #define MA_ROOT_PARENT 1 66 67 /* 68 * Maple state flags 69 * * MA_STATE_BULK - Bulk insert mode 70 * * MA_STATE_REBALANCE - Indicate a rebalance during bulk insert 71 * * MA_STATE_PREALLOC - Preallocated nodes, WARN_ON allocation 72 */ 73 #define MA_STATE_BULK 1 74 #define MA_STATE_REBALANCE 2 75 #define MA_STATE_PREALLOC 4 76 77 #define ma_parent_ptr(x) ((struct maple_pnode *)(x)) 78 #define ma_mnode_ptr(x) ((struct maple_node *)(x)) 79 #define ma_enode_ptr(x) ((struct maple_enode *)(x)) 80 static struct kmem_cache *maple_node_cache; 81 82 #ifdef CONFIG_DEBUG_MAPLE_TREE 83 static const unsigned long mt_max[] = { 84 [maple_dense] = MAPLE_NODE_SLOTS, 85 [maple_leaf_64] = ULONG_MAX, 86 [maple_range_64] = ULONG_MAX, 87 [maple_arange_64] = ULONG_MAX, 88 }; 89 #define mt_node_max(x) mt_max[mte_node_type(x)] 90 #endif 91 92 static const unsigned char mt_slots[] = { 93 [maple_dense] = MAPLE_NODE_SLOTS, 94 [maple_leaf_64] = MAPLE_RANGE64_SLOTS, 95 [maple_range_64] = MAPLE_RANGE64_SLOTS, 96 [maple_arange_64] = MAPLE_ARANGE64_SLOTS, 97 }; 98 #define mt_slot_count(x) mt_slots[mte_node_type(x)] 99 100 static const unsigned char mt_pivots[] = { 101 [maple_dense] = 0, 102 [maple_leaf_64] = MAPLE_RANGE64_SLOTS - 1, 103 [maple_range_64] = MAPLE_RANGE64_SLOTS - 1, 104 [maple_arange_64] = MAPLE_ARANGE64_SLOTS - 1, 105 }; 106 #define mt_pivot_count(x) mt_pivots[mte_node_type(x)] 107 108 static const unsigned char mt_min_slots[] = { 109 [maple_dense] = MAPLE_NODE_SLOTS / 2, 110 [maple_leaf_64] = (MAPLE_RANGE64_SLOTS / 2) - 2, 111 [maple_range_64] = (MAPLE_RANGE64_SLOTS / 2) - 2, 112 [maple_arange_64] = (MAPLE_ARANGE64_SLOTS / 2) - 1, 113 }; 114 #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)] 115 116 #define MAPLE_BIG_NODE_SLOTS (MAPLE_RANGE64_SLOTS * 2 + 2) 117 #define MAPLE_BIG_NODE_GAPS (MAPLE_ARANGE64_SLOTS * 2 + 1) 118 119 struct maple_big_node { 120 struct maple_pnode *parent; 121 unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1]; 122 union { 123 struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS]; 124 struct { 125 unsigned long padding[MAPLE_BIG_NODE_GAPS]; 126 unsigned long gap[MAPLE_BIG_NODE_GAPS]; 127 }; 128 }; 129 unsigned char b_end; 130 enum maple_type type; 131 }; 132 133 /* 134 * The maple_subtree_state is used to build a tree to replace a segment of an 135 * existing tree in a more atomic way. Any walkers of the older tree will hit a 136 * dead node and restart on updates. 137 */ 138 struct maple_subtree_state { 139 struct ma_state *orig_l; /* Original left side of subtree */ 140 struct ma_state *orig_r; /* Original right side of subtree */ 141 struct ma_state *l; /* New left side of subtree */ 142 struct ma_state *m; /* New middle of subtree (rare) */ 143 struct ma_state *r; /* New right side of subtree */ 144 struct ma_topiary *free; /* nodes to be freed */ 145 struct ma_topiary *destroy; /* Nodes to be destroyed (walked and freed) */ 146 struct maple_big_node *bn; 147 }; 148 149 /* Functions */ 150 static inline struct maple_node *mt_alloc_one(gfp_t gfp) 151 { 152 return kmem_cache_alloc(maple_node_cache, gfp | __GFP_ZERO); 153 } 154 155 static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes) 156 { 157 return kmem_cache_alloc_bulk(maple_node_cache, gfp | __GFP_ZERO, size, 158 nodes); 159 } 160 161 static inline void mt_free_bulk(size_t size, void __rcu **nodes) 162 { 163 kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes); 164 } 165 166 static void mt_free_rcu(struct rcu_head *head) 167 { 168 struct maple_node *node = container_of(head, struct maple_node, rcu); 169 170 kmem_cache_free(maple_node_cache, node); 171 } 172 173 /* 174 * ma_free_rcu() - Use rcu callback to free a maple node 175 * @node: The node to free 176 * 177 * The maple tree uses the parent pointer to indicate this node is no longer in 178 * use and will be freed. 179 */ 180 static void ma_free_rcu(struct maple_node *node) 181 { 182 node->parent = ma_parent_ptr(node); 183 call_rcu(&node->rcu, mt_free_rcu); 184 } 185 186 187 static void mas_set_height(struct ma_state *mas) 188 { 189 unsigned int new_flags = mas->tree->ma_flags; 190 191 new_flags &= ~MT_FLAGS_HEIGHT_MASK; 192 BUG_ON(mas->depth > MAPLE_HEIGHT_MAX); 193 new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET; 194 mas->tree->ma_flags = new_flags; 195 } 196 197 static unsigned int mas_mt_height(struct ma_state *mas) 198 { 199 return mt_height(mas->tree); 200 } 201 202 static inline enum maple_type mte_node_type(const struct maple_enode *entry) 203 { 204 return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) & 205 MAPLE_NODE_TYPE_MASK; 206 } 207 208 static inline bool ma_is_dense(const enum maple_type type) 209 { 210 return type < maple_leaf_64; 211 } 212 213 static inline bool ma_is_leaf(const enum maple_type type) 214 { 215 return type < maple_range_64; 216 } 217 218 static inline bool mte_is_leaf(const struct maple_enode *entry) 219 { 220 return ma_is_leaf(mte_node_type(entry)); 221 } 222 223 /* 224 * We also reserve values with the bottom two bits set to '10' which are 225 * below 4096 226 */ 227 static inline bool mt_is_reserved(const void *entry) 228 { 229 return ((unsigned long)entry < MAPLE_RESERVED_RANGE) && 230 xa_is_internal(entry); 231 } 232 233 static inline void mas_set_err(struct ma_state *mas, long err) 234 { 235 mas->node = MA_ERROR(err); 236 } 237 238 static inline bool mas_is_ptr(struct ma_state *mas) 239 { 240 return mas->node == MAS_ROOT; 241 } 242 243 static inline bool mas_is_start(struct ma_state *mas) 244 { 245 return mas->node == MAS_START; 246 } 247 248 bool mas_is_err(struct ma_state *mas) 249 { 250 return xa_is_err(mas->node); 251 } 252 253 static inline bool mas_searchable(struct ma_state *mas) 254 { 255 if (mas_is_none(mas)) 256 return false; 257 258 if (mas_is_ptr(mas)) 259 return false; 260 261 return true; 262 } 263 264 static inline struct maple_node *mte_to_node(const struct maple_enode *entry) 265 { 266 return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK); 267 } 268 269 /* 270 * mte_to_mat() - Convert a maple encoded node to a maple topiary node. 271 * @entry: The maple encoded node 272 * 273 * Return: a maple topiary pointer 274 */ 275 static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry) 276 { 277 return (struct maple_topiary *) 278 ((unsigned long)entry & ~MAPLE_NODE_MASK); 279 } 280 281 /* 282 * mas_mn() - Get the maple state node. 283 * @mas: The maple state 284 * 285 * Return: the maple node (not encoded - bare pointer). 286 */ 287 static inline struct maple_node *mas_mn(const struct ma_state *mas) 288 { 289 return mte_to_node(mas->node); 290 } 291 292 /* 293 * mte_set_node_dead() - Set a maple encoded node as dead. 294 * @mn: The maple encoded node. 295 */ 296 static inline void mte_set_node_dead(struct maple_enode *mn) 297 { 298 mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn)); 299 smp_wmb(); /* Needed for RCU */ 300 } 301 302 /* Bit 1 indicates the root is a node */ 303 #define MAPLE_ROOT_NODE 0x02 304 /* maple_type stored bit 3-6 */ 305 #define MAPLE_ENODE_TYPE_SHIFT 0x03 306 /* Bit 2 means a NULL somewhere below */ 307 #define MAPLE_ENODE_NULL 0x04 308 309 static inline struct maple_enode *mt_mk_node(const struct maple_node *node, 310 enum maple_type type) 311 { 312 return (void *)((unsigned long)node | 313 (type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL); 314 } 315 316 static inline void *mte_mk_root(const struct maple_enode *node) 317 { 318 return (void *)((unsigned long)node | MAPLE_ROOT_NODE); 319 } 320 321 static inline void *mte_safe_root(const struct maple_enode *node) 322 { 323 return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE); 324 } 325 326 static inline void *mte_set_full(const struct maple_enode *node) 327 { 328 return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL); 329 } 330 331 static inline void *mte_clear_full(const struct maple_enode *node) 332 { 333 return (void *)((unsigned long)node | MAPLE_ENODE_NULL); 334 } 335 336 static inline bool mte_has_null(const struct maple_enode *node) 337 { 338 return (unsigned long)node & MAPLE_ENODE_NULL; 339 } 340 341 static inline bool ma_is_root(struct maple_node *node) 342 { 343 return ((unsigned long)node->parent & MA_ROOT_PARENT); 344 } 345 346 static inline bool mte_is_root(const struct maple_enode *node) 347 { 348 return ma_is_root(mte_to_node(node)); 349 } 350 351 static inline bool mas_is_root_limits(const struct ma_state *mas) 352 { 353 return !mas->min && mas->max == ULONG_MAX; 354 } 355 356 static inline bool mt_is_alloc(struct maple_tree *mt) 357 { 358 return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE); 359 } 360 361 /* 362 * The Parent Pointer 363 * Excluding root, the parent pointer is 256B aligned like all other tree nodes. 364 * When storing a 32 or 64 bit values, the offset can fit into 5 bits. The 16 365 * bit values need an extra bit to store the offset. This extra bit comes from 366 * a reuse of the last bit in the node type. This is possible by using bit 1 to 367 * indicate if bit 2 is part of the type or the slot. 368 * 369 * Note types: 370 * 0x??1 = Root 371 * 0x?00 = 16 bit nodes 372 * 0x010 = 32 bit nodes 373 * 0x110 = 64 bit nodes 374 * 375 * Slot size and alignment 376 * 0b??1 : Root 377 * 0b?00 : 16 bit values, type in 0-1, slot in 2-7 378 * 0b010 : 32 bit values, type in 0-2, slot in 3-7 379 * 0b110 : 64 bit values, type in 0-2, slot in 3-7 380 */ 381 382 #define MAPLE_PARENT_ROOT 0x01 383 384 #define MAPLE_PARENT_SLOT_SHIFT 0x03 385 #define MAPLE_PARENT_SLOT_MASK 0xF8 386 387 #define MAPLE_PARENT_16B_SLOT_SHIFT 0x02 388 #define MAPLE_PARENT_16B_SLOT_MASK 0xFC 389 390 #define MAPLE_PARENT_RANGE64 0x06 391 #define MAPLE_PARENT_RANGE32 0x04 392 #define MAPLE_PARENT_NOT_RANGE16 0x02 393 394 /* 395 * mte_parent_shift() - Get the parent shift for the slot storage. 396 * @parent: The parent pointer cast as an unsigned long 397 * Return: The shift into that pointer to the star to of the slot 398 */ 399 static inline unsigned long mte_parent_shift(unsigned long parent) 400 { 401 /* Note bit 1 == 0 means 16B */ 402 if (likely(parent & MAPLE_PARENT_NOT_RANGE16)) 403 return MAPLE_PARENT_SLOT_SHIFT; 404 405 return MAPLE_PARENT_16B_SLOT_SHIFT; 406 } 407 408 /* 409 * mte_parent_slot_mask() - Get the slot mask for the parent. 410 * @parent: The parent pointer cast as an unsigned long. 411 * Return: The slot mask for that parent. 412 */ 413 static inline unsigned long mte_parent_slot_mask(unsigned long parent) 414 { 415 /* Note bit 1 == 0 means 16B */ 416 if (likely(parent & MAPLE_PARENT_NOT_RANGE16)) 417 return MAPLE_PARENT_SLOT_MASK; 418 419 return MAPLE_PARENT_16B_SLOT_MASK; 420 } 421 422 /* 423 * mas_parent_enum() - Return the maple_type of the parent from the stored 424 * parent type. 425 * @mas: The maple state 426 * @node: The maple_enode to extract the parent's enum 427 * Return: The node->parent maple_type 428 */ 429 static inline 430 enum maple_type mte_parent_enum(struct maple_enode *p_enode, 431 struct maple_tree *mt) 432 { 433 unsigned long p_type; 434 435 p_type = (unsigned long)p_enode; 436 if (p_type & MAPLE_PARENT_ROOT) 437 return 0; /* Validated in the caller. */ 438 439 p_type &= MAPLE_NODE_MASK; 440 p_type = p_type & ~(MAPLE_PARENT_ROOT | mte_parent_slot_mask(p_type)); 441 442 switch (p_type) { 443 case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */ 444 if (mt_is_alloc(mt)) 445 return maple_arange_64; 446 return maple_range_64; 447 } 448 449 return 0; 450 } 451 452 static inline 453 enum maple_type mas_parent_enum(struct ma_state *mas, struct maple_enode *enode) 454 { 455 return mte_parent_enum(ma_enode_ptr(mte_to_node(enode)->parent), mas->tree); 456 } 457 458 /* 459 * mte_set_parent() - Set the parent node and encode the slot 460 * @enode: The encoded maple node. 461 * @parent: The encoded maple node that is the parent of @enode. 462 * @slot: The slot that @enode resides in @parent. 463 * 464 * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the 465 * parent type. 466 */ 467 static inline 468 void mte_set_parent(struct maple_enode *enode, const struct maple_enode *parent, 469 unsigned char slot) 470 { 471 unsigned long val = (unsigned long) parent; 472 unsigned long shift; 473 unsigned long type; 474 enum maple_type p_type = mte_node_type(parent); 475 476 BUG_ON(p_type == maple_dense); 477 BUG_ON(p_type == maple_leaf_64); 478 479 switch (p_type) { 480 case maple_range_64: 481 case maple_arange_64: 482 shift = MAPLE_PARENT_SLOT_SHIFT; 483 type = MAPLE_PARENT_RANGE64; 484 break; 485 default: 486 case maple_dense: 487 case maple_leaf_64: 488 shift = type = 0; 489 break; 490 } 491 492 val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */ 493 val |= (slot << shift) | type; 494 mte_to_node(enode)->parent = ma_parent_ptr(val); 495 } 496 497 /* 498 * mte_parent_slot() - get the parent slot of @enode. 499 * @enode: The encoded maple node. 500 * 501 * Return: The slot in the parent node where @enode resides. 502 */ 503 static inline unsigned int mte_parent_slot(const struct maple_enode *enode) 504 { 505 unsigned long val = (unsigned long) mte_to_node(enode)->parent; 506 507 /* Root. */ 508 if (val & 1) 509 return 0; 510 511 /* 512 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost 513 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT 514 */ 515 return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val); 516 } 517 518 /* 519 * mte_parent() - Get the parent of @node. 520 * @node: The encoded maple node. 521 * 522 * Return: The parent maple node. 523 */ 524 static inline struct maple_node *mte_parent(const struct maple_enode *enode) 525 { 526 return (void *)((unsigned long) 527 (mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK); 528 } 529 530 /* 531 * ma_dead_node() - check if the @enode is dead. 532 * @enode: The encoded maple node 533 * 534 * Return: true if dead, false otherwise. 535 */ 536 static inline bool ma_dead_node(const struct maple_node *node) 537 { 538 struct maple_node *parent = (void *)((unsigned long) 539 node->parent & ~MAPLE_NODE_MASK); 540 541 return (parent == node); 542 } 543 /* 544 * mte_dead_node() - check if the @enode is dead. 545 * @enode: The encoded maple node 546 * 547 * Return: true if dead, false otherwise. 548 */ 549 static inline bool mte_dead_node(const struct maple_enode *enode) 550 { 551 struct maple_node *parent, *node; 552 553 node = mte_to_node(enode); 554 parent = mte_parent(enode); 555 return (parent == node); 556 } 557 558 /* 559 * mas_allocated() - Get the number of nodes allocated in a maple state. 560 * @mas: The maple state 561 * 562 * The ma_state alloc member is overloaded to hold a pointer to the first 563 * allocated node or to the number of requested nodes to allocate. If bit 0 is 564 * set, then the alloc contains the number of requested nodes. If there is an 565 * allocated node, then the total allocated nodes is in that node. 566 * 567 * Return: The total number of nodes allocated 568 */ 569 static inline unsigned long mas_allocated(const struct ma_state *mas) 570 { 571 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) 572 return 0; 573 574 return mas->alloc->total; 575 } 576 577 /* 578 * mas_set_alloc_req() - Set the requested number of allocations. 579 * @mas: the maple state 580 * @count: the number of allocations. 581 * 582 * The requested number of allocations is either in the first allocated node, 583 * located in @mas->alloc->request_count, or directly in @mas->alloc if there is 584 * no allocated node. Set the request either in the node or do the necessary 585 * encoding to store in @mas->alloc directly. 586 */ 587 static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count) 588 { 589 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) { 590 if (!count) 591 mas->alloc = NULL; 592 else 593 mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U); 594 return; 595 } 596 597 mas->alloc->request_count = count; 598 } 599 600 /* 601 * mas_alloc_req() - get the requested number of allocations. 602 * @mas: The maple state 603 * 604 * The alloc count is either stored directly in @mas, or in 605 * @mas->alloc->request_count if there is at least one node allocated. Decode 606 * the request count if it's stored directly in @mas->alloc. 607 * 608 * Return: The allocation request count. 609 */ 610 static inline unsigned int mas_alloc_req(const struct ma_state *mas) 611 { 612 if ((unsigned long)mas->alloc & 0x1) 613 return (unsigned long)(mas->alloc) >> 1; 614 else if (mas->alloc) 615 return mas->alloc->request_count; 616 return 0; 617 } 618 619 /* 620 * ma_pivots() - Get a pointer to the maple node pivots. 621 * @node - the maple node 622 * @type - the node type 623 * 624 * Return: A pointer to the maple node pivots 625 */ 626 static inline unsigned long *ma_pivots(struct maple_node *node, 627 enum maple_type type) 628 { 629 switch (type) { 630 case maple_arange_64: 631 return node->ma64.pivot; 632 case maple_range_64: 633 case maple_leaf_64: 634 return node->mr64.pivot; 635 case maple_dense: 636 return NULL; 637 } 638 return NULL; 639 } 640 641 /* 642 * ma_gaps() - Get a pointer to the maple node gaps. 643 * @node - the maple node 644 * @type - the node type 645 * 646 * Return: A pointer to the maple node gaps 647 */ 648 static inline unsigned long *ma_gaps(struct maple_node *node, 649 enum maple_type type) 650 { 651 switch (type) { 652 case maple_arange_64: 653 return node->ma64.gap; 654 case maple_range_64: 655 case maple_leaf_64: 656 case maple_dense: 657 return NULL; 658 } 659 return NULL; 660 } 661 662 /* 663 * mte_pivot() - Get the pivot at @piv of the maple encoded node. 664 * @mn: The maple encoded node. 665 * @piv: The pivot. 666 * 667 * Return: the pivot at @piv of @mn. 668 */ 669 static inline unsigned long mte_pivot(const struct maple_enode *mn, 670 unsigned char piv) 671 { 672 struct maple_node *node = mte_to_node(mn); 673 674 if (piv >= mt_pivots[piv]) { 675 WARN_ON(1); 676 return 0; 677 } 678 switch (mte_node_type(mn)) { 679 case maple_arange_64: 680 return node->ma64.pivot[piv]; 681 case maple_range_64: 682 case maple_leaf_64: 683 return node->mr64.pivot[piv]; 684 case maple_dense: 685 return 0; 686 } 687 return 0; 688 } 689 690 /* 691 * mas_safe_pivot() - get the pivot at @piv or mas->max. 692 * @mas: The maple state 693 * @pivots: The pointer to the maple node pivots 694 * @piv: The pivot to fetch 695 * @type: The maple node type 696 * 697 * Return: The pivot at @piv within the limit of the @pivots array, @mas->max 698 * otherwise. 699 */ 700 static inline unsigned long 701 mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots, 702 unsigned char piv, enum maple_type type) 703 { 704 if (piv >= mt_pivots[type]) 705 return mas->max; 706 707 return pivots[piv]; 708 } 709 710 /* 711 * mas_safe_min() - Return the minimum for a given offset. 712 * @mas: The maple state 713 * @pivots: The pointer to the maple node pivots 714 * @offset: The offset into the pivot array 715 * 716 * Return: The minimum range value that is contained in @offset. 717 */ 718 static inline unsigned long 719 mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset) 720 { 721 if (likely(offset)) 722 return pivots[offset - 1] + 1; 723 724 return mas->min; 725 } 726 727 /* 728 * mas_logical_pivot() - Get the logical pivot of a given offset. 729 * @mas: The maple state 730 * @pivots: The pointer to the maple node pivots 731 * @offset: The offset into the pivot array 732 * @type: The maple node type 733 * 734 * When there is no value at a pivot (beyond the end of the data), then the 735 * pivot is actually @mas->max. 736 * 737 * Return: the logical pivot of a given @offset. 738 */ 739 static inline unsigned long 740 mas_logical_pivot(struct ma_state *mas, unsigned long *pivots, 741 unsigned char offset, enum maple_type type) 742 { 743 unsigned long lpiv = mas_safe_pivot(mas, pivots, offset, type); 744 745 if (likely(lpiv)) 746 return lpiv; 747 748 if (likely(offset)) 749 return mas->max; 750 751 return lpiv; 752 } 753 754 /* 755 * mte_set_pivot() - Set a pivot to a value in an encoded maple node. 756 * @mn: The encoded maple node 757 * @piv: The pivot offset 758 * @val: The value of the pivot 759 */ 760 static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv, 761 unsigned long val) 762 { 763 struct maple_node *node = mte_to_node(mn); 764 enum maple_type type = mte_node_type(mn); 765 766 BUG_ON(piv >= mt_pivots[type]); 767 switch (type) { 768 default: 769 case maple_range_64: 770 case maple_leaf_64: 771 node->mr64.pivot[piv] = val; 772 break; 773 case maple_arange_64: 774 node->ma64.pivot[piv] = val; 775 break; 776 case maple_dense: 777 break; 778 } 779 780 } 781 782 /* 783 * ma_slots() - Get a pointer to the maple node slots. 784 * @mn: The maple node 785 * @mt: The maple node type 786 * 787 * Return: A pointer to the maple node slots 788 */ 789 static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt) 790 { 791 switch (mt) { 792 default: 793 case maple_arange_64: 794 return mn->ma64.slot; 795 case maple_range_64: 796 case maple_leaf_64: 797 return mn->mr64.slot; 798 case maple_dense: 799 return mn->slot; 800 } 801 } 802 803 static inline bool mt_locked(const struct maple_tree *mt) 804 { 805 return mt_external_lock(mt) ? mt_lock_is_held(mt) : 806 lockdep_is_held(&mt->ma_lock); 807 } 808 809 static inline void *mt_slot(const struct maple_tree *mt, 810 void __rcu **slots, unsigned char offset) 811 { 812 return rcu_dereference_check(slots[offset], mt_locked(mt)); 813 } 814 815 /* 816 * mas_slot_locked() - Get the slot value when holding the maple tree lock. 817 * @mas: The maple state 818 * @slots: The pointer to the slots 819 * @offset: The offset into the slots array to fetch 820 * 821 * Return: The entry stored in @slots at the @offset. 822 */ 823 static inline void *mas_slot_locked(struct ma_state *mas, void __rcu **slots, 824 unsigned char offset) 825 { 826 return rcu_dereference_protected(slots[offset], mt_locked(mas->tree)); 827 } 828 829 /* 830 * mas_slot() - Get the slot value when not holding the maple tree lock. 831 * @mas: The maple state 832 * @slots: The pointer to the slots 833 * @offset: The offset into the slots array to fetch 834 * 835 * Return: The entry stored in @slots at the @offset 836 */ 837 static inline void *mas_slot(struct ma_state *mas, void __rcu **slots, 838 unsigned char offset) 839 { 840 return mt_slot(mas->tree, slots, offset); 841 } 842 843 /* 844 * mas_root() - Get the maple tree root. 845 * @mas: The maple state. 846 * 847 * Return: The pointer to the root of the tree 848 */ 849 static inline void *mas_root(struct ma_state *mas) 850 { 851 return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree)); 852 } 853 854 static inline void *mt_root_locked(struct maple_tree *mt) 855 { 856 return rcu_dereference_protected(mt->ma_root, mt_locked(mt)); 857 } 858 859 /* 860 * mas_root_locked() - Get the maple tree root when holding the maple tree lock. 861 * @mas: The maple state. 862 * 863 * Return: The pointer to the root of the tree 864 */ 865 static inline void *mas_root_locked(struct ma_state *mas) 866 { 867 return mt_root_locked(mas->tree); 868 } 869 870 static inline struct maple_metadata *ma_meta(struct maple_node *mn, 871 enum maple_type mt) 872 { 873 switch (mt) { 874 case maple_arange_64: 875 return &mn->ma64.meta; 876 default: 877 return &mn->mr64.meta; 878 } 879 } 880 881 /* 882 * ma_set_meta() - Set the metadata information of a node. 883 * @mn: The maple node 884 * @mt: The maple node type 885 * @offset: The offset of the highest sub-gap in this node. 886 * @end: The end of the data in this node. 887 */ 888 static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt, 889 unsigned char offset, unsigned char end) 890 { 891 struct maple_metadata *meta = ma_meta(mn, mt); 892 893 meta->gap = offset; 894 meta->end = end; 895 } 896 897 /* 898 * ma_meta_end() - Get the data end of a node from the metadata 899 * @mn: The maple node 900 * @mt: The maple node type 901 */ 902 static inline unsigned char ma_meta_end(struct maple_node *mn, 903 enum maple_type mt) 904 { 905 struct maple_metadata *meta = ma_meta(mn, mt); 906 907 return meta->end; 908 } 909 910 /* 911 * ma_meta_gap() - Get the largest gap location of a node from the metadata 912 * @mn: The maple node 913 * @mt: The maple node type 914 */ 915 static inline unsigned char ma_meta_gap(struct maple_node *mn, 916 enum maple_type mt) 917 { 918 BUG_ON(mt != maple_arange_64); 919 920 return mn->ma64.meta.gap; 921 } 922 923 /* 924 * ma_set_meta_gap() - Set the largest gap location in a nodes metadata 925 * @mn: The maple node 926 * @mn: The maple node type 927 * @offset: The location of the largest gap. 928 */ 929 static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt, 930 unsigned char offset) 931 { 932 933 struct maple_metadata *meta = ma_meta(mn, mt); 934 935 meta->gap = offset; 936 } 937 938 /* 939 * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes. 940 * @mat - the ma_topiary, a linked list of dead nodes. 941 * @dead_enode - the node to be marked as dead and added to the tail of the list 942 * 943 * Add the @dead_enode to the linked list in @mat. 944 */ 945 static inline void mat_add(struct ma_topiary *mat, 946 struct maple_enode *dead_enode) 947 { 948 mte_set_node_dead(dead_enode); 949 mte_to_mat(dead_enode)->next = NULL; 950 if (!mat->tail) { 951 mat->tail = mat->head = dead_enode; 952 return; 953 } 954 955 mte_to_mat(mat->tail)->next = dead_enode; 956 mat->tail = dead_enode; 957 } 958 959 static void mte_destroy_walk(struct maple_enode *, struct maple_tree *); 960 static inline void mas_free(struct ma_state *mas, struct maple_enode *used); 961 962 /* 963 * mas_mat_free() - Free all nodes in a dead list. 964 * @mas - the maple state 965 * @mat - the ma_topiary linked list of dead nodes to free. 966 * 967 * Free walk a dead list. 968 */ 969 static void mas_mat_free(struct ma_state *mas, struct ma_topiary *mat) 970 { 971 struct maple_enode *next; 972 973 while (mat->head) { 974 next = mte_to_mat(mat->head)->next; 975 mas_free(mas, mat->head); 976 mat->head = next; 977 } 978 } 979 980 /* 981 * mas_mat_destroy() - Free all nodes and subtrees in a dead list. 982 * @mas - the maple state 983 * @mat - the ma_topiary linked list of dead nodes to free. 984 * 985 * Destroy walk a dead list. 986 */ 987 static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat) 988 { 989 struct maple_enode *next; 990 991 while (mat->head) { 992 next = mte_to_mat(mat->head)->next; 993 mte_destroy_walk(mat->head, mat->mtree); 994 mat->head = next; 995 } 996 } 997 /* 998 * mas_descend() - Descend into the slot stored in the ma_state. 999 * @mas - the maple state. 1000 * 1001 * Note: Not RCU safe, only use in write side or debug code. 1002 */ 1003 static inline void mas_descend(struct ma_state *mas) 1004 { 1005 enum maple_type type; 1006 unsigned long *pivots; 1007 struct maple_node *node; 1008 void __rcu **slots; 1009 1010 node = mas_mn(mas); 1011 type = mte_node_type(mas->node); 1012 pivots = ma_pivots(node, type); 1013 slots = ma_slots(node, type); 1014 1015 if (mas->offset) 1016 mas->min = pivots[mas->offset - 1] + 1; 1017 mas->max = mas_safe_pivot(mas, pivots, mas->offset, type); 1018 mas->node = mas_slot(mas, slots, mas->offset); 1019 } 1020 1021 /* 1022 * mte_set_gap() - Set a maple node gap. 1023 * @mn: The encoded maple node 1024 * @gap: The offset of the gap to set 1025 * @val: The gap value 1026 */ 1027 static inline void mte_set_gap(const struct maple_enode *mn, 1028 unsigned char gap, unsigned long val) 1029 { 1030 switch (mte_node_type(mn)) { 1031 default: 1032 break; 1033 case maple_arange_64: 1034 mte_to_node(mn)->ma64.gap[gap] = val; 1035 break; 1036 } 1037 } 1038 1039 /* 1040 * mas_ascend() - Walk up a level of the tree. 1041 * @mas: The maple state 1042 * 1043 * Sets the @mas->max and @mas->min to the correct values when walking up. This 1044 * may cause several levels of walking up to find the correct min and max. 1045 * May find a dead node which will cause a premature return. 1046 * Return: 1 on dead node, 0 otherwise 1047 */ 1048 static int mas_ascend(struct ma_state *mas) 1049 { 1050 struct maple_enode *p_enode; /* parent enode. */ 1051 struct maple_enode *a_enode; /* ancestor enode. */ 1052 struct maple_node *a_node; /* ancestor node. */ 1053 struct maple_node *p_node; /* parent node. */ 1054 unsigned char a_slot; 1055 enum maple_type a_type; 1056 unsigned long min, max; 1057 unsigned long *pivots; 1058 unsigned char offset; 1059 bool set_max = false, set_min = false; 1060 1061 a_node = mas_mn(mas); 1062 if (ma_is_root(a_node)) { 1063 mas->offset = 0; 1064 return 0; 1065 } 1066 1067 p_node = mte_parent(mas->node); 1068 if (unlikely(a_node == p_node)) 1069 return 1; 1070 a_type = mas_parent_enum(mas, mas->node); 1071 offset = mte_parent_slot(mas->node); 1072 a_enode = mt_mk_node(p_node, a_type); 1073 1074 /* Check to make sure all parent information is still accurate */ 1075 if (p_node != mte_parent(mas->node)) 1076 return 1; 1077 1078 mas->node = a_enode; 1079 mas->offset = offset; 1080 1081 if (mte_is_root(a_enode)) { 1082 mas->max = ULONG_MAX; 1083 mas->min = 0; 1084 return 0; 1085 } 1086 1087 min = 0; 1088 max = ULONG_MAX; 1089 do { 1090 p_enode = a_enode; 1091 a_type = mas_parent_enum(mas, p_enode); 1092 a_node = mte_parent(p_enode); 1093 a_slot = mte_parent_slot(p_enode); 1094 pivots = ma_pivots(a_node, a_type); 1095 a_enode = mt_mk_node(a_node, a_type); 1096 1097 if (!set_min && a_slot) { 1098 set_min = true; 1099 min = pivots[a_slot - 1] + 1; 1100 } 1101 1102 if (!set_max && a_slot < mt_pivots[a_type]) { 1103 set_max = true; 1104 max = pivots[a_slot]; 1105 } 1106 1107 if (unlikely(ma_dead_node(a_node))) 1108 return 1; 1109 1110 if (unlikely(ma_is_root(a_node))) 1111 break; 1112 1113 } while (!set_min || !set_max); 1114 1115 mas->max = max; 1116 mas->min = min; 1117 return 0; 1118 } 1119 1120 /* 1121 * mas_pop_node() - Get a previously allocated maple node from the maple state. 1122 * @mas: The maple state 1123 * 1124 * Return: A pointer to a maple node. 1125 */ 1126 static inline struct maple_node *mas_pop_node(struct ma_state *mas) 1127 { 1128 struct maple_alloc *ret, *node = mas->alloc; 1129 unsigned long total = mas_allocated(mas); 1130 1131 /* nothing or a request pending. */ 1132 if (unlikely(!total)) 1133 return NULL; 1134 1135 if (total == 1) { 1136 /* single allocation in this ma_state */ 1137 mas->alloc = NULL; 1138 ret = node; 1139 goto single_node; 1140 } 1141 1142 if (!node->node_count) { 1143 /* Single allocation in this node. */ 1144 mas->alloc = node->slot[0]; 1145 node->slot[0] = NULL; 1146 mas->alloc->total = node->total - 1; 1147 ret = node; 1148 goto new_head; 1149 } 1150 1151 node->total--; 1152 ret = node->slot[node->node_count]; 1153 node->slot[node->node_count--] = NULL; 1154 1155 single_node: 1156 new_head: 1157 ret->total = 0; 1158 ret->node_count = 0; 1159 if (ret->request_count) { 1160 mas_set_alloc_req(mas, ret->request_count + 1); 1161 ret->request_count = 0; 1162 } 1163 return (struct maple_node *)ret; 1164 } 1165 1166 /* 1167 * mas_push_node() - Push a node back on the maple state allocation. 1168 * @mas: The maple state 1169 * @used: The used maple node 1170 * 1171 * Stores the maple node back into @mas->alloc for reuse. Updates allocated and 1172 * requested node count as necessary. 1173 */ 1174 static inline void mas_push_node(struct ma_state *mas, struct maple_node *used) 1175 { 1176 struct maple_alloc *reuse = (struct maple_alloc *)used; 1177 struct maple_alloc *head = mas->alloc; 1178 unsigned long count; 1179 unsigned int requested = mas_alloc_req(mas); 1180 1181 memset(reuse, 0, sizeof(*reuse)); 1182 count = mas_allocated(mas); 1183 1184 if (count && (head->node_count < MAPLE_ALLOC_SLOTS - 1)) { 1185 if (head->slot[0]) 1186 head->node_count++; 1187 head->slot[head->node_count] = reuse; 1188 head->total++; 1189 goto done; 1190 } 1191 1192 reuse->total = 1; 1193 if ((head) && !((unsigned long)head & 0x1)) { 1194 head->request_count = 0; 1195 reuse->slot[0] = head; 1196 reuse->total += head->total; 1197 } 1198 1199 mas->alloc = reuse; 1200 done: 1201 if (requested > 1) 1202 mas_set_alloc_req(mas, requested - 1); 1203 } 1204 1205 /* 1206 * mas_alloc_nodes() - Allocate nodes into a maple state 1207 * @mas: The maple state 1208 * @gfp: The GFP Flags 1209 */ 1210 static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp) 1211 { 1212 struct maple_alloc *node; 1213 unsigned long allocated = mas_allocated(mas); 1214 unsigned long success = allocated; 1215 unsigned int requested = mas_alloc_req(mas); 1216 unsigned int count; 1217 void **slots = NULL; 1218 unsigned int max_req = 0; 1219 1220 if (!requested) 1221 return; 1222 1223 mas_set_alloc_req(mas, 0); 1224 if (mas->mas_flags & MA_STATE_PREALLOC) { 1225 if (allocated) 1226 return; 1227 WARN_ON(!allocated); 1228 } 1229 1230 if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS - 1) { 1231 node = (struct maple_alloc *)mt_alloc_one(gfp); 1232 if (!node) 1233 goto nomem_one; 1234 1235 if (allocated) 1236 node->slot[0] = mas->alloc; 1237 1238 success++; 1239 mas->alloc = node; 1240 requested--; 1241 } 1242 1243 node = mas->alloc; 1244 while (requested) { 1245 max_req = MAPLE_ALLOC_SLOTS; 1246 if (node->slot[0]) { 1247 unsigned int offset = node->node_count + 1; 1248 1249 slots = (void **)&node->slot[offset]; 1250 max_req -= offset; 1251 } else { 1252 slots = (void **)&node->slot; 1253 } 1254 1255 max_req = min(requested, max_req); 1256 count = mt_alloc_bulk(gfp, max_req, slots); 1257 if (!count) 1258 goto nomem_bulk; 1259 1260 node->node_count += count; 1261 /* zero indexed. */ 1262 if (slots == (void **)&node->slot) 1263 node->node_count--; 1264 1265 success += count; 1266 node = node->slot[0]; 1267 requested -= count; 1268 } 1269 mas->alloc->total = success; 1270 return; 1271 1272 nomem_bulk: 1273 /* Clean up potential freed allocations on bulk failure */ 1274 memset(slots, 0, max_req * sizeof(unsigned long)); 1275 nomem_one: 1276 mas_set_alloc_req(mas, requested); 1277 if (mas->alloc && !(((unsigned long)mas->alloc & 0x1))) 1278 mas->alloc->total = success; 1279 mas_set_err(mas, -ENOMEM); 1280 return; 1281 1282 } 1283 1284 /* 1285 * mas_free() - Free an encoded maple node 1286 * @mas: The maple state 1287 * @used: The encoded maple node to free. 1288 * 1289 * Uses rcu free if necessary, pushes @used back on the maple state allocations 1290 * otherwise. 1291 */ 1292 static inline void mas_free(struct ma_state *mas, struct maple_enode *used) 1293 { 1294 struct maple_node *tmp = mte_to_node(used); 1295 1296 if (mt_in_rcu(mas->tree)) 1297 ma_free_rcu(tmp); 1298 else 1299 mas_push_node(mas, tmp); 1300 } 1301 1302 /* 1303 * mas_node_count() - Check if enough nodes are allocated and request more if 1304 * there is not enough nodes. 1305 * @mas: The maple state 1306 * @count: The number of nodes needed 1307 * @gfp: the gfp flags 1308 */ 1309 static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp) 1310 { 1311 unsigned long allocated = mas_allocated(mas); 1312 1313 if (allocated < count) { 1314 mas_set_alloc_req(mas, count - allocated); 1315 mas_alloc_nodes(mas, gfp); 1316 } 1317 } 1318 1319 /* 1320 * mas_node_count() - Check if enough nodes are allocated and request more if 1321 * there is not enough nodes. 1322 * @mas: The maple state 1323 * @count: The number of nodes needed 1324 * 1325 * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags. 1326 */ 1327 static void mas_node_count(struct ma_state *mas, int count) 1328 { 1329 return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN); 1330 } 1331 1332 /* 1333 * mas_start() - Sets up maple state for operations. 1334 * @mas: The maple state. 1335 * 1336 * If mas->node == MAS_START, then set the min, max, depth, and offset to 1337 * defaults. 1338 * 1339 * Return: 1340 * - If mas->node is an error or not MAS_START, return NULL. 1341 * - If it's an empty tree: NULL & mas->node == MAS_NONE 1342 * - If it's a single entry: The entry & mas->node == MAS_ROOT 1343 * - If it's a tree: NULL & mas->node == safe root node. 1344 */ 1345 static inline struct maple_enode *mas_start(struct ma_state *mas) 1346 { 1347 if (likely(mas_is_start(mas))) { 1348 struct maple_enode *root; 1349 1350 mas->node = MAS_NONE; 1351 mas->min = 0; 1352 mas->max = ULONG_MAX; 1353 mas->depth = 0; 1354 mas->offset = 0; 1355 1356 root = mas_root(mas); 1357 /* Tree with nodes */ 1358 if (likely(xa_is_node(root))) { 1359 mas->depth = 1; 1360 mas->node = mte_safe_root(root); 1361 return NULL; 1362 } 1363 1364 /* empty tree */ 1365 if (unlikely(!root)) { 1366 mas->offset = MAPLE_NODE_SLOTS; 1367 return NULL; 1368 } 1369 1370 /* Single entry tree */ 1371 mas->node = MAS_ROOT; 1372 mas->offset = MAPLE_NODE_SLOTS; 1373 1374 /* Single entry tree. */ 1375 if (mas->index > 0) 1376 return NULL; 1377 1378 return root; 1379 } 1380 1381 return NULL; 1382 } 1383 1384 /* 1385 * ma_data_end() - Find the end of the data in a node. 1386 * @node: The maple node 1387 * @type: The maple node type 1388 * @pivots: The array of pivots in the node 1389 * @max: The maximum value in the node 1390 * 1391 * Uses metadata to find the end of the data when possible. 1392 * Return: The zero indexed last slot with data (may be null). 1393 */ 1394 static inline unsigned char ma_data_end(struct maple_node *node, 1395 enum maple_type type, 1396 unsigned long *pivots, 1397 unsigned long max) 1398 { 1399 unsigned char offset; 1400 1401 if (type == maple_arange_64) 1402 return ma_meta_end(node, type); 1403 1404 offset = mt_pivots[type] - 1; 1405 if (likely(!pivots[offset])) 1406 return ma_meta_end(node, type); 1407 1408 if (likely(pivots[offset] == max)) 1409 return offset; 1410 1411 return mt_pivots[type]; 1412 } 1413 1414 /* 1415 * mas_data_end() - Find the end of the data (slot). 1416 * @mas: the maple state 1417 * 1418 * This method is optimized to check the metadata of a node if the node type 1419 * supports data end metadata. 1420 * 1421 * Return: The zero indexed last slot with data (may be null). 1422 */ 1423 static inline unsigned char mas_data_end(struct ma_state *mas) 1424 { 1425 enum maple_type type; 1426 struct maple_node *node; 1427 unsigned char offset; 1428 unsigned long *pivots; 1429 1430 type = mte_node_type(mas->node); 1431 node = mas_mn(mas); 1432 if (type == maple_arange_64) 1433 return ma_meta_end(node, type); 1434 1435 pivots = ma_pivots(node, type); 1436 offset = mt_pivots[type] - 1; 1437 if (likely(!pivots[offset])) 1438 return ma_meta_end(node, type); 1439 1440 if (likely(pivots[offset] == mas->max)) 1441 return offset; 1442 1443 return mt_pivots[type]; 1444 } 1445 1446 /* 1447 * mas_leaf_max_gap() - Returns the largest gap in a leaf node 1448 * @mas - the maple state 1449 * 1450 * Return: The maximum gap in the leaf. 1451 */ 1452 static unsigned long mas_leaf_max_gap(struct ma_state *mas) 1453 { 1454 enum maple_type mt; 1455 unsigned long pstart, gap, max_gap; 1456 struct maple_node *mn; 1457 unsigned long *pivots; 1458 void __rcu **slots; 1459 unsigned char i; 1460 unsigned char max_piv; 1461 1462 mt = mte_node_type(mas->node); 1463 mn = mas_mn(mas); 1464 slots = ma_slots(mn, mt); 1465 max_gap = 0; 1466 if (unlikely(ma_is_dense(mt))) { 1467 gap = 0; 1468 for (i = 0; i < mt_slots[mt]; i++) { 1469 if (slots[i]) { 1470 if (gap > max_gap) 1471 max_gap = gap; 1472 gap = 0; 1473 } else { 1474 gap++; 1475 } 1476 } 1477 if (gap > max_gap) 1478 max_gap = gap; 1479 return max_gap; 1480 } 1481 1482 /* 1483 * Check the first implied pivot optimizes the loop below and slot 1 may 1484 * be skipped if there is a gap in slot 0. 1485 */ 1486 pivots = ma_pivots(mn, mt); 1487 if (likely(!slots[0])) { 1488 max_gap = pivots[0] - mas->min + 1; 1489 i = 2; 1490 } else { 1491 i = 1; 1492 } 1493 1494 /* reduce max_piv as the special case is checked before the loop */ 1495 max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1; 1496 /* 1497 * Check end implied pivot which can only be a gap on the right most 1498 * node. 1499 */ 1500 if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) { 1501 gap = ULONG_MAX - pivots[max_piv]; 1502 if (gap > max_gap) 1503 max_gap = gap; 1504 } 1505 1506 for (; i <= max_piv; i++) { 1507 /* data == no gap. */ 1508 if (likely(slots[i])) 1509 continue; 1510 1511 pstart = pivots[i - 1]; 1512 gap = pivots[i] - pstart; 1513 if (gap > max_gap) 1514 max_gap = gap; 1515 1516 /* There cannot be two gaps in a row. */ 1517 i++; 1518 } 1519 return max_gap; 1520 } 1521 1522 /* 1523 * ma_max_gap() - Get the maximum gap in a maple node (non-leaf) 1524 * @node: The maple node 1525 * @gaps: The pointer to the gaps 1526 * @mt: The maple node type 1527 * @*off: Pointer to store the offset location of the gap. 1528 * 1529 * Uses the metadata data end to scan backwards across set gaps. 1530 * 1531 * Return: The maximum gap value 1532 */ 1533 static inline unsigned long 1534 ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt, 1535 unsigned char *off) 1536 { 1537 unsigned char offset, i; 1538 unsigned long max_gap = 0; 1539 1540 i = offset = ma_meta_end(node, mt); 1541 do { 1542 if (gaps[i] > max_gap) { 1543 max_gap = gaps[i]; 1544 offset = i; 1545 } 1546 } while (i--); 1547 1548 *off = offset; 1549 return max_gap; 1550 } 1551 1552 /* 1553 * mas_max_gap() - find the largest gap in a non-leaf node and set the slot. 1554 * @mas: The maple state. 1555 * 1556 * If the metadata gap is set to MAPLE_ARANGE64_META_MAX, there is no gap. 1557 * 1558 * Return: The gap value. 1559 */ 1560 static inline unsigned long mas_max_gap(struct ma_state *mas) 1561 { 1562 unsigned long *gaps; 1563 unsigned char offset; 1564 enum maple_type mt; 1565 struct maple_node *node; 1566 1567 mt = mte_node_type(mas->node); 1568 if (ma_is_leaf(mt)) 1569 return mas_leaf_max_gap(mas); 1570 1571 node = mas_mn(mas); 1572 offset = ma_meta_gap(node, mt); 1573 if (offset == MAPLE_ARANGE64_META_MAX) 1574 return 0; 1575 1576 gaps = ma_gaps(node, mt); 1577 return gaps[offset]; 1578 } 1579 1580 /* 1581 * mas_parent_gap() - Set the parent gap and any gaps above, as needed 1582 * @mas: The maple state 1583 * @offset: The gap offset in the parent to set 1584 * @new: The new gap value. 1585 * 1586 * Set the parent gap then continue to set the gap upwards, using the metadata 1587 * of the parent to see if it is necessary to check the node above. 1588 */ 1589 static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset, 1590 unsigned long new) 1591 { 1592 unsigned long meta_gap = 0; 1593 struct maple_node *pnode; 1594 struct maple_enode *penode; 1595 unsigned long *pgaps; 1596 unsigned char meta_offset; 1597 enum maple_type pmt; 1598 1599 pnode = mte_parent(mas->node); 1600 pmt = mas_parent_enum(mas, mas->node); 1601 penode = mt_mk_node(pnode, pmt); 1602 pgaps = ma_gaps(pnode, pmt); 1603 1604 ascend: 1605 meta_offset = ma_meta_gap(pnode, pmt); 1606 if (meta_offset == MAPLE_ARANGE64_META_MAX) 1607 meta_gap = 0; 1608 else 1609 meta_gap = pgaps[meta_offset]; 1610 1611 pgaps[offset] = new; 1612 1613 if (meta_gap == new) 1614 return; 1615 1616 if (offset != meta_offset) { 1617 if (meta_gap > new) 1618 return; 1619 1620 ma_set_meta_gap(pnode, pmt, offset); 1621 } else if (new < meta_gap) { 1622 meta_offset = 15; 1623 new = ma_max_gap(pnode, pgaps, pmt, &meta_offset); 1624 ma_set_meta_gap(pnode, pmt, meta_offset); 1625 } 1626 1627 if (ma_is_root(pnode)) 1628 return; 1629 1630 /* Go to the parent node. */ 1631 pnode = mte_parent(penode); 1632 pmt = mas_parent_enum(mas, penode); 1633 pgaps = ma_gaps(pnode, pmt); 1634 offset = mte_parent_slot(penode); 1635 penode = mt_mk_node(pnode, pmt); 1636 goto ascend; 1637 } 1638 1639 /* 1640 * mas_update_gap() - Update a nodes gaps and propagate up if necessary. 1641 * @mas - the maple state. 1642 */ 1643 static inline void mas_update_gap(struct ma_state *mas) 1644 { 1645 unsigned char pslot; 1646 unsigned long p_gap; 1647 unsigned long max_gap; 1648 1649 if (!mt_is_alloc(mas->tree)) 1650 return; 1651 1652 if (mte_is_root(mas->node)) 1653 return; 1654 1655 max_gap = mas_max_gap(mas); 1656 1657 pslot = mte_parent_slot(mas->node); 1658 p_gap = ma_gaps(mte_parent(mas->node), 1659 mas_parent_enum(mas, mas->node))[pslot]; 1660 1661 if (p_gap != max_gap) 1662 mas_parent_gap(mas, pslot, max_gap); 1663 } 1664 1665 /* 1666 * mas_adopt_children() - Set the parent pointer of all nodes in @parent to 1667 * @parent with the slot encoded. 1668 * @mas - the maple state (for the tree) 1669 * @parent - the maple encoded node containing the children. 1670 */ 1671 static inline void mas_adopt_children(struct ma_state *mas, 1672 struct maple_enode *parent) 1673 { 1674 enum maple_type type = mte_node_type(parent); 1675 struct maple_node *node = mas_mn(mas); 1676 void __rcu **slots = ma_slots(node, type); 1677 unsigned long *pivots = ma_pivots(node, type); 1678 struct maple_enode *child; 1679 unsigned char offset; 1680 1681 offset = ma_data_end(node, type, pivots, mas->max); 1682 do { 1683 child = mas_slot_locked(mas, slots, offset); 1684 mte_set_parent(child, parent, offset); 1685 } while (offset--); 1686 } 1687 1688 /* 1689 * mas_replace() - Replace a maple node in the tree with mas->node. Uses the 1690 * parent encoding to locate the maple node in the tree. 1691 * @mas - the ma_state to use for operations. 1692 * @advanced - boolean to adopt the child nodes and free the old node (false) or 1693 * leave the node (true) and handle the adoption and free elsewhere. 1694 */ 1695 static inline void mas_replace(struct ma_state *mas, bool advanced) 1696 __must_hold(mas->tree->lock) 1697 { 1698 struct maple_node *mn = mas_mn(mas); 1699 struct maple_enode *old_enode; 1700 unsigned char offset = 0; 1701 void __rcu **slots = NULL; 1702 1703 if (ma_is_root(mn)) { 1704 old_enode = mas_root_locked(mas); 1705 } else { 1706 offset = mte_parent_slot(mas->node); 1707 slots = ma_slots(mte_parent(mas->node), 1708 mas_parent_enum(mas, mas->node)); 1709 old_enode = mas_slot_locked(mas, slots, offset); 1710 } 1711 1712 if (!advanced && !mte_is_leaf(mas->node)) 1713 mas_adopt_children(mas, mas->node); 1714 1715 if (mte_is_root(mas->node)) { 1716 mn->parent = ma_parent_ptr( 1717 ((unsigned long)mas->tree | MA_ROOT_PARENT)); 1718 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); 1719 mas_set_height(mas); 1720 } else { 1721 rcu_assign_pointer(slots[offset], mas->node); 1722 } 1723 1724 if (!advanced) 1725 mas_free(mas, old_enode); 1726 } 1727 1728 /* 1729 * mas_new_child() - Find the new child of a node. 1730 * @mas: the maple state 1731 * @child: the maple state to store the child. 1732 */ 1733 static inline bool mas_new_child(struct ma_state *mas, struct ma_state *child) 1734 __must_hold(mas->tree->lock) 1735 { 1736 enum maple_type mt; 1737 unsigned char offset; 1738 unsigned char end; 1739 unsigned long *pivots; 1740 struct maple_enode *entry; 1741 struct maple_node *node; 1742 void __rcu **slots; 1743 1744 mt = mte_node_type(mas->node); 1745 node = mas_mn(mas); 1746 slots = ma_slots(node, mt); 1747 pivots = ma_pivots(node, mt); 1748 end = ma_data_end(node, mt, pivots, mas->max); 1749 for (offset = mas->offset; offset <= end; offset++) { 1750 entry = mas_slot_locked(mas, slots, offset); 1751 if (mte_parent(entry) == node) { 1752 *child = *mas; 1753 mas->offset = offset + 1; 1754 child->offset = offset; 1755 mas_descend(child); 1756 child->offset = 0; 1757 return true; 1758 } 1759 } 1760 return false; 1761 } 1762 1763 /* 1764 * mab_shift_right() - Shift the data in mab right. Note, does not clean out the 1765 * old data or set b_node->b_end. 1766 * @b_node: the maple_big_node 1767 * @shift: the shift count 1768 */ 1769 static inline void mab_shift_right(struct maple_big_node *b_node, 1770 unsigned char shift) 1771 { 1772 unsigned long size = b_node->b_end * sizeof(unsigned long); 1773 1774 memmove(b_node->pivot + shift, b_node->pivot, size); 1775 memmove(b_node->slot + shift, b_node->slot, size); 1776 if (b_node->type == maple_arange_64) 1777 memmove(b_node->gap + shift, b_node->gap, size); 1778 } 1779 1780 /* 1781 * mab_middle_node() - Check if a middle node is needed (unlikely) 1782 * @b_node: the maple_big_node that contains the data. 1783 * @size: the amount of data in the b_node 1784 * @split: the potential split location 1785 * @slot_count: the size that can be stored in a single node being considered. 1786 * 1787 * Return: true if a middle node is required. 1788 */ 1789 static inline bool mab_middle_node(struct maple_big_node *b_node, int split, 1790 unsigned char slot_count) 1791 { 1792 unsigned char size = b_node->b_end; 1793 1794 if (size >= 2 * slot_count) 1795 return true; 1796 1797 if (!b_node->slot[split] && (size >= 2 * slot_count - 1)) 1798 return true; 1799 1800 return false; 1801 } 1802 1803 /* 1804 * mab_no_null_split() - ensure the split doesn't fall on a NULL 1805 * @b_node: the maple_big_node with the data 1806 * @split: the suggested split location 1807 * @slot_count: the number of slots in the node being considered. 1808 * 1809 * Return: the split location. 1810 */ 1811 static inline int mab_no_null_split(struct maple_big_node *b_node, 1812 unsigned char split, unsigned char slot_count) 1813 { 1814 if (!b_node->slot[split]) { 1815 /* 1816 * If the split is less than the max slot && the right side will 1817 * still be sufficient, then increment the split on NULL. 1818 */ 1819 if ((split < slot_count - 1) && 1820 (b_node->b_end - split) > (mt_min_slots[b_node->type])) 1821 split++; 1822 else 1823 split--; 1824 } 1825 return split; 1826 } 1827 1828 /* 1829 * mab_calc_split() - Calculate the split location and if there needs to be two 1830 * splits. 1831 * @bn: The maple_big_node with the data 1832 * @mid_split: The second split, if required. 0 otherwise. 1833 * 1834 * Return: The first split location. The middle split is set in @mid_split. 1835 */ 1836 static inline int mab_calc_split(struct ma_state *mas, 1837 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min) 1838 { 1839 unsigned char b_end = bn->b_end; 1840 int split = b_end / 2; /* Assume equal split. */ 1841 unsigned char slot_min, slot_count = mt_slots[bn->type]; 1842 1843 /* 1844 * To support gap tracking, all NULL entries are kept together and a node cannot 1845 * end on a NULL entry, with the exception of the left-most leaf. The 1846 * limitation means that the split of a node must be checked for this condition 1847 * and be able to put more data in one direction or the other. 1848 */ 1849 if (unlikely((mas->mas_flags & MA_STATE_BULK))) { 1850 *mid_split = 0; 1851 split = b_end - mt_min_slots[bn->type]; 1852 1853 if (!ma_is_leaf(bn->type)) 1854 return split; 1855 1856 mas->mas_flags |= MA_STATE_REBALANCE; 1857 if (!bn->slot[split]) 1858 split--; 1859 return split; 1860 } 1861 1862 /* 1863 * Although extremely rare, it is possible to enter what is known as the 3-way 1864 * split scenario. The 3-way split comes about by means of a store of a range 1865 * that overwrites the end and beginning of two full nodes. The result is a set 1866 * of entries that cannot be stored in 2 nodes. Sometimes, these two nodes can 1867 * also be located in different parent nodes which are also full. This can 1868 * carry upwards all the way to the root in the worst case. 1869 */ 1870 if (unlikely(mab_middle_node(bn, split, slot_count))) { 1871 split = b_end / 3; 1872 *mid_split = split * 2; 1873 } else { 1874 slot_min = mt_min_slots[bn->type]; 1875 1876 *mid_split = 0; 1877 /* 1878 * Avoid having a range less than the slot count unless it 1879 * causes one node to be deficient. 1880 * NOTE: mt_min_slots is 1 based, b_end and split are zero. 1881 */ 1882 while (((bn->pivot[split] - min) < slot_count - 1) && 1883 (split < slot_count - 1) && (b_end - split > slot_min)) 1884 split++; 1885 } 1886 1887 /* Avoid ending a node on a NULL entry */ 1888 split = mab_no_null_split(bn, split, slot_count); 1889 if (!(*mid_split)) 1890 return split; 1891 1892 *mid_split = mab_no_null_split(bn, *mid_split, slot_count); 1893 1894 return split; 1895 } 1896 1897 /* 1898 * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node 1899 * and set @b_node->b_end to the next free slot. 1900 * @mas: The maple state 1901 * @mas_start: The starting slot to copy 1902 * @mas_end: The end slot to copy (inclusively) 1903 * @b_node: The maple_big_node to place the data 1904 * @mab_start: The starting location in maple_big_node to store the data. 1905 */ 1906 static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start, 1907 unsigned char mas_end, struct maple_big_node *b_node, 1908 unsigned char mab_start) 1909 { 1910 enum maple_type mt; 1911 struct maple_node *node; 1912 void __rcu **slots; 1913 unsigned long *pivots, *gaps; 1914 int i = mas_start, j = mab_start; 1915 unsigned char piv_end; 1916 1917 node = mas_mn(mas); 1918 mt = mte_node_type(mas->node); 1919 pivots = ma_pivots(node, mt); 1920 if (!i) { 1921 b_node->pivot[j] = pivots[i++]; 1922 if (unlikely(i > mas_end)) 1923 goto complete; 1924 j++; 1925 } 1926 1927 piv_end = min(mas_end, mt_pivots[mt]); 1928 for (; i < piv_end; i++, j++) { 1929 b_node->pivot[j] = pivots[i]; 1930 if (unlikely(!b_node->pivot[j])) 1931 break; 1932 1933 if (unlikely(mas->max == b_node->pivot[j])) 1934 goto complete; 1935 } 1936 1937 if (likely(i <= mas_end)) 1938 b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt); 1939 1940 complete: 1941 b_node->b_end = ++j; 1942 j -= mab_start; 1943 slots = ma_slots(node, mt); 1944 memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j); 1945 if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) { 1946 gaps = ma_gaps(node, mt); 1947 memcpy(b_node->gap + mab_start, gaps + mas_start, 1948 sizeof(unsigned long) * j); 1949 } 1950 } 1951 1952 /* 1953 * mas_leaf_set_meta() - Set the metadata of a leaf if possible. 1954 * @mas: The maple state 1955 * @node: The maple node 1956 * @pivots: pointer to the maple node pivots 1957 * @mt: The maple type 1958 * @end: The assumed end 1959 * 1960 * Note, end may be incremented within this function but not modified at the 1961 * source. This is fine since the metadata is the last thing to be stored in a 1962 * node during a write. 1963 */ 1964 static inline void mas_leaf_set_meta(struct ma_state *mas, 1965 struct maple_node *node, unsigned long *pivots, 1966 enum maple_type mt, unsigned char end) 1967 { 1968 /* There is no room for metadata already */ 1969 if (mt_pivots[mt] <= end) 1970 return; 1971 1972 if (pivots[end] && pivots[end] < mas->max) 1973 end++; 1974 1975 if (end < mt_slots[mt] - 1) 1976 ma_set_meta(node, mt, 0, end); 1977 } 1978 1979 /* 1980 * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node. 1981 * @b_node: the maple_big_node that has the data 1982 * @mab_start: the start location in @b_node. 1983 * @mab_end: The end location in @b_node (inclusively) 1984 * @mas: The maple state with the maple encoded node. 1985 */ 1986 static inline void mab_mas_cp(struct maple_big_node *b_node, 1987 unsigned char mab_start, unsigned char mab_end, 1988 struct ma_state *mas, bool new_max) 1989 { 1990 int i, j = 0; 1991 enum maple_type mt = mte_node_type(mas->node); 1992 struct maple_node *node = mte_to_node(mas->node); 1993 void __rcu **slots = ma_slots(node, mt); 1994 unsigned long *pivots = ma_pivots(node, mt); 1995 unsigned long *gaps = NULL; 1996 unsigned char end; 1997 1998 if (mab_end - mab_start > mt_pivots[mt]) 1999 mab_end--; 2000 2001 if (!pivots[mt_pivots[mt] - 1]) 2002 slots[mt_pivots[mt]] = NULL; 2003 2004 i = mab_start; 2005 do { 2006 pivots[j++] = b_node->pivot[i++]; 2007 } while (i <= mab_end && likely(b_node->pivot[i])); 2008 2009 memcpy(slots, b_node->slot + mab_start, 2010 sizeof(void *) * (i - mab_start)); 2011 2012 if (new_max) 2013 mas->max = b_node->pivot[i - 1]; 2014 2015 end = j - 1; 2016 if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) { 2017 unsigned long max_gap = 0; 2018 unsigned char offset = 15; 2019 2020 gaps = ma_gaps(node, mt); 2021 do { 2022 gaps[--j] = b_node->gap[--i]; 2023 if (gaps[j] > max_gap) { 2024 offset = j; 2025 max_gap = gaps[j]; 2026 } 2027 } while (j); 2028 2029 ma_set_meta(node, mt, offset, end); 2030 } else { 2031 mas_leaf_set_meta(mas, node, pivots, mt, end); 2032 } 2033 } 2034 2035 /* 2036 * mas_descend_adopt() - Descend through a sub-tree and adopt children. 2037 * @mas: the maple state with the maple encoded node of the sub-tree. 2038 * 2039 * Descend through a sub-tree and adopt children who do not have the correct 2040 * parents set. Follow the parents which have the correct parents as they are 2041 * the new entries which need to be followed to find other incorrectly set 2042 * parents. 2043 */ 2044 static inline void mas_descend_adopt(struct ma_state *mas) 2045 { 2046 struct ma_state list[3], next[3]; 2047 int i, n; 2048 2049 /* 2050 * At each level there may be up to 3 correct parent pointers which indicates 2051 * the new nodes which need to be walked to find any new nodes at a lower level. 2052 */ 2053 2054 for (i = 0; i < 3; i++) { 2055 list[i] = *mas; 2056 list[i].offset = 0; 2057 next[i].offset = 0; 2058 } 2059 next[0] = *mas; 2060 2061 while (!mte_is_leaf(list[0].node)) { 2062 n = 0; 2063 for (i = 0; i < 3; i++) { 2064 if (mas_is_none(&list[i])) 2065 continue; 2066 2067 if (i && list[i-1].node == list[i].node) 2068 continue; 2069 2070 while ((n < 3) && (mas_new_child(&list[i], &next[n]))) 2071 n++; 2072 2073 mas_adopt_children(&list[i], list[i].node); 2074 } 2075 2076 while (n < 3) 2077 next[n++].node = MAS_NONE; 2078 2079 /* descend by setting the list to the children */ 2080 for (i = 0; i < 3; i++) 2081 list[i] = next[i]; 2082 } 2083 } 2084 2085 /* 2086 * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert. 2087 * @mas: The maple state 2088 * @end: The maple node end 2089 * @mt: The maple node type 2090 */ 2091 static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end, 2092 enum maple_type mt) 2093 { 2094 if (!(mas->mas_flags & MA_STATE_BULK)) 2095 return; 2096 2097 if (mte_is_root(mas->node)) 2098 return; 2099 2100 if (end > mt_min_slots[mt]) { 2101 mas->mas_flags &= ~MA_STATE_REBALANCE; 2102 return; 2103 } 2104 } 2105 2106 /* 2107 * mas_store_b_node() - Store an @entry into the b_node while also copying the 2108 * data from a maple encoded node. 2109 * @wr_mas: the maple write state 2110 * @b_node: the maple_big_node to fill with data 2111 * @offset_end: the offset to end copying 2112 * 2113 * Return: The actual end of the data stored in @b_node 2114 */ 2115 static inline void mas_store_b_node(struct ma_wr_state *wr_mas, 2116 struct maple_big_node *b_node, unsigned char offset_end) 2117 { 2118 unsigned char slot; 2119 unsigned char b_end; 2120 /* Possible underflow of piv will wrap back to 0 before use. */ 2121 unsigned long piv; 2122 struct ma_state *mas = wr_mas->mas; 2123 2124 b_node->type = wr_mas->type; 2125 b_end = 0; 2126 slot = mas->offset; 2127 if (slot) { 2128 /* Copy start data up to insert. */ 2129 mas_mab_cp(mas, 0, slot - 1, b_node, 0); 2130 b_end = b_node->b_end; 2131 piv = b_node->pivot[b_end - 1]; 2132 } else 2133 piv = mas->min - 1; 2134 2135 if (piv + 1 < mas->index) { 2136 /* Handle range starting after old range */ 2137 b_node->slot[b_end] = wr_mas->content; 2138 if (!wr_mas->content) 2139 b_node->gap[b_end] = mas->index - 1 - piv; 2140 b_node->pivot[b_end++] = mas->index - 1; 2141 } 2142 2143 /* Store the new entry. */ 2144 mas->offset = b_end; 2145 b_node->slot[b_end] = wr_mas->entry; 2146 b_node->pivot[b_end] = mas->last; 2147 2148 /* Appended. */ 2149 if (mas->last >= mas->max) 2150 goto b_end; 2151 2152 /* Handle new range ending before old range ends */ 2153 piv = mas_logical_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type); 2154 if (piv > mas->last) { 2155 if (piv == ULONG_MAX) 2156 mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type); 2157 2158 if (offset_end != slot) 2159 wr_mas->content = mas_slot_locked(mas, wr_mas->slots, 2160 offset_end); 2161 2162 b_node->slot[++b_end] = wr_mas->content; 2163 if (!wr_mas->content) 2164 b_node->gap[b_end] = piv - mas->last + 1; 2165 b_node->pivot[b_end] = piv; 2166 } 2167 2168 slot = offset_end + 1; 2169 if (slot > wr_mas->node_end) 2170 goto b_end; 2171 2172 /* Copy end data to the end of the node. */ 2173 mas_mab_cp(mas, slot, wr_mas->node_end + 1, b_node, ++b_end); 2174 b_node->b_end--; 2175 return; 2176 2177 b_end: 2178 b_node->b_end = b_end; 2179 } 2180 2181 /* 2182 * mas_prev_sibling() - Find the previous node with the same parent. 2183 * @mas: the maple state 2184 * 2185 * Return: True if there is a previous sibling, false otherwise. 2186 */ 2187 static inline bool mas_prev_sibling(struct ma_state *mas) 2188 { 2189 unsigned int p_slot = mte_parent_slot(mas->node); 2190 2191 if (mte_is_root(mas->node)) 2192 return false; 2193 2194 if (!p_slot) 2195 return false; 2196 2197 mas_ascend(mas); 2198 mas->offset = p_slot - 1; 2199 mas_descend(mas); 2200 return true; 2201 } 2202 2203 /* 2204 * mas_next_sibling() - Find the next node with the same parent. 2205 * @mas: the maple state 2206 * 2207 * Return: true if there is a next sibling, false otherwise. 2208 */ 2209 static inline bool mas_next_sibling(struct ma_state *mas) 2210 { 2211 MA_STATE(parent, mas->tree, mas->index, mas->last); 2212 2213 if (mte_is_root(mas->node)) 2214 return false; 2215 2216 parent = *mas; 2217 mas_ascend(&parent); 2218 parent.offset = mte_parent_slot(mas->node) + 1; 2219 if (parent.offset > mas_data_end(&parent)) 2220 return false; 2221 2222 *mas = parent; 2223 mas_descend(mas); 2224 return true; 2225 } 2226 2227 /* 2228 * mte_node_or_node() - Return the encoded node or MAS_NONE. 2229 * @enode: The encoded maple node. 2230 * 2231 * Shorthand to avoid setting %NULLs in the tree or maple_subtree_state. 2232 * 2233 * Return: @enode or MAS_NONE 2234 */ 2235 static inline struct maple_enode *mte_node_or_none(struct maple_enode *enode) 2236 { 2237 if (enode) 2238 return enode; 2239 2240 return ma_enode_ptr(MAS_NONE); 2241 } 2242 2243 /* 2244 * mas_wr_node_walk() - Find the correct offset for the index in the @mas. 2245 * @wr_mas: The maple write state 2246 * 2247 * Uses mas_slot_locked() and does not need to worry about dead nodes. 2248 */ 2249 static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas) 2250 { 2251 struct ma_state *mas = wr_mas->mas; 2252 unsigned char count; 2253 unsigned char offset; 2254 unsigned long index, min, max; 2255 2256 if (unlikely(ma_is_dense(wr_mas->type))) { 2257 wr_mas->r_max = wr_mas->r_min = mas->index; 2258 mas->offset = mas->index = mas->min; 2259 return; 2260 } 2261 2262 wr_mas->node = mas_mn(wr_mas->mas); 2263 wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type); 2264 count = wr_mas->node_end = ma_data_end(wr_mas->node, wr_mas->type, 2265 wr_mas->pivots, mas->max); 2266 offset = mas->offset; 2267 min = mas_safe_min(mas, wr_mas->pivots, offset); 2268 if (unlikely(offset == count)) 2269 goto max; 2270 2271 max = wr_mas->pivots[offset]; 2272 index = mas->index; 2273 if (unlikely(index <= max)) 2274 goto done; 2275 2276 if (unlikely(!max && offset)) 2277 goto max; 2278 2279 min = max + 1; 2280 while (++offset < count) { 2281 max = wr_mas->pivots[offset]; 2282 if (index <= max) 2283 goto done; 2284 else if (unlikely(!max)) 2285 break; 2286 2287 min = max + 1; 2288 } 2289 2290 max: 2291 max = mas->max; 2292 done: 2293 wr_mas->r_max = max; 2294 wr_mas->r_min = min; 2295 wr_mas->offset_end = mas->offset = offset; 2296 } 2297 2298 /* 2299 * mas_topiary_range() - Add a range of slots to the topiary. 2300 * @mas: The maple state 2301 * @destroy: The topiary to add the slots (usually destroy) 2302 * @start: The starting slot inclusively 2303 * @end: The end slot inclusively 2304 */ 2305 static inline void mas_topiary_range(struct ma_state *mas, 2306 struct ma_topiary *destroy, unsigned char start, unsigned char end) 2307 { 2308 void __rcu **slots; 2309 unsigned char offset; 2310 2311 MT_BUG_ON(mas->tree, mte_is_leaf(mas->node)); 2312 slots = ma_slots(mas_mn(mas), mte_node_type(mas->node)); 2313 for (offset = start; offset <= end; offset++) { 2314 struct maple_enode *enode = mas_slot_locked(mas, slots, offset); 2315 2316 if (mte_dead_node(enode)) 2317 continue; 2318 2319 mat_add(destroy, enode); 2320 } 2321 } 2322 2323 /* 2324 * mast_topiary() - Add the portions of the tree to the removal list; either to 2325 * be freed or discarded (destroy walk). 2326 * @mast: The maple_subtree_state. 2327 */ 2328 static inline void mast_topiary(struct maple_subtree_state *mast) 2329 { 2330 MA_WR_STATE(wr_mas, mast->orig_l, NULL); 2331 unsigned char r_start, r_end; 2332 unsigned char l_start, l_end; 2333 void __rcu **l_slots, **r_slots; 2334 2335 wr_mas.type = mte_node_type(mast->orig_l->node); 2336 mast->orig_l->index = mast->orig_l->last; 2337 mas_wr_node_walk(&wr_mas); 2338 l_start = mast->orig_l->offset + 1; 2339 l_end = mas_data_end(mast->orig_l); 2340 r_start = 0; 2341 r_end = mast->orig_r->offset; 2342 2343 if (r_end) 2344 r_end--; 2345 2346 l_slots = ma_slots(mas_mn(mast->orig_l), 2347 mte_node_type(mast->orig_l->node)); 2348 2349 r_slots = ma_slots(mas_mn(mast->orig_r), 2350 mte_node_type(mast->orig_r->node)); 2351 2352 if ((l_start < l_end) && 2353 mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_start))) { 2354 l_start++; 2355 } 2356 2357 if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_end))) { 2358 if (r_end) 2359 r_end--; 2360 } 2361 2362 if ((l_start > r_end) && (mast->orig_l->node == mast->orig_r->node)) 2363 return; 2364 2365 /* At the node where left and right sides meet, add the parts between */ 2366 if (mast->orig_l->node == mast->orig_r->node) { 2367 return mas_topiary_range(mast->orig_l, mast->destroy, 2368 l_start, r_end); 2369 } 2370 2371 /* mast->orig_r is different and consumed. */ 2372 if (mte_is_leaf(mast->orig_r->node)) 2373 return; 2374 2375 if (mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_end))) 2376 l_end--; 2377 2378 2379 if (l_start <= l_end) 2380 mas_topiary_range(mast->orig_l, mast->destroy, l_start, l_end); 2381 2382 if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_start))) 2383 r_start++; 2384 2385 if (r_start <= r_end) 2386 mas_topiary_range(mast->orig_r, mast->destroy, 0, r_end); 2387 } 2388 2389 /* 2390 * mast_rebalance_next() - Rebalance against the next node 2391 * @mast: The maple subtree state 2392 * @old_r: The encoded maple node to the right (next node). 2393 */ 2394 static inline void mast_rebalance_next(struct maple_subtree_state *mast) 2395 { 2396 unsigned char b_end = mast->bn->b_end; 2397 2398 mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node), 2399 mast->bn, b_end); 2400 mast->orig_r->last = mast->orig_r->max; 2401 } 2402 2403 /* 2404 * mast_rebalance_prev() - Rebalance against the previous node 2405 * @mast: The maple subtree state 2406 * @old_l: The encoded maple node to the left (previous node) 2407 */ 2408 static inline void mast_rebalance_prev(struct maple_subtree_state *mast) 2409 { 2410 unsigned char end = mas_data_end(mast->orig_l) + 1; 2411 unsigned char b_end = mast->bn->b_end; 2412 2413 mab_shift_right(mast->bn, end); 2414 mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0); 2415 mast->l->min = mast->orig_l->min; 2416 mast->orig_l->index = mast->orig_l->min; 2417 mast->bn->b_end = end + b_end; 2418 mast->l->offset += end; 2419 } 2420 2421 /* 2422 * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring 2423 * the node to the right. Checking the nodes to the right then the left at each 2424 * level upwards until root is reached. Free and destroy as needed. 2425 * Data is copied into the @mast->bn. 2426 * @mast: The maple_subtree_state. 2427 */ 2428 static inline 2429 bool mast_spanning_rebalance(struct maple_subtree_state *mast) 2430 { 2431 struct ma_state r_tmp = *mast->orig_r; 2432 struct ma_state l_tmp = *mast->orig_l; 2433 struct maple_enode *ancestor = NULL; 2434 unsigned char start, end; 2435 unsigned char depth = 0; 2436 2437 r_tmp = *mast->orig_r; 2438 l_tmp = *mast->orig_l; 2439 do { 2440 mas_ascend(mast->orig_r); 2441 mas_ascend(mast->orig_l); 2442 depth++; 2443 if (!ancestor && 2444 (mast->orig_r->node == mast->orig_l->node)) { 2445 ancestor = mast->orig_r->node; 2446 end = mast->orig_r->offset - 1; 2447 start = mast->orig_l->offset + 1; 2448 } 2449 2450 if (mast->orig_r->offset < mas_data_end(mast->orig_r)) { 2451 if (!ancestor) { 2452 ancestor = mast->orig_r->node; 2453 start = 0; 2454 } 2455 2456 mast->orig_r->offset++; 2457 do { 2458 mas_descend(mast->orig_r); 2459 mast->orig_r->offset = 0; 2460 depth--; 2461 } while (depth); 2462 2463 mast_rebalance_next(mast); 2464 do { 2465 unsigned char l_off = 0; 2466 struct maple_enode *child = r_tmp.node; 2467 2468 mas_ascend(&r_tmp); 2469 if (ancestor == r_tmp.node) 2470 l_off = start; 2471 2472 if (r_tmp.offset) 2473 r_tmp.offset--; 2474 2475 if (l_off < r_tmp.offset) 2476 mas_topiary_range(&r_tmp, mast->destroy, 2477 l_off, r_tmp.offset); 2478 2479 if (l_tmp.node != child) 2480 mat_add(mast->free, child); 2481 2482 } while (r_tmp.node != ancestor); 2483 2484 *mast->orig_l = l_tmp; 2485 return true; 2486 2487 } else if (mast->orig_l->offset != 0) { 2488 if (!ancestor) { 2489 ancestor = mast->orig_l->node; 2490 end = mas_data_end(mast->orig_l); 2491 } 2492 2493 mast->orig_l->offset--; 2494 do { 2495 mas_descend(mast->orig_l); 2496 mast->orig_l->offset = 2497 mas_data_end(mast->orig_l); 2498 depth--; 2499 } while (depth); 2500 2501 mast_rebalance_prev(mast); 2502 do { 2503 unsigned char r_off; 2504 struct maple_enode *child = l_tmp.node; 2505 2506 mas_ascend(&l_tmp); 2507 if (ancestor == l_tmp.node) 2508 r_off = end; 2509 else 2510 r_off = mas_data_end(&l_tmp); 2511 2512 if (l_tmp.offset < r_off) 2513 l_tmp.offset++; 2514 2515 if (l_tmp.offset < r_off) 2516 mas_topiary_range(&l_tmp, mast->destroy, 2517 l_tmp.offset, r_off); 2518 2519 if (r_tmp.node != child) 2520 mat_add(mast->free, child); 2521 2522 } while (l_tmp.node != ancestor); 2523 2524 *mast->orig_r = r_tmp; 2525 return true; 2526 } 2527 } while (!mte_is_root(mast->orig_r->node)); 2528 2529 *mast->orig_r = r_tmp; 2530 *mast->orig_l = l_tmp; 2531 return false; 2532 } 2533 2534 /* 2535 * mast_ascend_free() - Add current original maple state nodes to the free list 2536 * and ascend. 2537 * @mast: the maple subtree state. 2538 * 2539 * Ascend the original left and right sides and add the previous nodes to the 2540 * free list. Set the slots to point to the correct location in the new nodes. 2541 */ 2542 static inline void 2543 mast_ascend_free(struct maple_subtree_state *mast) 2544 { 2545 MA_WR_STATE(wr_mas, mast->orig_r, NULL); 2546 struct maple_enode *left = mast->orig_l->node; 2547 struct maple_enode *right = mast->orig_r->node; 2548 2549 mas_ascend(mast->orig_l); 2550 mas_ascend(mast->orig_r); 2551 mat_add(mast->free, left); 2552 2553 if (left != right) 2554 mat_add(mast->free, right); 2555 2556 mast->orig_r->offset = 0; 2557 mast->orig_r->index = mast->r->max; 2558 /* last should be larger than or equal to index */ 2559 if (mast->orig_r->last < mast->orig_r->index) 2560 mast->orig_r->last = mast->orig_r->index; 2561 /* 2562 * The node may not contain the value so set slot to ensure all 2563 * of the nodes contents are freed or destroyed. 2564 */ 2565 wr_mas.type = mte_node_type(mast->orig_r->node); 2566 mas_wr_node_walk(&wr_mas); 2567 /* Set up the left side of things */ 2568 mast->orig_l->offset = 0; 2569 mast->orig_l->index = mast->l->min; 2570 wr_mas.mas = mast->orig_l; 2571 wr_mas.type = mte_node_type(mast->orig_l->node); 2572 mas_wr_node_walk(&wr_mas); 2573 2574 mast->bn->type = wr_mas.type; 2575 } 2576 2577 /* 2578 * mas_new_ma_node() - Create and return a new maple node. Helper function. 2579 * @mas: the maple state with the allocations. 2580 * @b_node: the maple_big_node with the type encoding. 2581 * 2582 * Use the node type from the maple_big_node to allocate a new node from the 2583 * ma_state. This function exists mainly for code readability. 2584 * 2585 * Return: A new maple encoded node 2586 */ 2587 static inline struct maple_enode 2588 *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node) 2589 { 2590 return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type); 2591 } 2592 2593 /* 2594 * mas_mab_to_node() - Set up right and middle nodes 2595 * 2596 * @mas: the maple state that contains the allocations. 2597 * @b_node: the node which contains the data. 2598 * @left: The pointer which will have the left node 2599 * @right: The pointer which may have the right node 2600 * @middle: the pointer which may have the middle node (rare) 2601 * @mid_split: the split location for the middle node 2602 * 2603 * Return: the split of left. 2604 */ 2605 static inline unsigned char mas_mab_to_node(struct ma_state *mas, 2606 struct maple_big_node *b_node, struct maple_enode **left, 2607 struct maple_enode **right, struct maple_enode **middle, 2608 unsigned char *mid_split, unsigned long min) 2609 { 2610 unsigned char split = 0; 2611 unsigned char slot_count = mt_slots[b_node->type]; 2612 2613 *left = mas_new_ma_node(mas, b_node); 2614 *right = NULL; 2615 *middle = NULL; 2616 *mid_split = 0; 2617 2618 if (b_node->b_end < slot_count) { 2619 split = b_node->b_end; 2620 } else { 2621 split = mab_calc_split(mas, b_node, mid_split, min); 2622 *right = mas_new_ma_node(mas, b_node); 2623 } 2624 2625 if (*mid_split) 2626 *middle = mas_new_ma_node(mas, b_node); 2627 2628 return split; 2629 2630 } 2631 2632 /* 2633 * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end 2634 * pointer. 2635 * @b_node - the big node to add the entry 2636 * @mas - the maple state to get the pivot (mas->max) 2637 * @entry - the entry to add, if NULL nothing happens. 2638 */ 2639 static inline void mab_set_b_end(struct maple_big_node *b_node, 2640 struct ma_state *mas, 2641 void *entry) 2642 { 2643 if (!entry) 2644 return; 2645 2646 b_node->slot[b_node->b_end] = entry; 2647 if (mt_is_alloc(mas->tree)) 2648 b_node->gap[b_node->b_end] = mas_max_gap(mas); 2649 b_node->pivot[b_node->b_end++] = mas->max; 2650 } 2651 2652 /* 2653 * mas_set_split_parent() - combine_then_separate helper function. Sets the parent 2654 * of @mas->node to either @left or @right, depending on @slot and @split 2655 * 2656 * @mas - the maple state with the node that needs a parent 2657 * @left - possible parent 1 2658 * @right - possible parent 2 2659 * @slot - the slot the mas->node was placed 2660 * @split - the split location between @left and @right 2661 */ 2662 static inline void mas_set_split_parent(struct ma_state *mas, 2663 struct maple_enode *left, 2664 struct maple_enode *right, 2665 unsigned char *slot, unsigned char split) 2666 { 2667 if (mas_is_none(mas)) 2668 return; 2669 2670 if ((*slot) <= split) 2671 mte_set_parent(mas->node, left, *slot); 2672 else if (right) 2673 mte_set_parent(mas->node, right, (*slot) - split - 1); 2674 2675 (*slot)++; 2676 } 2677 2678 /* 2679 * mte_mid_split_check() - Check if the next node passes the mid-split 2680 * @**l: Pointer to left encoded maple node. 2681 * @**m: Pointer to middle encoded maple node. 2682 * @**r: Pointer to right encoded maple node. 2683 * @slot: The offset 2684 * @*split: The split location. 2685 * @mid_split: The middle split. 2686 */ 2687 static inline void mte_mid_split_check(struct maple_enode **l, 2688 struct maple_enode **r, 2689 struct maple_enode *right, 2690 unsigned char slot, 2691 unsigned char *split, 2692 unsigned char mid_split) 2693 { 2694 if (*r == right) 2695 return; 2696 2697 if (slot < mid_split) 2698 return; 2699 2700 *l = *r; 2701 *r = right; 2702 *split = mid_split; 2703 } 2704 2705 /* 2706 * mast_set_split_parents() - Helper function to set three nodes parents. Slot 2707 * is taken from @mast->l. 2708 * @mast - the maple subtree state 2709 * @left - the left node 2710 * @right - the right node 2711 * @split - the split location. 2712 */ 2713 static inline void mast_set_split_parents(struct maple_subtree_state *mast, 2714 struct maple_enode *left, 2715 struct maple_enode *middle, 2716 struct maple_enode *right, 2717 unsigned char split, 2718 unsigned char mid_split) 2719 { 2720 unsigned char slot; 2721 struct maple_enode *l = left; 2722 struct maple_enode *r = right; 2723 2724 if (mas_is_none(mast->l)) 2725 return; 2726 2727 if (middle) 2728 r = middle; 2729 2730 slot = mast->l->offset; 2731 2732 mte_mid_split_check(&l, &r, right, slot, &split, mid_split); 2733 mas_set_split_parent(mast->l, l, r, &slot, split); 2734 2735 mte_mid_split_check(&l, &r, right, slot, &split, mid_split); 2736 mas_set_split_parent(mast->m, l, r, &slot, split); 2737 2738 mte_mid_split_check(&l, &r, right, slot, &split, mid_split); 2739 mas_set_split_parent(mast->r, l, r, &slot, split); 2740 } 2741 2742 /* 2743 * mas_wmb_replace() - Write memory barrier and replace 2744 * @mas: The maple state 2745 * @free: the maple topiary list of nodes to free 2746 * @destroy: The maple topiary list of nodes to destroy (walk and free) 2747 * 2748 * Updates gap as necessary. 2749 */ 2750 static inline void mas_wmb_replace(struct ma_state *mas, 2751 struct ma_topiary *free, 2752 struct ma_topiary *destroy) 2753 { 2754 /* All nodes must see old data as dead prior to replacing that data */ 2755 smp_wmb(); /* Needed for RCU */ 2756 2757 /* Insert the new data in the tree */ 2758 mas_replace(mas, true); 2759 2760 if (!mte_is_leaf(mas->node)) 2761 mas_descend_adopt(mas); 2762 2763 mas_mat_free(mas, free); 2764 2765 if (destroy) 2766 mas_mat_destroy(mas, destroy); 2767 2768 if (mte_is_leaf(mas->node)) 2769 return; 2770 2771 mas_update_gap(mas); 2772 } 2773 2774 /* 2775 * mast_new_root() - Set a new tree root during subtree creation 2776 * @mast: The maple subtree state 2777 * @mas: The maple state 2778 */ 2779 static inline void mast_new_root(struct maple_subtree_state *mast, 2780 struct ma_state *mas) 2781 { 2782 mas_mn(mast->l)->parent = 2783 ma_parent_ptr(((unsigned long)mas->tree | MA_ROOT_PARENT)); 2784 if (!mte_dead_node(mast->orig_l->node) && 2785 !mte_is_root(mast->orig_l->node)) { 2786 do { 2787 mast_ascend_free(mast); 2788 mast_topiary(mast); 2789 } while (!mte_is_root(mast->orig_l->node)); 2790 } 2791 if ((mast->orig_l->node != mas->node) && 2792 (mast->l->depth > mas_mt_height(mas))) { 2793 mat_add(mast->free, mas->node); 2794 } 2795 } 2796 2797 /* 2798 * mast_cp_to_nodes() - Copy data out to nodes. 2799 * @mast: The maple subtree state 2800 * @left: The left encoded maple node 2801 * @middle: The middle encoded maple node 2802 * @right: The right encoded maple node 2803 * @split: The location to split between left and (middle ? middle : right) 2804 * @mid_split: The location to split between middle and right. 2805 */ 2806 static inline void mast_cp_to_nodes(struct maple_subtree_state *mast, 2807 struct maple_enode *left, struct maple_enode *middle, 2808 struct maple_enode *right, unsigned char split, unsigned char mid_split) 2809 { 2810 bool new_lmax = true; 2811 2812 mast->l->node = mte_node_or_none(left); 2813 mast->m->node = mte_node_or_none(middle); 2814 mast->r->node = mte_node_or_none(right); 2815 2816 mast->l->min = mast->orig_l->min; 2817 if (split == mast->bn->b_end) { 2818 mast->l->max = mast->orig_r->max; 2819 new_lmax = false; 2820 } 2821 2822 mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax); 2823 2824 if (middle) { 2825 mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true); 2826 mast->m->min = mast->bn->pivot[split] + 1; 2827 split = mid_split; 2828 } 2829 2830 mast->r->max = mast->orig_r->max; 2831 if (right) { 2832 mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false); 2833 mast->r->min = mast->bn->pivot[split] + 1; 2834 } 2835 } 2836 2837 /* 2838 * mast_combine_cp_left - Copy in the original left side of the tree into the 2839 * combined data set in the maple subtree state big node. 2840 * @mast: The maple subtree state 2841 */ 2842 static inline void mast_combine_cp_left(struct maple_subtree_state *mast) 2843 { 2844 unsigned char l_slot = mast->orig_l->offset; 2845 2846 if (!l_slot) 2847 return; 2848 2849 mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0); 2850 } 2851 2852 /* 2853 * mast_combine_cp_right: Copy in the original right side of the tree into the 2854 * combined data set in the maple subtree state big node. 2855 * @mast: The maple subtree state 2856 */ 2857 static inline void mast_combine_cp_right(struct maple_subtree_state *mast) 2858 { 2859 if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max) 2860 return; 2861 2862 mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1, 2863 mt_slot_count(mast->orig_r->node), mast->bn, 2864 mast->bn->b_end); 2865 mast->orig_r->last = mast->orig_r->max; 2866 } 2867 2868 /* 2869 * mast_sufficient: Check if the maple subtree state has enough data in the big 2870 * node to create at least one sufficient node 2871 * @mast: the maple subtree state 2872 */ 2873 static inline bool mast_sufficient(struct maple_subtree_state *mast) 2874 { 2875 if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node)) 2876 return true; 2877 2878 return false; 2879 } 2880 2881 /* 2882 * mast_overflow: Check if there is too much data in the subtree state for a 2883 * single node. 2884 * @mast: The maple subtree state 2885 */ 2886 static inline bool mast_overflow(struct maple_subtree_state *mast) 2887 { 2888 if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node)) 2889 return true; 2890 2891 return false; 2892 } 2893 2894 static inline void *mtree_range_walk(struct ma_state *mas) 2895 { 2896 unsigned long *pivots; 2897 unsigned char offset; 2898 struct maple_node *node; 2899 struct maple_enode *next, *last; 2900 enum maple_type type; 2901 void __rcu **slots; 2902 unsigned char end; 2903 unsigned long max, min; 2904 unsigned long prev_max, prev_min; 2905 2906 next = mas->node; 2907 min = mas->min; 2908 max = mas->max; 2909 do { 2910 offset = 0; 2911 last = next; 2912 node = mte_to_node(next); 2913 type = mte_node_type(next); 2914 pivots = ma_pivots(node, type); 2915 end = ma_data_end(node, type, pivots, max); 2916 if (unlikely(ma_dead_node(node))) 2917 goto dead_node; 2918 2919 if (pivots[offset] >= mas->index) { 2920 prev_max = max; 2921 prev_min = min; 2922 max = pivots[offset]; 2923 goto next; 2924 } 2925 2926 do { 2927 offset++; 2928 } while ((offset < end) && (pivots[offset] < mas->index)); 2929 2930 prev_min = min; 2931 min = pivots[offset - 1] + 1; 2932 prev_max = max; 2933 if (likely(offset < end && pivots[offset])) 2934 max = pivots[offset]; 2935 2936 next: 2937 slots = ma_slots(node, type); 2938 next = mt_slot(mas->tree, slots, offset); 2939 if (unlikely(ma_dead_node(node))) 2940 goto dead_node; 2941 } while (!ma_is_leaf(type)); 2942 2943 mas->offset = offset; 2944 mas->index = min; 2945 mas->last = max; 2946 mas->min = prev_min; 2947 mas->max = prev_max; 2948 mas->node = last; 2949 return (void *) next; 2950 2951 dead_node: 2952 mas_reset(mas); 2953 return NULL; 2954 } 2955 2956 /* 2957 * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers. 2958 * @mas: The starting maple state 2959 * @mast: The maple_subtree_state, keeps track of 4 maple states. 2960 * @count: The estimated count of iterations needed. 2961 * 2962 * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root 2963 * is hit. First @b_node is split into two entries which are inserted into the 2964 * next iteration of the loop. @b_node is returned populated with the final 2965 * iteration. @mas is used to obtain allocations. orig_l_mas keeps track of the 2966 * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last 2967 * to account of what has been copied into the new sub-tree. The update of 2968 * orig_l_mas->last is used in mas_consume to find the slots that will need to 2969 * be either freed or destroyed. orig_l_mas->depth keeps track of the height of 2970 * the new sub-tree in case the sub-tree becomes the full tree. 2971 * 2972 * Return: the number of elements in b_node during the last loop. 2973 */ 2974 static int mas_spanning_rebalance(struct ma_state *mas, 2975 struct maple_subtree_state *mast, unsigned char count) 2976 { 2977 unsigned char split, mid_split; 2978 unsigned char slot = 0; 2979 struct maple_enode *left = NULL, *middle = NULL, *right = NULL; 2980 2981 MA_STATE(l_mas, mas->tree, mas->index, mas->index); 2982 MA_STATE(r_mas, mas->tree, mas->index, mas->last); 2983 MA_STATE(m_mas, mas->tree, mas->index, mas->index); 2984 MA_TOPIARY(free, mas->tree); 2985 MA_TOPIARY(destroy, mas->tree); 2986 2987 /* 2988 * The tree needs to be rebalanced and leaves need to be kept at the same level. 2989 * Rebalancing is done by use of the ``struct maple_topiary``. 2990 */ 2991 mast->l = &l_mas; 2992 mast->m = &m_mas; 2993 mast->r = &r_mas; 2994 mast->free = &free; 2995 mast->destroy = &destroy; 2996 l_mas.node = r_mas.node = m_mas.node = MAS_NONE; 2997 2998 /* Check if this is not root and has sufficient data. */ 2999 if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) && 3000 unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type])) 3001 mast_spanning_rebalance(mast); 3002 3003 mast->orig_l->depth = 0; 3004 3005 /* 3006 * Each level of the tree is examined and balanced, pushing data to the left or 3007 * right, or rebalancing against left or right nodes is employed to avoid 3008 * rippling up the tree to limit the amount of churn. Once a new sub-section of 3009 * the tree is created, there may be a mix of new and old nodes. The old nodes 3010 * will have the incorrect parent pointers and currently be in two trees: the 3011 * original tree and the partially new tree. To remedy the parent pointers in 3012 * the old tree, the new data is swapped into the active tree and a walk down 3013 * the tree is performed and the parent pointers are updated. 3014 * See mas_descend_adopt() for more information.. 3015 */ 3016 while (count--) { 3017 mast->bn->b_end--; 3018 mast->bn->type = mte_node_type(mast->orig_l->node); 3019 split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle, 3020 &mid_split, mast->orig_l->min); 3021 mast_set_split_parents(mast, left, middle, right, split, 3022 mid_split); 3023 mast_cp_to_nodes(mast, left, middle, right, split, mid_split); 3024 3025 /* 3026 * Copy data from next level in the tree to mast->bn from next 3027 * iteration 3028 */ 3029 memset(mast->bn, 0, sizeof(struct maple_big_node)); 3030 mast->bn->type = mte_node_type(left); 3031 mast->orig_l->depth++; 3032 3033 /* Root already stored in l->node. */ 3034 if (mas_is_root_limits(mast->l)) 3035 goto new_root; 3036 3037 mast_ascend_free(mast); 3038 mast_combine_cp_left(mast); 3039 l_mas.offset = mast->bn->b_end; 3040 mab_set_b_end(mast->bn, &l_mas, left); 3041 mab_set_b_end(mast->bn, &m_mas, middle); 3042 mab_set_b_end(mast->bn, &r_mas, right); 3043 3044 /* Copy anything necessary out of the right node. */ 3045 mast_combine_cp_right(mast); 3046 mast_topiary(mast); 3047 mast->orig_l->last = mast->orig_l->max; 3048 3049 if (mast_sufficient(mast)) 3050 continue; 3051 3052 if (mast_overflow(mast)) 3053 continue; 3054 3055 /* May be a new root stored in mast->bn */ 3056 if (mas_is_root_limits(mast->orig_l)) 3057 break; 3058 3059 mast_spanning_rebalance(mast); 3060 3061 /* rebalancing from other nodes may require another loop. */ 3062 if (!count) 3063 count++; 3064 } 3065 3066 l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), 3067 mte_node_type(mast->orig_l->node)); 3068 mast->orig_l->depth++; 3069 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true); 3070 mte_set_parent(left, l_mas.node, slot); 3071 if (middle) 3072 mte_set_parent(middle, l_mas.node, ++slot); 3073 3074 if (right) 3075 mte_set_parent(right, l_mas.node, ++slot); 3076 3077 if (mas_is_root_limits(mast->l)) { 3078 new_root: 3079 mast_new_root(mast, mas); 3080 } else { 3081 mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent; 3082 } 3083 3084 if (!mte_dead_node(mast->orig_l->node)) 3085 mat_add(&free, mast->orig_l->node); 3086 3087 mas->depth = mast->orig_l->depth; 3088 *mast->orig_l = l_mas; 3089 mte_set_node_dead(mas->node); 3090 3091 /* Set up mas for insertion. */ 3092 mast->orig_l->depth = mas->depth; 3093 mast->orig_l->alloc = mas->alloc; 3094 *mas = *mast->orig_l; 3095 mas_wmb_replace(mas, &free, &destroy); 3096 mtree_range_walk(mas); 3097 return mast->bn->b_end; 3098 } 3099 3100 /* 3101 * mas_rebalance() - Rebalance a given node. 3102 * @mas: The maple state 3103 * @b_node: The big maple node. 3104 * 3105 * Rebalance two nodes into a single node or two new nodes that are sufficient. 3106 * Continue upwards until tree is sufficient. 3107 * 3108 * Return: the number of elements in b_node during the last loop. 3109 */ 3110 static inline int mas_rebalance(struct ma_state *mas, 3111 struct maple_big_node *b_node) 3112 { 3113 char empty_count = mas_mt_height(mas); 3114 struct maple_subtree_state mast; 3115 unsigned char shift, b_end = ++b_node->b_end; 3116 3117 MA_STATE(l_mas, mas->tree, mas->index, mas->last); 3118 MA_STATE(r_mas, mas->tree, mas->index, mas->last); 3119 3120 trace_ma_op(__func__, mas); 3121 3122 /* 3123 * Rebalancing occurs if a node is insufficient. Data is rebalanced 3124 * against the node to the right if it exists, otherwise the node to the 3125 * left of this node is rebalanced against this node. If rebalancing 3126 * causes just one node to be produced instead of two, then the parent 3127 * is also examined and rebalanced if it is insufficient. Every level 3128 * tries to combine the data in the same way. If one node contains the 3129 * entire range of the tree, then that node is used as a new root node. 3130 */ 3131 mas_node_count(mas, 1 + empty_count * 3); 3132 if (mas_is_err(mas)) 3133 return 0; 3134 3135 mast.orig_l = &l_mas; 3136 mast.orig_r = &r_mas; 3137 mast.bn = b_node; 3138 mast.bn->type = mte_node_type(mas->node); 3139 3140 l_mas = r_mas = *mas; 3141 3142 if (mas_next_sibling(&r_mas)) { 3143 mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end); 3144 r_mas.last = r_mas.index = r_mas.max; 3145 } else { 3146 mas_prev_sibling(&l_mas); 3147 shift = mas_data_end(&l_mas) + 1; 3148 mab_shift_right(b_node, shift); 3149 mas->offset += shift; 3150 mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0); 3151 b_node->b_end = shift + b_end; 3152 l_mas.index = l_mas.last = l_mas.min; 3153 } 3154 3155 return mas_spanning_rebalance(mas, &mast, empty_count); 3156 } 3157 3158 /* 3159 * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple 3160 * state. 3161 * @mas: The maple state 3162 * @end: The end of the left-most node. 3163 * 3164 * During a mass-insert event (such as forking), it may be necessary to 3165 * rebalance the left-most node when it is not sufficient. 3166 */ 3167 static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end) 3168 { 3169 enum maple_type mt = mte_node_type(mas->node); 3170 struct maple_node reuse, *newnode, *parent, *new_left, *left, *node; 3171 struct maple_enode *eparent; 3172 unsigned char offset, tmp, split = mt_slots[mt] / 2; 3173 void __rcu **l_slots, **slots; 3174 unsigned long *l_pivs, *pivs, gap; 3175 bool in_rcu = mt_in_rcu(mas->tree); 3176 3177 MA_STATE(l_mas, mas->tree, mas->index, mas->last); 3178 3179 l_mas = *mas; 3180 mas_prev_sibling(&l_mas); 3181 3182 /* set up node. */ 3183 if (in_rcu) { 3184 /* Allocate for both left and right as well as parent. */ 3185 mas_node_count(mas, 3); 3186 if (mas_is_err(mas)) 3187 return; 3188 3189 newnode = mas_pop_node(mas); 3190 } else { 3191 newnode = &reuse; 3192 } 3193 3194 node = mas_mn(mas); 3195 newnode->parent = node->parent; 3196 slots = ma_slots(newnode, mt); 3197 pivs = ma_pivots(newnode, mt); 3198 left = mas_mn(&l_mas); 3199 l_slots = ma_slots(left, mt); 3200 l_pivs = ma_pivots(left, mt); 3201 if (!l_slots[split]) 3202 split++; 3203 tmp = mas_data_end(&l_mas) - split; 3204 3205 memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp); 3206 memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp); 3207 pivs[tmp] = l_mas.max; 3208 memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end); 3209 memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end); 3210 3211 l_mas.max = l_pivs[split]; 3212 mas->min = l_mas.max + 1; 3213 eparent = mt_mk_node(mte_parent(l_mas.node), 3214 mas_parent_enum(&l_mas, l_mas.node)); 3215 tmp += end; 3216 if (!in_rcu) { 3217 unsigned char max_p = mt_pivots[mt]; 3218 unsigned char max_s = mt_slots[mt]; 3219 3220 if (tmp < max_p) 3221 memset(pivs + tmp, 0, 3222 sizeof(unsigned long *) * (max_p - tmp)); 3223 3224 if (tmp < mt_slots[mt]) 3225 memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp)); 3226 3227 memcpy(node, newnode, sizeof(struct maple_node)); 3228 ma_set_meta(node, mt, 0, tmp - 1); 3229 mte_set_pivot(eparent, mte_parent_slot(l_mas.node), 3230 l_pivs[split]); 3231 3232 /* Remove data from l_pivs. */ 3233 tmp = split + 1; 3234 memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp)); 3235 memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp)); 3236 ma_set_meta(left, mt, 0, split); 3237 3238 goto done; 3239 } 3240 3241 /* RCU requires replacing both l_mas, mas, and parent. */ 3242 mas->node = mt_mk_node(newnode, mt); 3243 ma_set_meta(newnode, mt, 0, tmp); 3244 3245 new_left = mas_pop_node(mas); 3246 new_left->parent = left->parent; 3247 mt = mte_node_type(l_mas.node); 3248 slots = ma_slots(new_left, mt); 3249 pivs = ma_pivots(new_left, mt); 3250 memcpy(slots, l_slots, sizeof(void *) * split); 3251 memcpy(pivs, l_pivs, sizeof(unsigned long) * split); 3252 ma_set_meta(new_left, mt, 0, split); 3253 l_mas.node = mt_mk_node(new_left, mt); 3254 3255 /* replace parent. */ 3256 offset = mte_parent_slot(mas->node); 3257 mt = mas_parent_enum(&l_mas, l_mas.node); 3258 parent = mas_pop_node(mas); 3259 slots = ma_slots(parent, mt); 3260 pivs = ma_pivots(parent, mt); 3261 memcpy(parent, mte_to_node(eparent), sizeof(struct maple_node)); 3262 rcu_assign_pointer(slots[offset], mas->node); 3263 rcu_assign_pointer(slots[offset - 1], l_mas.node); 3264 pivs[offset - 1] = l_mas.max; 3265 eparent = mt_mk_node(parent, mt); 3266 done: 3267 gap = mas_leaf_max_gap(mas); 3268 mte_set_gap(eparent, mte_parent_slot(mas->node), gap); 3269 gap = mas_leaf_max_gap(&l_mas); 3270 mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap); 3271 mas_ascend(mas); 3272 3273 if (in_rcu) 3274 mas_replace(mas, false); 3275 3276 mas_update_gap(mas); 3277 } 3278 3279 /* 3280 * mas_split_final_node() - Split the final node in a subtree operation. 3281 * @mast: the maple subtree state 3282 * @mas: The maple state 3283 * @height: The height of the tree in case it's a new root. 3284 */ 3285 static inline bool mas_split_final_node(struct maple_subtree_state *mast, 3286 struct ma_state *mas, int height) 3287 { 3288 struct maple_enode *ancestor; 3289 3290 if (mte_is_root(mas->node)) { 3291 if (mt_is_alloc(mas->tree)) 3292 mast->bn->type = maple_arange_64; 3293 else 3294 mast->bn->type = maple_range_64; 3295 mas->depth = height; 3296 } 3297 /* 3298 * Only a single node is used here, could be root. 3299 * The Big_node data should just fit in a single node. 3300 */ 3301 ancestor = mas_new_ma_node(mas, mast->bn); 3302 mte_set_parent(mast->l->node, ancestor, mast->l->offset); 3303 mte_set_parent(mast->r->node, ancestor, mast->r->offset); 3304 mte_to_node(ancestor)->parent = mas_mn(mas)->parent; 3305 3306 mast->l->node = ancestor; 3307 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true); 3308 mas->offset = mast->bn->b_end - 1; 3309 return true; 3310 } 3311 3312 /* 3313 * mast_fill_bnode() - Copy data into the big node in the subtree state 3314 * @mast: The maple subtree state 3315 * @mas: the maple state 3316 * @skip: The number of entries to skip for new nodes insertion. 3317 */ 3318 static inline void mast_fill_bnode(struct maple_subtree_state *mast, 3319 struct ma_state *mas, 3320 unsigned char skip) 3321 { 3322 bool cp = true; 3323 struct maple_enode *old = mas->node; 3324 unsigned char split; 3325 3326 memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap)); 3327 memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot)); 3328 memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot)); 3329 mast->bn->b_end = 0; 3330 3331 if (mte_is_root(mas->node)) { 3332 cp = false; 3333 } else { 3334 mas_ascend(mas); 3335 mat_add(mast->free, old); 3336 mas->offset = mte_parent_slot(mas->node); 3337 } 3338 3339 if (cp && mast->l->offset) 3340 mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0); 3341 3342 split = mast->bn->b_end; 3343 mab_set_b_end(mast->bn, mast->l, mast->l->node); 3344 mast->r->offset = mast->bn->b_end; 3345 mab_set_b_end(mast->bn, mast->r, mast->r->node); 3346 if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max) 3347 cp = false; 3348 3349 if (cp) 3350 mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1, 3351 mast->bn, mast->bn->b_end); 3352 3353 mast->bn->b_end--; 3354 mast->bn->type = mte_node_type(mas->node); 3355 } 3356 3357 /* 3358 * mast_split_data() - Split the data in the subtree state big node into regular 3359 * nodes. 3360 * @mast: The maple subtree state 3361 * @mas: The maple state 3362 * @split: The location to split the big node 3363 */ 3364 static inline void mast_split_data(struct maple_subtree_state *mast, 3365 struct ma_state *mas, unsigned char split) 3366 { 3367 unsigned char p_slot; 3368 3369 mab_mas_cp(mast->bn, 0, split, mast->l, true); 3370 mte_set_pivot(mast->r->node, 0, mast->r->max); 3371 mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false); 3372 mast->l->offset = mte_parent_slot(mas->node); 3373 mast->l->max = mast->bn->pivot[split]; 3374 mast->r->min = mast->l->max + 1; 3375 if (mte_is_leaf(mas->node)) 3376 return; 3377 3378 p_slot = mast->orig_l->offset; 3379 mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node, 3380 &p_slot, split); 3381 mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node, 3382 &p_slot, split); 3383 } 3384 3385 /* 3386 * mas_push_data() - Instead of splitting a node, it is beneficial to push the 3387 * data to the right or left node if there is room. 3388 * @mas: The maple state 3389 * @height: The current height of the maple state 3390 * @mast: The maple subtree state 3391 * @left: Push left or not. 3392 * 3393 * Keeping the height of the tree low means faster lookups. 3394 * 3395 * Return: True if pushed, false otherwise. 3396 */ 3397 static inline bool mas_push_data(struct ma_state *mas, int height, 3398 struct maple_subtree_state *mast, bool left) 3399 { 3400 unsigned char slot_total = mast->bn->b_end; 3401 unsigned char end, space, split; 3402 3403 MA_STATE(tmp_mas, mas->tree, mas->index, mas->last); 3404 tmp_mas = *mas; 3405 tmp_mas.depth = mast->l->depth; 3406 3407 if (left && !mas_prev_sibling(&tmp_mas)) 3408 return false; 3409 else if (!left && !mas_next_sibling(&tmp_mas)) 3410 return false; 3411 3412 end = mas_data_end(&tmp_mas); 3413 slot_total += end; 3414 space = 2 * mt_slot_count(mas->node) - 2; 3415 /* -2 instead of -1 to ensure there isn't a triple split */ 3416 if (ma_is_leaf(mast->bn->type)) 3417 space--; 3418 3419 if (mas->max == ULONG_MAX) 3420 space--; 3421 3422 if (slot_total >= space) 3423 return false; 3424 3425 /* Get the data; Fill mast->bn */ 3426 mast->bn->b_end++; 3427 if (left) { 3428 mab_shift_right(mast->bn, end + 1); 3429 mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0); 3430 mast->bn->b_end = slot_total + 1; 3431 } else { 3432 mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end); 3433 } 3434 3435 /* Configure mast for splitting of mast->bn */ 3436 split = mt_slots[mast->bn->type] - 2; 3437 if (left) { 3438 /* Switch mas to prev node */ 3439 mat_add(mast->free, mas->node); 3440 *mas = tmp_mas; 3441 /* Start using mast->l for the left side. */ 3442 tmp_mas.node = mast->l->node; 3443 *mast->l = tmp_mas; 3444 } else { 3445 mat_add(mast->free, tmp_mas.node); 3446 tmp_mas.node = mast->r->node; 3447 *mast->r = tmp_mas; 3448 split = slot_total - split; 3449 } 3450 split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]); 3451 /* Update parent slot for split calculation. */ 3452 if (left) 3453 mast->orig_l->offset += end + 1; 3454 3455 mast_split_data(mast, mas, split); 3456 mast_fill_bnode(mast, mas, 2); 3457 mas_split_final_node(mast, mas, height + 1); 3458 return true; 3459 } 3460 3461 /* 3462 * mas_split() - Split data that is too big for one node into two. 3463 * @mas: The maple state 3464 * @b_node: The maple big node 3465 * Return: 1 on success, 0 on failure. 3466 */ 3467 static int mas_split(struct ma_state *mas, struct maple_big_node *b_node) 3468 { 3469 3470 struct maple_subtree_state mast; 3471 int height = 0; 3472 unsigned char mid_split, split = 0; 3473 3474 /* 3475 * Splitting is handled differently from any other B-tree; the Maple 3476 * Tree splits upwards. Splitting up means that the split operation 3477 * occurs when the walk of the tree hits the leaves and not on the way 3478 * down. The reason for splitting up is that it is impossible to know 3479 * how much space will be needed until the leaf is (or leaves are) 3480 * reached. Since overwriting data is allowed and a range could 3481 * overwrite more than one range or result in changing one entry into 3 3482 * entries, it is impossible to know if a split is required until the 3483 * data is examined. 3484 * 3485 * Splitting is a balancing act between keeping allocations to a minimum 3486 * and avoiding a 'jitter' event where a tree is expanded to make room 3487 * for an entry followed by a contraction when the entry is removed. To 3488 * accomplish the balance, there are empty slots remaining in both left 3489 * and right nodes after a split. 3490 */ 3491 MA_STATE(l_mas, mas->tree, mas->index, mas->last); 3492 MA_STATE(r_mas, mas->tree, mas->index, mas->last); 3493 MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last); 3494 MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last); 3495 MA_TOPIARY(mat, mas->tree); 3496 3497 trace_ma_op(__func__, mas); 3498 mas->depth = mas_mt_height(mas); 3499 /* Allocation failures will happen early. */ 3500 mas_node_count(mas, 1 + mas->depth * 2); 3501 if (mas_is_err(mas)) 3502 return 0; 3503 3504 mast.l = &l_mas; 3505 mast.r = &r_mas; 3506 mast.orig_l = &prev_l_mas; 3507 mast.orig_r = &prev_r_mas; 3508 mast.free = &mat; 3509 mast.bn = b_node; 3510 3511 while (height++ <= mas->depth) { 3512 if (mt_slots[b_node->type] > b_node->b_end) { 3513 mas_split_final_node(&mast, mas, height); 3514 break; 3515 } 3516 3517 l_mas = r_mas = *mas; 3518 l_mas.node = mas_new_ma_node(mas, b_node); 3519 r_mas.node = mas_new_ma_node(mas, b_node); 3520 /* 3521 * Another way that 'jitter' is avoided is to terminate a split up early if the 3522 * left or right node has space to spare. This is referred to as "pushing left" 3523 * or "pushing right" and is similar to the B* tree, except the nodes left or 3524 * right can rarely be reused due to RCU, but the ripple upwards is halted which 3525 * is a significant savings. 3526 */ 3527 /* Try to push left. */ 3528 if (mas_push_data(mas, height, &mast, true)) 3529 break; 3530 3531 /* Try to push right. */ 3532 if (mas_push_data(mas, height, &mast, false)) 3533 break; 3534 3535 split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min); 3536 mast_split_data(&mast, mas, split); 3537 /* 3538 * Usually correct, mab_mas_cp in the above call overwrites 3539 * r->max. 3540 */ 3541 mast.r->max = mas->max; 3542 mast_fill_bnode(&mast, mas, 1); 3543 prev_l_mas = *mast.l; 3544 prev_r_mas = *mast.r; 3545 } 3546 3547 /* Set the original node as dead */ 3548 mat_add(mast.free, mas->node); 3549 mas->node = l_mas.node; 3550 mas_wmb_replace(mas, mast.free, NULL); 3551 mtree_range_walk(mas); 3552 return 1; 3553 } 3554 3555 /* 3556 * mas_reuse_node() - Reuse the node to store the data. 3557 * @wr_mas: The maple write state 3558 * @bn: The maple big node 3559 * @end: The end of the data. 3560 * 3561 * Will always return false in RCU mode. 3562 * 3563 * Return: True if node was reused, false otherwise. 3564 */ 3565 static inline bool mas_reuse_node(struct ma_wr_state *wr_mas, 3566 struct maple_big_node *bn, unsigned char end) 3567 { 3568 /* Need to be rcu safe. */ 3569 if (mt_in_rcu(wr_mas->mas->tree)) 3570 return false; 3571 3572 if (end > bn->b_end) { 3573 int clear = mt_slots[wr_mas->type] - bn->b_end; 3574 3575 memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--); 3576 memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear); 3577 } 3578 mab_mas_cp(bn, 0, bn->b_end, wr_mas->mas, false); 3579 return true; 3580 } 3581 3582 /* 3583 * mas_commit_b_node() - Commit the big node into the tree. 3584 * @wr_mas: The maple write state 3585 * @b_node: The maple big node 3586 * @end: The end of the data. 3587 */ 3588 static inline int mas_commit_b_node(struct ma_wr_state *wr_mas, 3589 struct maple_big_node *b_node, unsigned char end) 3590 { 3591 struct maple_node *node; 3592 unsigned char b_end = b_node->b_end; 3593 enum maple_type b_type = b_node->type; 3594 3595 if ((b_end < mt_min_slots[b_type]) && 3596 (!mte_is_root(wr_mas->mas->node)) && 3597 (mas_mt_height(wr_mas->mas) > 1)) 3598 return mas_rebalance(wr_mas->mas, b_node); 3599 3600 if (b_end >= mt_slots[b_type]) 3601 return mas_split(wr_mas->mas, b_node); 3602 3603 if (mas_reuse_node(wr_mas, b_node, end)) 3604 goto reuse_node; 3605 3606 mas_node_count(wr_mas->mas, 1); 3607 if (mas_is_err(wr_mas->mas)) 3608 return 0; 3609 3610 node = mas_pop_node(wr_mas->mas); 3611 node->parent = mas_mn(wr_mas->mas)->parent; 3612 wr_mas->mas->node = mt_mk_node(node, b_type); 3613 mab_mas_cp(b_node, 0, b_end, wr_mas->mas, false); 3614 mas_replace(wr_mas->mas, false); 3615 reuse_node: 3616 mas_update_gap(wr_mas->mas); 3617 return 1; 3618 } 3619 3620 /* 3621 * mas_root_expand() - Expand a root to a node 3622 * @mas: The maple state 3623 * @entry: The entry to store into the tree 3624 */ 3625 static inline int mas_root_expand(struct ma_state *mas, void *entry) 3626 { 3627 void *contents = mas_root_locked(mas); 3628 enum maple_type type = maple_leaf_64; 3629 struct maple_node *node; 3630 void __rcu **slots; 3631 unsigned long *pivots; 3632 int slot = 0; 3633 3634 mas_node_count(mas, 1); 3635 if (unlikely(mas_is_err(mas))) 3636 return 0; 3637 3638 node = mas_pop_node(mas); 3639 pivots = ma_pivots(node, type); 3640 slots = ma_slots(node, type); 3641 node->parent = ma_parent_ptr( 3642 ((unsigned long)mas->tree | MA_ROOT_PARENT)); 3643 mas->node = mt_mk_node(node, type); 3644 3645 if (mas->index) { 3646 if (contents) { 3647 rcu_assign_pointer(slots[slot], contents); 3648 if (likely(mas->index > 1)) 3649 slot++; 3650 } 3651 pivots[slot++] = mas->index - 1; 3652 } 3653 3654 rcu_assign_pointer(slots[slot], entry); 3655 mas->offset = slot; 3656 pivots[slot] = mas->last; 3657 if (mas->last != ULONG_MAX) 3658 slot++; 3659 mas->depth = 1; 3660 mas_set_height(mas); 3661 3662 /* swap the new root into the tree */ 3663 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); 3664 ma_set_meta(node, maple_leaf_64, 0, slot); 3665 return slot; 3666 } 3667 3668 static inline void mas_store_root(struct ma_state *mas, void *entry) 3669 { 3670 if (likely((mas->last != 0) || (mas->index != 0))) 3671 mas_root_expand(mas, entry); 3672 else if (((unsigned long) (entry) & 3) == 2) 3673 mas_root_expand(mas, entry); 3674 else { 3675 rcu_assign_pointer(mas->tree->ma_root, entry); 3676 mas->node = MAS_START; 3677 } 3678 } 3679 3680 /* 3681 * mas_is_span_wr() - Check if the write needs to be treated as a write that 3682 * spans the node. 3683 * @mas: The maple state 3684 * @piv: The pivot value being written 3685 * @type: The maple node type 3686 * @entry: The data to write 3687 * 3688 * Spanning writes are writes that start in one node and end in another OR if 3689 * the write of a %NULL will cause the node to end with a %NULL. 3690 * 3691 * Return: True if this is a spanning write, false otherwise. 3692 */ 3693 static bool mas_is_span_wr(struct ma_wr_state *wr_mas) 3694 { 3695 unsigned long max; 3696 unsigned long last = wr_mas->mas->last; 3697 unsigned long piv = wr_mas->r_max; 3698 enum maple_type type = wr_mas->type; 3699 void *entry = wr_mas->entry; 3700 3701 /* Contained in this pivot */ 3702 if (piv > last) 3703 return false; 3704 3705 max = wr_mas->mas->max; 3706 if (unlikely(ma_is_leaf(type))) { 3707 /* Fits in the node, but may span slots. */ 3708 if (last < max) 3709 return false; 3710 3711 /* Writes to the end of the node but not null. */ 3712 if ((last == max) && entry) 3713 return false; 3714 3715 /* 3716 * Writing ULONG_MAX is not a spanning write regardless of the 3717 * value being written as long as the range fits in the node. 3718 */ 3719 if ((last == ULONG_MAX) && (last == max)) 3720 return false; 3721 } else if (piv == last) { 3722 if (entry) 3723 return false; 3724 3725 /* Detect spanning store wr walk */ 3726 if (last == ULONG_MAX) 3727 return false; 3728 } 3729 3730 trace_ma_write(__func__, wr_mas->mas, piv, entry); 3731 3732 return true; 3733 } 3734 3735 static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas) 3736 { 3737 wr_mas->type = mte_node_type(wr_mas->mas->node); 3738 mas_wr_node_walk(wr_mas); 3739 wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type); 3740 } 3741 3742 static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas) 3743 { 3744 wr_mas->mas->max = wr_mas->r_max; 3745 wr_mas->mas->min = wr_mas->r_min; 3746 wr_mas->mas->node = wr_mas->content; 3747 wr_mas->mas->offset = 0; 3748 wr_mas->mas->depth++; 3749 } 3750 /* 3751 * mas_wr_walk() - Walk the tree for a write. 3752 * @wr_mas: The maple write state 3753 * 3754 * Uses mas_slot_locked() and does not need to worry about dead nodes. 3755 * 3756 * Return: True if it's contained in a node, false on spanning write. 3757 */ 3758 static bool mas_wr_walk(struct ma_wr_state *wr_mas) 3759 { 3760 struct ma_state *mas = wr_mas->mas; 3761 3762 while (true) { 3763 mas_wr_walk_descend(wr_mas); 3764 if (unlikely(mas_is_span_wr(wr_mas))) 3765 return false; 3766 3767 wr_mas->content = mas_slot_locked(mas, wr_mas->slots, 3768 mas->offset); 3769 if (ma_is_leaf(wr_mas->type)) 3770 return true; 3771 3772 mas_wr_walk_traverse(wr_mas); 3773 } 3774 3775 return true; 3776 } 3777 3778 static bool mas_wr_walk_index(struct ma_wr_state *wr_mas) 3779 { 3780 struct ma_state *mas = wr_mas->mas; 3781 3782 while (true) { 3783 mas_wr_walk_descend(wr_mas); 3784 wr_mas->content = mas_slot_locked(mas, wr_mas->slots, 3785 mas->offset); 3786 if (ma_is_leaf(wr_mas->type)) 3787 return true; 3788 mas_wr_walk_traverse(wr_mas); 3789 3790 } 3791 return true; 3792 } 3793 /* 3794 * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs. 3795 * @l_wr_mas: The left maple write state 3796 * @r_wr_mas: The right maple write state 3797 */ 3798 static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas, 3799 struct ma_wr_state *r_wr_mas) 3800 { 3801 struct ma_state *r_mas = r_wr_mas->mas; 3802 struct ma_state *l_mas = l_wr_mas->mas; 3803 unsigned char l_slot; 3804 3805 l_slot = l_mas->offset; 3806 if (!l_wr_mas->content) 3807 l_mas->index = l_wr_mas->r_min; 3808 3809 if ((l_mas->index == l_wr_mas->r_min) && 3810 (l_slot && 3811 !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) { 3812 if (l_slot > 1) 3813 l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1; 3814 else 3815 l_mas->index = l_mas->min; 3816 3817 l_mas->offset = l_slot - 1; 3818 } 3819 3820 if (!r_wr_mas->content) { 3821 if (r_mas->last < r_wr_mas->r_max) 3822 r_mas->last = r_wr_mas->r_max; 3823 r_mas->offset++; 3824 } else if ((r_mas->last == r_wr_mas->r_max) && 3825 (r_mas->last < r_mas->max) && 3826 !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) { 3827 r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots, 3828 r_wr_mas->type, r_mas->offset + 1); 3829 r_mas->offset++; 3830 } 3831 } 3832 3833 static inline void *mas_state_walk(struct ma_state *mas) 3834 { 3835 void *entry; 3836 3837 entry = mas_start(mas); 3838 if (mas_is_none(mas)) 3839 return NULL; 3840 3841 if (mas_is_ptr(mas)) 3842 return entry; 3843 3844 return mtree_range_walk(mas); 3845 } 3846 3847 /* 3848 * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up 3849 * to date. 3850 * 3851 * @mas: The maple state. 3852 * 3853 * Note: Leaves mas in undesirable state. 3854 * Return: The entry for @mas->index or %NULL on dead node. 3855 */ 3856 static inline void *mtree_lookup_walk(struct ma_state *mas) 3857 { 3858 unsigned long *pivots; 3859 unsigned char offset; 3860 struct maple_node *node; 3861 struct maple_enode *next; 3862 enum maple_type type; 3863 void __rcu **slots; 3864 unsigned char end; 3865 unsigned long max; 3866 3867 next = mas->node; 3868 max = ULONG_MAX; 3869 do { 3870 offset = 0; 3871 node = mte_to_node(next); 3872 type = mte_node_type(next); 3873 pivots = ma_pivots(node, type); 3874 end = ma_data_end(node, type, pivots, max); 3875 if (unlikely(ma_dead_node(node))) 3876 goto dead_node; 3877 3878 if (pivots[offset] >= mas->index) 3879 goto next; 3880 3881 do { 3882 offset++; 3883 } while ((offset < end) && (pivots[offset] < mas->index)); 3884 3885 if (likely(offset > end)) 3886 max = pivots[offset]; 3887 3888 next: 3889 slots = ma_slots(node, type); 3890 next = mt_slot(mas->tree, slots, offset); 3891 if (unlikely(ma_dead_node(node))) 3892 goto dead_node; 3893 } while (!ma_is_leaf(type)); 3894 3895 return (void *) next; 3896 3897 dead_node: 3898 mas_reset(mas); 3899 return NULL; 3900 } 3901 3902 /* 3903 * mas_new_root() - Create a new root node that only contains the entry passed 3904 * in. 3905 * @mas: The maple state 3906 * @entry: The entry to store. 3907 * 3908 * Only valid when the index == 0 and the last == ULONG_MAX 3909 * 3910 * Return 0 on error, 1 on success. 3911 */ 3912 static inline int mas_new_root(struct ma_state *mas, void *entry) 3913 { 3914 struct maple_enode *root = mas_root_locked(mas); 3915 enum maple_type type = maple_leaf_64; 3916 struct maple_node *node; 3917 void __rcu **slots; 3918 unsigned long *pivots; 3919 3920 if (!entry && !mas->index && mas->last == ULONG_MAX) { 3921 mas->depth = 0; 3922 mas_set_height(mas); 3923 rcu_assign_pointer(mas->tree->ma_root, entry); 3924 mas->node = MAS_START; 3925 goto done; 3926 } 3927 3928 mas_node_count(mas, 1); 3929 if (mas_is_err(mas)) 3930 return 0; 3931 3932 node = mas_pop_node(mas); 3933 pivots = ma_pivots(node, type); 3934 slots = ma_slots(node, type); 3935 node->parent = ma_parent_ptr( 3936 ((unsigned long)mas->tree | MA_ROOT_PARENT)); 3937 mas->node = mt_mk_node(node, type); 3938 rcu_assign_pointer(slots[0], entry); 3939 pivots[0] = mas->last; 3940 mas->depth = 1; 3941 mas_set_height(mas); 3942 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); 3943 3944 done: 3945 if (xa_is_node(root)) 3946 mte_destroy_walk(root, mas->tree); 3947 3948 return 1; 3949 } 3950 /* 3951 * mas_wr_spanning_store() - Create a subtree with the store operation completed 3952 * and new nodes where necessary, then place the sub-tree in the actual tree. 3953 * Note that mas is expected to point to the node which caused the store to 3954 * span. 3955 * @wr_mas: The maple write state 3956 * 3957 * Return: 0 on error, positive on success. 3958 */ 3959 static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas) 3960 { 3961 struct maple_subtree_state mast; 3962 struct maple_big_node b_node; 3963 struct ma_state *mas; 3964 unsigned char height; 3965 3966 /* Left and Right side of spanning store */ 3967 MA_STATE(l_mas, NULL, 0, 0); 3968 MA_STATE(r_mas, NULL, 0, 0); 3969 3970 MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry); 3971 MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry); 3972 3973 /* 3974 * A store operation that spans multiple nodes is called a spanning 3975 * store and is handled early in the store call stack by the function 3976 * mas_is_span_wr(). When a spanning store is identified, the maple 3977 * state is duplicated. The first maple state walks the left tree path 3978 * to ``index``, the duplicate walks the right tree path to ``last``. 3979 * The data in the two nodes are combined into a single node, two nodes, 3980 * or possibly three nodes (see the 3-way split above). A ``NULL`` 3981 * written to the last entry of a node is considered a spanning store as 3982 * a rebalance is required for the operation to complete and an overflow 3983 * of data may happen. 3984 */ 3985 mas = wr_mas->mas; 3986 trace_ma_op(__func__, mas); 3987 3988 if (unlikely(!mas->index && mas->last == ULONG_MAX)) 3989 return mas_new_root(mas, wr_mas->entry); 3990 /* 3991 * Node rebalancing may occur due to this store, so there may be three new 3992 * entries per level plus a new root. 3993 */ 3994 height = mas_mt_height(mas); 3995 mas_node_count(mas, 1 + height * 3); 3996 if (mas_is_err(mas)) 3997 return 0; 3998 3999 /* 4000 * Set up right side. Need to get to the next offset after the spanning 4001 * store to ensure it's not NULL and to combine both the next node and 4002 * the node with the start together. 4003 */ 4004 r_mas = *mas; 4005 /* Avoid overflow, walk to next slot in the tree. */ 4006 if (r_mas.last + 1) 4007 r_mas.last++; 4008 4009 r_mas.index = r_mas.last; 4010 mas_wr_walk_index(&r_wr_mas); 4011 r_mas.last = r_mas.index = mas->last; 4012 4013 /* Set up left side. */ 4014 l_mas = *mas; 4015 mas_wr_walk_index(&l_wr_mas); 4016 4017 if (!wr_mas->entry) { 4018 mas_extend_spanning_null(&l_wr_mas, &r_wr_mas); 4019 mas->offset = l_mas.offset; 4020 mas->index = l_mas.index; 4021 mas->last = l_mas.last = r_mas.last; 4022 } 4023 4024 /* expanding NULLs may make this cover the entire range */ 4025 if (!l_mas.index && r_mas.last == ULONG_MAX) { 4026 mas_set_range(mas, 0, ULONG_MAX); 4027 return mas_new_root(mas, wr_mas->entry); 4028 } 4029 4030 memset(&b_node, 0, sizeof(struct maple_big_node)); 4031 /* Copy l_mas and store the value in b_node. */ 4032 mas_store_b_node(&l_wr_mas, &b_node, l_wr_mas.node_end); 4033 /* Copy r_mas into b_node. */ 4034 if (r_mas.offset <= r_wr_mas.node_end) 4035 mas_mab_cp(&r_mas, r_mas.offset, r_wr_mas.node_end, 4036 &b_node, b_node.b_end + 1); 4037 else 4038 b_node.b_end++; 4039 4040 /* Stop spanning searches by searching for just index. */ 4041 l_mas.index = l_mas.last = mas->index; 4042 4043 mast.bn = &b_node; 4044 mast.orig_l = &l_mas; 4045 mast.orig_r = &r_mas; 4046 /* Combine l_mas and r_mas and split them up evenly again. */ 4047 return mas_spanning_rebalance(mas, &mast, height + 1); 4048 } 4049 4050 /* 4051 * mas_wr_node_store() - Attempt to store the value in a node 4052 * @wr_mas: The maple write state 4053 * 4054 * Attempts to reuse the node, but may allocate. 4055 * 4056 * Return: True if stored, false otherwise 4057 */ 4058 static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas) 4059 { 4060 struct ma_state *mas = wr_mas->mas; 4061 void __rcu **dst_slots; 4062 unsigned long *dst_pivots; 4063 unsigned char dst_offset; 4064 unsigned char new_end = wr_mas->node_end; 4065 unsigned char offset; 4066 unsigned char node_slots = mt_slots[wr_mas->type]; 4067 struct maple_node reuse, *newnode; 4068 unsigned char copy_size, max_piv = mt_pivots[wr_mas->type]; 4069 bool in_rcu = mt_in_rcu(mas->tree); 4070 4071 offset = mas->offset; 4072 if (mas->last == wr_mas->r_max) { 4073 /* runs right to the end of the node */ 4074 if (mas->last == mas->max) 4075 new_end = offset; 4076 /* don't copy this offset */ 4077 wr_mas->offset_end++; 4078 } else if (mas->last < wr_mas->r_max) { 4079 /* new range ends in this range */ 4080 if (unlikely(wr_mas->r_max == ULONG_MAX)) 4081 mas_bulk_rebalance(mas, wr_mas->node_end, wr_mas->type); 4082 4083 new_end++; 4084 } else { 4085 if (wr_mas->end_piv == mas->last) 4086 wr_mas->offset_end++; 4087 4088 new_end -= wr_mas->offset_end - offset - 1; 4089 } 4090 4091 /* new range starts within a range */ 4092 if (wr_mas->r_min < mas->index) 4093 new_end++; 4094 4095 /* Not enough room */ 4096 if (new_end >= node_slots) 4097 return false; 4098 4099 /* Not enough data. */ 4100 if (!mte_is_root(mas->node) && (new_end <= mt_min_slots[wr_mas->type]) && 4101 !(mas->mas_flags & MA_STATE_BULK)) 4102 return false; 4103 4104 /* set up node. */ 4105 if (in_rcu) { 4106 mas_node_count(mas, 1); 4107 if (mas_is_err(mas)) 4108 return false; 4109 4110 newnode = mas_pop_node(mas); 4111 } else { 4112 memset(&reuse, 0, sizeof(struct maple_node)); 4113 newnode = &reuse; 4114 } 4115 4116 newnode->parent = mas_mn(mas)->parent; 4117 dst_pivots = ma_pivots(newnode, wr_mas->type); 4118 dst_slots = ma_slots(newnode, wr_mas->type); 4119 /* Copy from start to insert point */ 4120 memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * (offset + 1)); 4121 memcpy(dst_slots, wr_mas->slots, sizeof(void *) * (offset + 1)); 4122 dst_offset = offset; 4123 4124 /* Handle insert of new range starting after old range */ 4125 if (wr_mas->r_min < mas->index) { 4126 mas->offset++; 4127 rcu_assign_pointer(dst_slots[dst_offset], wr_mas->content); 4128 dst_pivots[dst_offset++] = mas->index - 1; 4129 } 4130 4131 /* Store the new entry and range end. */ 4132 if (dst_offset < max_piv) 4133 dst_pivots[dst_offset] = mas->last; 4134 mas->offset = dst_offset; 4135 rcu_assign_pointer(dst_slots[dst_offset], wr_mas->entry); 4136 4137 /* 4138 * this range wrote to the end of the node or it overwrote the rest of 4139 * the data 4140 */ 4141 if (wr_mas->offset_end > wr_mas->node_end || mas->last >= mas->max) { 4142 new_end = dst_offset; 4143 goto done; 4144 } 4145 4146 dst_offset++; 4147 /* Copy to the end of node if necessary. */ 4148 copy_size = wr_mas->node_end - wr_mas->offset_end + 1; 4149 memcpy(dst_slots + dst_offset, wr_mas->slots + wr_mas->offset_end, 4150 sizeof(void *) * copy_size); 4151 if (dst_offset < max_piv) { 4152 if (copy_size > max_piv - dst_offset) 4153 copy_size = max_piv - dst_offset; 4154 4155 memcpy(dst_pivots + dst_offset, 4156 wr_mas->pivots + wr_mas->offset_end, 4157 sizeof(unsigned long) * copy_size); 4158 } 4159 4160 if ((wr_mas->node_end == node_slots - 1) && (new_end < node_slots - 1)) 4161 dst_pivots[new_end] = mas->max; 4162 4163 done: 4164 mas_leaf_set_meta(mas, newnode, dst_pivots, maple_leaf_64, new_end); 4165 if (in_rcu) { 4166 mas->node = mt_mk_node(newnode, wr_mas->type); 4167 mas_replace(mas, false); 4168 } else { 4169 memcpy(wr_mas->node, newnode, sizeof(struct maple_node)); 4170 } 4171 trace_ma_write(__func__, mas, 0, wr_mas->entry); 4172 mas_update_gap(mas); 4173 return true; 4174 } 4175 4176 /* 4177 * mas_wr_slot_store: Attempt to store a value in a slot. 4178 * @wr_mas: the maple write state 4179 * 4180 * Return: True if stored, false otherwise 4181 */ 4182 static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas) 4183 { 4184 struct ma_state *mas = wr_mas->mas; 4185 unsigned long lmax; /* Logical max. */ 4186 unsigned char offset = mas->offset; 4187 4188 if ((wr_mas->r_max > mas->last) && ((wr_mas->r_min != mas->index) || 4189 (offset != wr_mas->node_end))) 4190 return false; 4191 4192 if (offset == wr_mas->node_end - 1) 4193 lmax = mas->max; 4194 else 4195 lmax = wr_mas->pivots[offset + 1]; 4196 4197 /* going to overwrite too many slots. */ 4198 if (lmax < mas->last) 4199 return false; 4200 4201 if (wr_mas->r_min == mas->index) { 4202 /* overwriting two or more ranges with one. */ 4203 if (lmax == mas->last) 4204 return false; 4205 4206 /* Overwriting all of offset and a portion of offset + 1. */ 4207 rcu_assign_pointer(wr_mas->slots[offset], wr_mas->entry); 4208 wr_mas->pivots[offset] = mas->last; 4209 goto done; 4210 } 4211 4212 /* Doesn't end on the next range end. */ 4213 if (lmax != mas->last) 4214 return false; 4215 4216 /* Overwriting a portion of offset and all of offset + 1 */ 4217 if ((offset + 1 < mt_pivots[wr_mas->type]) && 4218 (wr_mas->entry || wr_mas->pivots[offset + 1])) 4219 wr_mas->pivots[offset + 1] = mas->last; 4220 4221 rcu_assign_pointer(wr_mas->slots[offset + 1], wr_mas->entry); 4222 wr_mas->pivots[offset] = mas->index - 1; 4223 mas->offset++; /* Keep mas accurate. */ 4224 4225 done: 4226 trace_ma_write(__func__, mas, 0, wr_mas->entry); 4227 mas_update_gap(mas); 4228 return true; 4229 } 4230 4231 static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas) 4232 { 4233 while ((wr_mas->mas->last > wr_mas->end_piv) && 4234 (wr_mas->offset_end < wr_mas->node_end)) 4235 wr_mas->end_piv = wr_mas->pivots[++wr_mas->offset_end]; 4236 4237 if (wr_mas->mas->last > wr_mas->end_piv) 4238 wr_mas->end_piv = wr_mas->mas->max; 4239 } 4240 4241 static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas) 4242 { 4243 struct ma_state *mas = wr_mas->mas; 4244 4245 if (mas->last < wr_mas->end_piv && !wr_mas->slots[wr_mas->offset_end]) 4246 mas->last = wr_mas->end_piv; 4247 4248 /* Check next slot(s) if we are overwriting the end */ 4249 if ((mas->last == wr_mas->end_piv) && 4250 (wr_mas->node_end != wr_mas->offset_end) && 4251 !wr_mas->slots[wr_mas->offset_end + 1]) { 4252 wr_mas->offset_end++; 4253 if (wr_mas->offset_end == wr_mas->node_end) 4254 mas->last = mas->max; 4255 else 4256 mas->last = wr_mas->pivots[wr_mas->offset_end]; 4257 wr_mas->end_piv = mas->last; 4258 } 4259 4260 if (!wr_mas->content) { 4261 /* If this one is null, the next and prev are not */ 4262 mas->index = wr_mas->r_min; 4263 } else { 4264 /* Check prev slot if we are overwriting the start */ 4265 if (mas->index == wr_mas->r_min && mas->offset && 4266 !wr_mas->slots[mas->offset - 1]) { 4267 mas->offset--; 4268 wr_mas->r_min = mas->index = 4269 mas_safe_min(mas, wr_mas->pivots, mas->offset); 4270 wr_mas->r_max = wr_mas->pivots[mas->offset]; 4271 } 4272 } 4273 } 4274 4275 static inline bool mas_wr_append(struct ma_wr_state *wr_mas) 4276 { 4277 unsigned char end = wr_mas->node_end; 4278 unsigned char new_end = end + 1; 4279 struct ma_state *mas = wr_mas->mas; 4280 unsigned char node_pivots = mt_pivots[wr_mas->type]; 4281 4282 if ((mas->index != wr_mas->r_min) && (mas->last == wr_mas->r_max)) { 4283 if (new_end < node_pivots) 4284 wr_mas->pivots[new_end] = wr_mas->pivots[end]; 4285 4286 if (new_end < node_pivots) 4287 ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end); 4288 4289 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->entry); 4290 mas->offset = new_end; 4291 wr_mas->pivots[end] = mas->index - 1; 4292 4293 return true; 4294 } 4295 4296 if ((mas->index == wr_mas->r_min) && (mas->last < wr_mas->r_max)) { 4297 if (new_end < node_pivots) 4298 wr_mas->pivots[new_end] = wr_mas->pivots[end]; 4299 4300 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->content); 4301 if (new_end < node_pivots) 4302 ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end); 4303 4304 wr_mas->pivots[end] = mas->last; 4305 rcu_assign_pointer(wr_mas->slots[end], wr_mas->entry); 4306 return true; 4307 } 4308 4309 return false; 4310 } 4311 4312 /* 4313 * mas_wr_bnode() - Slow path for a modification. 4314 * @wr_mas: The write maple state 4315 * 4316 * This is where split, rebalance end up. 4317 */ 4318 static void mas_wr_bnode(struct ma_wr_state *wr_mas) 4319 { 4320 struct maple_big_node b_node; 4321 4322 trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry); 4323 memset(&b_node, 0, sizeof(struct maple_big_node)); 4324 mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end); 4325 mas_commit_b_node(wr_mas, &b_node, wr_mas->node_end); 4326 } 4327 4328 static inline void mas_wr_modify(struct ma_wr_state *wr_mas) 4329 { 4330 unsigned char node_slots; 4331 unsigned char node_size; 4332 struct ma_state *mas = wr_mas->mas; 4333 4334 /* Direct replacement */ 4335 if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) { 4336 rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry); 4337 if (!!wr_mas->entry ^ !!wr_mas->content) 4338 mas_update_gap(mas); 4339 return; 4340 } 4341 4342 /* Attempt to append */ 4343 node_slots = mt_slots[wr_mas->type]; 4344 node_size = wr_mas->node_end - wr_mas->offset_end + mas->offset + 2; 4345 if (mas->max == ULONG_MAX) 4346 node_size++; 4347 4348 /* slot and node store will not fit, go to the slow path */ 4349 if (unlikely(node_size >= node_slots)) 4350 goto slow_path; 4351 4352 if (wr_mas->entry && (wr_mas->node_end < node_slots - 1) && 4353 (mas->offset == wr_mas->node_end) && mas_wr_append(wr_mas)) { 4354 if (!wr_mas->content || !wr_mas->entry) 4355 mas_update_gap(mas); 4356 return; 4357 } 4358 4359 if ((wr_mas->offset_end - mas->offset <= 1) && mas_wr_slot_store(wr_mas)) 4360 return; 4361 else if (mas_wr_node_store(wr_mas)) 4362 return; 4363 4364 if (mas_is_err(mas)) 4365 return; 4366 4367 slow_path: 4368 mas_wr_bnode(wr_mas); 4369 } 4370 4371 /* 4372 * mas_wr_store_entry() - Internal call to store a value 4373 * @mas: The maple state 4374 * @entry: The entry to store. 4375 * 4376 * Return: The contents that was stored at the index. 4377 */ 4378 static inline void *mas_wr_store_entry(struct ma_wr_state *wr_mas) 4379 { 4380 struct ma_state *mas = wr_mas->mas; 4381 4382 wr_mas->content = mas_start(mas); 4383 if (mas_is_none(mas) || mas_is_ptr(mas)) { 4384 mas_store_root(mas, wr_mas->entry); 4385 return wr_mas->content; 4386 } 4387 4388 if (unlikely(!mas_wr_walk(wr_mas))) { 4389 mas_wr_spanning_store(wr_mas); 4390 return wr_mas->content; 4391 } 4392 4393 /* At this point, we are at the leaf node that needs to be altered. */ 4394 wr_mas->end_piv = wr_mas->r_max; 4395 mas_wr_end_piv(wr_mas); 4396 4397 if (!wr_mas->entry) 4398 mas_wr_extend_null(wr_mas); 4399 4400 /* New root for a single pointer */ 4401 if (unlikely(!mas->index && mas->last == ULONG_MAX)) { 4402 mas_new_root(mas, wr_mas->entry); 4403 return wr_mas->content; 4404 } 4405 4406 mas_wr_modify(wr_mas); 4407 return wr_mas->content; 4408 } 4409 4410 /** 4411 * mas_insert() - Internal call to insert a value 4412 * @mas: The maple state 4413 * @entry: The entry to store 4414 * 4415 * Return: %NULL or the contents that already exists at the requested index 4416 * otherwise. The maple state needs to be checked for error conditions. 4417 */ 4418 static inline void *mas_insert(struct ma_state *mas, void *entry) 4419 { 4420 MA_WR_STATE(wr_mas, mas, entry); 4421 4422 /* 4423 * Inserting a new range inserts either 0, 1, or 2 pivots within the 4424 * tree. If the insert fits exactly into an existing gap with a value 4425 * of NULL, then the slot only needs to be written with the new value. 4426 * If the range being inserted is adjacent to another range, then only a 4427 * single pivot needs to be inserted (as well as writing the entry). If 4428 * the new range is within a gap but does not touch any other ranges, 4429 * then two pivots need to be inserted: the start - 1, and the end. As 4430 * usual, the entry must be written. Most operations require a new node 4431 * to be allocated and replace an existing node to ensure RCU safety, 4432 * when in RCU mode. The exception to requiring a newly allocated node 4433 * is when inserting at the end of a node (appending). When done 4434 * carefully, appending can reuse the node in place. 4435 */ 4436 wr_mas.content = mas_start(mas); 4437 if (wr_mas.content) 4438 goto exists; 4439 4440 if (mas_is_none(mas) || mas_is_ptr(mas)) { 4441 mas_store_root(mas, entry); 4442 return NULL; 4443 } 4444 4445 /* spanning writes always overwrite something */ 4446 if (!mas_wr_walk(&wr_mas)) 4447 goto exists; 4448 4449 /* At this point, we are at the leaf node that needs to be altered. */ 4450 wr_mas.offset_end = mas->offset; 4451 wr_mas.end_piv = wr_mas.r_max; 4452 4453 if (wr_mas.content || (mas->last > wr_mas.r_max)) 4454 goto exists; 4455 4456 if (!entry) 4457 return NULL; 4458 4459 mas_wr_modify(&wr_mas); 4460 return wr_mas.content; 4461 4462 exists: 4463 mas_set_err(mas, -EEXIST); 4464 return wr_mas.content; 4465 4466 } 4467 4468 /* 4469 * mas_prev_node() - Find the prev non-null entry at the same level in the 4470 * tree. The prev value will be mas->node[mas->offset] or MAS_NONE. 4471 * @mas: The maple state 4472 * @min: The lower limit to search 4473 * 4474 * The prev node value will be mas->node[mas->offset] or MAS_NONE. 4475 * Return: 1 if the node is dead, 0 otherwise. 4476 */ 4477 static inline int mas_prev_node(struct ma_state *mas, unsigned long min) 4478 { 4479 enum maple_type mt; 4480 int offset, level; 4481 void __rcu **slots; 4482 struct maple_node *node; 4483 struct maple_enode *enode; 4484 unsigned long *pivots; 4485 4486 if (mas_is_none(mas)) 4487 return 0; 4488 4489 level = 0; 4490 do { 4491 node = mas_mn(mas); 4492 if (ma_is_root(node)) 4493 goto no_entry; 4494 4495 /* Walk up. */ 4496 if (unlikely(mas_ascend(mas))) 4497 return 1; 4498 offset = mas->offset; 4499 level++; 4500 } while (!offset); 4501 4502 offset--; 4503 mt = mte_node_type(mas->node); 4504 node = mas_mn(mas); 4505 slots = ma_slots(node, mt); 4506 pivots = ma_pivots(node, mt); 4507 mas->max = pivots[offset]; 4508 if (offset) 4509 mas->min = pivots[offset - 1] + 1; 4510 if (unlikely(ma_dead_node(node))) 4511 return 1; 4512 4513 if (mas->max < min) 4514 goto no_entry_min; 4515 4516 while (level > 1) { 4517 level--; 4518 enode = mas_slot(mas, slots, offset); 4519 if (unlikely(ma_dead_node(node))) 4520 return 1; 4521 4522 mas->node = enode; 4523 mt = mte_node_type(mas->node); 4524 node = mas_mn(mas); 4525 slots = ma_slots(node, mt); 4526 pivots = ma_pivots(node, mt); 4527 offset = ma_data_end(node, mt, pivots, mas->max); 4528 if (offset) 4529 mas->min = pivots[offset - 1] + 1; 4530 4531 if (offset < mt_pivots[mt]) 4532 mas->max = pivots[offset]; 4533 4534 if (mas->max < min) 4535 goto no_entry; 4536 } 4537 4538 mas->node = mas_slot(mas, slots, offset); 4539 if (unlikely(ma_dead_node(node))) 4540 return 1; 4541 4542 mas->offset = mas_data_end(mas); 4543 if (unlikely(mte_dead_node(mas->node))) 4544 return 1; 4545 4546 return 0; 4547 4548 no_entry_min: 4549 mas->offset = offset; 4550 if (offset) 4551 mas->min = pivots[offset - 1] + 1; 4552 no_entry: 4553 if (unlikely(ma_dead_node(node))) 4554 return 1; 4555 4556 mas->node = MAS_NONE; 4557 return 0; 4558 } 4559 4560 /* 4561 * mas_next_node() - Get the next node at the same level in the tree. 4562 * @mas: The maple state 4563 * @max: The maximum pivot value to check. 4564 * 4565 * The next value will be mas->node[mas->offset] or MAS_NONE. 4566 * Return: 1 on dead node, 0 otherwise. 4567 */ 4568 static inline int mas_next_node(struct ma_state *mas, struct maple_node *node, 4569 unsigned long max) 4570 { 4571 unsigned long min, pivot; 4572 unsigned long *pivots; 4573 struct maple_enode *enode; 4574 int level = 0; 4575 unsigned char offset; 4576 enum maple_type mt; 4577 void __rcu **slots; 4578 4579 if (mas->max >= max) 4580 goto no_entry; 4581 4582 level = 0; 4583 do { 4584 if (ma_is_root(node)) 4585 goto no_entry; 4586 4587 min = mas->max + 1; 4588 if (min > max) 4589 goto no_entry; 4590 4591 if (unlikely(mas_ascend(mas))) 4592 return 1; 4593 4594 offset = mas->offset; 4595 level++; 4596 node = mas_mn(mas); 4597 mt = mte_node_type(mas->node); 4598 pivots = ma_pivots(node, mt); 4599 } while (unlikely(offset == ma_data_end(node, mt, pivots, mas->max))); 4600 4601 slots = ma_slots(node, mt); 4602 pivot = mas_safe_pivot(mas, pivots, ++offset, mt); 4603 while (unlikely(level > 1)) { 4604 /* Descend, if necessary */ 4605 enode = mas_slot(mas, slots, offset); 4606 if (unlikely(ma_dead_node(node))) 4607 return 1; 4608 4609 mas->node = enode; 4610 level--; 4611 node = mas_mn(mas); 4612 mt = mte_node_type(mas->node); 4613 slots = ma_slots(node, mt); 4614 pivots = ma_pivots(node, mt); 4615 offset = 0; 4616 pivot = pivots[0]; 4617 } 4618 4619 enode = mas_slot(mas, slots, offset); 4620 if (unlikely(ma_dead_node(node))) 4621 return 1; 4622 4623 mas->node = enode; 4624 mas->min = min; 4625 mas->max = pivot; 4626 return 0; 4627 4628 no_entry: 4629 if (unlikely(ma_dead_node(node))) 4630 return 1; 4631 4632 mas->node = MAS_NONE; 4633 return 0; 4634 } 4635 4636 /* 4637 * mas_next_nentry() - Get the next node entry 4638 * @mas: The maple state 4639 * @max: The maximum value to check 4640 * @*range_start: Pointer to store the start of the range. 4641 * 4642 * Sets @mas->offset to the offset of the next node entry, @mas->last to the 4643 * pivot of the entry. 4644 * 4645 * Return: The next entry, %NULL otherwise 4646 */ 4647 static inline void *mas_next_nentry(struct ma_state *mas, 4648 struct maple_node *node, unsigned long max, enum maple_type type) 4649 { 4650 unsigned char count; 4651 unsigned long pivot; 4652 unsigned long *pivots; 4653 void __rcu **slots; 4654 void *entry; 4655 4656 if (mas->last == mas->max) { 4657 mas->index = mas->max; 4658 return NULL; 4659 } 4660 4661 pivots = ma_pivots(node, type); 4662 slots = ma_slots(node, type); 4663 mas->index = mas_safe_min(mas, pivots, mas->offset); 4664 if (ma_dead_node(node)) 4665 return NULL; 4666 4667 if (mas->index > max) 4668 return NULL; 4669 4670 count = ma_data_end(node, type, pivots, mas->max); 4671 if (mas->offset > count) 4672 return NULL; 4673 4674 while (mas->offset < count) { 4675 pivot = pivots[mas->offset]; 4676 entry = mas_slot(mas, slots, mas->offset); 4677 if (ma_dead_node(node)) 4678 return NULL; 4679 4680 if (entry) 4681 goto found; 4682 4683 if (pivot >= max) 4684 return NULL; 4685 4686 mas->index = pivot + 1; 4687 mas->offset++; 4688 } 4689 4690 if (mas->index > mas->max) { 4691 mas->index = mas->last; 4692 return NULL; 4693 } 4694 4695 pivot = mas_safe_pivot(mas, pivots, mas->offset, type); 4696 entry = mas_slot(mas, slots, mas->offset); 4697 if (ma_dead_node(node)) 4698 return NULL; 4699 4700 if (!pivot) 4701 return NULL; 4702 4703 if (!entry) 4704 return NULL; 4705 4706 found: 4707 mas->last = pivot; 4708 return entry; 4709 } 4710 4711 static inline void mas_rewalk(struct ma_state *mas, unsigned long index) 4712 { 4713 4714 retry: 4715 mas_set(mas, index); 4716 mas_state_walk(mas); 4717 if (mas_is_start(mas)) 4718 goto retry; 4719 4720 return; 4721 4722 } 4723 4724 /* 4725 * mas_next_entry() - Internal function to get the next entry. 4726 * @mas: The maple state 4727 * @limit: The maximum range start. 4728 * 4729 * Set the @mas->node to the next entry and the range_start to 4730 * the beginning value for the entry. Does not check beyond @limit. 4731 * Sets @mas->index and @mas->last to the limit if it is hit. 4732 * Restarts on dead nodes. 4733 * 4734 * Return: the next entry or %NULL. 4735 */ 4736 static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit) 4737 { 4738 void *entry = NULL; 4739 struct maple_enode *prev_node; 4740 struct maple_node *node; 4741 unsigned char offset; 4742 unsigned long last; 4743 enum maple_type mt; 4744 4745 last = mas->last; 4746 retry: 4747 offset = mas->offset; 4748 prev_node = mas->node; 4749 node = mas_mn(mas); 4750 mt = mte_node_type(mas->node); 4751 mas->offset++; 4752 if (unlikely(mas->offset >= mt_slots[mt])) { 4753 mas->offset = mt_slots[mt] - 1; 4754 goto next_node; 4755 } 4756 4757 while (!mas_is_none(mas)) { 4758 entry = mas_next_nentry(mas, node, limit, mt); 4759 if (unlikely(ma_dead_node(node))) { 4760 mas_rewalk(mas, last); 4761 goto retry; 4762 } 4763 4764 if (likely(entry)) 4765 return entry; 4766 4767 if (unlikely((mas->index > limit))) 4768 break; 4769 4770 next_node: 4771 prev_node = mas->node; 4772 offset = mas->offset; 4773 if (unlikely(mas_next_node(mas, node, limit))) { 4774 mas_rewalk(mas, last); 4775 goto retry; 4776 } 4777 mas->offset = 0; 4778 node = mas_mn(mas); 4779 mt = mte_node_type(mas->node); 4780 } 4781 4782 mas->index = mas->last = limit; 4783 mas->offset = offset; 4784 mas->node = prev_node; 4785 return NULL; 4786 } 4787 4788 /* 4789 * mas_prev_nentry() - Get the previous node entry. 4790 * @mas: The maple state. 4791 * @limit: The lower limit to check for a value. 4792 * 4793 * Return: the entry, %NULL otherwise. 4794 */ 4795 static inline void *mas_prev_nentry(struct ma_state *mas, unsigned long limit, 4796 unsigned long index) 4797 { 4798 unsigned long pivot, min; 4799 unsigned char offset; 4800 struct maple_node *mn; 4801 enum maple_type mt; 4802 unsigned long *pivots; 4803 void __rcu **slots; 4804 void *entry; 4805 4806 retry: 4807 if (!mas->offset) 4808 return NULL; 4809 4810 mn = mas_mn(mas); 4811 mt = mte_node_type(mas->node); 4812 offset = mas->offset - 1; 4813 if (offset >= mt_slots[mt]) 4814 offset = mt_slots[mt] - 1; 4815 4816 slots = ma_slots(mn, mt); 4817 pivots = ma_pivots(mn, mt); 4818 if (offset == mt_pivots[mt]) 4819 pivot = mas->max; 4820 else 4821 pivot = pivots[offset]; 4822 4823 if (unlikely(ma_dead_node(mn))) { 4824 mas_rewalk(mas, index); 4825 goto retry; 4826 } 4827 4828 while (offset && ((!mas_slot(mas, slots, offset) && pivot >= limit) || 4829 !pivot)) 4830 pivot = pivots[--offset]; 4831 4832 min = mas_safe_min(mas, pivots, offset); 4833 entry = mas_slot(mas, slots, offset); 4834 if (unlikely(ma_dead_node(mn))) { 4835 mas_rewalk(mas, index); 4836 goto retry; 4837 } 4838 4839 if (likely(entry)) { 4840 mas->offset = offset; 4841 mas->last = pivot; 4842 mas->index = min; 4843 } 4844 return entry; 4845 } 4846 4847 static inline void *mas_prev_entry(struct ma_state *mas, unsigned long min) 4848 { 4849 void *entry; 4850 4851 retry: 4852 while (likely(!mas_is_none(mas))) { 4853 entry = mas_prev_nentry(mas, min, mas->index); 4854 if (unlikely(mas->last < min)) 4855 goto not_found; 4856 4857 if (likely(entry)) 4858 return entry; 4859 4860 if (unlikely(mas_prev_node(mas, min))) { 4861 mas_rewalk(mas, mas->index); 4862 goto retry; 4863 } 4864 4865 mas->offset++; 4866 } 4867 4868 mas->offset--; 4869 not_found: 4870 mas->index = mas->last = min; 4871 return NULL; 4872 } 4873 4874 /* 4875 * mas_rev_awalk() - Internal function. Reverse allocation walk. Find the 4876 * highest gap address of a given size in a given node and descend. 4877 * @mas: The maple state 4878 * @size: The needed size. 4879 * 4880 * Return: True if found in a leaf, false otherwise. 4881 * 4882 */ 4883 static bool mas_rev_awalk(struct ma_state *mas, unsigned long size) 4884 { 4885 enum maple_type type = mte_node_type(mas->node); 4886 struct maple_node *node = mas_mn(mas); 4887 unsigned long *pivots, *gaps; 4888 void __rcu **slots; 4889 unsigned long gap = 0; 4890 unsigned long max, min, index; 4891 unsigned char offset; 4892 4893 if (unlikely(mas_is_err(mas))) 4894 return true; 4895 4896 if (ma_is_dense(type)) { 4897 /* dense nodes. */ 4898 mas->offset = (unsigned char)(mas->index - mas->min); 4899 return true; 4900 } 4901 4902 pivots = ma_pivots(node, type); 4903 slots = ma_slots(node, type); 4904 gaps = ma_gaps(node, type); 4905 offset = mas->offset; 4906 min = mas_safe_min(mas, pivots, offset); 4907 /* Skip out of bounds. */ 4908 while (mas->last < min) 4909 min = mas_safe_min(mas, pivots, --offset); 4910 4911 max = mas_safe_pivot(mas, pivots, offset, type); 4912 index = mas->index; 4913 while (index <= max) { 4914 gap = 0; 4915 if (gaps) 4916 gap = gaps[offset]; 4917 else if (!mas_slot(mas, slots, offset)) 4918 gap = max - min + 1; 4919 4920 if (gap) { 4921 if ((size <= gap) && (size <= mas->last - min + 1)) 4922 break; 4923 4924 if (!gaps) { 4925 /* Skip the next slot, it cannot be a gap. */ 4926 if (offset < 2) 4927 goto ascend; 4928 4929 offset -= 2; 4930 max = pivots[offset]; 4931 min = mas_safe_min(mas, pivots, offset); 4932 continue; 4933 } 4934 } 4935 4936 if (!offset) 4937 goto ascend; 4938 4939 offset--; 4940 max = min - 1; 4941 min = mas_safe_min(mas, pivots, offset); 4942 } 4943 4944 if (unlikely(index > max)) { 4945 mas_set_err(mas, -EBUSY); 4946 return false; 4947 } 4948 4949 if (unlikely(ma_is_leaf(type))) { 4950 mas->offset = offset; 4951 mas->min = min; 4952 mas->max = min + gap - 1; 4953 return true; 4954 } 4955 4956 /* descend, only happens under lock. */ 4957 mas->node = mas_slot(mas, slots, offset); 4958 mas->min = min; 4959 mas->max = max; 4960 mas->offset = mas_data_end(mas); 4961 return false; 4962 4963 ascend: 4964 if (mte_is_root(mas->node)) 4965 mas_set_err(mas, -EBUSY); 4966 4967 return false; 4968 } 4969 4970 static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size) 4971 { 4972 enum maple_type type = mte_node_type(mas->node); 4973 unsigned long pivot, min, gap = 0; 4974 unsigned char offset; 4975 unsigned long *gaps; 4976 unsigned long *pivots = ma_pivots(mas_mn(mas), type); 4977 void __rcu **slots = ma_slots(mas_mn(mas), type); 4978 bool found = false; 4979 4980 if (ma_is_dense(type)) { 4981 mas->offset = (unsigned char)(mas->index - mas->min); 4982 return true; 4983 } 4984 4985 gaps = ma_gaps(mte_to_node(mas->node), type); 4986 offset = mas->offset; 4987 min = mas_safe_min(mas, pivots, offset); 4988 for (; offset < mt_slots[type]; offset++) { 4989 pivot = mas_safe_pivot(mas, pivots, offset, type); 4990 if (offset && !pivot) 4991 break; 4992 4993 /* Not within lower bounds */ 4994 if (mas->index > pivot) 4995 goto next_slot; 4996 4997 if (gaps) 4998 gap = gaps[offset]; 4999 else if (!mas_slot(mas, slots, offset)) 5000 gap = min(pivot, mas->last) - max(mas->index, min) + 1; 5001 else 5002 goto next_slot; 5003 5004 if (gap >= size) { 5005 if (ma_is_leaf(type)) { 5006 found = true; 5007 goto done; 5008 } 5009 if (mas->index <= pivot) { 5010 mas->node = mas_slot(mas, slots, offset); 5011 mas->min = min; 5012 mas->max = pivot; 5013 offset = 0; 5014 break; 5015 } 5016 } 5017 next_slot: 5018 min = pivot + 1; 5019 if (mas->last <= pivot) { 5020 mas_set_err(mas, -EBUSY); 5021 return true; 5022 } 5023 } 5024 5025 if (mte_is_root(mas->node)) 5026 found = true; 5027 done: 5028 mas->offset = offset; 5029 return found; 5030 } 5031 5032 /** 5033 * mas_walk() - Search for @mas->index in the tree. 5034 * @mas: The maple state. 5035 * 5036 * mas->index and mas->last will be set to the range if there is a value. If 5037 * mas->node is MAS_NONE, reset to MAS_START. 5038 * 5039 * Return: the entry at the location or %NULL. 5040 */ 5041 void *mas_walk(struct ma_state *mas) 5042 { 5043 void *entry; 5044 5045 retry: 5046 entry = mas_state_walk(mas); 5047 if (mas_is_start(mas)) 5048 goto retry; 5049 5050 if (mas_is_ptr(mas)) { 5051 if (!mas->index) { 5052 mas->last = 0; 5053 } else { 5054 mas->index = 1; 5055 mas->last = ULONG_MAX; 5056 } 5057 return entry; 5058 } 5059 5060 if (mas_is_none(mas)) { 5061 mas->index = 0; 5062 mas->last = ULONG_MAX; 5063 } 5064 5065 return entry; 5066 } 5067 EXPORT_SYMBOL_GPL(mas_walk); 5068 5069 static inline bool mas_rewind_node(struct ma_state *mas) 5070 { 5071 unsigned char slot; 5072 5073 do { 5074 if (mte_is_root(mas->node)) { 5075 slot = mas->offset; 5076 if (!slot) 5077 return false; 5078 } else { 5079 mas_ascend(mas); 5080 slot = mas->offset; 5081 } 5082 } while (!slot); 5083 5084 mas->offset = --slot; 5085 return true; 5086 } 5087 5088 /* 5089 * mas_skip_node() - Internal function. Skip over a node. 5090 * @mas: The maple state. 5091 * 5092 * Return: true if there is another node, false otherwise. 5093 */ 5094 static inline bool mas_skip_node(struct ma_state *mas) 5095 { 5096 unsigned char slot, slot_count; 5097 unsigned long *pivots; 5098 enum maple_type mt; 5099 5100 mt = mte_node_type(mas->node); 5101 slot_count = mt_slots[mt] - 1; 5102 do { 5103 if (mte_is_root(mas->node)) { 5104 slot = mas->offset; 5105 if (slot > slot_count) { 5106 mas_set_err(mas, -EBUSY); 5107 return false; 5108 } 5109 } else { 5110 mas_ascend(mas); 5111 slot = mas->offset; 5112 mt = mte_node_type(mas->node); 5113 slot_count = mt_slots[mt] - 1; 5114 } 5115 } while (slot > slot_count); 5116 5117 mas->offset = ++slot; 5118 pivots = ma_pivots(mas_mn(mas), mt); 5119 if (slot > 0) 5120 mas->min = pivots[slot - 1] + 1; 5121 5122 if (slot <= slot_count) 5123 mas->max = pivots[slot]; 5124 5125 return true; 5126 } 5127 5128 /* 5129 * mas_awalk() - Allocation walk. Search from low address to high, for a gap of 5130 * @size 5131 * @mas: The maple state 5132 * @size: The size of the gap required 5133 * 5134 * Search between @mas->index and @mas->last for a gap of @size. 5135 */ 5136 static inline void mas_awalk(struct ma_state *mas, unsigned long size) 5137 { 5138 struct maple_enode *last = NULL; 5139 5140 /* 5141 * There are 4 options: 5142 * go to child (descend) 5143 * go back to parent (ascend) 5144 * no gap found. (return, slot == MAPLE_NODE_SLOTS) 5145 * found the gap. (return, slot != MAPLE_NODE_SLOTS) 5146 */ 5147 while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) { 5148 if (last == mas->node) 5149 mas_skip_node(mas); 5150 else 5151 last = mas->node; 5152 } 5153 } 5154 5155 /* 5156 * mas_fill_gap() - Fill a located gap with @entry. 5157 * @mas: The maple state 5158 * @entry: The value to store 5159 * @slot: The offset into the node to store the @entry 5160 * @size: The size of the entry 5161 * @index: The start location 5162 */ 5163 static inline void mas_fill_gap(struct ma_state *mas, void *entry, 5164 unsigned char slot, unsigned long size, unsigned long *index) 5165 { 5166 MA_WR_STATE(wr_mas, mas, entry); 5167 unsigned char pslot = mte_parent_slot(mas->node); 5168 struct maple_enode *mn = mas->node; 5169 unsigned long *pivots; 5170 enum maple_type ptype; 5171 /* 5172 * mas->index is the start address for the search 5173 * which may no longer be needed. 5174 * mas->last is the end address for the search 5175 */ 5176 5177 *index = mas->index; 5178 mas->last = mas->index + size - 1; 5179 5180 /* 5181 * It is possible that using mas->max and mas->min to correctly 5182 * calculate the index and last will cause an issue in the gap 5183 * calculation, so fix the ma_state here 5184 */ 5185 mas_ascend(mas); 5186 ptype = mte_node_type(mas->node); 5187 pivots = ma_pivots(mas_mn(mas), ptype); 5188 mas->max = mas_safe_pivot(mas, pivots, pslot, ptype); 5189 mas->min = mas_safe_min(mas, pivots, pslot); 5190 mas->node = mn; 5191 mas->offset = slot; 5192 mas_wr_store_entry(&wr_mas); 5193 } 5194 5195 /* 5196 * mas_sparse_area() - Internal function. Return upper or lower limit when 5197 * searching for a gap in an empty tree. 5198 * @mas: The maple state 5199 * @min: the minimum range 5200 * @max: The maximum range 5201 * @size: The size of the gap 5202 * @fwd: Searching forward or back 5203 */ 5204 static inline void mas_sparse_area(struct ma_state *mas, unsigned long min, 5205 unsigned long max, unsigned long size, bool fwd) 5206 { 5207 unsigned long start = 0; 5208 5209 if (!unlikely(mas_is_none(mas))) 5210 start++; 5211 /* mas_is_ptr */ 5212 5213 if (start < min) 5214 start = min; 5215 5216 if (fwd) { 5217 mas->index = start; 5218 mas->last = start + size - 1; 5219 return; 5220 } 5221 5222 mas->index = max; 5223 } 5224 5225 /* 5226 * mas_empty_area() - Get the lowest address within the range that is 5227 * sufficient for the size requested. 5228 * @mas: The maple state 5229 * @min: The lowest value of the range 5230 * @max: The highest value of the range 5231 * @size: The size needed 5232 */ 5233 int mas_empty_area(struct ma_state *mas, unsigned long min, 5234 unsigned long max, unsigned long size) 5235 { 5236 unsigned char offset; 5237 unsigned long *pivots; 5238 enum maple_type mt; 5239 5240 if (mas_is_start(mas)) 5241 mas_start(mas); 5242 else if (mas->offset >= 2) 5243 mas->offset -= 2; 5244 else if (!mas_skip_node(mas)) 5245 return -EBUSY; 5246 5247 /* Empty set */ 5248 if (mas_is_none(mas) || mas_is_ptr(mas)) { 5249 mas_sparse_area(mas, min, max, size, true); 5250 return 0; 5251 } 5252 5253 /* The start of the window can only be within these values */ 5254 mas->index = min; 5255 mas->last = max; 5256 mas_awalk(mas, size); 5257 5258 if (unlikely(mas_is_err(mas))) 5259 return xa_err(mas->node); 5260 5261 offset = mas->offset; 5262 if (unlikely(offset == MAPLE_NODE_SLOTS)) 5263 return -EBUSY; 5264 5265 mt = mte_node_type(mas->node); 5266 pivots = ma_pivots(mas_mn(mas), mt); 5267 if (offset) 5268 mas->min = pivots[offset - 1] + 1; 5269 5270 if (offset < mt_pivots[mt]) 5271 mas->max = pivots[offset]; 5272 5273 if (mas->index < mas->min) 5274 mas->index = mas->min; 5275 5276 mas->last = mas->index + size - 1; 5277 return 0; 5278 } 5279 EXPORT_SYMBOL_GPL(mas_empty_area); 5280 5281 /* 5282 * mas_empty_area_rev() - Get the highest address within the range that is 5283 * sufficient for the size requested. 5284 * @mas: The maple state 5285 * @min: The lowest value of the range 5286 * @max: The highest value of the range 5287 * @size: The size needed 5288 */ 5289 int mas_empty_area_rev(struct ma_state *mas, unsigned long min, 5290 unsigned long max, unsigned long size) 5291 { 5292 struct maple_enode *last = mas->node; 5293 5294 if (mas_is_start(mas)) { 5295 mas_start(mas); 5296 mas->offset = mas_data_end(mas); 5297 } else if (mas->offset >= 2) { 5298 mas->offset -= 2; 5299 } else if (!mas_rewind_node(mas)) { 5300 return -EBUSY; 5301 } 5302 5303 /* Empty set. */ 5304 if (mas_is_none(mas) || mas_is_ptr(mas)) { 5305 mas_sparse_area(mas, min, max, size, false); 5306 return 0; 5307 } 5308 5309 /* The start of the window can only be within these values. */ 5310 mas->index = min; 5311 mas->last = max; 5312 5313 while (!mas_rev_awalk(mas, size)) { 5314 if (last == mas->node) { 5315 if (!mas_rewind_node(mas)) 5316 return -EBUSY; 5317 } else { 5318 last = mas->node; 5319 } 5320 } 5321 5322 if (mas_is_err(mas)) 5323 return xa_err(mas->node); 5324 5325 if (unlikely(mas->offset == MAPLE_NODE_SLOTS)) 5326 return -EBUSY; 5327 5328 /* 5329 * mas_rev_awalk() has set mas->min and mas->max to the gap values. If 5330 * the maximum is outside the window we are searching, then use the last 5331 * location in the search. 5332 * mas->max and mas->min is the range of the gap. 5333 * mas->index and mas->last are currently set to the search range. 5334 */ 5335 5336 /* Trim the upper limit to the max. */ 5337 if (mas->max <= mas->last) 5338 mas->last = mas->max; 5339 5340 mas->index = mas->last - size + 1; 5341 return 0; 5342 } 5343 EXPORT_SYMBOL_GPL(mas_empty_area_rev); 5344 5345 static inline int mas_alloc(struct ma_state *mas, void *entry, 5346 unsigned long size, unsigned long *index) 5347 { 5348 unsigned long min; 5349 5350 mas_start(mas); 5351 if (mas_is_none(mas) || mas_is_ptr(mas)) { 5352 mas_root_expand(mas, entry); 5353 if (mas_is_err(mas)) 5354 return xa_err(mas->node); 5355 5356 if (!mas->index) 5357 return mte_pivot(mas->node, 0); 5358 return mte_pivot(mas->node, 1); 5359 } 5360 5361 /* Must be walking a tree. */ 5362 mas_awalk(mas, size); 5363 if (mas_is_err(mas)) 5364 return xa_err(mas->node); 5365 5366 if (mas->offset == MAPLE_NODE_SLOTS) 5367 goto no_gap; 5368 5369 /* 5370 * At this point, mas->node points to the right node and we have an 5371 * offset that has a sufficient gap. 5372 */ 5373 min = mas->min; 5374 if (mas->offset) 5375 min = mte_pivot(mas->node, mas->offset - 1) + 1; 5376 5377 if (mas->index < min) 5378 mas->index = min; 5379 5380 mas_fill_gap(mas, entry, mas->offset, size, index); 5381 return 0; 5382 5383 no_gap: 5384 return -EBUSY; 5385 } 5386 5387 static inline int mas_rev_alloc(struct ma_state *mas, unsigned long min, 5388 unsigned long max, void *entry, 5389 unsigned long size, unsigned long *index) 5390 { 5391 int ret = 0; 5392 5393 ret = mas_empty_area_rev(mas, min, max, size); 5394 if (ret) 5395 return ret; 5396 5397 if (mas_is_err(mas)) 5398 return xa_err(mas->node); 5399 5400 if (mas->offset == MAPLE_NODE_SLOTS) 5401 goto no_gap; 5402 5403 mas_fill_gap(mas, entry, mas->offset, size, index); 5404 return 0; 5405 5406 no_gap: 5407 return -EBUSY; 5408 } 5409 5410 /* 5411 * mas_dead_leaves() - Mark all leaves of a node as dead. 5412 * @mas: The maple state 5413 * @slots: Pointer to the slot array 5414 * 5415 * Must hold the write lock. 5416 * 5417 * Return: The number of leaves marked as dead. 5418 */ 5419 static inline 5420 unsigned char mas_dead_leaves(struct ma_state *mas, void __rcu **slots) 5421 { 5422 struct maple_node *node; 5423 enum maple_type type; 5424 void *entry; 5425 int offset; 5426 5427 for (offset = 0; offset < mt_slot_count(mas->node); offset++) { 5428 entry = mas_slot_locked(mas, slots, offset); 5429 type = mte_node_type(entry); 5430 node = mte_to_node(entry); 5431 /* Use both node and type to catch LE & BE metadata */ 5432 if (!node || !type) 5433 break; 5434 5435 mte_set_node_dead(entry); 5436 smp_wmb(); /* Needed for RCU */ 5437 node->type = type; 5438 rcu_assign_pointer(slots[offset], node); 5439 } 5440 5441 return offset; 5442 } 5443 5444 static void __rcu **mas_dead_walk(struct ma_state *mas, unsigned char offset) 5445 { 5446 struct maple_node *node, *next; 5447 void __rcu **slots = NULL; 5448 5449 next = mas_mn(mas); 5450 do { 5451 mas->node = ma_enode_ptr(next); 5452 node = mas_mn(mas); 5453 slots = ma_slots(node, node->type); 5454 next = mas_slot_locked(mas, slots, offset); 5455 offset = 0; 5456 } while (!ma_is_leaf(next->type)); 5457 5458 return slots; 5459 } 5460 5461 static void mt_free_walk(struct rcu_head *head) 5462 { 5463 void __rcu **slots; 5464 struct maple_node *node, *start; 5465 struct maple_tree mt; 5466 unsigned char offset; 5467 enum maple_type type; 5468 MA_STATE(mas, &mt, 0, 0); 5469 5470 node = container_of(head, struct maple_node, rcu); 5471 5472 if (ma_is_leaf(node->type)) 5473 goto free_leaf; 5474 5475 mt_init_flags(&mt, node->ma_flags); 5476 mas_lock(&mas); 5477 start = node; 5478 mas.node = mt_mk_node(node, node->type); 5479 slots = mas_dead_walk(&mas, 0); 5480 node = mas_mn(&mas); 5481 do { 5482 mt_free_bulk(node->slot_len, slots); 5483 offset = node->parent_slot + 1; 5484 mas.node = node->piv_parent; 5485 if (mas_mn(&mas) == node) 5486 goto start_slots_free; 5487 5488 type = mte_node_type(mas.node); 5489 slots = ma_slots(mte_to_node(mas.node), type); 5490 if ((offset < mt_slots[type]) && (slots[offset])) 5491 slots = mas_dead_walk(&mas, offset); 5492 5493 node = mas_mn(&mas); 5494 } while ((node != start) || (node->slot_len < offset)); 5495 5496 slots = ma_slots(node, node->type); 5497 mt_free_bulk(node->slot_len, slots); 5498 5499 start_slots_free: 5500 mas_unlock(&mas); 5501 free_leaf: 5502 mt_free_rcu(&node->rcu); 5503 } 5504 5505 static inline void __rcu **mas_destroy_descend(struct ma_state *mas, 5506 struct maple_enode *prev, unsigned char offset) 5507 { 5508 struct maple_node *node; 5509 struct maple_enode *next = mas->node; 5510 void __rcu **slots = NULL; 5511 5512 do { 5513 mas->node = next; 5514 node = mas_mn(mas); 5515 slots = ma_slots(node, mte_node_type(mas->node)); 5516 next = mas_slot_locked(mas, slots, 0); 5517 if ((mte_dead_node(next))) 5518 next = mas_slot_locked(mas, slots, 1); 5519 5520 mte_set_node_dead(mas->node); 5521 node->type = mte_node_type(mas->node); 5522 node->piv_parent = prev; 5523 node->parent_slot = offset; 5524 offset = 0; 5525 prev = mas->node; 5526 } while (!mte_is_leaf(next)); 5527 5528 return slots; 5529 } 5530 5531 static void mt_destroy_walk(struct maple_enode *enode, unsigned char ma_flags, 5532 bool free) 5533 { 5534 void __rcu **slots; 5535 struct maple_node *node = mte_to_node(enode); 5536 struct maple_enode *start; 5537 struct maple_tree mt; 5538 5539 MA_STATE(mas, &mt, 0, 0); 5540 5541 if (mte_is_leaf(enode)) 5542 goto free_leaf; 5543 5544 mt_init_flags(&mt, ma_flags); 5545 mas_lock(&mas); 5546 5547 mas.node = start = enode; 5548 slots = mas_destroy_descend(&mas, start, 0); 5549 node = mas_mn(&mas); 5550 do { 5551 enum maple_type type; 5552 unsigned char offset; 5553 struct maple_enode *parent, *tmp; 5554 5555 node->slot_len = mas_dead_leaves(&mas, slots); 5556 if (free) 5557 mt_free_bulk(node->slot_len, slots); 5558 offset = node->parent_slot + 1; 5559 mas.node = node->piv_parent; 5560 if (mas_mn(&mas) == node) 5561 goto start_slots_free; 5562 5563 type = mte_node_type(mas.node); 5564 slots = ma_slots(mte_to_node(mas.node), type); 5565 if (offset >= mt_slots[type]) 5566 goto next; 5567 5568 tmp = mas_slot_locked(&mas, slots, offset); 5569 if (mte_node_type(tmp) && mte_to_node(tmp)) { 5570 parent = mas.node; 5571 mas.node = tmp; 5572 slots = mas_destroy_descend(&mas, parent, offset); 5573 } 5574 next: 5575 node = mas_mn(&mas); 5576 } while (start != mas.node); 5577 5578 node = mas_mn(&mas); 5579 node->slot_len = mas_dead_leaves(&mas, slots); 5580 if (free) 5581 mt_free_bulk(node->slot_len, slots); 5582 5583 start_slots_free: 5584 mas_unlock(&mas); 5585 5586 free_leaf: 5587 if (free) 5588 mt_free_rcu(&node->rcu); 5589 } 5590 5591 /* 5592 * mte_destroy_walk() - Free a tree or sub-tree. 5593 * @enode - the encoded maple node (maple_enode) to start 5594 * @mn - the tree to free - needed for node types. 5595 * 5596 * Must hold the write lock. 5597 */ 5598 static inline void mte_destroy_walk(struct maple_enode *enode, 5599 struct maple_tree *mt) 5600 { 5601 struct maple_node *node = mte_to_node(enode); 5602 5603 if (mt_in_rcu(mt)) { 5604 mt_destroy_walk(enode, mt->ma_flags, false); 5605 call_rcu(&node->rcu, mt_free_walk); 5606 } else { 5607 mt_destroy_walk(enode, mt->ma_flags, true); 5608 } 5609 } 5610 5611 static void mas_wr_store_setup(struct ma_wr_state *wr_mas) 5612 { 5613 if (!mas_is_start(wr_mas->mas)) { 5614 if (mas_is_none(wr_mas->mas)) { 5615 mas_reset(wr_mas->mas); 5616 } else { 5617 wr_mas->r_max = wr_mas->mas->max; 5618 wr_mas->type = mte_node_type(wr_mas->mas->node); 5619 if (mas_is_span_wr(wr_mas)) 5620 mas_reset(wr_mas->mas); 5621 } 5622 } 5623 5624 } 5625 5626 /* Interface */ 5627 5628 /** 5629 * mas_store() - Store an @entry. 5630 * @mas: The maple state. 5631 * @entry: The entry to store. 5632 * 5633 * The @mas->index and @mas->last is used to set the range for the @entry. 5634 * Note: The @mas should have pre-allocated entries to ensure there is memory to 5635 * store the entry. Please see mas_expected_entries()/mas_destroy() for more details. 5636 * 5637 * Return: the first entry between mas->index and mas->last or %NULL. 5638 */ 5639 void *mas_store(struct ma_state *mas, void *entry) 5640 { 5641 MA_WR_STATE(wr_mas, mas, entry); 5642 5643 trace_ma_write(__func__, mas, 0, entry); 5644 #ifdef CONFIG_DEBUG_MAPLE_TREE 5645 if (mas->index > mas->last) 5646 pr_err("Error %lu > %lu %p\n", mas->index, mas->last, entry); 5647 MT_BUG_ON(mas->tree, mas->index > mas->last); 5648 if (mas->index > mas->last) { 5649 mas_set_err(mas, -EINVAL); 5650 return NULL; 5651 } 5652 5653 #endif 5654 5655 /* 5656 * Storing is the same operation as insert with the added caveat that it 5657 * can overwrite entries. Although this seems simple enough, one may 5658 * want to examine what happens if a single store operation was to 5659 * overwrite multiple entries within a self-balancing B-Tree. 5660 */ 5661 mas_wr_store_setup(&wr_mas); 5662 mas_wr_store_entry(&wr_mas); 5663 return wr_mas.content; 5664 } 5665 EXPORT_SYMBOL_GPL(mas_store); 5666 5667 /** 5668 * mas_store_gfp() - Store a value into the tree. 5669 * @mas: The maple state 5670 * @entry: The entry to store 5671 * @gfp: The GFP_FLAGS to use for allocations if necessary. 5672 * 5673 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not 5674 * be allocated. 5675 */ 5676 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp) 5677 { 5678 MA_WR_STATE(wr_mas, mas, entry); 5679 5680 mas_wr_store_setup(&wr_mas); 5681 trace_ma_write(__func__, mas, 0, entry); 5682 retry: 5683 mas_wr_store_entry(&wr_mas); 5684 if (unlikely(mas_nomem(mas, gfp))) 5685 goto retry; 5686 5687 if (unlikely(mas_is_err(mas))) 5688 return xa_err(mas->node); 5689 5690 return 0; 5691 } 5692 EXPORT_SYMBOL_GPL(mas_store_gfp); 5693 5694 /** 5695 * mas_store_prealloc() - Store a value into the tree using memory 5696 * preallocated in the maple state. 5697 * @mas: The maple state 5698 * @entry: The entry to store. 5699 */ 5700 void mas_store_prealloc(struct ma_state *mas, void *entry) 5701 { 5702 MA_WR_STATE(wr_mas, mas, entry); 5703 5704 mas_wr_store_setup(&wr_mas); 5705 trace_ma_write(__func__, mas, 0, entry); 5706 mas_wr_store_entry(&wr_mas); 5707 BUG_ON(mas_is_err(mas)); 5708 mas_destroy(mas); 5709 } 5710 EXPORT_SYMBOL_GPL(mas_store_prealloc); 5711 5712 /** 5713 * mas_preallocate() - Preallocate enough nodes for a store operation 5714 * @mas: The maple state 5715 * @entry: The entry that will be stored 5716 * @gfp: The GFP_FLAGS to use for allocations. 5717 * 5718 * Return: 0 on success, -ENOMEM if memory could not be allocated. 5719 */ 5720 int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp) 5721 { 5722 int ret; 5723 5724 mas_node_count_gfp(mas, 1 + mas_mt_height(mas) * 3, gfp); 5725 mas->mas_flags |= MA_STATE_PREALLOC; 5726 if (likely(!mas_is_err(mas))) 5727 return 0; 5728 5729 mas_set_alloc_req(mas, 0); 5730 ret = xa_err(mas->node); 5731 mas_reset(mas); 5732 mas_destroy(mas); 5733 mas_reset(mas); 5734 return ret; 5735 } 5736 5737 /* 5738 * mas_destroy() - destroy a maple state. 5739 * @mas: The maple state 5740 * 5741 * Upon completion, check the left-most node and rebalance against the node to 5742 * the right if necessary. Frees any allocated nodes associated with this maple 5743 * state. 5744 */ 5745 void mas_destroy(struct ma_state *mas) 5746 { 5747 struct maple_alloc *node; 5748 5749 /* 5750 * When using mas_for_each() to insert an expected number of elements, 5751 * it is possible that the number inserted is less than the expected 5752 * number. To fix an invalid final node, a check is performed here to 5753 * rebalance the previous node with the final node. 5754 */ 5755 if (mas->mas_flags & MA_STATE_REBALANCE) { 5756 unsigned char end; 5757 5758 if (mas_is_start(mas)) 5759 mas_start(mas); 5760 5761 mtree_range_walk(mas); 5762 end = mas_data_end(mas) + 1; 5763 if (end < mt_min_slot_count(mas->node) - 1) 5764 mas_destroy_rebalance(mas, end); 5765 5766 mas->mas_flags &= ~MA_STATE_REBALANCE; 5767 } 5768 mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC); 5769 5770 while (mas->alloc && !((unsigned long)mas->alloc & 0x1)) { 5771 node = mas->alloc; 5772 mas->alloc = node->slot[0]; 5773 if (node->node_count > 0) 5774 mt_free_bulk(node->node_count, 5775 (void __rcu **)&node->slot[1]); 5776 kmem_cache_free(maple_node_cache, node); 5777 } 5778 mas->alloc = NULL; 5779 } 5780 EXPORT_SYMBOL_GPL(mas_destroy); 5781 5782 /* 5783 * mas_expected_entries() - Set the expected number of entries that will be inserted. 5784 * @mas: The maple state 5785 * @nr_entries: The number of expected entries. 5786 * 5787 * This will attempt to pre-allocate enough nodes to store the expected number 5788 * of entries. The allocations will occur using the bulk allocator interface 5789 * for speed. Please call mas_destroy() on the @mas after inserting the entries 5790 * to ensure any unused nodes are freed. 5791 * 5792 * Return: 0 on success, -ENOMEM if memory could not be allocated. 5793 */ 5794 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries) 5795 { 5796 int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2; 5797 struct maple_enode *enode = mas->node; 5798 int nr_nodes; 5799 int ret; 5800 5801 /* 5802 * Sometimes it is necessary to duplicate a tree to a new tree, such as 5803 * forking a process and duplicating the VMAs from one tree to a new 5804 * tree. When such a situation arises, it is known that the new tree is 5805 * not going to be used until the entire tree is populated. For 5806 * performance reasons, it is best to use a bulk load with RCU disabled. 5807 * This allows for optimistic splitting that favours the left and reuse 5808 * of nodes during the operation. 5809 */ 5810 5811 /* Optimize splitting for bulk insert in-order */ 5812 mas->mas_flags |= MA_STATE_BULK; 5813 5814 /* 5815 * Avoid overflow, assume a gap between each entry and a trailing null. 5816 * If this is wrong, it just means allocation can happen during 5817 * insertion of entries. 5818 */ 5819 nr_nodes = max(nr_entries, nr_entries * 2 + 1); 5820 if (!mt_is_alloc(mas->tree)) 5821 nonleaf_cap = MAPLE_RANGE64_SLOTS - 2; 5822 5823 /* Leaves; reduce slots to keep space for expansion */ 5824 nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2); 5825 /* Internal nodes */ 5826 nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap); 5827 /* Add working room for split (2 nodes) + new parents */ 5828 mas_node_count(mas, nr_nodes + 3); 5829 5830 /* Detect if allocations run out */ 5831 mas->mas_flags |= MA_STATE_PREALLOC; 5832 5833 if (!mas_is_err(mas)) 5834 return 0; 5835 5836 ret = xa_err(mas->node); 5837 mas->node = enode; 5838 mas_destroy(mas); 5839 return ret; 5840 5841 } 5842 EXPORT_SYMBOL_GPL(mas_expected_entries); 5843 5844 /** 5845 * mas_next() - Get the next entry. 5846 * @mas: The maple state 5847 * @max: The maximum index to check. 5848 * 5849 * Returns the next entry after @mas->index. 5850 * Must hold rcu_read_lock or the write lock. 5851 * Can return the zero entry. 5852 * 5853 * Return: The next entry or %NULL 5854 */ 5855 void *mas_next(struct ma_state *mas, unsigned long max) 5856 { 5857 if (mas_is_none(mas) || mas_is_paused(mas)) 5858 mas->node = MAS_START; 5859 5860 if (mas_is_start(mas)) 5861 mas_walk(mas); /* Retries on dead nodes handled by mas_walk */ 5862 5863 if (mas_is_ptr(mas)) { 5864 if (!mas->index) { 5865 mas->index = 1; 5866 mas->last = ULONG_MAX; 5867 } 5868 return NULL; 5869 } 5870 5871 if (mas->last == ULONG_MAX) 5872 return NULL; 5873 5874 /* Retries on dead nodes handled by mas_next_entry */ 5875 return mas_next_entry(mas, max); 5876 } 5877 EXPORT_SYMBOL_GPL(mas_next); 5878 5879 /** 5880 * mt_next() - get the next value in the maple tree 5881 * @mt: The maple tree 5882 * @index: The start index 5883 * @max: The maximum index to check 5884 * 5885 * Return: The entry at @index or higher, or %NULL if nothing is found. 5886 */ 5887 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max) 5888 { 5889 void *entry = NULL; 5890 MA_STATE(mas, mt, index, index); 5891 5892 rcu_read_lock(); 5893 entry = mas_next(&mas, max); 5894 rcu_read_unlock(); 5895 return entry; 5896 } 5897 EXPORT_SYMBOL_GPL(mt_next); 5898 5899 /** 5900 * mas_prev() - Get the previous entry 5901 * @mas: The maple state 5902 * @min: The minimum value to check. 5903 * 5904 * Must hold rcu_read_lock or the write lock. 5905 * Will reset mas to MAS_START if the node is MAS_NONE. Will stop on not 5906 * searchable nodes. 5907 * 5908 * Return: the previous value or %NULL. 5909 */ 5910 void *mas_prev(struct ma_state *mas, unsigned long min) 5911 { 5912 if (!mas->index) { 5913 /* Nothing comes before 0 */ 5914 mas->last = 0; 5915 return NULL; 5916 } 5917 5918 if (unlikely(mas_is_ptr(mas))) 5919 return NULL; 5920 5921 if (mas_is_none(mas) || mas_is_paused(mas)) 5922 mas->node = MAS_START; 5923 5924 if (mas_is_start(mas)) { 5925 mas_walk(mas); 5926 if (!mas->index) 5927 return NULL; 5928 } 5929 5930 if (mas_is_ptr(mas)) { 5931 if (!mas->index) { 5932 mas->last = 0; 5933 return NULL; 5934 } 5935 5936 mas->index = mas->last = 0; 5937 return mas_root_locked(mas); 5938 } 5939 return mas_prev_entry(mas, min); 5940 } 5941 EXPORT_SYMBOL_GPL(mas_prev); 5942 5943 /** 5944 * mt_prev() - get the previous value in the maple tree 5945 * @mt: The maple tree 5946 * @index: The start index 5947 * @min: The minimum index to check 5948 * 5949 * Return: The entry at @index or lower, or %NULL if nothing is found. 5950 */ 5951 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min) 5952 { 5953 void *entry = NULL; 5954 MA_STATE(mas, mt, index, index); 5955 5956 rcu_read_lock(); 5957 entry = mas_prev(&mas, min); 5958 rcu_read_unlock(); 5959 return entry; 5960 } 5961 EXPORT_SYMBOL_GPL(mt_prev); 5962 5963 /** 5964 * mas_pause() - Pause a mas_find/mas_for_each to drop the lock. 5965 * @mas: The maple state to pause 5966 * 5967 * Some users need to pause a walk and drop the lock they're holding in 5968 * order to yield to a higher priority thread or carry out an operation 5969 * on an entry. Those users should call this function before they drop 5970 * the lock. It resets the @mas to be suitable for the next iteration 5971 * of the loop after the user has reacquired the lock. If most entries 5972 * found during a walk require you to call mas_pause(), the mt_for_each() 5973 * iterator may be more appropriate. 5974 * 5975 */ 5976 void mas_pause(struct ma_state *mas) 5977 { 5978 mas->node = MAS_PAUSE; 5979 } 5980 EXPORT_SYMBOL_GPL(mas_pause); 5981 5982 /** 5983 * mas_find() - On the first call, find the entry at or after mas->index up to 5984 * %max. Otherwise, find the entry after mas->index. 5985 * @mas: The maple state 5986 * @max: The maximum value to check. 5987 * 5988 * Must hold rcu_read_lock or the write lock. 5989 * If an entry exists, last and index are updated accordingly. 5990 * May set @mas->node to MAS_NONE. 5991 * 5992 * Return: The entry or %NULL. 5993 */ 5994 void *mas_find(struct ma_state *mas, unsigned long max) 5995 { 5996 if (unlikely(mas_is_paused(mas))) { 5997 if (unlikely(mas->last == ULONG_MAX)) { 5998 mas->node = MAS_NONE; 5999 return NULL; 6000 } 6001 mas->node = MAS_START; 6002 mas->index = ++mas->last; 6003 } 6004 6005 if (unlikely(mas_is_start(mas))) { 6006 /* First run or continue */ 6007 void *entry; 6008 6009 if (mas->index > max) 6010 return NULL; 6011 6012 entry = mas_walk(mas); 6013 if (entry) 6014 return entry; 6015 } 6016 6017 if (unlikely(!mas_searchable(mas))) 6018 return NULL; 6019 6020 /* Retries on dead nodes handled by mas_next_entry */ 6021 return mas_next_entry(mas, max); 6022 } 6023 EXPORT_SYMBOL_GPL(mas_find); 6024 6025 /** 6026 * mas_find_rev: On the first call, find the first non-null entry at or below 6027 * mas->index down to %min. Otherwise find the first non-null entry below 6028 * mas->index down to %min. 6029 * @mas: The maple state 6030 * @min: The minimum value to check. 6031 * 6032 * Must hold rcu_read_lock or the write lock. 6033 * If an entry exists, last and index are updated accordingly. 6034 * May set @mas->node to MAS_NONE. 6035 * 6036 * Return: The entry or %NULL. 6037 */ 6038 void *mas_find_rev(struct ma_state *mas, unsigned long min) 6039 { 6040 if (unlikely(mas_is_paused(mas))) { 6041 if (unlikely(mas->last == ULONG_MAX)) { 6042 mas->node = MAS_NONE; 6043 return NULL; 6044 } 6045 mas->node = MAS_START; 6046 mas->last = --mas->index; 6047 } 6048 6049 if (unlikely(mas_is_start(mas))) { 6050 /* First run or continue */ 6051 void *entry; 6052 6053 if (mas->index < min) 6054 return NULL; 6055 6056 entry = mas_walk(mas); 6057 if (entry) 6058 return entry; 6059 } 6060 6061 if (unlikely(!mas_searchable(mas))) 6062 return NULL; 6063 6064 if (mas->index < min) 6065 return NULL; 6066 6067 /* Retries on dead nodes handled by mas_prev_entry */ 6068 return mas_prev_entry(mas, min); 6069 } 6070 EXPORT_SYMBOL_GPL(mas_find_rev); 6071 6072 /** 6073 * mas_erase() - Find the range in which index resides and erase the entire 6074 * range. 6075 * @mas: The maple state 6076 * 6077 * Must hold the write lock. 6078 * Searches for @mas->index, sets @mas->index and @mas->last to the range and 6079 * erases that range. 6080 * 6081 * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated. 6082 */ 6083 void *mas_erase(struct ma_state *mas) 6084 { 6085 void *entry; 6086 MA_WR_STATE(wr_mas, mas, NULL); 6087 6088 if (mas_is_none(mas) || mas_is_paused(mas)) 6089 mas->node = MAS_START; 6090 6091 /* Retry unnecessary when holding the write lock. */ 6092 entry = mas_state_walk(mas); 6093 if (!entry) 6094 return NULL; 6095 6096 write_retry: 6097 /* Must reset to ensure spanning writes of last slot are detected */ 6098 mas_reset(mas); 6099 mas_wr_store_setup(&wr_mas); 6100 mas_wr_store_entry(&wr_mas); 6101 if (mas_nomem(mas, GFP_KERNEL)) 6102 goto write_retry; 6103 6104 return entry; 6105 } 6106 EXPORT_SYMBOL_GPL(mas_erase); 6107 6108 /** 6109 * mas_nomem() - Check if there was an error allocating and do the allocation 6110 * if necessary If there are allocations, then free them. 6111 * @mas: The maple state 6112 * @gfp: The GFP_FLAGS to use for allocations 6113 * Return: true on allocation, false otherwise. 6114 */ 6115 bool mas_nomem(struct ma_state *mas, gfp_t gfp) 6116 __must_hold(mas->tree->lock) 6117 { 6118 if (likely(mas->node != MA_ERROR(-ENOMEM))) { 6119 mas_destroy(mas); 6120 return false; 6121 } 6122 6123 if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) { 6124 mtree_unlock(mas->tree); 6125 mas_alloc_nodes(mas, gfp); 6126 mtree_lock(mas->tree); 6127 } else { 6128 mas_alloc_nodes(mas, gfp); 6129 } 6130 6131 if (!mas_allocated(mas)) 6132 return false; 6133 6134 mas->node = MAS_START; 6135 return true; 6136 } 6137 6138 void __init maple_tree_init(void) 6139 { 6140 maple_node_cache = kmem_cache_create("maple_node", 6141 sizeof(struct maple_node), sizeof(struct maple_node), 6142 SLAB_PANIC, NULL); 6143 } 6144 6145 /** 6146 * mtree_load() - Load a value stored in a maple tree 6147 * @mt: The maple tree 6148 * @index: The index to load 6149 * 6150 * Return: the entry or %NULL 6151 */ 6152 void *mtree_load(struct maple_tree *mt, unsigned long index) 6153 { 6154 MA_STATE(mas, mt, index, index); 6155 void *entry; 6156 6157 trace_ma_read(__func__, &mas); 6158 rcu_read_lock(); 6159 retry: 6160 entry = mas_start(&mas); 6161 if (unlikely(mas_is_none(&mas))) 6162 goto unlock; 6163 6164 if (unlikely(mas_is_ptr(&mas))) { 6165 if (index) 6166 entry = NULL; 6167 6168 goto unlock; 6169 } 6170 6171 entry = mtree_lookup_walk(&mas); 6172 if (!entry && unlikely(mas_is_start(&mas))) 6173 goto retry; 6174 unlock: 6175 rcu_read_unlock(); 6176 if (xa_is_zero(entry)) 6177 return NULL; 6178 6179 return entry; 6180 } 6181 EXPORT_SYMBOL(mtree_load); 6182 6183 /** 6184 * mtree_store_range() - Store an entry at a given range. 6185 * @mt: The maple tree 6186 * @index: The start of the range 6187 * @last: The end of the range 6188 * @entry: The entry to store 6189 * @gfp: The GFP_FLAGS to use for allocations 6190 * 6191 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not 6192 * be allocated. 6193 */ 6194 int mtree_store_range(struct maple_tree *mt, unsigned long index, 6195 unsigned long last, void *entry, gfp_t gfp) 6196 { 6197 MA_STATE(mas, mt, index, last); 6198 MA_WR_STATE(wr_mas, &mas, entry); 6199 6200 trace_ma_write(__func__, &mas, 0, entry); 6201 if (WARN_ON_ONCE(xa_is_advanced(entry))) 6202 return -EINVAL; 6203 6204 if (index > last) 6205 return -EINVAL; 6206 6207 mtree_lock(mt); 6208 retry: 6209 mas_wr_store_entry(&wr_mas); 6210 if (mas_nomem(&mas, gfp)) 6211 goto retry; 6212 6213 mtree_unlock(mt); 6214 if (mas_is_err(&mas)) 6215 return xa_err(mas.node); 6216 6217 return 0; 6218 } 6219 EXPORT_SYMBOL(mtree_store_range); 6220 6221 /** 6222 * mtree_store() - Store an entry at a given index. 6223 * @mt: The maple tree 6224 * @index: The index to store the value 6225 * @entry: The entry to store 6226 * @gfp: The GFP_FLAGS to use for allocations 6227 * 6228 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not 6229 * be allocated. 6230 */ 6231 int mtree_store(struct maple_tree *mt, unsigned long index, void *entry, 6232 gfp_t gfp) 6233 { 6234 return mtree_store_range(mt, index, index, entry, gfp); 6235 } 6236 EXPORT_SYMBOL(mtree_store); 6237 6238 /** 6239 * mtree_insert_range() - Insert an entry at a give range if there is no value. 6240 * @mt: The maple tree 6241 * @first: The start of the range 6242 * @last: The end of the range 6243 * @entry: The entry to store 6244 * @gfp: The GFP_FLAGS to use for allocations. 6245 * 6246 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid 6247 * request, -ENOMEM if memory could not be allocated. 6248 */ 6249 int mtree_insert_range(struct maple_tree *mt, unsigned long first, 6250 unsigned long last, void *entry, gfp_t gfp) 6251 { 6252 MA_STATE(ms, mt, first, last); 6253 6254 if (WARN_ON_ONCE(xa_is_advanced(entry))) 6255 return -EINVAL; 6256 6257 if (first > last) 6258 return -EINVAL; 6259 6260 mtree_lock(mt); 6261 retry: 6262 mas_insert(&ms, entry); 6263 if (mas_nomem(&ms, gfp)) 6264 goto retry; 6265 6266 mtree_unlock(mt); 6267 if (mas_is_err(&ms)) 6268 return xa_err(ms.node); 6269 6270 return 0; 6271 } 6272 EXPORT_SYMBOL(mtree_insert_range); 6273 6274 /** 6275 * mtree_insert() - Insert an entry at a give index if there is no value. 6276 * @mt: The maple tree 6277 * @index : The index to store the value 6278 * @entry: The entry to store 6279 * @gfp: The FGP_FLAGS to use for allocations. 6280 * 6281 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid 6282 * request, -ENOMEM if memory could not be allocated. 6283 */ 6284 int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry, 6285 gfp_t gfp) 6286 { 6287 return mtree_insert_range(mt, index, index, entry, gfp); 6288 } 6289 EXPORT_SYMBOL(mtree_insert); 6290 6291 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp, 6292 void *entry, unsigned long size, unsigned long min, 6293 unsigned long max, gfp_t gfp) 6294 { 6295 int ret = 0; 6296 6297 MA_STATE(mas, mt, min, max - size); 6298 if (!mt_is_alloc(mt)) 6299 return -EINVAL; 6300 6301 if (WARN_ON_ONCE(mt_is_reserved(entry))) 6302 return -EINVAL; 6303 6304 if (min > max) 6305 return -EINVAL; 6306 6307 if (max < size) 6308 return -EINVAL; 6309 6310 if (!size) 6311 return -EINVAL; 6312 6313 mtree_lock(mt); 6314 retry: 6315 mas.offset = 0; 6316 mas.index = min; 6317 mas.last = max - size; 6318 ret = mas_alloc(&mas, entry, size, startp); 6319 if (mas_nomem(&mas, gfp)) 6320 goto retry; 6321 6322 mtree_unlock(mt); 6323 return ret; 6324 } 6325 EXPORT_SYMBOL(mtree_alloc_range); 6326 6327 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp, 6328 void *entry, unsigned long size, unsigned long min, 6329 unsigned long max, gfp_t gfp) 6330 { 6331 int ret = 0; 6332 6333 MA_STATE(mas, mt, min, max - size); 6334 if (!mt_is_alloc(mt)) 6335 return -EINVAL; 6336 6337 if (WARN_ON_ONCE(mt_is_reserved(entry))) 6338 return -EINVAL; 6339 6340 if (min >= max) 6341 return -EINVAL; 6342 6343 if (max < size - 1) 6344 return -EINVAL; 6345 6346 if (!size) 6347 return -EINVAL; 6348 6349 mtree_lock(mt); 6350 retry: 6351 ret = mas_rev_alloc(&mas, min, max, entry, size, startp); 6352 if (mas_nomem(&mas, gfp)) 6353 goto retry; 6354 6355 mtree_unlock(mt); 6356 return ret; 6357 } 6358 EXPORT_SYMBOL(mtree_alloc_rrange); 6359 6360 /** 6361 * mtree_erase() - Find an index and erase the entire range. 6362 * @mt: The maple tree 6363 * @index: The index to erase 6364 * 6365 * Erasing is the same as a walk to an entry then a store of a NULL to that 6366 * ENTIRE range. In fact, it is implemented as such using the advanced API. 6367 * 6368 * Return: The entry stored at the @index or %NULL 6369 */ 6370 void *mtree_erase(struct maple_tree *mt, unsigned long index) 6371 { 6372 void *entry = NULL; 6373 6374 MA_STATE(mas, mt, index, index); 6375 trace_ma_op(__func__, &mas); 6376 6377 mtree_lock(mt); 6378 entry = mas_erase(&mas); 6379 mtree_unlock(mt); 6380 6381 return entry; 6382 } 6383 EXPORT_SYMBOL(mtree_erase); 6384 6385 /** 6386 * __mt_destroy() - Walk and free all nodes of a locked maple tree. 6387 * @mt: The maple tree 6388 * 6389 * Note: Does not handle locking. 6390 */ 6391 void __mt_destroy(struct maple_tree *mt) 6392 { 6393 void *root = mt_root_locked(mt); 6394 6395 rcu_assign_pointer(mt->ma_root, NULL); 6396 if (xa_is_node(root)) 6397 mte_destroy_walk(root, mt); 6398 6399 mt->ma_flags = 0; 6400 } 6401 EXPORT_SYMBOL_GPL(__mt_destroy); 6402 6403 /** 6404 * mtree_destroy() - Destroy a maple tree 6405 * @mt: The maple tree 6406 * 6407 * Frees all resources used by the tree. Handles locking. 6408 */ 6409 void mtree_destroy(struct maple_tree *mt) 6410 { 6411 mtree_lock(mt); 6412 __mt_destroy(mt); 6413 mtree_unlock(mt); 6414 } 6415 EXPORT_SYMBOL(mtree_destroy); 6416 6417 /** 6418 * mt_find() - Search from the start up until an entry is found. 6419 * @mt: The maple tree 6420 * @index: Pointer which contains the start location of the search 6421 * @max: The maximum value to check 6422 * 6423 * Handles locking. @index will be incremented to one beyond the range. 6424 * 6425 * Return: The entry at or after the @index or %NULL 6426 */ 6427 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max) 6428 { 6429 MA_STATE(mas, mt, *index, *index); 6430 void *entry; 6431 #ifdef CONFIG_DEBUG_MAPLE_TREE 6432 unsigned long copy = *index; 6433 #endif 6434 6435 trace_ma_read(__func__, &mas); 6436 6437 if ((*index) > max) 6438 return NULL; 6439 6440 rcu_read_lock(); 6441 retry: 6442 entry = mas_state_walk(&mas); 6443 if (mas_is_start(&mas)) 6444 goto retry; 6445 6446 if (unlikely(xa_is_zero(entry))) 6447 entry = NULL; 6448 6449 if (entry) 6450 goto unlock; 6451 6452 while (mas_searchable(&mas) && (mas.index < max)) { 6453 entry = mas_next_entry(&mas, max); 6454 if (likely(entry && !xa_is_zero(entry))) 6455 break; 6456 } 6457 6458 if (unlikely(xa_is_zero(entry))) 6459 entry = NULL; 6460 unlock: 6461 rcu_read_unlock(); 6462 if (likely(entry)) { 6463 *index = mas.last + 1; 6464 #ifdef CONFIG_DEBUG_MAPLE_TREE 6465 if ((*index) && (*index) <= copy) 6466 pr_err("index not increased! %lx <= %lx\n", 6467 *index, copy); 6468 MT_BUG_ON(mt, (*index) && ((*index) <= copy)); 6469 #endif 6470 } 6471 6472 return entry; 6473 } 6474 EXPORT_SYMBOL(mt_find); 6475 6476 /** 6477 * mt_find_after() - Search from the start up until an entry is found. 6478 * @mt: The maple tree 6479 * @index: Pointer which contains the start location of the search 6480 * @max: The maximum value to check 6481 * 6482 * Handles locking, detects wrapping on index == 0 6483 * 6484 * Return: The entry at or after the @index or %NULL 6485 */ 6486 void *mt_find_after(struct maple_tree *mt, unsigned long *index, 6487 unsigned long max) 6488 { 6489 if (!(*index)) 6490 return NULL; 6491 6492 return mt_find(mt, index, max); 6493 } 6494 EXPORT_SYMBOL(mt_find_after); 6495 6496 #ifdef CONFIG_DEBUG_MAPLE_TREE 6497 atomic_t maple_tree_tests_run; 6498 EXPORT_SYMBOL_GPL(maple_tree_tests_run); 6499 atomic_t maple_tree_tests_passed; 6500 EXPORT_SYMBOL_GPL(maple_tree_tests_passed); 6501 6502 #ifndef __KERNEL__ 6503 extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int); 6504 void mt_set_non_kernel(unsigned int val) 6505 { 6506 kmem_cache_set_non_kernel(maple_node_cache, val); 6507 } 6508 6509 extern unsigned long kmem_cache_get_alloc(struct kmem_cache *); 6510 unsigned long mt_get_alloc_size(void) 6511 { 6512 return kmem_cache_get_alloc(maple_node_cache); 6513 } 6514 6515 extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *); 6516 void mt_zero_nr_tallocated(void) 6517 { 6518 kmem_cache_zero_nr_tallocated(maple_node_cache); 6519 } 6520 6521 extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *); 6522 unsigned int mt_nr_tallocated(void) 6523 { 6524 return kmem_cache_nr_tallocated(maple_node_cache); 6525 } 6526 6527 extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *); 6528 unsigned int mt_nr_allocated(void) 6529 { 6530 return kmem_cache_nr_allocated(maple_node_cache); 6531 } 6532 6533 /* 6534 * mas_dead_node() - Check if the maple state is pointing to a dead node. 6535 * @mas: The maple state 6536 * @index: The index to restore in @mas. 6537 * 6538 * Used in test code. 6539 * Return: 1 if @mas has been reset to MAS_START, 0 otherwise. 6540 */ 6541 static inline int mas_dead_node(struct ma_state *mas, unsigned long index) 6542 { 6543 if (unlikely(!mas_searchable(mas) || mas_is_start(mas))) 6544 return 0; 6545 6546 if (likely(!mte_dead_node(mas->node))) 6547 return 0; 6548 6549 mas_rewalk(mas, index); 6550 return 1; 6551 } 6552 6553 void mt_cache_shrink(void) 6554 { 6555 } 6556 #else 6557 /* 6558 * mt_cache_shrink() - For testing, don't use this. 6559 * 6560 * Certain testcases can trigger an OOM when combined with other memory 6561 * debugging configuration options. This function is used to reduce the 6562 * possibility of an out of memory even due to kmem_cache objects remaining 6563 * around for longer than usual. 6564 */ 6565 void mt_cache_shrink(void) 6566 { 6567 kmem_cache_shrink(maple_node_cache); 6568 6569 } 6570 EXPORT_SYMBOL_GPL(mt_cache_shrink); 6571 6572 #endif /* not defined __KERNEL__ */ 6573 /* 6574 * mas_get_slot() - Get the entry in the maple state node stored at @offset. 6575 * @mas: The maple state 6576 * @offset: The offset into the slot array to fetch. 6577 * 6578 * Return: The entry stored at @offset. 6579 */ 6580 static inline struct maple_enode *mas_get_slot(struct ma_state *mas, 6581 unsigned char offset) 6582 { 6583 return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)), 6584 offset); 6585 } 6586 6587 6588 /* 6589 * mas_first_entry() - Go the first leaf and find the first entry. 6590 * @mas: the maple state. 6591 * @limit: the maximum index to check. 6592 * @*r_start: Pointer to set to the range start. 6593 * 6594 * Sets mas->offset to the offset of the entry, r_start to the range minimum. 6595 * 6596 * Return: The first entry or MAS_NONE. 6597 */ 6598 static inline void *mas_first_entry(struct ma_state *mas, struct maple_node *mn, 6599 unsigned long limit, enum maple_type mt) 6600 6601 { 6602 unsigned long max; 6603 unsigned long *pivots; 6604 void __rcu **slots; 6605 void *entry = NULL; 6606 6607 mas->index = mas->min; 6608 if (mas->index > limit) 6609 goto none; 6610 6611 max = mas->max; 6612 mas->offset = 0; 6613 while (likely(!ma_is_leaf(mt))) { 6614 MT_BUG_ON(mas->tree, mte_dead_node(mas->node)); 6615 slots = ma_slots(mn, mt); 6616 pivots = ma_pivots(mn, mt); 6617 max = pivots[0]; 6618 entry = mas_slot(mas, slots, 0); 6619 if (unlikely(ma_dead_node(mn))) 6620 return NULL; 6621 mas->node = entry; 6622 mn = mas_mn(mas); 6623 mt = mte_node_type(mas->node); 6624 } 6625 MT_BUG_ON(mas->tree, mte_dead_node(mas->node)); 6626 6627 mas->max = max; 6628 slots = ma_slots(mn, mt); 6629 entry = mas_slot(mas, slots, 0); 6630 if (unlikely(ma_dead_node(mn))) 6631 return NULL; 6632 6633 /* Slot 0 or 1 must be set */ 6634 if (mas->index > limit) 6635 goto none; 6636 6637 if (likely(entry)) 6638 return entry; 6639 6640 pivots = ma_pivots(mn, mt); 6641 mas->index = pivots[0] + 1; 6642 mas->offset = 1; 6643 entry = mas_slot(mas, slots, 1); 6644 if (unlikely(ma_dead_node(mn))) 6645 return NULL; 6646 6647 if (mas->index > limit) 6648 goto none; 6649 6650 if (likely(entry)) 6651 return entry; 6652 6653 none: 6654 if (likely(!ma_dead_node(mn))) 6655 mas->node = MAS_NONE; 6656 return NULL; 6657 } 6658 6659 /* Depth first search, post-order */ 6660 static void mas_dfs_postorder(struct ma_state *mas, unsigned long max) 6661 { 6662 6663 struct maple_enode *p = MAS_NONE, *mn = mas->node; 6664 unsigned long p_min, p_max; 6665 6666 mas_next_node(mas, mas_mn(mas), max); 6667 if (!mas_is_none(mas)) 6668 return; 6669 6670 if (mte_is_root(mn)) 6671 return; 6672 6673 mas->node = mn; 6674 mas_ascend(mas); 6675 while (mas->node != MAS_NONE) { 6676 p = mas->node; 6677 p_min = mas->min; 6678 p_max = mas->max; 6679 mas_prev_node(mas, 0); 6680 } 6681 6682 if (p == MAS_NONE) 6683 return; 6684 6685 mas->node = p; 6686 mas->max = p_max; 6687 mas->min = p_min; 6688 } 6689 6690 /* Tree validations */ 6691 static void mt_dump_node(const struct maple_tree *mt, void *entry, 6692 unsigned long min, unsigned long max, unsigned int depth); 6693 static void mt_dump_range(unsigned long min, unsigned long max, 6694 unsigned int depth) 6695 { 6696 static const char spaces[] = " "; 6697 6698 if (min == max) 6699 pr_info("%.*s%lu: ", depth * 2, spaces, min); 6700 else 6701 pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max); 6702 } 6703 6704 static void mt_dump_entry(void *entry, unsigned long min, unsigned long max, 6705 unsigned int depth) 6706 { 6707 mt_dump_range(min, max, depth); 6708 6709 if (xa_is_value(entry)) 6710 pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry), 6711 xa_to_value(entry), entry); 6712 else if (xa_is_zero(entry)) 6713 pr_cont("zero (%ld)\n", xa_to_internal(entry)); 6714 else if (mt_is_reserved(entry)) 6715 pr_cont("UNKNOWN ENTRY (%p)\n", entry); 6716 else 6717 pr_cont("%p\n", entry); 6718 } 6719 6720 static void mt_dump_range64(const struct maple_tree *mt, void *entry, 6721 unsigned long min, unsigned long max, unsigned int depth) 6722 { 6723 struct maple_range_64 *node = &mte_to_node(entry)->mr64; 6724 bool leaf = mte_is_leaf(entry); 6725 unsigned long first = min; 6726 int i; 6727 6728 pr_cont(" contents: "); 6729 for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++) 6730 pr_cont("%p %lu ", node->slot[i], node->pivot[i]); 6731 pr_cont("%p\n", node->slot[i]); 6732 for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) { 6733 unsigned long last = max; 6734 6735 if (i < (MAPLE_RANGE64_SLOTS - 1)) 6736 last = node->pivot[i]; 6737 else if (!node->slot[i] && max != mt_max[mte_node_type(entry)]) 6738 break; 6739 if (last == 0 && i > 0) 6740 break; 6741 if (leaf) 6742 mt_dump_entry(mt_slot(mt, node->slot, i), 6743 first, last, depth + 1); 6744 else if (node->slot[i]) 6745 mt_dump_node(mt, mt_slot(mt, node->slot, i), 6746 first, last, depth + 1); 6747 6748 if (last == max) 6749 break; 6750 if (last > max) { 6751 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n", 6752 node, last, max, i); 6753 break; 6754 } 6755 first = last + 1; 6756 } 6757 } 6758 6759 static void mt_dump_arange64(const struct maple_tree *mt, void *entry, 6760 unsigned long min, unsigned long max, unsigned int depth) 6761 { 6762 struct maple_arange_64 *node = &mte_to_node(entry)->ma64; 6763 bool leaf = mte_is_leaf(entry); 6764 unsigned long first = min; 6765 int i; 6766 6767 pr_cont(" contents: "); 6768 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) 6769 pr_cont("%lu ", node->gap[i]); 6770 pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap); 6771 for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++) 6772 pr_cont("%p %lu ", node->slot[i], node->pivot[i]); 6773 pr_cont("%p\n", node->slot[i]); 6774 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) { 6775 unsigned long last = max; 6776 6777 if (i < (MAPLE_ARANGE64_SLOTS - 1)) 6778 last = node->pivot[i]; 6779 else if (!node->slot[i]) 6780 break; 6781 if (last == 0 && i > 0) 6782 break; 6783 if (leaf) 6784 mt_dump_entry(mt_slot(mt, node->slot, i), 6785 first, last, depth + 1); 6786 else if (node->slot[i]) 6787 mt_dump_node(mt, mt_slot(mt, node->slot, i), 6788 first, last, depth + 1); 6789 6790 if (last == max) 6791 break; 6792 if (last > max) { 6793 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n", 6794 node, last, max, i); 6795 break; 6796 } 6797 first = last + 1; 6798 } 6799 } 6800 6801 static void mt_dump_node(const struct maple_tree *mt, void *entry, 6802 unsigned long min, unsigned long max, unsigned int depth) 6803 { 6804 struct maple_node *node = mte_to_node(entry); 6805 unsigned int type = mte_node_type(entry); 6806 unsigned int i; 6807 6808 mt_dump_range(min, max, depth); 6809 6810 pr_cont("node %p depth %d type %d parent %p", node, depth, type, 6811 node ? node->parent : NULL); 6812 switch (type) { 6813 case maple_dense: 6814 pr_cont("\n"); 6815 for (i = 0; i < MAPLE_NODE_SLOTS; i++) { 6816 if (min + i > max) 6817 pr_cont("OUT OF RANGE: "); 6818 mt_dump_entry(mt_slot(mt, node->slot, i), 6819 min + i, min + i, depth); 6820 } 6821 break; 6822 case maple_leaf_64: 6823 case maple_range_64: 6824 mt_dump_range64(mt, entry, min, max, depth); 6825 break; 6826 case maple_arange_64: 6827 mt_dump_arange64(mt, entry, min, max, depth); 6828 break; 6829 6830 default: 6831 pr_cont(" UNKNOWN TYPE\n"); 6832 } 6833 } 6834 6835 void mt_dump(const struct maple_tree *mt) 6836 { 6837 void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt)); 6838 6839 pr_info("maple_tree(%p) flags %X, height %u root %p\n", 6840 mt, mt->ma_flags, mt_height(mt), entry); 6841 if (!xa_is_node(entry)) 6842 mt_dump_entry(entry, 0, 0, 0); 6843 else if (entry) 6844 mt_dump_node(mt, entry, 0, mt_max[mte_node_type(entry)], 0); 6845 } 6846 EXPORT_SYMBOL_GPL(mt_dump); 6847 6848 /* 6849 * Calculate the maximum gap in a node and check if that's what is reported in 6850 * the parent (unless root). 6851 */ 6852 static void mas_validate_gaps(struct ma_state *mas) 6853 { 6854 struct maple_enode *mte = mas->node; 6855 struct maple_node *p_mn; 6856 unsigned long gap = 0, max_gap = 0; 6857 unsigned long p_end, p_start = mas->min; 6858 unsigned char p_slot; 6859 unsigned long *gaps = NULL; 6860 unsigned long *pivots = ma_pivots(mte_to_node(mte), mte_node_type(mte)); 6861 int i; 6862 6863 if (ma_is_dense(mte_node_type(mte))) { 6864 for (i = 0; i < mt_slot_count(mte); i++) { 6865 if (mas_get_slot(mas, i)) { 6866 if (gap > max_gap) 6867 max_gap = gap; 6868 gap = 0; 6869 continue; 6870 } 6871 gap++; 6872 } 6873 goto counted; 6874 } 6875 6876 gaps = ma_gaps(mte_to_node(mte), mte_node_type(mte)); 6877 for (i = 0; i < mt_slot_count(mte); i++) { 6878 p_end = mas_logical_pivot(mas, pivots, i, mte_node_type(mte)); 6879 6880 if (!gaps) { 6881 if (mas_get_slot(mas, i)) { 6882 gap = 0; 6883 goto not_empty; 6884 } 6885 6886 gap += p_end - p_start + 1; 6887 } else { 6888 void *entry = mas_get_slot(mas, i); 6889 6890 gap = gaps[i]; 6891 if (!entry) { 6892 if (gap != p_end - p_start + 1) { 6893 pr_err("%p[%u] -> %p %lu != %lu - %lu + 1\n", 6894 mas_mn(mas), i, 6895 mas_get_slot(mas, i), gap, 6896 p_end, p_start); 6897 mt_dump(mas->tree); 6898 6899 MT_BUG_ON(mas->tree, 6900 gap != p_end - p_start + 1); 6901 } 6902 } else { 6903 if (gap > p_end - p_start + 1) { 6904 pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n", 6905 mas_mn(mas), i, gap, p_end, p_start, 6906 p_end - p_start + 1); 6907 MT_BUG_ON(mas->tree, 6908 gap > p_end - p_start + 1); 6909 } 6910 } 6911 } 6912 6913 if (gap > max_gap) 6914 max_gap = gap; 6915 not_empty: 6916 p_start = p_end + 1; 6917 if (p_end >= mas->max) 6918 break; 6919 } 6920 6921 counted: 6922 if (mte_is_root(mte)) 6923 return; 6924 6925 p_slot = mte_parent_slot(mas->node); 6926 p_mn = mte_parent(mte); 6927 MT_BUG_ON(mas->tree, max_gap > mas->max); 6928 if (ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap) { 6929 pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap); 6930 mt_dump(mas->tree); 6931 } 6932 6933 MT_BUG_ON(mas->tree, 6934 ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap); 6935 } 6936 6937 static void mas_validate_parent_slot(struct ma_state *mas) 6938 { 6939 struct maple_node *parent; 6940 struct maple_enode *node; 6941 enum maple_type p_type = mas_parent_enum(mas, mas->node); 6942 unsigned char p_slot = mte_parent_slot(mas->node); 6943 void __rcu **slots; 6944 int i; 6945 6946 if (mte_is_root(mas->node)) 6947 return; 6948 6949 parent = mte_parent(mas->node); 6950 slots = ma_slots(parent, p_type); 6951 MT_BUG_ON(mas->tree, mas_mn(mas) == parent); 6952 6953 /* Check prev/next parent slot for duplicate node entry */ 6954 6955 for (i = 0; i < mt_slots[p_type]; i++) { 6956 node = mas_slot(mas, slots, i); 6957 if (i == p_slot) { 6958 if (node != mas->node) 6959 pr_err("parent %p[%u] does not have %p\n", 6960 parent, i, mas_mn(mas)); 6961 MT_BUG_ON(mas->tree, node != mas->node); 6962 } else if (node == mas->node) { 6963 pr_err("Invalid child %p at parent %p[%u] p_slot %u\n", 6964 mas_mn(mas), parent, i, p_slot); 6965 MT_BUG_ON(mas->tree, node == mas->node); 6966 } 6967 } 6968 } 6969 6970 static void mas_validate_child_slot(struct ma_state *mas) 6971 { 6972 enum maple_type type = mte_node_type(mas->node); 6973 void __rcu **slots = ma_slots(mte_to_node(mas->node), type); 6974 unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type); 6975 struct maple_enode *child; 6976 unsigned char i; 6977 6978 if (mte_is_leaf(mas->node)) 6979 return; 6980 6981 for (i = 0; i < mt_slots[type]; i++) { 6982 child = mas_slot(mas, slots, i); 6983 if (!pivots[i] || pivots[i] == mas->max) 6984 break; 6985 6986 if (!child) 6987 break; 6988 6989 if (mte_parent_slot(child) != i) { 6990 pr_err("Slot error at %p[%u]: child %p has pslot %u\n", 6991 mas_mn(mas), i, mte_to_node(child), 6992 mte_parent_slot(child)); 6993 MT_BUG_ON(mas->tree, 1); 6994 } 6995 6996 if (mte_parent(child) != mte_to_node(mas->node)) { 6997 pr_err("child %p has parent %p not %p\n", 6998 mte_to_node(child), mte_parent(child), 6999 mte_to_node(mas->node)); 7000 MT_BUG_ON(mas->tree, 1); 7001 } 7002 } 7003 } 7004 7005 /* 7006 * Validate all pivots are within mas->min and mas->max. 7007 */ 7008 static void mas_validate_limits(struct ma_state *mas) 7009 { 7010 int i; 7011 unsigned long prev_piv = 0; 7012 enum maple_type type = mte_node_type(mas->node); 7013 void __rcu **slots = ma_slots(mte_to_node(mas->node), type); 7014 unsigned long *pivots = ma_pivots(mas_mn(mas), type); 7015 7016 /* all limits are fine here. */ 7017 if (mte_is_root(mas->node)) 7018 return; 7019 7020 for (i = 0; i < mt_slots[type]; i++) { 7021 unsigned long piv; 7022 7023 piv = mas_safe_pivot(mas, pivots, i, type); 7024 7025 if (!piv && (i != 0)) 7026 break; 7027 7028 if (!mte_is_leaf(mas->node)) { 7029 void *entry = mas_slot(mas, slots, i); 7030 7031 if (!entry) 7032 pr_err("%p[%u] cannot be null\n", 7033 mas_mn(mas), i); 7034 7035 MT_BUG_ON(mas->tree, !entry); 7036 } 7037 7038 if (prev_piv > piv) { 7039 pr_err("%p[%u] piv %lu < prev_piv %lu\n", 7040 mas_mn(mas), i, piv, prev_piv); 7041 MT_BUG_ON(mas->tree, piv < prev_piv); 7042 } 7043 7044 if (piv < mas->min) { 7045 pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i, 7046 piv, mas->min); 7047 MT_BUG_ON(mas->tree, piv < mas->min); 7048 } 7049 if (piv > mas->max) { 7050 pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i, 7051 piv, mas->max); 7052 MT_BUG_ON(mas->tree, piv > mas->max); 7053 } 7054 prev_piv = piv; 7055 if (piv == mas->max) 7056 break; 7057 } 7058 for (i += 1; i < mt_slots[type]; i++) { 7059 void *entry = mas_slot(mas, slots, i); 7060 7061 if (entry && (i != mt_slots[type] - 1)) { 7062 pr_err("%p[%u] should not have entry %p\n", mas_mn(mas), 7063 i, entry); 7064 MT_BUG_ON(mas->tree, entry != NULL); 7065 } 7066 7067 if (i < mt_pivots[type]) { 7068 unsigned long piv = pivots[i]; 7069 7070 if (!piv) 7071 continue; 7072 7073 pr_err("%p[%u] should not have piv %lu\n", 7074 mas_mn(mas), i, piv); 7075 MT_BUG_ON(mas->tree, i < mt_pivots[type] - 1); 7076 } 7077 } 7078 } 7079 7080 static void mt_validate_nulls(struct maple_tree *mt) 7081 { 7082 void *entry, *last = (void *)1; 7083 unsigned char offset = 0; 7084 void __rcu **slots; 7085 MA_STATE(mas, mt, 0, 0); 7086 7087 mas_start(&mas); 7088 if (mas_is_none(&mas) || (mas.node == MAS_ROOT)) 7089 return; 7090 7091 while (!mte_is_leaf(mas.node)) 7092 mas_descend(&mas); 7093 7094 slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node)); 7095 do { 7096 entry = mas_slot(&mas, slots, offset); 7097 if (!last && !entry) { 7098 pr_err("Sequential nulls end at %p[%u]\n", 7099 mas_mn(&mas), offset); 7100 } 7101 MT_BUG_ON(mt, !last && !entry); 7102 last = entry; 7103 if (offset == mas_data_end(&mas)) { 7104 mas_next_node(&mas, mas_mn(&mas), ULONG_MAX); 7105 if (mas_is_none(&mas)) 7106 return; 7107 offset = 0; 7108 slots = ma_slots(mte_to_node(mas.node), 7109 mte_node_type(mas.node)); 7110 } else { 7111 offset++; 7112 } 7113 7114 } while (!mas_is_none(&mas)); 7115 } 7116 7117 /* 7118 * validate a maple tree by checking: 7119 * 1. The limits (pivots are within mas->min to mas->max) 7120 * 2. The gap is correctly set in the parents 7121 */ 7122 void mt_validate(struct maple_tree *mt) 7123 { 7124 unsigned char end; 7125 7126 MA_STATE(mas, mt, 0, 0); 7127 rcu_read_lock(); 7128 mas_start(&mas); 7129 if (!mas_searchable(&mas)) 7130 goto done; 7131 7132 mas_first_entry(&mas, mas_mn(&mas), ULONG_MAX, mte_node_type(mas.node)); 7133 while (!mas_is_none(&mas)) { 7134 MT_BUG_ON(mas.tree, mte_dead_node(mas.node)); 7135 if (!mte_is_root(mas.node)) { 7136 end = mas_data_end(&mas); 7137 if ((end < mt_min_slot_count(mas.node)) && 7138 (mas.max != ULONG_MAX)) { 7139 pr_err("Invalid size %u of %p\n", end, 7140 mas_mn(&mas)); 7141 MT_BUG_ON(mas.tree, 1); 7142 } 7143 7144 } 7145 mas_validate_parent_slot(&mas); 7146 mas_validate_child_slot(&mas); 7147 mas_validate_limits(&mas); 7148 if (mt_is_alloc(mt)) 7149 mas_validate_gaps(&mas); 7150 mas_dfs_postorder(&mas, ULONG_MAX); 7151 } 7152 mt_validate_nulls(mt); 7153 done: 7154 rcu_read_unlock(); 7155 7156 } 7157 EXPORT_SYMBOL_GPL(mt_validate); 7158 7159 #endif /* CONFIG_DEBUG_MAPLE_TREE */ 7160