1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Maple Tree implementation 4 * Copyright (c) 2018-2022 Oracle Corporation 5 * Authors: Liam R. Howlett <Liam.Howlett@oracle.com> 6 * Matthew Wilcox <willy@infradead.org> 7 */ 8 9 /* 10 * DOC: Interesting implementation details of the Maple Tree 11 * 12 * Each node type has a number of slots for entries and a number of slots for 13 * pivots. In the case of dense nodes, the pivots are implied by the position 14 * and are simply the slot index + the minimum of the node. 15 * 16 * In regular B-Tree terms, pivots are called keys. The term pivot is used to 17 * indicate that the tree is specifying ranges, Pivots may appear in the 18 * subtree with an entry attached to the value where as keys are unique to a 19 * specific position of a B-tree. Pivot values are inclusive of the slot with 20 * the same index. 21 * 22 * 23 * The following illustrates the layout of a range64 nodes slots and pivots. 24 * 25 * 26 * Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 | 27 * ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ 28 * │ │ │ │ │ │ │ │ └─ Implied maximum 29 * │ │ │ │ │ │ │ └─ Pivot 14 30 * │ │ │ │ │ │ └─ Pivot 13 31 * │ │ │ │ │ └─ Pivot 12 32 * │ │ │ │ └─ Pivot 11 33 * │ │ │ └─ Pivot 2 34 * │ │ └─ Pivot 1 35 * │ └─ Pivot 0 36 * └─ Implied minimum 37 * 38 * Slot contents: 39 * Internal (non-leaf) nodes contain pointers to other nodes. 40 * Leaf nodes contain entries. 41 * 42 * The location of interest is often referred to as an offset. All offsets have 43 * a slot, but the last offset has an implied pivot from the node above (or 44 * UINT_MAX for the root node. 45 * 46 * Ranges complicate certain write activities. When modifying any of 47 * the B-tree variants, it is known that one entry will either be added or 48 * deleted. When modifying the Maple Tree, one store operation may overwrite 49 * the entire data set, or one half of the tree, or the middle half of the tree. 50 * 51 */ 52 53 54 #include <linux/maple_tree.h> 55 #include <linux/xarray.h> 56 #include <linux/types.h> 57 #include <linux/export.h> 58 #include <linux/slab.h> 59 #include <linux/limits.h> 60 #include <asm/barrier.h> 61 62 #define CREATE_TRACE_POINTS 63 #include <trace/events/maple_tree.h> 64 65 #define MA_ROOT_PARENT 1 66 67 /* 68 * Maple state flags 69 * * MA_STATE_BULK - Bulk insert mode 70 * * MA_STATE_REBALANCE - Indicate a rebalance during bulk insert 71 * * MA_STATE_PREALLOC - Preallocated nodes, WARN_ON allocation 72 */ 73 #define MA_STATE_BULK 1 74 #define MA_STATE_REBALANCE 2 75 #define MA_STATE_PREALLOC 4 76 77 #define ma_parent_ptr(x) ((struct maple_pnode *)(x)) 78 #define ma_mnode_ptr(x) ((struct maple_node *)(x)) 79 #define ma_enode_ptr(x) ((struct maple_enode *)(x)) 80 static struct kmem_cache *maple_node_cache; 81 82 #ifdef CONFIG_DEBUG_MAPLE_TREE 83 static const unsigned long mt_max[] = { 84 [maple_dense] = MAPLE_NODE_SLOTS, 85 [maple_leaf_64] = ULONG_MAX, 86 [maple_range_64] = ULONG_MAX, 87 [maple_arange_64] = ULONG_MAX, 88 }; 89 #define mt_node_max(x) mt_max[mte_node_type(x)] 90 #endif 91 92 static const unsigned char mt_slots[] = { 93 [maple_dense] = MAPLE_NODE_SLOTS, 94 [maple_leaf_64] = MAPLE_RANGE64_SLOTS, 95 [maple_range_64] = MAPLE_RANGE64_SLOTS, 96 [maple_arange_64] = MAPLE_ARANGE64_SLOTS, 97 }; 98 #define mt_slot_count(x) mt_slots[mte_node_type(x)] 99 100 static const unsigned char mt_pivots[] = { 101 [maple_dense] = 0, 102 [maple_leaf_64] = MAPLE_RANGE64_SLOTS - 1, 103 [maple_range_64] = MAPLE_RANGE64_SLOTS - 1, 104 [maple_arange_64] = MAPLE_ARANGE64_SLOTS - 1, 105 }; 106 #define mt_pivot_count(x) mt_pivots[mte_node_type(x)] 107 108 static const unsigned char mt_min_slots[] = { 109 [maple_dense] = MAPLE_NODE_SLOTS / 2, 110 [maple_leaf_64] = (MAPLE_RANGE64_SLOTS / 2) - 2, 111 [maple_range_64] = (MAPLE_RANGE64_SLOTS / 2) - 2, 112 [maple_arange_64] = (MAPLE_ARANGE64_SLOTS / 2) - 1, 113 }; 114 #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)] 115 116 #define MAPLE_BIG_NODE_SLOTS (MAPLE_RANGE64_SLOTS * 2 + 2) 117 #define MAPLE_BIG_NODE_GAPS (MAPLE_ARANGE64_SLOTS * 2 + 1) 118 119 struct maple_big_node { 120 struct maple_pnode *parent; 121 unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1]; 122 union { 123 struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS]; 124 struct { 125 unsigned long padding[MAPLE_BIG_NODE_GAPS]; 126 unsigned long gap[MAPLE_BIG_NODE_GAPS]; 127 }; 128 }; 129 unsigned char b_end; 130 enum maple_type type; 131 }; 132 133 /* 134 * The maple_subtree_state is used to build a tree to replace a segment of an 135 * existing tree in a more atomic way. Any walkers of the older tree will hit a 136 * dead node and restart on updates. 137 */ 138 struct maple_subtree_state { 139 struct ma_state *orig_l; /* Original left side of subtree */ 140 struct ma_state *orig_r; /* Original right side of subtree */ 141 struct ma_state *l; /* New left side of subtree */ 142 struct ma_state *m; /* New middle of subtree (rare) */ 143 struct ma_state *r; /* New right side of subtree */ 144 struct ma_topiary *free; /* nodes to be freed */ 145 struct ma_topiary *destroy; /* Nodes to be destroyed (walked and freed) */ 146 struct maple_big_node *bn; 147 }; 148 149 #ifdef CONFIG_KASAN_STACK 150 /* Prevent mas_wr_bnode() from exceeding the stack frame limit */ 151 #define noinline_for_kasan noinline_for_stack 152 #else 153 #define noinline_for_kasan inline 154 #endif 155 156 /* Functions */ 157 static inline struct maple_node *mt_alloc_one(gfp_t gfp) 158 { 159 return kmem_cache_alloc(maple_node_cache, gfp); 160 } 161 162 static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes) 163 { 164 return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes); 165 } 166 167 static inline void mt_free_bulk(size_t size, void __rcu **nodes) 168 { 169 kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes); 170 } 171 172 static void mt_free_rcu(struct rcu_head *head) 173 { 174 struct maple_node *node = container_of(head, struct maple_node, rcu); 175 176 kmem_cache_free(maple_node_cache, node); 177 } 178 179 /* 180 * ma_free_rcu() - Use rcu callback to free a maple node 181 * @node: The node to free 182 * 183 * The maple tree uses the parent pointer to indicate this node is no longer in 184 * use and will be freed. 185 */ 186 static void ma_free_rcu(struct maple_node *node) 187 { 188 WARN_ON(node->parent != ma_parent_ptr(node)); 189 call_rcu(&node->rcu, mt_free_rcu); 190 } 191 192 static void mas_set_height(struct ma_state *mas) 193 { 194 unsigned int new_flags = mas->tree->ma_flags; 195 196 new_flags &= ~MT_FLAGS_HEIGHT_MASK; 197 MAS_BUG_ON(mas, mas->depth > MAPLE_HEIGHT_MAX); 198 new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET; 199 mas->tree->ma_flags = new_flags; 200 } 201 202 static unsigned int mas_mt_height(struct ma_state *mas) 203 { 204 return mt_height(mas->tree); 205 } 206 207 static inline enum maple_type mte_node_type(const struct maple_enode *entry) 208 { 209 return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) & 210 MAPLE_NODE_TYPE_MASK; 211 } 212 213 static inline bool ma_is_dense(const enum maple_type type) 214 { 215 return type < maple_leaf_64; 216 } 217 218 static inline bool ma_is_leaf(const enum maple_type type) 219 { 220 return type < maple_range_64; 221 } 222 223 static inline bool mte_is_leaf(const struct maple_enode *entry) 224 { 225 return ma_is_leaf(mte_node_type(entry)); 226 } 227 228 /* 229 * We also reserve values with the bottom two bits set to '10' which are 230 * below 4096 231 */ 232 static inline bool mt_is_reserved(const void *entry) 233 { 234 return ((unsigned long)entry < MAPLE_RESERVED_RANGE) && 235 xa_is_internal(entry); 236 } 237 238 static inline void mas_set_err(struct ma_state *mas, long err) 239 { 240 mas->node = MA_ERROR(err); 241 } 242 243 static inline bool mas_is_ptr(const struct ma_state *mas) 244 { 245 return mas->node == MAS_ROOT; 246 } 247 248 static inline bool mas_is_start(const struct ma_state *mas) 249 { 250 return mas->node == MAS_START; 251 } 252 253 bool mas_is_err(struct ma_state *mas) 254 { 255 return xa_is_err(mas->node); 256 } 257 258 static inline bool mas_searchable(struct ma_state *mas) 259 { 260 if (mas_is_none(mas)) 261 return false; 262 263 if (mas_is_ptr(mas)) 264 return false; 265 266 return true; 267 } 268 269 static inline struct maple_node *mte_to_node(const struct maple_enode *entry) 270 { 271 return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK); 272 } 273 274 /* 275 * mte_to_mat() - Convert a maple encoded node to a maple topiary node. 276 * @entry: The maple encoded node 277 * 278 * Return: a maple topiary pointer 279 */ 280 static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry) 281 { 282 return (struct maple_topiary *) 283 ((unsigned long)entry & ~MAPLE_NODE_MASK); 284 } 285 286 /* 287 * mas_mn() - Get the maple state node. 288 * @mas: The maple state 289 * 290 * Return: the maple node (not encoded - bare pointer). 291 */ 292 static inline struct maple_node *mas_mn(const struct ma_state *mas) 293 { 294 return mte_to_node(mas->node); 295 } 296 297 /* 298 * mte_set_node_dead() - Set a maple encoded node as dead. 299 * @mn: The maple encoded node. 300 */ 301 static inline void mte_set_node_dead(struct maple_enode *mn) 302 { 303 mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn)); 304 smp_wmb(); /* Needed for RCU */ 305 } 306 307 /* Bit 1 indicates the root is a node */ 308 #define MAPLE_ROOT_NODE 0x02 309 /* maple_type stored bit 3-6 */ 310 #define MAPLE_ENODE_TYPE_SHIFT 0x03 311 /* Bit 2 means a NULL somewhere below */ 312 #define MAPLE_ENODE_NULL 0x04 313 314 static inline struct maple_enode *mt_mk_node(const struct maple_node *node, 315 enum maple_type type) 316 { 317 return (void *)((unsigned long)node | 318 (type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL); 319 } 320 321 static inline void *mte_mk_root(const struct maple_enode *node) 322 { 323 return (void *)((unsigned long)node | MAPLE_ROOT_NODE); 324 } 325 326 static inline void *mte_safe_root(const struct maple_enode *node) 327 { 328 return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE); 329 } 330 331 static inline void *mte_set_full(const struct maple_enode *node) 332 { 333 return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL); 334 } 335 336 static inline void *mte_clear_full(const struct maple_enode *node) 337 { 338 return (void *)((unsigned long)node | MAPLE_ENODE_NULL); 339 } 340 341 static inline bool mte_has_null(const struct maple_enode *node) 342 { 343 return (unsigned long)node & MAPLE_ENODE_NULL; 344 } 345 346 static inline bool ma_is_root(struct maple_node *node) 347 { 348 return ((unsigned long)node->parent & MA_ROOT_PARENT); 349 } 350 351 static inline bool mte_is_root(const struct maple_enode *node) 352 { 353 return ma_is_root(mte_to_node(node)); 354 } 355 356 static inline bool mas_is_root_limits(const struct ma_state *mas) 357 { 358 return !mas->min && mas->max == ULONG_MAX; 359 } 360 361 static inline bool mt_is_alloc(struct maple_tree *mt) 362 { 363 return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE); 364 } 365 366 /* 367 * The Parent Pointer 368 * Excluding root, the parent pointer is 256B aligned like all other tree nodes. 369 * When storing a 32 or 64 bit values, the offset can fit into 5 bits. The 16 370 * bit values need an extra bit to store the offset. This extra bit comes from 371 * a reuse of the last bit in the node type. This is possible by using bit 1 to 372 * indicate if bit 2 is part of the type or the slot. 373 * 374 * Note types: 375 * 0x??1 = Root 376 * 0x?00 = 16 bit nodes 377 * 0x010 = 32 bit nodes 378 * 0x110 = 64 bit nodes 379 * 380 * Slot size and alignment 381 * 0b??1 : Root 382 * 0b?00 : 16 bit values, type in 0-1, slot in 2-7 383 * 0b010 : 32 bit values, type in 0-2, slot in 3-7 384 * 0b110 : 64 bit values, type in 0-2, slot in 3-7 385 */ 386 387 #define MAPLE_PARENT_ROOT 0x01 388 389 #define MAPLE_PARENT_SLOT_SHIFT 0x03 390 #define MAPLE_PARENT_SLOT_MASK 0xF8 391 392 #define MAPLE_PARENT_16B_SLOT_SHIFT 0x02 393 #define MAPLE_PARENT_16B_SLOT_MASK 0xFC 394 395 #define MAPLE_PARENT_RANGE64 0x06 396 #define MAPLE_PARENT_RANGE32 0x04 397 #define MAPLE_PARENT_NOT_RANGE16 0x02 398 399 /* 400 * mte_parent_shift() - Get the parent shift for the slot storage. 401 * @parent: The parent pointer cast as an unsigned long 402 * Return: The shift into that pointer to the star to of the slot 403 */ 404 static inline unsigned long mte_parent_shift(unsigned long parent) 405 { 406 /* Note bit 1 == 0 means 16B */ 407 if (likely(parent & MAPLE_PARENT_NOT_RANGE16)) 408 return MAPLE_PARENT_SLOT_SHIFT; 409 410 return MAPLE_PARENT_16B_SLOT_SHIFT; 411 } 412 413 /* 414 * mte_parent_slot_mask() - Get the slot mask for the parent. 415 * @parent: The parent pointer cast as an unsigned long. 416 * Return: The slot mask for that parent. 417 */ 418 static inline unsigned long mte_parent_slot_mask(unsigned long parent) 419 { 420 /* Note bit 1 == 0 means 16B */ 421 if (likely(parent & MAPLE_PARENT_NOT_RANGE16)) 422 return MAPLE_PARENT_SLOT_MASK; 423 424 return MAPLE_PARENT_16B_SLOT_MASK; 425 } 426 427 /* 428 * mas_parent_type() - Return the maple_type of the parent from the stored 429 * parent type. 430 * @mas: The maple state 431 * @enode: The maple_enode to extract the parent's enum 432 * Return: The node->parent maple_type 433 */ 434 static inline 435 enum maple_type mas_parent_type(struct ma_state *mas, struct maple_enode *enode) 436 { 437 unsigned long p_type; 438 439 p_type = (unsigned long)mte_to_node(enode)->parent; 440 if (WARN_ON(p_type & MAPLE_PARENT_ROOT)) 441 return 0; 442 443 p_type &= MAPLE_NODE_MASK; 444 p_type &= ~mte_parent_slot_mask(p_type); 445 switch (p_type) { 446 case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */ 447 if (mt_is_alloc(mas->tree)) 448 return maple_arange_64; 449 return maple_range_64; 450 } 451 452 return 0; 453 } 454 455 /* 456 * mas_set_parent() - Set the parent node and encode the slot 457 * @enode: The encoded maple node. 458 * @parent: The encoded maple node that is the parent of @enode. 459 * @slot: The slot that @enode resides in @parent. 460 * 461 * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the 462 * parent type. 463 */ 464 static inline 465 void mas_set_parent(struct ma_state *mas, struct maple_enode *enode, 466 const struct maple_enode *parent, unsigned char slot) 467 { 468 unsigned long val = (unsigned long)parent; 469 unsigned long shift; 470 unsigned long type; 471 enum maple_type p_type = mte_node_type(parent); 472 473 MAS_BUG_ON(mas, p_type == maple_dense); 474 MAS_BUG_ON(mas, p_type == maple_leaf_64); 475 476 switch (p_type) { 477 case maple_range_64: 478 case maple_arange_64: 479 shift = MAPLE_PARENT_SLOT_SHIFT; 480 type = MAPLE_PARENT_RANGE64; 481 break; 482 default: 483 case maple_dense: 484 case maple_leaf_64: 485 shift = type = 0; 486 break; 487 } 488 489 val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */ 490 val |= (slot << shift) | type; 491 mte_to_node(enode)->parent = ma_parent_ptr(val); 492 } 493 494 /* 495 * mte_parent_slot() - get the parent slot of @enode. 496 * @enode: The encoded maple node. 497 * 498 * Return: The slot in the parent node where @enode resides. 499 */ 500 static inline unsigned int mte_parent_slot(const struct maple_enode *enode) 501 { 502 unsigned long val = (unsigned long)mte_to_node(enode)->parent; 503 504 if (val & MA_ROOT_PARENT) 505 return 0; 506 507 /* 508 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost 509 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT 510 */ 511 return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val); 512 } 513 514 /* 515 * mte_parent() - Get the parent of @node. 516 * @node: The encoded maple node. 517 * 518 * Return: The parent maple node. 519 */ 520 static inline struct maple_node *mte_parent(const struct maple_enode *enode) 521 { 522 return (void *)((unsigned long) 523 (mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK); 524 } 525 526 /* 527 * ma_dead_node() - check if the @enode is dead. 528 * @enode: The encoded maple node 529 * 530 * Return: true if dead, false otherwise. 531 */ 532 static inline bool ma_dead_node(const struct maple_node *node) 533 { 534 struct maple_node *parent; 535 536 /* Do not reorder reads from the node prior to the parent check */ 537 smp_rmb(); 538 parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK); 539 return (parent == node); 540 } 541 542 /* 543 * mte_dead_node() - check if the @enode is dead. 544 * @enode: The encoded maple node 545 * 546 * Return: true if dead, false otherwise. 547 */ 548 static inline bool mte_dead_node(const struct maple_enode *enode) 549 { 550 struct maple_node *parent, *node; 551 552 node = mte_to_node(enode); 553 /* Do not reorder reads from the node prior to the parent check */ 554 smp_rmb(); 555 parent = mte_parent(enode); 556 return (parent == node); 557 } 558 559 /* 560 * mas_allocated() - Get the number of nodes allocated in a maple state. 561 * @mas: The maple state 562 * 563 * The ma_state alloc member is overloaded to hold a pointer to the first 564 * allocated node or to the number of requested nodes to allocate. If bit 0 is 565 * set, then the alloc contains the number of requested nodes. If there is an 566 * allocated node, then the total allocated nodes is in that node. 567 * 568 * Return: The total number of nodes allocated 569 */ 570 static inline unsigned long mas_allocated(const struct ma_state *mas) 571 { 572 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) 573 return 0; 574 575 return mas->alloc->total; 576 } 577 578 /* 579 * mas_set_alloc_req() - Set the requested number of allocations. 580 * @mas: the maple state 581 * @count: the number of allocations. 582 * 583 * The requested number of allocations is either in the first allocated node, 584 * located in @mas->alloc->request_count, or directly in @mas->alloc if there is 585 * no allocated node. Set the request either in the node or do the necessary 586 * encoding to store in @mas->alloc directly. 587 */ 588 static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count) 589 { 590 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) { 591 if (!count) 592 mas->alloc = NULL; 593 else 594 mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U); 595 return; 596 } 597 598 mas->alloc->request_count = count; 599 } 600 601 /* 602 * mas_alloc_req() - get the requested number of allocations. 603 * @mas: The maple state 604 * 605 * The alloc count is either stored directly in @mas, or in 606 * @mas->alloc->request_count if there is at least one node allocated. Decode 607 * the request count if it's stored directly in @mas->alloc. 608 * 609 * Return: The allocation request count. 610 */ 611 static inline unsigned int mas_alloc_req(const struct ma_state *mas) 612 { 613 if ((unsigned long)mas->alloc & 0x1) 614 return (unsigned long)(mas->alloc) >> 1; 615 else if (mas->alloc) 616 return mas->alloc->request_count; 617 return 0; 618 } 619 620 /* 621 * ma_pivots() - Get a pointer to the maple node pivots. 622 * @node - the maple node 623 * @type - the node type 624 * 625 * In the event of a dead node, this array may be %NULL 626 * 627 * Return: A pointer to the maple node pivots 628 */ 629 static inline unsigned long *ma_pivots(struct maple_node *node, 630 enum maple_type type) 631 { 632 switch (type) { 633 case maple_arange_64: 634 return node->ma64.pivot; 635 case maple_range_64: 636 case maple_leaf_64: 637 return node->mr64.pivot; 638 case maple_dense: 639 return NULL; 640 } 641 return NULL; 642 } 643 644 /* 645 * ma_gaps() - Get a pointer to the maple node gaps. 646 * @node - the maple node 647 * @type - the node type 648 * 649 * Return: A pointer to the maple node gaps 650 */ 651 static inline unsigned long *ma_gaps(struct maple_node *node, 652 enum maple_type type) 653 { 654 switch (type) { 655 case maple_arange_64: 656 return node->ma64.gap; 657 case maple_range_64: 658 case maple_leaf_64: 659 case maple_dense: 660 return NULL; 661 } 662 return NULL; 663 } 664 665 /* 666 * mas_pivot() - Get the pivot at @piv of the maple encoded node. 667 * @mas: The maple state. 668 * @piv: The pivot. 669 * 670 * Return: the pivot at @piv of @mn. 671 */ 672 static inline unsigned long mas_pivot(struct ma_state *mas, unsigned char piv) 673 { 674 struct maple_node *node = mas_mn(mas); 675 enum maple_type type = mte_node_type(mas->node); 676 677 if (MAS_WARN_ON(mas, piv >= mt_pivots[type])) { 678 mas_set_err(mas, -EIO); 679 return 0; 680 } 681 682 switch (type) { 683 case maple_arange_64: 684 return node->ma64.pivot[piv]; 685 case maple_range_64: 686 case maple_leaf_64: 687 return node->mr64.pivot[piv]; 688 case maple_dense: 689 return 0; 690 } 691 return 0; 692 } 693 694 /* 695 * mas_safe_pivot() - get the pivot at @piv or mas->max. 696 * @mas: The maple state 697 * @pivots: The pointer to the maple node pivots 698 * @piv: The pivot to fetch 699 * @type: The maple node type 700 * 701 * Return: The pivot at @piv within the limit of the @pivots array, @mas->max 702 * otherwise. 703 */ 704 static inline unsigned long 705 mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots, 706 unsigned char piv, enum maple_type type) 707 { 708 if (piv >= mt_pivots[type]) 709 return mas->max; 710 711 return pivots[piv]; 712 } 713 714 /* 715 * mas_safe_min() - Return the minimum for a given offset. 716 * @mas: The maple state 717 * @pivots: The pointer to the maple node pivots 718 * @offset: The offset into the pivot array 719 * 720 * Return: The minimum range value that is contained in @offset. 721 */ 722 static inline unsigned long 723 mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset) 724 { 725 if (likely(offset)) 726 return pivots[offset - 1] + 1; 727 728 return mas->min; 729 } 730 731 /* 732 * mte_set_pivot() - Set a pivot to a value in an encoded maple node. 733 * @mn: The encoded maple node 734 * @piv: The pivot offset 735 * @val: The value of the pivot 736 */ 737 static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv, 738 unsigned long val) 739 { 740 struct maple_node *node = mte_to_node(mn); 741 enum maple_type type = mte_node_type(mn); 742 743 BUG_ON(piv >= mt_pivots[type]); 744 switch (type) { 745 default: 746 case maple_range_64: 747 case maple_leaf_64: 748 node->mr64.pivot[piv] = val; 749 break; 750 case maple_arange_64: 751 node->ma64.pivot[piv] = val; 752 break; 753 case maple_dense: 754 break; 755 } 756 757 } 758 759 /* 760 * ma_slots() - Get a pointer to the maple node slots. 761 * @mn: The maple node 762 * @mt: The maple node type 763 * 764 * Return: A pointer to the maple node slots 765 */ 766 static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt) 767 { 768 switch (mt) { 769 default: 770 case maple_arange_64: 771 return mn->ma64.slot; 772 case maple_range_64: 773 case maple_leaf_64: 774 return mn->mr64.slot; 775 case maple_dense: 776 return mn->slot; 777 } 778 } 779 780 static inline bool mt_locked(const struct maple_tree *mt) 781 { 782 return mt_external_lock(mt) ? mt_lock_is_held(mt) : 783 lockdep_is_held(&mt->ma_lock); 784 } 785 786 static inline void *mt_slot(const struct maple_tree *mt, 787 void __rcu **slots, unsigned char offset) 788 { 789 return rcu_dereference_check(slots[offset], mt_locked(mt)); 790 } 791 792 static inline void *mt_slot_locked(struct maple_tree *mt, void __rcu **slots, 793 unsigned char offset) 794 { 795 return rcu_dereference_protected(slots[offset], mt_locked(mt)); 796 } 797 /* 798 * mas_slot_locked() - Get the slot value when holding the maple tree lock. 799 * @mas: The maple state 800 * @slots: The pointer to the slots 801 * @offset: The offset into the slots array to fetch 802 * 803 * Return: The entry stored in @slots at the @offset. 804 */ 805 static inline void *mas_slot_locked(struct ma_state *mas, void __rcu **slots, 806 unsigned char offset) 807 { 808 return mt_slot_locked(mas->tree, slots, offset); 809 } 810 811 /* 812 * mas_slot() - Get the slot value when not holding the maple tree lock. 813 * @mas: The maple state 814 * @slots: The pointer to the slots 815 * @offset: The offset into the slots array to fetch 816 * 817 * Return: The entry stored in @slots at the @offset 818 */ 819 static inline void *mas_slot(struct ma_state *mas, void __rcu **slots, 820 unsigned char offset) 821 { 822 return mt_slot(mas->tree, slots, offset); 823 } 824 825 /* 826 * mas_root() - Get the maple tree root. 827 * @mas: The maple state. 828 * 829 * Return: The pointer to the root of the tree 830 */ 831 static inline void *mas_root(struct ma_state *mas) 832 { 833 return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree)); 834 } 835 836 static inline void *mt_root_locked(struct maple_tree *mt) 837 { 838 return rcu_dereference_protected(mt->ma_root, mt_locked(mt)); 839 } 840 841 /* 842 * mas_root_locked() - Get the maple tree root when holding the maple tree lock. 843 * @mas: The maple state. 844 * 845 * Return: The pointer to the root of the tree 846 */ 847 static inline void *mas_root_locked(struct ma_state *mas) 848 { 849 return mt_root_locked(mas->tree); 850 } 851 852 static inline struct maple_metadata *ma_meta(struct maple_node *mn, 853 enum maple_type mt) 854 { 855 switch (mt) { 856 case maple_arange_64: 857 return &mn->ma64.meta; 858 default: 859 return &mn->mr64.meta; 860 } 861 } 862 863 /* 864 * ma_set_meta() - Set the metadata information of a node. 865 * @mn: The maple node 866 * @mt: The maple node type 867 * @offset: The offset of the highest sub-gap in this node. 868 * @end: The end of the data in this node. 869 */ 870 static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt, 871 unsigned char offset, unsigned char end) 872 { 873 struct maple_metadata *meta = ma_meta(mn, mt); 874 875 meta->gap = offset; 876 meta->end = end; 877 } 878 879 /* 880 * mt_clear_meta() - clear the metadata information of a node, if it exists 881 * @mt: The maple tree 882 * @mn: The maple node 883 * @type: The maple node type 884 * @offset: The offset of the highest sub-gap in this node. 885 * @end: The end of the data in this node. 886 */ 887 static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn, 888 enum maple_type type) 889 { 890 struct maple_metadata *meta; 891 unsigned long *pivots; 892 void __rcu **slots; 893 void *next; 894 895 switch (type) { 896 case maple_range_64: 897 pivots = mn->mr64.pivot; 898 if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) { 899 slots = mn->mr64.slot; 900 next = mt_slot_locked(mt, slots, 901 MAPLE_RANGE64_SLOTS - 1); 902 if (unlikely((mte_to_node(next) && 903 mte_node_type(next)))) 904 return; /* no metadata, could be node */ 905 } 906 fallthrough; 907 case maple_arange_64: 908 meta = ma_meta(mn, type); 909 break; 910 default: 911 return; 912 } 913 914 meta->gap = 0; 915 meta->end = 0; 916 } 917 918 /* 919 * ma_meta_end() - Get the data end of a node from the metadata 920 * @mn: The maple node 921 * @mt: The maple node type 922 */ 923 static inline unsigned char ma_meta_end(struct maple_node *mn, 924 enum maple_type mt) 925 { 926 struct maple_metadata *meta = ma_meta(mn, mt); 927 928 return meta->end; 929 } 930 931 /* 932 * ma_meta_gap() - Get the largest gap location of a node from the metadata 933 * @mn: The maple node 934 * @mt: The maple node type 935 */ 936 static inline unsigned char ma_meta_gap(struct maple_node *mn, 937 enum maple_type mt) 938 { 939 return mn->ma64.meta.gap; 940 } 941 942 /* 943 * ma_set_meta_gap() - Set the largest gap location in a nodes metadata 944 * @mn: The maple node 945 * @mn: The maple node type 946 * @offset: The location of the largest gap. 947 */ 948 static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt, 949 unsigned char offset) 950 { 951 952 struct maple_metadata *meta = ma_meta(mn, mt); 953 954 meta->gap = offset; 955 } 956 957 /* 958 * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes. 959 * @mat - the ma_topiary, a linked list of dead nodes. 960 * @dead_enode - the node to be marked as dead and added to the tail of the list 961 * 962 * Add the @dead_enode to the linked list in @mat. 963 */ 964 static inline void mat_add(struct ma_topiary *mat, 965 struct maple_enode *dead_enode) 966 { 967 mte_set_node_dead(dead_enode); 968 mte_to_mat(dead_enode)->next = NULL; 969 if (!mat->tail) { 970 mat->tail = mat->head = dead_enode; 971 return; 972 } 973 974 mte_to_mat(mat->tail)->next = dead_enode; 975 mat->tail = dead_enode; 976 } 977 978 static void mte_destroy_walk(struct maple_enode *, struct maple_tree *); 979 static inline void mas_free(struct ma_state *mas, struct maple_enode *used); 980 981 /* 982 * mas_mat_free() - Free all nodes in a dead list. 983 * @mas - the maple state 984 * @mat - the ma_topiary linked list of dead nodes to free. 985 * 986 * Free walk a dead list. 987 */ 988 static void mas_mat_free(struct ma_state *mas, struct ma_topiary *mat) 989 { 990 struct maple_enode *next; 991 992 while (mat->head) { 993 next = mte_to_mat(mat->head)->next; 994 mas_free(mas, mat->head); 995 mat->head = next; 996 } 997 } 998 999 /* 1000 * mas_mat_destroy() - Free all nodes and subtrees in a dead list. 1001 * @mas - the maple state 1002 * @mat - the ma_topiary linked list of dead nodes to free. 1003 * 1004 * Destroy walk a dead list. 1005 */ 1006 static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat) 1007 { 1008 struct maple_enode *next; 1009 1010 while (mat->head) { 1011 next = mte_to_mat(mat->head)->next; 1012 mte_destroy_walk(mat->head, mat->mtree); 1013 mat->head = next; 1014 } 1015 } 1016 /* 1017 * mas_descend() - Descend into the slot stored in the ma_state. 1018 * @mas - the maple state. 1019 * 1020 * Note: Not RCU safe, only use in write side or debug code. 1021 */ 1022 static inline void mas_descend(struct ma_state *mas) 1023 { 1024 enum maple_type type; 1025 unsigned long *pivots; 1026 struct maple_node *node; 1027 void __rcu **slots; 1028 1029 node = mas_mn(mas); 1030 type = mte_node_type(mas->node); 1031 pivots = ma_pivots(node, type); 1032 slots = ma_slots(node, type); 1033 1034 if (mas->offset) 1035 mas->min = pivots[mas->offset - 1] + 1; 1036 mas->max = mas_safe_pivot(mas, pivots, mas->offset, type); 1037 mas->node = mas_slot(mas, slots, mas->offset); 1038 } 1039 1040 /* 1041 * mte_set_gap() - Set a maple node gap. 1042 * @mn: The encoded maple node 1043 * @gap: The offset of the gap to set 1044 * @val: The gap value 1045 */ 1046 static inline void mte_set_gap(const struct maple_enode *mn, 1047 unsigned char gap, unsigned long val) 1048 { 1049 switch (mte_node_type(mn)) { 1050 default: 1051 break; 1052 case maple_arange_64: 1053 mte_to_node(mn)->ma64.gap[gap] = val; 1054 break; 1055 } 1056 } 1057 1058 /* 1059 * mas_ascend() - Walk up a level of the tree. 1060 * @mas: The maple state 1061 * 1062 * Sets the @mas->max and @mas->min to the correct values when walking up. This 1063 * may cause several levels of walking up to find the correct min and max. 1064 * May find a dead node which will cause a premature return. 1065 * Return: 1 on dead node, 0 otherwise 1066 */ 1067 static int mas_ascend(struct ma_state *mas) 1068 { 1069 struct maple_enode *p_enode; /* parent enode. */ 1070 struct maple_enode *a_enode; /* ancestor enode. */ 1071 struct maple_node *a_node; /* ancestor node. */ 1072 struct maple_node *p_node; /* parent node. */ 1073 unsigned char a_slot; 1074 enum maple_type a_type; 1075 unsigned long min, max; 1076 unsigned long *pivots; 1077 bool set_max = false, set_min = false; 1078 1079 a_node = mas_mn(mas); 1080 if (ma_is_root(a_node)) { 1081 mas->offset = 0; 1082 return 0; 1083 } 1084 1085 p_node = mte_parent(mas->node); 1086 if (unlikely(a_node == p_node)) 1087 return 1; 1088 1089 a_type = mas_parent_type(mas, mas->node); 1090 mas->offset = mte_parent_slot(mas->node); 1091 a_enode = mt_mk_node(p_node, a_type); 1092 1093 /* Check to make sure all parent information is still accurate */ 1094 if (p_node != mte_parent(mas->node)) 1095 return 1; 1096 1097 mas->node = a_enode; 1098 1099 if (mte_is_root(a_enode)) { 1100 mas->max = ULONG_MAX; 1101 mas->min = 0; 1102 return 0; 1103 } 1104 1105 if (!mas->min) 1106 set_min = true; 1107 1108 if (mas->max == ULONG_MAX) 1109 set_max = true; 1110 1111 min = 0; 1112 max = ULONG_MAX; 1113 do { 1114 p_enode = a_enode; 1115 a_type = mas_parent_type(mas, p_enode); 1116 a_node = mte_parent(p_enode); 1117 a_slot = mte_parent_slot(p_enode); 1118 a_enode = mt_mk_node(a_node, a_type); 1119 pivots = ma_pivots(a_node, a_type); 1120 1121 if (unlikely(ma_dead_node(a_node))) 1122 return 1; 1123 1124 if (!set_min && a_slot) { 1125 set_min = true; 1126 min = pivots[a_slot - 1] + 1; 1127 } 1128 1129 if (!set_max && a_slot < mt_pivots[a_type]) { 1130 set_max = true; 1131 max = pivots[a_slot]; 1132 } 1133 1134 if (unlikely(ma_dead_node(a_node))) 1135 return 1; 1136 1137 if (unlikely(ma_is_root(a_node))) 1138 break; 1139 1140 } while (!set_min || !set_max); 1141 1142 mas->max = max; 1143 mas->min = min; 1144 return 0; 1145 } 1146 1147 /* 1148 * mas_pop_node() - Get a previously allocated maple node from the maple state. 1149 * @mas: The maple state 1150 * 1151 * Return: A pointer to a maple node. 1152 */ 1153 static inline struct maple_node *mas_pop_node(struct ma_state *mas) 1154 { 1155 struct maple_alloc *ret, *node = mas->alloc; 1156 unsigned long total = mas_allocated(mas); 1157 unsigned int req = mas_alloc_req(mas); 1158 1159 /* nothing or a request pending. */ 1160 if (WARN_ON(!total)) 1161 return NULL; 1162 1163 if (total == 1) { 1164 /* single allocation in this ma_state */ 1165 mas->alloc = NULL; 1166 ret = node; 1167 goto single_node; 1168 } 1169 1170 if (node->node_count == 1) { 1171 /* Single allocation in this node. */ 1172 mas->alloc = node->slot[0]; 1173 mas->alloc->total = node->total - 1; 1174 ret = node; 1175 goto new_head; 1176 } 1177 node->total--; 1178 ret = node->slot[--node->node_count]; 1179 node->slot[node->node_count] = NULL; 1180 1181 single_node: 1182 new_head: 1183 if (req) { 1184 req++; 1185 mas_set_alloc_req(mas, req); 1186 } 1187 1188 memset(ret, 0, sizeof(*ret)); 1189 return (struct maple_node *)ret; 1190 } 1191 1192 /* 1193 * mas_push_node() - Push a node back on the maple state allocation. 1194 * @mas: The maple state 1195 * @used: The used maple node 1196 * 1197 * Stores the maple node back into @mas->alloc for reuse. Updates allocated and 1198 * requested node count as necessary. 1199 */ 1200 static inline void mas_push_node(struct ma_state *mas, struct maple_node *used) 1201 { 1202 struct maple_alloc *reuse = (struct maple_alloc *)used; 1203 struct maple_alloc *head = mas->alloc; 1204 unsigned long count; 1205 unsigned int requested = mas_alloc_req(mas); 1206 1207 count = mas_allocated(mas); 1208 1209 reuse->request_count = 0; 1210 reuse->node_count = 0; 1211 if (count && (head->node_count < MAPLE_ALLOC_SLOTS)) { 1212 head->slot[head->node_count++] = reuse; 1213 head->total++; 1214 goto done; 1215 } 1216 1217 reuse->total = 1; 1218 if ((head) && !((unsigned long)head & 0x1)) { 1219 reuse->slot[0] = head; 1220 reuse->node_count = 1; 1221 reuse->total += head->total; 1222 } 1223 1224 mas->alloc = reuse; 1225 done: 1226 if (requested > 1) 1227 mas_set_alloc_req(mas, requested - 1); 1228 } 1229 1230 /* 1231 * mas_alloc_nodes() - Allocate nodes into a maple state 1232 * @mas: The maple state 1233 * @gfp: The GFP Flags 1234 */ 1235 static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp) 1236 { 1237 struct maple_alloc *node; 1238 unsigned long allocated = mas_allocated(mas); 1239 unsigned int requested = mas_alloc_req(mas); 1240 unsigned int count; 1241 void **slots = NULL; 1242 unsigned int max_req = 0; 1243 1244 if (!requested) 1245 return; 1246 1247 mas_set_alloc_req(mas, 0); 1248 if (mas->mas_flags & MA_STATE_PREALLOC) { 1249 if (allocated) 1250 return; 1251 WARN_ON(!allocated); 1252 } 1253 1254 if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) { 1255 node = (struct maple_alloc *)mt_alloc_one(gfp); 1256 if (!node) 1257 goto nomem_one; 1258 1259 if (allocated) { 1260 node->slot[0] = mas->alloc; 1261 node->node_count = 1; 1262 } else { 1263 node->node_count = 0; 1264 } 1265 1266 mas->alloc = node; 1267 node->total = ++allocated; 1268 requested--; 1269 } 1270 1271 node = mas->alloc; 1272 node->request_count = 0; 1273 while (requested) { 1274 max_req = MAPLE_ALLOC_SLOTS - node->node_count; 1275 slots = (void **)&node->slot[node->node_count]; 1276 max_req = min(requested, max_req); 1277 count = mt_alloc_bulk(gfp, max_req, slots); 1278 if (!count) 1279 goto nomem_bulk; 1280 1281 if (node->node_count == 0) { 1282 node->slot[0]->node_count = 0; 1283 node->slot[0]->request_count = 0; 1284 } 1285 1286 node->node_count += count; 1287 allocated += count; 1288 node = node->slot[0]; 1289 requested -= count; 1290 } 1291 mas->alloc->total = allocated; 1292 return; 1293 1294 nomem_bulk: 1295 /* Clean up potential freed allocations on bulk failure */ 1296 memset(slots, 0, max_req * sizeof(unsigned long)); 1297 nomem_one: 1298 mas_set_alloc_req(mas, requested); 1299 if (mas->alloc && !(((unsigned long)mas->alloc & 0x1))) 1300 mas->alloc->total = allocated; 1301 mas_set_err(mas, -ENOMEM); 1302 } 1303 1304 /* 1305 * mas_free() - Free an encoded maple node 1306 * @mas: The maple state 1307 * @used: The encoded maple node to free. 1308 * 1309 * Uses rcu free if necessary, pushes @used back on the maple state allocations 1310 * otherwise. 1311 */ 1312 static inline void mas_free(struct ma_state *mas, struct maple_enode *used) 1313 { 1314 struct maple_node *tmp = mte_to_node(used); 1315 1316 if (mt_in_rcu(mas->tree)) 1317 ma_free_rcu(tmp); 1318 else 1319 mas_push_node(mas, tmp); 1320 } 1321 1322 /* 1323 * mas_node_count() - Check if enough nodes are allocated and request more if 1324 * there is not enough nodes. 1325 * @mas: The maple state 1326 * @count: The number of nodes needed 1327 * @gfp: the gfp flags 1328 */ 1329 static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp) 1330 { 1331 unsigned long allocated = mas_allocated(mas); 1332 1333 if (allocated < count) { 1334 mas_set_alloc_req(mas, count - allocated); 1335 mas_alloc_nodes(mas, gfp); 1336 } 1337 } 1338 1339 /* 1340 * mas_node_count() - Check if enough nodes are allocated and request more if 1341 * there is not enough nodes. 1342 * @mas: The maple state 1343 * @count: The number of nodes needed 1344 * 1345 * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags. 1346 */ 1347 static void mas_node_count(struct ma_state *mas, int count) 1348 { 1349 return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN); 1350 } 1351 1352 /* 1353 * mas_start() - Sets up maple state for operations. 1354 * @mas: The maple state. 1355 * 1356 * If mas->node == MAS_START, then set the min, max and depth to 1357 * defaults. 1358 * 1359 * Return: 1360 * - If mas->node is an error or not MAS_START, return NULL. 1361 * - If it's an empty tree: NULL & mas->node == MAS_NONE 1362 * - If it's a single entry: The entry & mas->node == MAS_ROOT 1363 * - If it's a tree: NULL & mas->node == safe root node. 1364 */ 1365 static inline struct maple_enode *mas_start(struct ma_state *mas) 1366 { 1367 if (likely(mas_is_start(mas))) { 1368 struct maple_enode *root; 1369 1370 mas->min = 0; 1371 mas->max = ULONG_MAX; 1372 1373 retry: 1374 mas->depth = 0; 1375 root = mas_root(mas); 1376 /* Tree with nodes */ 1377 if (likely(xa_is_node(root))) { 1378 mas->depth = 1; 1379 mas->node = mte_safe_root(root); 1380 mas->offset = 0; 1381 if (mte_dead_node(mas->node)) 1382 goto retry; 1383 1384 return NULL; 1385 } 1386 1387 /* empty tree */ 1388 if (unlikely(!root)) { 1389 mas->node = MAS_NONE; 1390 mas->offset = MAPLE_NODE_SLOTS; 1391 return NULL; 1392 } 1393 1394 /* Single entry tree */ 1395 mas->node = MAS_ROOT; 1396 mas->offset = MAPLE_NODE_SLOTS; 1397 1398 /* Single entry tree. */ 1399 if (mas->index > 0) 1400 return NULL; 1401 1402 return root; 1403 } 1404 1405 return NULL; 1406 } 1407 1408 /* 1409 * ma_data_end() - Find the end of the data in a node. 1410 * @node: The maple node 1411 * @type: The maple node type 1412 * @pivots: The array of pivots in the node 1413 * @max: The maximum value in the node 1414 * 1415 * Uses metadata to find the end of the data when possible. 1416 * Return: The zero indexed last slot with data (may be null). 1417 */ 1418 static inline unsigned char ma_data_end(struct maple_node *node, 1419 enum maple_type type, 1420 unsigned long *pivots, 1421 unsigned long max) 1422 { 1423 unsigned char offset; 1424 1425 if (!pivots) 1426 return 0; 1427 1428 if (type == maple_arange_64) 1429 return ma_meta_end(node, type); 1430 1431 offset = mt_pivots[type] - 1; 1432 if (likely(!pivots[offset])) 1433 return ma_meta_end(node, type); 1434 1435 if (likely(pivots[offset] == max)) 1436 return offset; 1437 1438 return mt_pivots[type]; 1439 } 1440 1441 /* 1442 * mas_data_end() - Find the end of the data (slot). 1443 * @mas: the maple state 1444 * 1445 * This method is optimized to check the metadata of a node if the node type 1446 * supports data end metadata. 1447 * 1448 * Return: The zero indexed last slot with data (may be null). 1449 */ 1450 static inline unsigned char mas_data_end(struct ma_state *mas) 1451 { 1452 enum maple_type type; 1453 struct maple_node *node; 1454 unsigned char offset; 1455 unsigned long *pivots; 1456 1457 type = mte_node_type(mas->node); 1458 node = mas_mn(mas); 1459 if (type == maple_arange_64) 1460 return ma_meta_end(node, type); 1461 1462 pivots = ma_pivots(node, type); 1463 if (unlikely(ma_dead_node(node))) 1464 return 0; 1465 1466 offset = mt_pivots[type] - 1; 1467 if (likely(!pivots[offset])) 1468 return ma_meta_end(node, type); 1469 1470 if (likely(pivots[offset] == mas->max)) 1471 return offset; 1472 1473 return mt_pivots[type]; 1474 } 1475 1476 /* 1477 * mas_leaf_max_gap() - Returns the largest gap in a leaf node 1478 * @mas - the maple state 1479 * 1480 * Return: The maximum gap in the leaf. 1481 */ 1482 static unsigned long mas_leaf_max_gap(struct ma_state *mas) 1483 { 1484 enum maple_type mt; 1485 unsigned long pstart, gap, max_gap; 1486 struct maple_node *mn; 1487 unsigned long *pivots; 1488 void __rcu **slots; 1489 unsigned char i; 1490 unsigned char max_piv; 1491 1492 mt = mte_node_type(mas->node); 1493 mn = mas_mn(mas); 1494 slots = ma_slots(mn, mt); 1495 max_gap = 0; 1496 if (unlikely(ma_is_dense(mt))) { 1497 gap = 0; 1498 for (i = 0; i < mt_slots[mt]; i++) { 1499 if (slots[i]) { 1500 if (gap > max_gap) 1501 max_gap = gap; 1502 gap = 0; 1503 } else { 1504 gap++; 1505 } 1506 } 1507 if (gap > max_gap) 1508 max_gap = gap; 1509 return max_gap; 1510 } 1511 1512 /* 1513 * Check the first implied pivot optimizes the loop below and slot 1 may 1514 * be skipped if there is a gap in slot 0. 1515 */ 1516 pivots = ma_pivots(mn, mt); 1517 if (likely(!slots[0])) { 1518 max_gap = pivots[0] - mas->min + 1; 1519 i = 2; 1520 } else { 1521 i = 1; 1522 } 1523 1524 /* reduce max_piv as the special case is checked before the loop */ 1525 max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1; 1526 /* 1527 * Check end implied pivot which can only be a gap on the right most 1528 * node. 1529 */ 1530 if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) { 1531 gap = ULONG_MAX - pivots[max_piv]; 1532 if (gap > max_gap) 1533 max_gap = gap; 1534 } 1535 1536 for (; i <= max_piv; i++) { 1537 /* data == no gap. */ 1538 if (likely(slots[i])) 1539 continue; 1540 1541 pstart = pivots[i - 1]; 1542 gap = pivots[i] - pstart; 1543 if (gap > max_gap) 1544 max_gap = gap; 1545 1546 /* There cannot be two gaps in a row. */ 1547 i++; 1548 } 1549 return max_gap; 1550 } 1551 1552 /* 1553 * ma_max_gap() - Get the maximum gap in a maple node (non-leaf) 1554 * @node: The maple node 1555 * @gaps: The pointer to the gaps 1556 * @mt: The maple node type 1557 * @*off: Pointer to store the offset location of the gap. 1558 * 1559 * Uses the metadata data end to scan backwards across set gaps. 1560 * 1561 * Return: The maximum gap value 1562 */ 1563 static inline unsigned long 1564 ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt, 1565 unsigned char *off) 1566 { 1567 unsigned char offset, i; 1568 unsigned long max_gap = 0; 1569 1570 i = offset = ma_meta_end(node, mt); 1571 do { 1572 if (gaps[i] > max_gap) { 1573 max_gap = gaps[i]; 1574 offset = i; 1575 } 1576 } while (i--); 1577 1578 *off = offset; 1579 return max_gap; 1580 } 1581 1582 /* 1583 * mas_max_gap() - find the largest gap in a non-leaf node and set the slot. 1584 * @mas: The maple state. 1585 * 1586 * Return: The gap value. 1587 */ 1588 static inline unsigned long mas_max_gap(struct ma_state *mas) 1589 { 1590 unsigned long *gaps; 1591 unsigned char offset; 1592 enum maple_type mt; 1593 struct maple_node *node; 1594 1595 mt = mte_node_type(mas->node); 1596 if (ma_is_leaf(mt)) 1597 return mas_leaf_max_gap(mas); 1598 1599 node = mas_mn(mas); 1600 MAS_BUG_ON(mas, mt != maple_arange_64); 1601 offset = ma_meta_gap(node, mt); 1602 gaps = ma_gaps(node, mt); 1603 return gaps[offset]; 1604 } 1605 1606 /* 1607 * mas_parent_gap() - Set the parent gap and any gaps above, as needed 1608 * @mas: The maple state 1609 * @offset: The gap offset in the parent to set 1610 * @new: The new gap value. 1611 * 1612 * Set the parent gap then continue to set the gap upwards, using the metadata 1613 * of the parent to see if it is necessary to check the node above. 1614 */ 1615 static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset, 1616 unsigned long new) 1617 { 1618 unsigned long meta_gap = 0; 1619 struct maple_node *pnode; 1620 struct maple_enode *penode; 1621 unsigned long *pgaps; 1622 unsigned char meta_offset; 1623 enum maple_type pmt; 1624 1625 pnode = mte_parent(mas->node); 1626 pmt = mas_parent_type(mas, mas->node); 1627 penode = mt_mk_node(pnode, pmt); 1628 pgaps = ma_gaps(pnode, pmt); 1629 1630 ascend: 1631 MAS_BUG_ON(mas, pmt != maple_arange_64); 1632 meta_offset = ma_meta_gap(pnode, pmt); 1633 meta_gap = pgaps[meta_offset]; 1634 1635 pgaps[offset] = new; 1636 1637 if (meta_gap == new) 1638 return; 1639 1640 if (offset != meta_offset) { 1641 if (meta_gap > new) 1642 return; 1643 1644 ma_set_meta_gap(pnode, pmt, offset); 1645 } else if (new < meta_gap) { 1646 new = ma_max_gap(pnode, pgaps, pmt, &meta_offset); 1647 ma_set_meta_gap(pnode, pmt, meta_offset); 1648 } 1649 1650 if (ma_is_root(pnode)) 1651 return; 1652 1653 /* Go to the parent node. */ 1654 pnode = mte_parent(penode); 1655 pmt = mas_parent_type(mas, penode); 1656 pgaps = ma_gaps(pnode, pmt); 1657 offset = mte_parent_slot(penode); 1658 penode = mt_mk_node(pnode, pmt); 1659 goto ascend; 1660 } 1661 1662 /* 1663 * mas_update_gap() - Update a nodes gaps and propagate up if necessary. 1664 * @mas - the maple state. 1665 */ 1666 static inline void mas_update_gap(struct ma_state *mas) 1667 { 1668 unsigned char pslot; 1669 unsigned long p_gap; 1670 unsigned long max_gap; 1671 1672 if (!mt_is_alloc(mas->tree)) 1673 return; 1674 1675 if (mte_is_root(mas->node)) 1676 return; 1677 1678 max_gap = mas_max_gap(mas); 1679 1680 pslot = mte_parent_slot(mas->node); 1681 p_gap = ma_gaps(mte_parent(mas->node), 1682 mas_parent_type(mas, mas->node))[pslot]; 1683 1684 if (p_gap != max_gap) 1685 mas_parent_gap(mas, pslot, max_gap); 1686 } 1687 1688 /* 1689 * mas_adopt_children() - Set the parent pointer of all nodes in @parent to 1690 * @parent with the slot encoded. 1691 * @mas - the maple state (for the tree) 1692 * @parent - the maple encoded node containing the children. 1693 */ 1694 static inline void mas_adopt_children(struct ma_state *mas, 1695 struct maple_enode *parent) 1696 { 1697 enum maple_type type = mte_node_type(parent); 1698 struct maple_node *node = mas_mn(mas); 1699 void __rcu **slots = ma_slots(node, type); 1700 unsigned long *pivots = ma_pivots(node, type); 1701 struct maple_enode *child; 1702 unsigned char offset; 1703 1704 offset = ma_data_end(node, type, pivots, mas->max); 1705 do { 1706 child = mas_slot_locked(mas, slots, offset); 1707 mas_set_parent(mas, child, parent, offset); 1708 } while (offset--); 1709 } 1710 1711 /* 1712 * mas_replace() - Replace a maple node in the tree with mas->node. Uses the 1713 * parent encoding to locate the maple node in the tree. 1714 * @mas - the ma_state to use for operations. 1715 * @advanced - boolean to adopt the child nodes and free the old node (false) or 1716 * leave the node (true) and handle the adoption and free elsewhere. 1717 */ 1718 static inline void mas_replace(struct ma_state *mas, bool advanced) 1719 __must_hold(mas->tree->ma_lock) 1720 { 1721 struct maple_node *mn = mas_mn(mas); 1722 struct maple_enode *old_enode; 1723 unsigned char offset = 0; 1724 void __rcu **slots = NULL; 1725 1726 if (ma_is_root(mn)) { 1727 old_enode = mas_root_locked(mas); 1728 } else { 1729 offset = mte_parent_slot(mas->node); 1730 slots = ma_slots(mte_parent(mas->node), 1731 mas_parent_type(mas, mas->node)); 1732 old_enode = mas_slot_locked(mas, slots, offset); 1733 } 1734 1735 if (!advanced && !mte_is_leaf(mas->node)) 1736 mas_adopt_children(mas, mas->node); 1737 1738 if (mte_is_root(mas->node)) { 1739 mn->parent = ma_parent_ptr( 1740 ((unsigned long)mas->tree | MA_ROOT_PARENT)); 1741 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); 1742 mas_set_height(mas); 1743 } else { 1744 rcu_assign_pointer(slots[offset], mas->node); 1745 } 1746 1747 if (!advanced) { 1748 mte_set_node_dead(old_enode); 1749 mas_free(mas, old_enode); 1750 } 1751 } 1752 1753 /* 1754 * mas_new_child() - Find the new child of a node. 1755 * @mas: the maple state 1756 * @child: the maple state to store the child. 1757 */ 1758 static inline bool mas_new_child(struct ma_state *mas, struct ma_state *child) 1759 __must_hold(mas->tree->ma_lock) 1760 { 1761 enum maple_type mt; 1762 unsigned char offset; 1763 unsigned char end; 1764 unsigned long *pivots; 1765 struct maple_enode *entry; 1766 struct maple_node *node; 1767 void __rcu **slots; 1768 1769 mt = mte_node_type(mas->node); 1770 node = mas_mn(mas); 1771 slots = ma_slots(node, mt); 1772 pivots = ma_pivots(node, mt); 1773 end = ma_data_end(node, mt, pivots, mas->max); 1774 for (offset = mas->offset; offset <= end; offset++) { 1775 entry = mas_slot_locked(mas, slots, offset); 1776 if (mte_parent(entry) == node) { 1777 *child = *mas; 1778 mas->offset = offset + 1; 1779 child->offset = offset; 1780 mas_descend(child); 1781 child->offset = 0; 1782 return true; 1783 } 1784 } 1785 return false; 1786 } 1787 1788 /* 1789 * mab_shift_right() - Shift the data in mab right. Note, does not clean out the 1790 * old data or set b_node->b_end. 1791 * @b_node: the maple_big_node 1792 * @shift: the shift count 1793 */ 1794 static inline void mab_shift_right(struct maple_big_node *b_node, 1795 unsigned char shift) 1796 { 1797 unsigned long size = b_node->b_end * sizeof(unsigned long); 1798 1799 memmove(b_node->pivot + shift, b_node->pivot, size); 1800 memmove(b_node->slot + shift, b_node->slot, size); 1801 if (b_node->type == maple_arange_64) 1802 memmove(b_node->gap + shift, b_node->gap, size); 1803 } 1804 1805 /* 1806 * mab_middle_node() - Check if a middle node is needed (unlikely) 1807 * @b_node: the maple_big_node that contains the data. 1808 * @size: the amount of data in the b_node 1809 * @split: the potential split location 1810 * @slot_count: the size that can be stored in a single node being considered. 1811 * 1812 * Return: true if a middle node is required. 1813 */ 1814 static inline bool mab_middle_node(struct maple_big_node *b_node, int split, 1815 unsigned char slot_count) 1816 { 1817 unsigned char size = b_node->b_end; 1818 1819 if (size >= 2 * slot_count) 1820 return true; 1821 1822 if (!b_node->slot[split] && (size >= 2 * slot_count - 1)) 1823 return true; 1824 1825 return false; 1826 } 1827 1828 /* 1829 * mab_no_null_split() - ensure the split doesn't fall on a NULL 1830 * @b_node: the maple_big_node with the data 1831 * @split: the suggested split location 1832 * @slot_count: the number of slots in the node being considered. 1833 * 1834 * Return: the split location. 1835 */ 1836 static inline int mab_no_null_split(struct maple_big_node *b_node, 1837 unsigned char split, unsigned char slot_count) 1838 { 1839 if (!b_node->slot[split]) { 1840 /* 1841 * If the split is less than the max slot && the right side will 1842 * still be sufficient, then increment the split on NULL. 1843 */ 1844 if ((split < slot_count - 1) && 1845 (b_node->b_end - split) > (mt_min_slots[b_node->type])) 1846 split++; 1847 else 1848 split--; 1849 } 1850 return split; 1851 } 1852 1853 /* 1854 * mab_calc_split() - Calculate the split location and if there needs to be two 1855 * splits. 1856 * @bn: The maple_big_node with the data 1857 * @mid_split: The second split, if required. 0 otherwise. 1858 * 1859 * Return: The first split location. The middle split is set in @mid_split. 1860 */ 1861 static inline int mab_calc_split(struct ma_state *mas, 1862 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min) 1863 { 1864 unsigned char b_end = bn->b_end; 1865 int split = b_end / 2; /* Assume equal split. */ 1866 unsigned char slot_min, slot_count = mt_slots[bn->type]; 1867 1868 /* 1869 * To support gap tracking, all NULL entries are kept together and a node cannot 1870 * end on a NULL entry, with the exception of the left-most leaf. The 1871 * limitation means that the split of a node must be checked for this condition 1872 * and be able to put more data in one direction or the other. 1873 */ 1874 if (unlikely((mas->mas_flags & MA_STATE_BULK))) { 1875 *mid_split = 0; 1876 split = b_end - mt_min_slots[bn->type]; 1877 1878 if (!ma_is_leaf(bn->type)) 1879 return split; 1880 1881 mas->mas_flags |= MA_STATE_REBALANCE; 1882 if (!bn->slot[split]) 1883 split--; 1884 return split; 1885 } 1886 1887 /* 1888 * Although extremely rare, it is possible to enter what is known as the 3-way 1889 * split scenario. The 3-way split comes about by means of a store of a range 1890 * that overwrites the end and beginning of two full nodes. The result is a set 1891 * of entries that cannot be stored in 2 nodes. Sometimes, these two nodes can 1892 * also be located in different parent nodes which are also full. This can 1893 * carry upwards all the way to the root in the worst case. 1894 */ 1895 if (unlikely(mab_middle_node(bn, split, slot_count))) { 1896 split = b_end / 3; 1897 *mid_split = split * 2; 1898 } else { 1899 slot_min = mt_min_slots[bn->type]; 1900 1901 *mid_split = 0; 1902 /* 1903 * Avoid having a range less than the slot count unless it 1904 * causes one node to be deficient. 1905 * NOTE: mt_min_slots is 1 based, b_end and split are zero. 1906 */ 1907 while ((split < slot_count - 1) && 1908 ((bn->pivot[split] - min) < slot_count - 1) && 1909 (b_end - split > slot_min)) 1910 split++; 1911 } 1912 1913 /* Avoid ending a node on a NULL entry */ 1914 split = mab_no_null_split(bn, split, slot_count); 1915 1916 if (unlikely(*mid_split)) 1917 *mid_split = mab_no_null_split(bn, *mid_split, slot_count); 1918 1919 return split; 1920 } 1921 1922 /* 1923 * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node 1924 * and set @b_node->b_end to the next free slot. 1925 * @mas: The maple state 1926 * @mas_start: The starting slot to copy 1927 * @mas_end: The end slot to copy (inclusively) 1928 * @b_node: The maple_big_node to place the data 1929 * @mab_start: The starting location in maple_big_node to store the data. 1930 */ 1931 static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start, 1932 unsigned char mas_end, struct maple_big_node *b_node, 1933 unsigned char mab_start) 1934 { 1935 enum maple_type mt; 1936 struct maple_node *node; 1937 void __rcu **slots; 1938 unsigned long *pivots, *gaps; 1939 int i = mas_start, j = mab_start; 1940 unsigned char piv_end; 1941 1942 node = mas_mn(mas); 1943 mt = mte_node_type(mas->node); 1944 pivots = ma_pivots(node, mt); 1945 if (!i) { 1946 b_node->pivot[j] = pivots[i++]; 1947 if (unlikely(i > mas_end)) 1948 goto complete; 1949 j++; 1950 } 1951 1952 piv_end = min(mas_end, mt_pivots[mt]); 1953 for (; i < piv_end; i++, j++) { 1954 b_node->pivot[j] = pivots[i]; 1955 if (unlikely(!b_node->pivot[j])) 1956 break; 1957 1958 if (unlikely(mas->max == b_node->pivot[j])) 1959 goto complete; 1960 } 1961 1962 if (likely(i <= mas_end)) 1963 b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt); 1964 1965 complete: 1966 b_node->b_end = ++j; 1967 j -= mab_start; 1968 slots = ma_slots(node, mt); 1969 memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j); 1970 if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) { 1971 gaps = ma_gaps(node, mt); 1972 memcpy(b_node->gap + mab_start, gaps + mas_start, 1973 sizeof(unsigned long) * j); 1974 } 1975 } 1976 1977 /* 1978 * mas_leaf_set_meta() - Set the metadata of a leaf if possible. 1979 * @mas: The maple state 1980 * @node: The maple node 1981 * @pivots: pointer to the maple node pivots 1982 * @mt: The maple type 1983 * @end: The assumed end 1984 * 1985 * Note, end may be incremented within this function but not modified at the 1986 * source. This is fine since the metadata is the last thing to be stored in a 1987 * node during a write. 1988 */ 1989 static inline void mas_leaf_set_meta(struct ma_state *mas, 1990 struct maple_node *node, unsigned long *pivots, 1991 enum maple_type mt, unsigned char end) 1992 { 1993 /* There is no room for metadata already */ 1994 if (mt_pivots[mt] <= end) 1995 return; 1996 1997 if (pivots[end] && pivots[end] < mas->max) 1998 end++; 1999 2000 if (end < mt_slots[mt] - 1) 2001 ma_set_meta(node, mt, 0, end); 2002 } 2003 2004 /* 2005 * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node. 2006 * @b_node: the maple_big_node that has the data 2007 * @mab_start: the start location in @b_node. 2008 * @mab_end: The end location in @b_node (inclusively) 2009 * @mas: The maple state with the maple encoded node. 2010 */ 2011 static inline void mab_mas_cp(struct maple_big_node *b_node, 2012 unsigned char mab_start, unsigned char mab_end, 2013 struct ma_state *mas, bool new_max) 2014 { 2015 int i, j = 0; 2016 enum maple_type mt = mte_node_type(mas->node); 2017 struct maple_node *node = mte_to_node(mas->node); 2018 void __rcu **slots = ma_slots(node, mt); 2019 unsigned long *pivots = ma_pivots(node, mt); 2020 unsigned long *gaps = NULL; 2021 unsigned char end; 2022 2023 if (mab_end - mab_start > mt_pivots[mt]) 2024 mab_end--; 2025 2026 if (!pivots[mt_pivots[mt] - 1]) 2027 slots[mt_pivots[mt]] = NULL; 2028 2029 i = mab_start; 2030 do { 2031 pivots[j++] = b_node->pivot[i++]; 2032 } while (i <= mab_end && likely(b_node->pivot[i])); 2033 2034 memcpy(slots, b_node->slot + mab_start, 2035 sizeof(void *) * (i - mab_start)); 2036 2037 if (new_max) 2038 mas->max = b_node->pivot[i - 1]; 2039 2040 end = j - 1; 2041 if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) { 2042 unsigned long max_gap = 0; 2043 unsigned char offset = 0; 2044 2045 gaps = ma_gaps(node, mt); 2046 do { 2047 gaps[--j] = b_node->gap[--i]; 2048 if (gaps[j] > max_gap) { 2049 offset = j; 2050 max_gap = gaps[j]; 2051 } 2052 } while (j); 2053 2054 ma_set_meta(node, mt, offset, end); 2055 } else { 2056 mas_leaf_set_meta(mas, node, pivots, mt, end); 2057 } 2058 } 2059 2060 /* 2061 * mas_descend_adopt() - Descend through a sub-tree and adopt children. 2062 * @mas: the maple state with the maple encoded node of the sub-tree. 2063 * 2064 * Descend through a sub-tree and adopt children who do not have the correct 2065 * parents set. Follow the parents which have the correct parents as they are 2066 * the new entries which need to be followed to find other incorrectly set 2067 * parents. 2068 */ 2069 static inline void mas_descend_adopt(struct ma_state *mas) 2070 { 2071 struct ma_state list[3], next[3]; 2072 int i, n; 2073 2074 /* 2075 * At each level there may be up to 3 correct parent pointers which indicates 2076 * the new nodes which need to be walked to find any new nodes at a lower level. 2077 */ 2078 2079 for (i = 0; i < 3; i++) { 2080 list[i] = *mas; 2081 list[i].offset = 0; 2082 next[i].offset = 0; 2083 } 2084 next[0] = *mas; 2085 2086 while (!mte_is_leaf(list[0].node)) { 2087 n = 0; 2088 for (i = 0; i < 3; i++) { 2089 if (mas_is_none(&list[i])) 2090 continue; 2091 2092 if (i && list[i-1].node == list[i].node) 2093 continue; 2094 2095 while ((n < 3) && (mas_new_child(&list[i], &next[n]))) 2096 n++; 2097 2098 mas_adopt_children(&list[i], list[i].node); 2099 } 2100 2101 while (n < 3) 2102 next[n++].node = MAS_NONE; 2103 2104 /* descend by setting the list to the children */ 2105 for (i = 0; i < 3; i++) 2106 list[i] = next[i]; 2107 } 2108 } 2109 2110 /* 2111 * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert. 2112 * @mas: The maple state 2113 * @end: The maple node end 2114 * @mt: The maple node type 2115 */ 2116 static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end, 2117 enum maple_type mt) 2118 { 2119 if (!(mas->mas_flags & MA_STATE_BULK)) 2120 return; 2121 2122 if (mte_is_root(mas->node)) 2123 return; 2124 2125 if (end > mt_min_slots[mt]) { 2126 mas->mas_flags &= ~MA_STATE_REBALANCE; 2127 return; 2128 } 2129 } 2130 2131 /* 2132 * mas_store_b_node() - Store an @entry into the b_node while also copying the 2133 * data from a maple encoded node. 2134 * @wr_mas: the maple write state 2135 * @b_node: the maple_big_node to fill with data 2136 * @offset_end: the offset to end copying 2137 * 2138 * Return: The actual end of the data stored in @b_node 2139 */ 2140 static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas, 2141 struct maple_big_node *b_node, unsigned char offset_end) 2142 { 2143 unsigned char slot; 2144 unsigned char b_end; 2145 /* Possible underflow of piv will wrap back to 0 before use. */ 2146 unsigned long piv; 2147 struct ma_state *mas = wr_mas->mas; 2148 2149 b_node->type = wr_mas->type; 2150 b_end = 0; 2151 slot = mas->offset; 2152 if (slot) { 2153 /* Copy start data up to insert. */ 2154 mas_mab_cp(mas, 0, slot - 1, b_node, 0); 2155 b_end = b_node->b_end; 2156 piv = b_node->pivot[b_end - 1]; 2157 } else 2158 piv = mas->min - 1; 2159 2160 if (piv + 1 < mas->index) { 2161 /* Handle range starting after old range */ 2162 b_node->slot[b_end] = wr_mas->content; 2163 if (!wr_mas->content) 2164 b_node->gap[b_end] = mas->index - 1 - piv; 2165 b_node->pivot[b_end++] = mas->index - 1; 2166 } 2167 2168 /* Store the new entry. */ 2169 mas->offset = b_end; 2170 b_node->slot[b_end] = wr_mas->entry; 2171 b_node->pivot[b_end] = mas->last; 2172 2173 /* Appended. */ 2174 if (mas->last >= mas->max) 2175 goto b_end; 2176 2177 /* Handle new range ending before old range ends */ 2178 piv = mas_safe_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type); 2179 if (piv > mas->last) { 2180 if (piv == ULONG_MAX) 2181 mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type); 2182 2183 if (offset_end != slot) 2184 wr_mas->content = mas_slot_locked(mas, wr_mas->slots, 2185 offset_end); 2186 2187 b_node->slot[++b_end] = wr_mas->content; 2188 if (!wr_mas->content) 2189 b_node->gap[b_end] = piv - mas->last + 1; 2190 b_node->pivot[b_end] = piv; 2191 } 2192 2193 slot = offset_end + 1; 2194 if (slot > wr_mas->node_end) 2195 goto b_end; 2196 2197 /* Copy end data to the end of the node. */ 2198 mas_mab_cp(mas, slot, wr_mas->node_end + 1, b_node, ++b_end); 2199 b_node->b_end--; 2200 return; 2201 2202 b_end: 2203 b_node->b_end = b_end; 2204 } 2205 2206 /* 2207 * mas_prev_sibling() - Find the previous node with the same parent. 2208 * @mas: the maple state 2209 * 2210 * Return: True if there is a previous sibling, false otherwise. 2211 */ 2212 static inline bool mas_prev_sibling(struct ma_state *mas) 2213 { 2214 unsigned int p_slot = mte_parent_slot(mas->node); 2215 2216 if (mte_is_root(mas->node)) 2217 return false; 2218 2219 if (!p_slot) 2220 return false; 2221 2222 mas_ascend(mas); 2223 mas->offset = p_slot - 1; 2224 mas_descend(mas); 2225 return true; 2226 } 2227 2228 /* 2229 * mas_next_sibling() - Find the next node with the same parent. 2230 * @mas: the maple state 2231 * 2232 * Return: true if there is a next sibling, false otherwise. 2233 */ 2234 static inline bool mas_next_sibling(struct ma_state *mas) 2235 { 2236 MA_STATE(parent, mas->tree, mas->index, mas->last); 2237 2238 if (mte_is_root(mas->node)) 2239 return false; 2240 2241 parent = *mas; 2242 mas_ascend(&parent); 2243 parent.offset = mte_parent_slot(mas->node) + 1; 2244 if (parent.offset > mas_data_end(&parent)) 2245 return false; 2246 2247 *mas = parent; 2248 mas_descend(mas); 2249 return true; 2250 } 2251 2252 /* 2253 * mte_node_or_node() - Return the encoded node or MAS_NONE. 2254 * @enode: The encoded maple node. 2255 * 2256 * Shorthand to avoid setting %NULLs in the tree or maple_subtree_state. 2257 * 2258 * Return: @enode or MAS_NONE 2259 */ 2260 static inline struct maple_enode *mte_node_or_none(struct maple_enode *enode) 2261 { 2262 if (enode) 2263 return enode; 2264 2265 return ma_enode_ptr(MAS_NONE); 2266 } 2267 2268 /* 2269 * mas_wr_node_walk() - Find the correct offset for the index in the @mas. 2270 * @wr_mas: The maple write state 2271 * 2272 * Uses mas_slot_locked() and does not need to worry about dead nodes. 2273 */ 2274 static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas) 2275 { 2276 struct ma_state *mas = wr_mas->mas; 2277 unsigned char count, offset; 2278 2279 if (unlikely(ma_is_dense(wr_mas->type))) { 2280 wr_mas->r_max = wr_mas->r_min = mas->index; 2281 mas->offset = mas->index = mas->min; 2282 return; 2283 } 2284 2285 wr_mas->node = mas_mn(wr_mas->mas); 2286 wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type); 2287 count = wr_mas->node_end = ma_data_end(wr_mas->node, wr_mas->type, 2288 wr_mas->pivots, mas->max); 2289 offset = mas->offset; 2290 2291 while (offset < count && mas->index > wr_mas->pivots[offset]) 2292 offset++; 2293 2294 wr_mas->r_max = offset < count ? wr_mas->pivots[offset] : mas->max; 2295 wr_mas->r_min = mas_safe_min(mas, wr_mas->pivots, offset); 2296 wr_mas->offset_end = mas->offset = offset; 2297 } 2298 2299 /* 2300 * mas_topiary_range() - Add a range of slots to the topiary. 2301 * @mas: The maple state 2302 * @destroy: The topiary to add the slots (usually destroy) 2303 * @start: The starting slot inclusively 2304 * @end: The end slot inclusively 2305 */ 2306 static inline void mas_topiary_range(struct ma_state *mas, 2307 struct ma_topiary *destroy, unsigned char start, unsigned char end) 2308 { 2309 void __rcu **slots; 2310 unsigned char offset; 2311 2312 MAS_BUG_ON(mas, mte_is_leaf(mas->node)); 2313 2314 slots = ma_slots(mas_mn(mas), mte_node_type(mas->node)); 2315 for (offset = start; offset <= end; offset++) { 2316 struct maple_enode *enode = mas_slot_locked(mas, slots, offset); 2317 2318 if (mte_dead_node(enode)) 2319 continue; 2320 2321 mat_add(destroy, enode); 2322 } 2323 } 2324 2325 /* 2326 * mast_topiary() - Add the portions of the tree to the removal list; either to 2327 * be freed or discarded (destroy walk). 2328 * @mast: The maple_subtree_state. 2329 */ 2330 static inline void mast_topiary(struct maple_subtree_state *mast) 2331 { 2332 MA_WR_STATE(wr_mas, mast->orig_l, NULL); 2333 unsigned char r_start, r_end; 2334 unsigned char l_start, l_end; 2335 void __rcu **l_slots, **r_slots; 2336 2337 wr_mas.type = mte_node_type(mast->orig_l->node); 2338 mast->orig_l->index = mast->orig_l->last; 2339 mas_wr_node_walk(&wr_mas); 2340 l_start = mast->orig_l->offset + 1; 2341 l_end = mas_data_end(mast->orig_l); 2342 r_start = 0; 2343 r_end = mast->orig_r->offset; 2344 2345 if (r_end) 2346 r_end--; 2347 2348 l_slots = ma_slots(mas_mn(mast->orig_l), 2349 mte_node_type(mast->orig_l->node)); 2350 2351 r_slots = ma_slots(mas_mn(mast->orig_r), 2352 mte_node_type(mast->orig_r->node)); 2353 2354 if ((l_start < l_end) && 2355 mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_start))) { 2356 l_start++; 2357 } 2358 2359 if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_end))) { 2360 if (r_end) 2361 r_end--; 2362 } 2363 2364 if ((l_start > r_end) && (mast->orig_l->node == mast->orig_r->node)) 2365 return; 2366 2367 /* At the node where left and right sides meet, add the parts between */ 2368 if (mast->orig_l->node == mast->orig_r->node) { 2369 return mas_topiary_range(mast->orig_l, mast->destroy, 2370 l_start, r_end); 2371 } 2372 2373 /* mast->orig_r is different and consumed. */ 2374 if (mte_is_leaf(mast->orig_r->node)) 2375 return; 2376 2377 if (mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_end))) 2378 l_end--; 2379 2380 2381 if (l_start <= l_end) 2382 mas_topiary_range(mast->orig_l, mast->destroy, l_start, l_end); 2383 2384 if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_start))) 2385 r_start++; 2386 2387 if (r_start <= r_end) 2388 mas_topiary_range(mast->orig_r, mast->destroy, 0, r_end); 2389 } 2390 2391 /* 2392 * mast_rebalance_next() - Rebalance against the next node 2393 * @mast: The maple subtree state 2394 * @old_r: The encoded maple node to the right (next node). 2395 */ 2396 static inline void mast_rebalance_next(struct maple_subtree_state *mast) 2397 { 2398 unsigned char b_end = mast->bn->b_end; 2399 2400 mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node), 2401 mast->bn, b_end); 2402 mast->orig_r->last = mast->orig_r->max; 2403 } 2404 2405 /* 2406 * mast_rebalance_prev() - Rebalance against the previous node 2407 * @mast: The maple subtree state 2408 * @old_l: The encoded maple node to the left (previous node) 2409 */ 2410 static inline void mast_rebalance_prev(struct maple_subtree_state *mast) 2411 { 2412 unsigned char end = mas_data_end(mast->orig_l) + 1; 2413 unsigned char b_end = mast->bn->b_end; 2414 2415 mab_shift_right(mast->bn, end); 2416 mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0); 2417 mast->l->min = mast->orig_l->min; 2418 mast->orig_l->index = mast->orig_l->min; 2419 mast->bn->b_end = end + b_end; 2420 mast->l->offset += end; 2421 } 2422 2423 /* 2424 * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring 2425 * the node to the right. Checking the nodes to the right then the left at each 2426 * level upwards until root is reached. Free and destroy as needed. 2427 * Data is copied into the @mast->bn. 2428 * @mast: The maple_subtree_state. 2429 */ 2430 static inline 2431 bool mast_spanning_rebalance(struct maple_subtree_state *mast) 2432 { 2433 struct ma_state r_tmp = *mast->orig_r; 2434 struct ma_state l_tmp = *mast->orig_l; 2435 struct maple_enode *ancestor = NULL; 2436 unsigned char start, end; 2437 unsigned char depth = 0; 2438 2439 r_tmp = *mast->orig_r; 2440 l_tmp = *mast->orig_l; 2441 do { 2442 mas_ascend(mast->orig_r); 2443 mas_ascend(mast->orig_l); 2444 depth++; 2445 if (!ancestor && 2446 (mast->orig_r->node == mast->orig_l->node)) { 2447 ancestor = mast->orig_r->node; 2448 end = mast->orig_r->offset - 1; 2449 start = mast->orig_l->offset + 1; 2450 } 2451 2452 if (mast->orig_r->offset < mas_data_end(mast->orig_r)) { 2453 if (!ancestor) { 2454 ancestor = mast->orig_r->node; 2455 start = 0; 2456 } 2457 2458 mast->orig_r->offset++; 2459 do { 2460 mas_descend(mast->orig_r); 2461 mast->orig_r->offset = 0; 2462 depth--; 2463 } while (depth); 2464 2465 mast_rebalance_next(mast); 2466 do { 2467 unsigned char l_off = 0; 2468 struct maple_enode *child = r_tmp.node; 2469 2470 mas_ascend(&r_tmp); 2471 if (ancestor == r_tmp.node) 2472 l_off = start; 2473 2474 if (r_tmp.offset) 2475 r_tmp.offset--; 2476 2477 if (l_off < r_tmp.offset) 2478 mas_topiary_range(&r_tmp, mast->destroy, 2479 l_off, r_tmp.offset); 2480 2481 if (l_tmp.node != child) 2482 mat_add(mast->free, child); 2483 2484 } while (r_tmp.node != ancestor); 2485 2486 *mast->orig_l = l_tmp; 2487 return true; 2488 2489 } else if (mast->orig_l->offset != 0) { 2490 if (!ancestor) { 2491 ancestor = mast->orig_l->node; 2492 end = mas_data_end(mast->orig_l); 2493 } 2494 2495 mast->orig_l->offset--; 2496 do { 2497 mas_descend(mast->orig_l); 2498 mast->orig_l->offset = 2499 mas_data_end(mast->orig_l); 2500 depth--; 2501 } while (depth); 2502 2503 mast_rebalance_prev(mast); 2504 do { 2505 unsigned char r_off; 2506 struct maple_enode *child = l_tmp.node; 2507 2508 mas_ascend(&l_tmp); 2509 if (ancestor == l_tmp.node) 2510 r_off = end; 2511 else 2512 r_off = mas_data_end(&l_tmp); 2513 2514 if (l_tmp.offset < r_off) 2515 l_tmp.offset++; 2516 2517 if (l_tmp.offset < r_off) 2518 mas_topiary_range(&l_tmp, mast->destroy, 2519 l_tmp.offset, r_off); 2520 2521 if (r_tmp.node != child) 2522 mat_add(mast->free, child); 2523 2524 } while (l_tmp.node != ancestor); 2525 2526 *mast->orig_r = r_tmp; 2527 return true; 2528 } 2529 } while (!mte_is_root(mast->orig_r->node)); 2530 2531 *mast->orig_r = r_tmp; 2532 *mast->orig_l = l_tmp; 2533 return false; 2534 } 2535 2536 /* 2537 * mast_ascend_free() - Add current original maple state nodes to the free list 2538 * and ascend. 2539 * @mast: the maple subtree state. 2540 * 2541 * Ascend the original left and right sides and add the previous nodes to the 2542 * free list. Set the slots to point to the correct location in the new nodes. 2543 */ 2544 static inline void 2545 mast_ascend_free(struct maple_subtree_state *mast) 2546 { 2547 MA_WR_STATE(wr_mas, mast->orig_r, NULL); 2548 struct maple_enode *left = mast->orig_l->node; 2549 struct maple_enode *right = mast->orig_r->node; 2550 2551 mas_ascend(mast->orig_l); 2552 mas_ascend(mast->orig_r); 2553 mat_add(mast->free, left); 2554 2555 if (left != right) 2556 mat_add(mast->free, right); 2557 2558 mast->orig_r->offset = 0; 2559 mast->orig_r->index = mast->r->max; 2560 /* last should be larger than or equal to index */ 2561 if (mast->orig_r->last < mast->orig_r->index) 2562 mast->orig_r->last = mast->orig_r->index; 2563 /* 2564 * The node may not contain the value so set slot to ensure all 2565 * of the nodes contents are freed or destroyed. 2566 */ 2567 wr_mas.type = mte_node_type(mast->orig_r->node); 2568 mas_wr_node_walk(&wr_mas); 2569 /* Set up the left side of things */ 2570 mast->orig_l->offset = 0; 2571 mast->orig_l->index = mast->l->min; 2572 wr_mas.mas = mast->orig_l; 2573 wr_mas.type = mte_node_type(mast->orig_l->node); 2574 mas_wr_node_walk(&wr_mas); 2575 2576 mast->bn->type = wr_mas.type; 2577 } 2578 2579 /* 2580 * mas_new_ma_node() - Create and return a new maple node. Helper function. 2581 * @mas: the maple state with the allocations. 2582 * @b_node: the maple_big_node with the type encoding. 2583 * 2584 * Use the node type from the maple_big_node to allocate a new node from the 2585 * ma_state. This function exists mainly for code readability. 2586 * 2587 * Return: A new maple encoded node 2588 */ 2589 static inline struct maple_enode 2590 *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node) 2591 { 2592 return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type); 2593 } 2594 2595 /* 2596 * mas_mab_to_node() - Set up right and middle nodes 2597 * 2598 * @mas: the maple state that contains the allocations. 2599 * @b_node: the node which contains the data. 2600 * @left: The pointer which will have the left node 2601 * @right: The pointer which may have the right node 2602 * @middle: the pointer which may have the middle node (rare) 2603 * @mid_split: the split location for the middle node 2604 * 2605 * Return: the split of left. 2606 */ 2607 static inline unsigned char mas_mab_to_node(struct ma_state *mas, 2608 struct maple_big_node *b_node, struct maple_enode **left, 2609 struct maple_enode **right, struct maple_enode **middle, 2610 unsigned char *mid_split, unsigned long min) 2611 { 2612 unsigned char split = 0; 2613 unsigned char slot_count = mt_slots[b_node->type]; 2614 2615 *left = mas_new_ma_node(mas, b_node); 2616 *right = NULL; 2617 *middle = NULL; 2618 *mid_split = 0; 2619 2620 if (b_node->b_end < slot_count) { 2621 split = b_node->b_end; 2622 } else { 2623 split = mab_calc_split(mas, b_node, mid_split, min); 2624 *right = mas_new_ma_node(mas, b_node); 2625 } 2626 2627 if (*mid_split) 2628 *middle = mas_new_ma_node(mas, b_node); 2629 2630 return split; 2631 2632 } 2633 2634 /* 2635 * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end 2636 * pointer. 2637 * @b_node - the big node to add the entry 2638 * @mas - the maple state to get the pivot (mas->max) 2639 * @entry - the entry to add, if NULL nothing happens. 2640 */ 2641 static inline void mab_set_b_end(struct maple_big_node *b_node, 2642 struct ma_state *mas, 2643 void *entry) 2644 { 2645 if (!entry) 2646 return; 2647 2648 b_node->slot[b_node->b_end] = entry; 2649 if (mt_is_alloc(mas->tree)) 2650 b_node->gap[b_node->b_end] = mas_max_gap(mas); 2651 b_node->pivot[b_node->b_end++] = mas->max; 2652 } 2653 2654 /* 2655 * mas_set_split_parent() - combine_then_separate helper function. Sets the parent 2656 * of @mas->node to either @left or @right, depending on @slot and @split 2657 * 2658 * @mas - the maple state with the node that needs a parent 2659 * @left - possible parent 1 2660 * @right - possible parent 2 2661 * @slot - the slot the mas->node was placed 2662 * @split - the split location between @left and @right 2663 */ 2664 static inline void mas_set_split_parent(struct ma_state *mas, 2665 struct maple_enode *left, 2666 struct maple_enode *right, 2667 unsigned char *slot, unsigned char split) 2668 { 2669 if (mas_is_none(mas)) 2670 return; 2671 2672 if ((*slot) <= split) 2673 mas_set_parent(mas, mas->node, left, *slot); 2674 else if (right) 2675 mas_set_parent(mas, mas->node, right, (*slot) - split - 1); 2676 2677 (*slot)++; 2678 } 2679 2680 /* 2681 * mte_mid_split_check() - Check if the next node passes the mid-split 2682 * @**l: Pointer to left encoded maple node. 2683 * @**m: Pointer to middle encoded maple node. 2684 * @**r: Pointer to right encoded maple node. 2685 * @slot: The offset 2686 * @*split: The split location. 2687 * @mid_split: The middle split. 2688 */ 2689 static inline void mte_mid_split_check(struct maple_enode **l, 2690 struct maple_enode **r, 2691 struct maple_enode *right, 2692 unsigned char slot, 2693 unsigned char *split, 2694 unsigned char mid_split) 2695 { 2696 if (*r == right) 2697 return; 2698 2699 if (slot < mid_split) 2700 return; 2701 2702 *l = *r; 2703 *r = right; 2704 *split = mid_split; 2705 } 2706 2707 /* 2708 * mast_set_split_parents() - Helper function to set three nodes parents. Slot 2709 * is taken from @mast->l. 2710 * @mast - the maple subtree state 2711 * @left - the left node 2712 * @right - the right node 2713 * @split - the split location. 2714 */ 2715 static inline void mast_set_split_parents(struct maple_subtree_state *mast, 2716 struct maple_enode *left, 2717 struct maple_enode *middle, 2718 struct maple_enode *right, 2719 unsigned char split, 2720 unsigned char mid_split) 2721 { 2722 unsigned char slot; 2723 struct maple_enode *l = left; 2724 struct maple_enode *r = right; 2725 2726 if (mas_is_none(mast->l)) 2727 return; 2728 2729 if (middle) 2730 r = middle; 2731 2732 slot = mast->l->offset; 2733 2734 mte_mid_split_check(&l, &r, right, slot, &split, mid_split); 2735 mas_set_split_parent(mast->l, l, r, &slot, split); 2736 2737 mte_mid_split_check(&l, &r, right, slot, &split, mid_split); 2738 mas_set_split_parent(mast->m, l, r, &slot, split); 2739 2740 mte_mid_split_check(&l, &r, right, slot, &split, mid_split); 2741 mas_set_split_parent(mast->r, l, r, &slot, split); 2742 } 2743 2744 /* 2745 * mas_wmb_replace() - Write memory barrier and replace 2746 * @mas: The maple state 2747 * @free: the maple topiary list of nodes to free 2748 * @destroy: The maple topiary list of nodes to destroy (walk and free) 2749 * 2750 * Updates gap as necessary. 2751 */ 2752 static inline void mas_wmb_replace(struct ma_state *mas, 2753 struct ma_topiary *free, 2754 struct ma_topiary *destroy) 2755 { 2756 /* All nodes must see old data as dead prior to replacing that data */ 2757 smp_wmb(); /* Needed for RCU */ 2758 2759 /* Insert the new data in the tree */ 2760 mas_replace(mas, true); 2761 2762 if (!mte_is_leaf(mas->node)) 2763 mas_descend_adopt(mas); 2764 2765 mas_mat_free(mas, free); 2766 2767 if (destroy) 2768 mas_mat_destroy(mas, destroy); 2769 2770 if (mte_is_leaf(mas->node)) 2771 return; 2772 2773 mas_update_gap(mas); 2774 } 2775 2776 /* 2777 * mast_new_root() - Set a new tree root during subtree creation 2778 * @mast: The maple subtree state 2779 * @mas: The maple state 2780 */ 2781 static inline void mast_new_root(struct maple_subtree_state *mast, 2782 struct ma_state *mas) 2783 { 2784 mas_mn(mast->l)->parent = 2785 ma_parent_ptr(((unsigned long)mas->tree | MA_ROOT_PARENT)); 2786 if (!mte_dead_node(mast->orig_l->node) && 2787 !mte_is_root(mast->orig_l->node)) { 2788 do { 2789 mast_ascend_free(mast); 2790 mast_topiary(mast); 2791 } while (!mte_is_root(mast->orig_l->node)); 2792 } 2793 if ((mast->orig_l->node != mas->node) && 2794 (mast->l->depth > mas_mt_height(mas))) { 2795 mat_add(mast->free, mas->node); 2796 } 2797 } 2798 2799 /* 2800 * mast_cp_to_nodes() - Copy data out to nodes. 2801 * @mast: The maple subtree state 2802 * @left: The left encoded maple node 2803 * @middle: The middle encoded maple node 2804 * @right: The right encoded maple node 2805 * @split: The location to split between left and (middle ? middle : right) 2806 * @mid_split: The location to split between middle and right. 2807 */ 2808 static inline void mast_cp_to_nodes(struct maple_subtree_state *mast, 2809 struct maple_enode *left, struct maple_enode *middle, 2810 struct maple_enode *right, unsigned char split, unsigned char mid_split) 2811 { 2812 bool new_lmax = true; 2813 2814 mast->l->node = mte_node_or_none(left); 2815 mast->m->node = mte_node_or_none(middle); 2816 mast->r->node = mte_node_or_none(right); 2817 2818 mast->l->min = mast->orig_l->min; 2819 if (split == mast->bn->b_end) { 2820 mast->l->max = mast->orig_r->max; 2821 new_lmax = false; 2822 } 2823 2824 mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax); 2825 2826 if (middle) { 2827 mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true); 2828 mast->m->min = mast->bn->pivot[split] + 1; 2829 split = mid_split; 2830 } 2831 2832 mast->r->max = mast->orig_r->max; 2833 if (right) { 2834 mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false); 2835 mast->r->min = mast->bn->pivot[split] + 1; 2836 } 2837 } 2838 2839 /* 2840 * mast_combine_cp_left - Copy in the original left side of the tree into the 2841 * combined data set in the maple subtree state big node. 2842 * @mast: The maple subtree state 2843 */ 2844 static inline void mast_combine_cp_left(struct maple_subtree_state *mast) 2845 { 2846 unsigned char l_slot = mast->orig_l->offset; 2847 2848 if (!l_slot) 2849 return; 2850 2851 mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0); 2852 } 2853 2854 /* 2855 * mast_combine_cp_right: Copy in the original right side of the tree into the 2856 * combined data set in the maple subtree state big node. 2857 * @mast: The maple subtree state 2858 */ 2859 static inline void mast_combine_cp_right(struct maple_subtree_state *mast) 2860 { 2861 if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max) 2862 return; 2863 2864 mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1, 2865 mt_slot_count(mast->orig_r->node), mast->bn, 2866 mast->bn->b_end); 2867 mast->orig_r->last = mast->orig_r->max; 2868 } 2869 2870 /* 2871 * mast_sufficient: Check if the maple subtree state has enough data in the big 2872 * node to create at least one sufficient node 2873 * @mast: the maple subtree state 2874 */ 2875 static inline bool mast_sufficient(struct maple_subtree_state *mast) 2876 { 2877 if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node)) 2878 return true; 2879 2880 return false; 2881 } 2882 2883 /* 2884 * mast_overflow: Check if there is too much data in the subtree state for a 2885 * single node. 2886 * @mast: The maple subtree state 2887 */ 2888 static inline bool mast_overflow(struct maple_subtree_state *mast) 2889 { 2890 if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node)) 2891 return true; 2892 2893 return false; 2894 } 2895 2896 static inline void *mtree_range_walk(struct ma_state *mas) 2897 { 2898 unsigned long *pivots; 2899 unsigned char offset; 2900 struct maple_node *node; 2901 struct maple_enode *next, *last; 2902 enum maple_type type; 2903 void __rcu **slots; 2904 unsigned char end; 2905 unsigned long max, min; 2906 unsigned long prev_max, prev_min; 2907 2908 next = mas->node; 2909 min = mas->min; 2910 max = mas->max; 2911 do { 2912 offset = 0; 2913 last = next; 2914 node = mte_to_node(next); 2915 type = mte_node_type(next); 2916 pivots = ma_pivots(node, type); 2917 end = ma_data_end(node, type, pivots, max); 2918 if (unlikely(ma_dead_node(node))) 2919 goto dead_node; 2920 2921 if (pivots[offset] >= mas->index) { 2922 prev_max = max; 2923 prev_min = min; 2924 max = pivots[offset]; 2925 goto next; 2926 } 2927 2928 do { 2929 offset++; 2930 } while ((offset < end) && (pivots[offset] < mas->index)); 2931 2932 prev_min = min; 2933 min = pivots[offset - 1] + 1; 2934 prev_max = max; 2935 if (likely(offset < end && pivots[offset])) 2936 max = pivots[offset]; 2937 2938 next: 2939 slots = ma_slots(node, type); 2940 next = mt_slot(mas->tree, slots, offset); 2941 if (unlikely(ma_dead_node(node))) 2942 goto dead_node; 2943 } while (!ma_is_leaf(type)); 2944 2945 mas->offset = offset; 2946 mas->index = min; 2947 mas->last = max; 2948 mas->min = prev_min; 2949 mas->max = prev_max; 2950 mas->node = last; 2951 return (void *)next; 2952 2953 dead_node: 2954 mas_reset(mas); 2955 return NULL; 2956 } 2957 2958 /* 2959 * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers. 2960 * @mas: The starting maple state 2961 * @mast: The maple_subtree_state, keeps track of 4 maple states. 2962 * @count: The estimated count of iterations needed. 2963 * 2964 * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root 2965 * is hit. First @b_node is split into two entries which are inserted into the 2966 * next iteration of the loop. @b_node is returned populated with the final 2967 * iteration. @mas is used to obtain allocations. orig_l_mas keeps track of the 2968 * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last 2969 * to account of what has been copied into the new sub-tree. The update of 2970 * orig_l_mas->last is used in mas_consume to find the slots that will need to 2971 * be either freed or destroyed. orig_l_mas->depth keeps track of the height of 2972 * the new sub-tree in case the sub-tree becomes the full tree. 2973 * 2974 * Return: the number of elements in b_node during the last loop. 2975 */ 2976 static int mas_spanning_rebalance(struct ma_state *mas, 2977 struct maple_subtree_state *mast, unsigned char count) 2978 { 2979 unsigned char split, mid_split; 2980 unsigned char slot = 0; 2981 struct maple_enode *left = NULL, *middle = NULL, *right = NULL; 2982 2983 MA_STATE(l_mas, mas->tree, mas->index, mas->index); 2984 MA_STATE(r_mas, mas->tree, mas->index, mas->last); 2985 MA_STATE(m_mas, mas->tree, mas->index, mas->index); 2986 MA_TOPIARY(free, mas->tree); 2987 MA_TOPIARY(destroy, mas->tree); 2988 2989 /* 2990 * The tree needs to be rebalanced and leaves need to be kept at the same level. 2991 * Rebalancing is done by use of the ``struct maple_topiary``. 2992 */ 2993 mast->l = &l_mas; 2994 mast->m = &m_mas; 2995 mast->r = &r_mas; 2996 mast->free = &free; 2997 mast->destroy = &destroy; 2998 l_mas.node = r_mas.node = m_mas.node = MAS_NONE; 2999 3000 /* Check if this is not root and has sufficient data. */ 3001 if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) && 3002 unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type])) 3003 mast_spanning_rebalance(mast); 3004 3005 mast->orig_l->depth = 0; 3006 3007 /* 3008 * Each level of the tree is examined and balanced, pushing data to the left or 3009 * right, or rebalancing against left or right nodes is employed to avoid 3010 * rippling up the tree to limit the amount of churn. Once a new sub-section of 3011 * the tree is created, there may be a mix of new and old nodes. The old nodes 3012 * will have the incorrect parent pointers and currently be in two trees: the 3013 * original tree and the partially new tree. To remedy the parent pointers in 3014 * the old tree, the new data is swapped into the active tree and a walk down 3015 * the tree is performed and the parent pointers are updated. 3016 * See mas_descend_adopt() for more information.. 3017 */ 3018 while (count--) { 3019 mast->bn->b_end--; 3020 mast->bn->type = mte_node_type(mast->orig_l->node); 3021 split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle, 3022 &mid_split, mast->orig_l->min); 3023 mast_set_split_parents(mast, left, middle, right, split, 3024 mid_split); 3025 mast_cp_to_nodes(mast, left, middle, right, split, mid_split); 3026 3027 /* 3028 * Copy data from next level in the tree to mast->bn from next 3029 * iteration 3030 */ 3031 memset(mast->bn, 0, sizeof(struct maple_big_node)); 3032 mast->bn->type = mte_node_type(left); 3033 mast->orig_l->depth++; 3034 3035 /* Root already stored in l->node. */ 3036 if (mas_is_root_limits(mast->l)) 3037 goto new_root; 3038 3039 mast_ascend_free(mast); 3040 mast_combine_cp_left(mast); 3041 l_mas.offset = mast->bn->b_end; 3042 mab_set_b_end(mast->bn, &l_mas, left); 3043 mab_set_b_end(mast->bn, &m_mas, middle); 3044 mab_set_b_end(mast->bn, &r_mas, right); 3045 3046 /* Copy anything necessary out of the right node. */ 3047 mast_combine_cp_right(mast); 3048 mast_topiary(mast); 3049 mast->orig_l->last = mast->orig_l->max; 3050 3051 if (mast_sufficient(mast)) 3052 continue; 3053 3054 if (mast_overflow(mast)) 3055 continue; 3056 3057 /* May be a new root stored in mast->bn */ 3058 if (mas_is_root_limits(mast->orig_l)) 3059 break; 3060 3061 mast_spanning_rebalance(mast); 3062 3063 /* rebalancing from other nodes may require another loop. */ 3064 if (!count) 3065 count++; 3066 } 3067 3068 l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), 3069 mte_node_type(mast->orig_l->node)); 3070 mast->orig_l->depth++; 3071 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true); 3072 mas_set_parent(mas, left, l_mas.node, slot); 3073 if (middle) 3074 mas_set_parent(mas, middle, l_mas.node, ++slot); 3075 3076 if (right) 3077 mas_set_parent(mas, right, l_mas.node, ++slot); 3078 3079 if (mas_is_root_limits(mast->l)) { 3080 new_root: 3081 mast_new_root(mast, mas); 3082 } else { 3083 mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent; 3084 } 3085 3086 if (!mte_dead_node(mast->orig_l->node)) 3087 mat_add(&free, mast->orig_l->node); 3088 3089 mas->depth = mast->orig_l->depth; 3090 *mast->orig_l = l_mas; 3091 mte_set_node_dead(mas->node); 3092 3093 /* Set up mas for insertion. */ 3094 mast->orig_l->depth = mas->depth; 3095 mast->orig_l->alloc = mas->alloc; 3096 *mas = *mast->orig_l; 3097 mas_wmb_replace(mas, &free, &destroy); 3098 mtree_range_walk(mas); 3099 return mast->bn->b_end; 3100 } 3101 3102 /* 3103 * mas_rebalance() - Rebalance a given node. 3104 * @mas: The maple state 3105 * @b_node: The big maple node. 3106 * 3107 * Rebalance two nodes into a single node or two new nodes that are sufficient. 3108 * Continue upwards until tree is sufficient. 3109 * 3110 * Return: the number of elements in b_node during the last loop. 3111 */ 3112 static inline int mas_rebalance(struct ma_state *mas, 3113 struct maple_big_node *b_node) 3114 { 3115 char empty_count = mas_mt_height(mas); 3116 struct maple_subtree_state mast; 3117 unsigned char shift, b_end = ++b_node->b_end; 3118 3119 MA_STATE(l_mas, mas->tree, mas->index, mas->last); 3120 MA_STATE(r_mas, mas->tree, mas->index, mas->last); 3121 3122 trace_ma_op(__func__, mas); 3123 3124 /* 3125 * Rebalancing occurs if a node is insufficient. Data is rebalanced 3126 * against the node to the right if it exists, otherwise the node to the 3127 * left of this node is rebalanced against this node. If rebalancing 3128 * causes just one node to be produced instead of two, then the parent 3129 * is also examined and rebalanced if it is insufficient. Every level 3130 * tries to combine the data in the same way. If one node contains the 3131 * entire range of the tree, then that node is used as a new root node. 3132 */ 3133 mas_node_count(mas, 1 + empty_count * 3); 3134 if (mas_is_err(mas)) 3135 return 0; 3136 3137 mast.orig_l = &l_mas; 3138 mast.orig_r = &r_mas; 3139 mast.bn = b_node; 3140 mast.bn->type = mte_node_type(mas->node); 3141 3142 l_mas = r_mas = *mas; 3143 3144 if (mas_next_sibling(&r_mas)) { 3145 mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end); 3146 r_mas.last = r_mas.index = r_mas.max; 3147 } else { 3148 mas_prev_sibling(&l_mas); 3149 shift = mas_data_end(&l_mas) + 1; 3150 mab_shift_right(b_node, shift); 3151 mas->offset += shift; 3152 mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0); 3153 b_node->b_end = shift + b_end; 3154 l_mas.index = l_mas.last = l_mas.min; 3155 } 3156 3157 return mas_spanning_rebalance(mas, &mast, empty_count); 3158 } 3159 3160 /* 3161 * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple 3162 * state. 3163 * @mas: The maple state 3164 * @end: The end of the left-most node. 3165 * 3166 * During a mass-insert event (such as forking), it may be necessary to 3167 * rebalance the left-most node when it is not sufficient. 3168 */ 3169 static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end) 3170 { 3171 enum maple_type mt = mte_node_type(mas->node); 3172 struct maple_node reuse, *newnode, *parent, *new_left, *left, *node; 3173 struct maple_enode *eparent; 3174 unsigned char offset, tmp, split = mt_slots[mt] / 2; 3175 void __rcu **l_slots, **slots; 3176 unsigned long *l_pivs, *pivs, gap; 3177 bool in_rcu = mt_in_rcu(mas->tree); 3178 3179 MA_STATE(l_mas, mas->tree, mas->index, mas->last); 3180 3181 l_mas = *mas; 3182 mas_prev_sibling(&l_mas); 3183 3184 /* set up node. */ 3185 if (in_rcu) { 3186 /* Allocate for both left and right as well as parent. */ 3187 mas_node_count(mas, 3); 3188 if (mas_is_err(mas)) 3189 return; 3190 3191 newnode = mas_pop_node(mas); 3192 } else { 3193 newnode = &reuse; 3194 } 3195 3196 node = mas_mn(mas); 3197 newnode->parent = node->parent; 3198 slots = ma_slots(newnode, mt); 3199 pivs = ma_pivots(newnode, mt); 3200 left = mas_mn(&l_mas); 3201 l_slots = ma_slots(left, mt); 3202 l_pivs = ma_pivots(left, mt); 3203 if (!l_slots[split]) 3204 split++; 3205 tmp = mas_data_end(&l_mas) - split; 3206 3207 memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp); 3208 memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp); 3209 pivs[tmp] = l_mas.max; 3210 memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end); 3211 memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end); 3212 3213 l_mas.max = l_pivs[split]; 3214 mas->min = l_mas.max + 1; 3215 eparent = mt_mk_node(mte_parent(l_mas.node), 3216 mas_parent_type(&l_mas, l_mas.node)); 3217 tmp += end; 3218 if (!in_rcu) { 3219 unsigned char max_p = mt_pivots[mt]; 3220 unsigned char max_s = mt_slots[mt]; 3221 3222 if (tmp < max_p) 3223 memset(pivs + tmp, 0, 3224 sizeof(unsigned long) * (max_p - tmp)); 3225 3226 if (tmp < mt_slots[mt]) 3227 memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp)); 3228 3229 memcpy(node, newnode, sizeof(struct maple_node)); 3230 ma_set_meta(node, mt, 0, tmp - 1); 3231 mte_set_pivot(eparent, mte_parent_slot(l_mas.node), 3232 l_pivs[split]); 3233 3234 /* Remove data from l_pivs. */ 3235 tmp = split + 1; 3236 memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp)); 3237 memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp)); 3238 ma_set_meta(left, mt, 0, split); 3239 3240 goto done; 3241 } 3242 3243 /* RCU requires replacing both l_mas, mas, and parent. */ 3244 mas->node = mt_mk_node(newnode, mt); 3245 ma_set_meta(newnode, mt, 0, tmp); 3246 3247 new_left = mas_pop_node(mas); 3248 new_left->parent = left->parent; 3249 mt = mte_node_type(l_mas.node); 3250 slots = ma_slots(new_left, mt); 3251 pivs = ma_pivots(new_left, mt); 3252 memcpy(slots, l_slots, sizeof(void *) * split); 3253 memcpy(pivs, l_pivs, sizeof(unsigned long) * split); 3254 ma_set_meta(new_left, mt, 0, split); 3255 l_mas.node = mt_mk_node(new_left, mt); 3256 3257 /* replace parent. */ 3258 offset = mte_parent_slot(mas->node); 3259 mt = mas_parent_type(&l_mas, l_mas.node); 3260 parent = mas_pop_node(mas); 3261 slots = ma_slots(parent, mt); 3262 pivs = ma_pivots(parent, mt); 3263 memcpy(parent, mte_to_node(eparent), sizeof(struct maple_node)); 3264 rcu_assign_pointer(slots[offset], mas->node); 3265 rcu_assign_pointer(slots[offset - 1], l_mas.node); 3266 pivs[offset - 1] = l_mas.max; 3267 eparent = mt_mk_node(parent, mt); 3268 done: 3269 gap = mas_leaf_max_gap(mas); 3270 mte_set_gap(eparent, mte_parent_slot(mas->node), gap); 3271 gap = mas_leaf_max_gap(&l_mas); 3272 mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap); 3273 mas_ascend(mas); 3274 3275 if (in_rcu) 3276 mas_replace(mas, false); 3277 3278 mas_update_gap(mas); 3279 } 3280 3281 /* 3282 * mas_split_final_node() - Split the final node in a subtree operation. 3283 * @mast: the maple subtree state 3284 * @mas: The maple state 3285 * @height: The height of the tree in case it's a new root. 3286 */ 3287 static inline bool mas_split_final_node(struct maple_subtree_state *mast, 3288 struct ma_state *mas, int height) 3289 { 3290 struct maple_enode *ancestor; 3291 3292 if (mte_is_root(mas->node)) { 3293 if (mt_is_alloc(mas->tree)) 3294 mast->bn->type = maple_arange_64; 3295 else 3296 mast->bn->type = maple_range_64; 3297 mas->depth = height; 3298 } 3299 /* 3300 * Only a single node is used here, could be root. 3301 * The Big_node data should just fit in a single node. 3302 */ 3303 ancestor = mas_new_ma_node(mas, mast->bn); 3304 mas_set_parent(mas, mast->l->node, ancestor, mast->l->offset); 3305 mas_set_parent(mas, mast->r->node, ancestor, mast->r->offset); 3306 mte_to_node(ancestor)->parent = mas_mn(mas)->parent; 3307 3308 mast->l->node = ancestor; 3309 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true); 3310 mas->offset = mast->bn->b_end - 1; 3311 return true; 3312 } 3313 3314 /* 3315 * mast_fill_bnode() - Copy data into the big node in the subtree state 3316 * @mast: The maple subtree state 3317 * @mas: the maple state 3318 * @skip: The number of entries to skip for new nodes insertion. 3319 */ 3320 static inline void mast_fill_bnode(struct maple_subtree_state *mast, 3321 struct ma_state *mas, 3322 unsigned char skip) 3323 { 3324 bool cp = true; 3325 struct maple_enode *old = mas->node; 3326 unsigned char split; 3327 3328 memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap)); 3329 memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot)); 3330 memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot)); 3331 mast->bn->b_end = 0; 3332 3333 if (mte_is_root(mas->node)) { 3334 cp = false; 3335 } else { 3336 mas_ascend(mas); 3337 mat_add(mast->free, old); 3338 mas->offset = mte_parent_slot(mas->node); 3339 } 3340 3341 if (cp && mast->l->offset) 3342 mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0); 3343 3344 split = mast->bn->b_end; 3345 mab_set_b_end(mast->bn, mast->l, mast->l->node); 3346 mast->r->offset = mast->bn->b_end; 3347 mab_set_b_end(mast->bn, mast->r, mast->r->node); 3348 if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max) 3349 cp = false; 3350 3351 if (cp) 3352 mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1, 3353 mast->bn, mast->bn->b_end); 3354 3355 mast->bn->b_end--; 3356 mast->bn->type = mte_node_type(mas->node); 3357 } 3358 3359 /* 3360 * mast_split_data() - Split the data in the subtree state big node into regular 3361 * nodes. 3362 * @mast: The maple subtree state 3363 * @mas: The maple state 3364 * @split: The location to split the big node 3365 */ 3366 static inline void mast_split_data(struct maple_subtree_state *mast, 3367 struct ma_state *mas, unsigned char split) 3368 { 3369 unsigned char p_slot; 3370 3371 mab_mas_cp(mast->bn, 0, split, mast->l, true); 3372 mte_set_pivot(mast->r->node, 0, mast->r->max); 3373 mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false); 3374 mast->l->offset = mte_parent_slot(mas->node); 3375 mast->l->max = mast->bn->pivot[split]; 3376 mast->r->min = mast->l->max + 1; 3377 if (mte_is_leaf(mas->node)) 3378 return; 3379 3380 p_slot = mast->orig_l->offset; 3381 mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node, 3382 &p_slot, split); 3383 mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node, 3384 &p_slot, split); 3385 } 3386 3387 /* 3388 * mas_push_data() - Instead of splitting a node, it is beneficial to push the 3389 * data to the right or left node if there is room. 3390 * @mas: The maple state 3391 * @height: The current height of the maple state 3392 * @mast: The maple subtree state 3393 * @left: Push left or not. 3394 * 3395 * Keeping the height of the tree low means faster lookups. 3396 * 3397 * Return: True if pushed, false otherwise. 3398 */ 3399 static inline bool mas_push_data(struct ma_state *mas, int height, 3400 struct maple_subtree_state *mast, bool left) 3401 { 3402 unsigned char slot_total = mast->bn->b_end; 3403 unsigned char end, space, split; 3404 3405 MA_STATE(tmp_mas, mas->tree, mas->index, mas->last); 3406 tmp_mas = *mas; 3407 tmp_mas.depth = mast->l->depth; 3408 3409 if (left && !mas_prev_sibling(&tmp_mas)) 3410 return false; 3411 else if (!left && !mas_next_sibling(&tmp_mas)) 3412 return false; 3413 3414 end = mas_data_end(&tmp_mas); 3415 slot_total += end; 3416 space = 2 * mt_slot_count(mas->node) - 2; 3417 /* -2 instead of -1 to ensure there isn't a triple split */ 3418 if (ma_is_leaf(mast->bn->type)) 3419 space--; 3420 3421 if (mas->max == ULONG_MAX) 3422 space--; 3423 3424 if (slot_total >= space) 3425 return false; 3426 3427 /* Get the data; Fill mast->bn */ 3428 mast->bn->b_end++; 3429 if (left) { 3430 mab_shift_right(mast->bn, end + 1); 3431 mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0); 3432 mast->bn->b_end = slot_total + 1; 3433 } else { 3434 mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end); 3435 } 3436 3437 /* Configure mast for splitting of mast->bn */ 3438 split = mt_slots[mast->bn->type] - 2; 3439 if (left) { 3440 /* Switch mas to prev node */ 3441 mat_add(mast->free, mas->node); 3442 *mas = tmp_mas; 3443 /* Start using mast->l for the left side. */ 3444 tmp_mas.node = mast->l->node; 3445 *mast->l = tmp_mas; 3446 } else { 3447 mat_add(mast->free, tmp_mas.node); 3448 tmp_mas.node = mast->r->node; 3449 *mast->r = tmp_mas; 3450 split = slot_total - split; 3451 } 3452 split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]); 3453 /* Update parent slot for split calculation. */ 3454 if (left) 3455 mast->orig_l->offset += end + 1; 3456 3457 mast_split_data(mast, mas, split); 3458 mast_fill_bnode(mast, mas, 2); 3459 mas_split_final_node(mast, mas, height + 1); 3460 return true; 3461 } 3462 3463 /* 3464 * mas_split() - Split data that is too big for one node into two. 3465 * @mas: The maple state 3466 * @b_node: The maple big node 3467 * Return: 1 on success, 0 on failure. 3468 */ 3469 static int mas_split(struct ma_state *mas, struct maple_big_node *b_node) 3470 { 3471 struct maple_subtree_state mast; 3472 int height = 0; 3473 unsigned char mid_split, split = 0; 3474 3475 /* 3476 * Splitting is handled differently from any other B-tree; the Maple 3477 * Tree splits upwards. Splitting up means that the split operation 3478 * occurs when the walk of the tree hits the leaves and not on the way 3479 * down. The reason for splitting up is that it is impossible to know 3480 * how much space will be needed until the leaf is (or leaves are) 3481 * reached. Since overwriting data is allowed and a range could 3482 * overwrite more than one range or result in changing one entry into 3 3483 * entries, it is impossible to know if a split is required until the 3484 * data is examined. 3485 * 3486 * Splitting is a balancing act between keeping allocations to a minimum 3487 * and avoiding a 'jitter' event where a tree is expanded to make room 3488 * for an entry followed by a contraction when the entry is removed. To 3489 * accomplish the balance, there are empty slots remaining in both left 3490 * and right nodes after a split. 3491 */ 3492 MA_STATE(l_mas, mas->tree, mas->index, mas->last); 3493 MA_STATE(r_mas, mas->tree, mas->index, mas->last); 3494 MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last); 3495 MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last); 3496 MA_TOPIARY(mat, mas->tree); 3497 3498 trace_ma_op(__func__, mas); 3499 mas->depth = mas_mt_height(mas); 3500 /* Allocation failures will happen early. */ 3501 mas_node_count(mas, 1 + mas->depth * 2); 3502 if (mas_is_err(mas)) 3503 return 0; 3504 3505 mast.l = &l_mas; 3506 mast.r = &r_mas; 3507 mast.orig_l = &prev_l_mas; 3508 mast.orig_r = &prev_r_mas; 3509 mast.free = &mat; 3510 mast.bn = b_node; 3511 3512 while (height++ <= mas->depth) { 3513 if (mt_slots[b_node->type] > b_node->b_end) { 3514 mas_split_final_node(&mast, mas, height); 3515 break; 3516 } 3517 3518 l_mas = r_mas = *mas; 3519 l_mas.node = mas_new_ma_node(mas, b_node); 3520 r_mas.node = mas_new_ma_node(mas, b_node); 3521 /* 3522 * Another way that 'jitter' is avoided is to terminate a split up early if the 3523 * left or right node has space to spare. This is referred to as "pushing left" 3524 * or "pushing right" and is similar to the B* tree, except the nodes left or 3525 * right can rarely be reused due to RCU, but the ripple upwards is halted which 3526 * is a significant savings. 3527 */ 3528 /* Try to push left. */ 3529 if (mas_push_data(mas, height, &mast, true)) 3530 break; 3531 3532 /* Try to push right. */ 3533 if (mas_push_data(mas, height, &mast, false)) 3534 break; 3535 3536 split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min); 3537 mast_split_data(&mast, mas, split); 3538 /* 3539 * Usually correct, mab_mas_cp in the above call overwrites 3540 * r->max. 3541 */ 3542 mast.r->max = mas->max; 3543 mast_fill_bnode(&mast, mas, 1); 3544 prev_l_mas = *mast.l; 3545 prev_r_mas = *mast.r; 3546 } 3547 3548 /* Set the original node as dead */ 3549 mat_add(mast.free, mas->node); 3550 mas->node = l_mas.node; 3551 mas_wmb_replace(mas, mast.free, NULL); 3552 mtree_range_walk(mas); 3553 return 1; 3554 } 3555 3556 /* 3557 * mas_reuse_node() - Reuse the node to store the data. 3558 * @wr_mas: The maple write state 3559 * @bn: The maple big node 3560 * @end: The end of the data. 3561 * 3562 * Will always return false in RCU mode. 3563 * 3564 * Return: True if node was reused, false otherwise. 3565 */ 3566 static inline bool mas_reuse_node(struct ma_wr_state *wr_mas, 3567 struct maple_big_node *bn, unsigned char end) 3568 { 3569 /* Need to be rcu safe. */ 3570 if (mt_in_rcu(wr_mas->mas->tree)) 3571 return false; 3572 3573 if (end > bn->b_end) { 3574 int clear = mt_slots[wr_mas->type] - bn->b_end; 3575 3576 memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--); 3577 memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear); 3578 } 3579 mab_mas_cp(bn, 0, bn->b_end, wr_mas->mas, false); 3580 return true; 3581 } 3582 3583 /* 3584 * mas_commit_b_node() - Commit the big node into the tree. 3585 * @wr_mas: The maple write state 3586 * @b_node: The maple big node 3587 * @end: The end of the data. 3588 */ 3589 static noinline_for_kasan int mas_commit_b_node(struct ma_wr_state *wr_mas, 3590 struct maple_big_node *b_node, unsigned char end) 3591 { 3592 struct maple_node *node; 3593 unsigned char b_end = b_node->b_end; 3594 enum maple_type b_type = b_node->type; 3595 3596 if ((b_end < mt_min_slots[b_type]) && 3597 (!mte_is_root(wr_mas->mas->node)) && 3598 (mas_mt_height(wr_mas->mas) > 1)) 3599 return mas_rebalance(wr_mas->mas, b_node); 3600 3601 if (b_end >= mt_slots[b_type]) 3602 return mas_split(wr_mas->mas, b_node); 3603 3604 if (mas_reuse_node(wr_mas, b_node, end)) 3605 goto reuse_node; 3606 3607 mas_node_count(wr_mas->mas, 1); 3608 if (mas_is_err(wr_mas->mas)) 3609 return 0; 3610 3611 node = mas_pop_node(wr_mas->mas); 3612 node->parent = mas_mn(wr_mas->mas)->parent; 3613 wr_mas->mas->node = mt_mk_node(node, b_type); 3614 mab_mas_cp(b_node, 0, b_end, wr_mas->mas, false); 3615 mas_replace(wr_mas->mas, false); 3616 reuse_node: 3617 mas_update_gap(wr_mas->mas); 3618 return 1; 3619 } 3620 3621 /* 3622 * mas_root_expand() - Expand a root to a node 3623 * @mas: The maple state 3624 * @entry: The entry to store into the tree 3625 */ 3626 static inline int mas_root_expand(struct ma_state *mas, void *entry) 3627 { 3628 void *contents = mas_root_locked(mas); 3629 enum maple_type type = maple_leaf_64; 3630 struct maple_node *node; 3631 void __rcu **slots; 3632 unsigned long *pivots; 3633 int slot = 0; 3634 3635 mas_node_count(mas, 1); 3636 if (unlikely(mas_is_err(mas))) 3637 return 0; 3638 3639 node = mas_pop_node(mas); 3640 pivots = ma_pivots(node, type); 3641 slots = ma_slots(node, type); 3642 node->parent = ma_parent_ptr( 3643 ((unsigned long)mas->tree | MA_ROOT_PARENT)); 3644 mas->node = mt_mk_node(node, type); 3645 3646 if (mas->index) { 3647 if (contents) { 3648 rcu_assign_pointer(slots[slot], contents); 3649 if (likely(mas->index > 1)) 3650 slot++; 3651 } 3652 pivots[slot++] = mas->index - 1; 3653 } 3654 3655 rcu_assign_pointer(slots[slot], entry); 3656 mas->offset = slot; 3657 pivots[slot] = mas->last; 3658 if (mas->last != ULONG_MAX) 3659 pivots[++slot] = ULONG_MAX; 3660 3661 mas->depth = 1; 3662 mas_set_height(mas); 3663 ma_set_meta(node, maple_leaf_64, 0, slot); 3664 /* swap the new root into the tree */ 3665 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); 3666 return slot; 3667 } 3668 3669 static inline void mas_store_root(struct ma_state *mas, void *entry) 3670 { 3671 if (likely((mas->last != 0) || (mas->index != 0))) 3672 mas_root_expand(mas, entry); 3673 else if (((unsigned long) (entry) & 3) == 2) 3674 mas_root_expand(mas, entry); 3675 else { 3676 rcu_assign_pointer(mas->tree->ma_root, entry); 3677 mas->node = MAS_START; 3678 } 3679 } 3680 3681 /* 3682 * mas_is_span_wr() - Check if the write needs to be treated as a write that 3683 * spans the node. 3684 * @mas: The maple state 3685 * @piv: The pivot value being written 3686 * @type: The maple node type 3687 * @entry: The data to write 3688 * 3689 * Spanning writes are writes that start in one node and end in another OR if 3690 * the write of a %NULL will cause the node to end with a %NULL. 3691 * 3692 * Return: True if this is a spanning write, false otherwise. 3693 */ 3694 static bool mas_is_span_wr(struct ma_wr_state *wr_mas) 3695 { 3696 unsigned long max = wr_mas->r_max; 3697 unsigned long last = wr_mas->mas->last; 3698 enum maple_type type = wr_mas->type; 3699 void *entry = wr_mas->entry; 3700 3701 /* Contained in this pivot, fast path */ 3702 if (last < max) 3703 return false; 3704 3705 if (ma_is_leaf(type)) { 3706 max = wr_mas->mas->max; 3707 if (last < max) 3708 return false; 3709 } 3710 3711 if (last == max) { 3712 /* 3713 * The last entry of leaf node cannot be NULL unless it is the 3714 * rightmost node (writing ULONG_MAX), otherwise it spans slots. 3715 */ 3716 if (entry || last == ULONG_MAX) 3717 return false; 3718 } 3719 3720 trace_ma_write(__func__, wr_mas->mas, wr_mas->r_max, entry); 3721 return true; 3722 } 3723 3724 static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas) 3725 { 3726 wr_mas->type = mte_node_type(wr_mas->mas->node); 3727 mas_wr_node_walk(wr_mas); 3728 wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type); 3729 } 3730 3731 static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas) 3732 { 3733 wr_mas->mas->max = wr_mas->r_max; 3734 wr_mas->mas->min = wr_mas->r_min; 3735 wr_mas->mas->node = wr_mas->content; 3736 wr_mas->mas->offset = 0; 3737 wr_mas->mas->depth++; 3738 } 3739 /* 3740 * mas_wr_walk() - Walk the tree for a write. 3741 * @wr_mas: The maple write state 3742 * 3743 * Uses mas_slot_locked() and does not need to worry about dead nodes. 3744 * 3745 * Return: True if it's contained in a node, false on spanning write. 3746 */ 3747 static bool mas_wr_walk(struct ma_wr_state *wr_mas) 3748 { 3749 struct ma_state *mas = wr_mas->mas; 3750 3751 while (true) { 3752 mas_wr_walk_descend(wr_mas); 3753 if (unlikely(mas_is_span_wr(wr_mas))) 3754 return false; 3755 3756 wr_mas->content = mas_slot_locked(mas, wr_mas->slots, 3757 mas->offset); 3758 if (ma_is_leaf(wr_mas->type)) 3759 return true; 3760 3761 mas_wr_walk_traverse(wr_mas); 3762 } 3763 3764 return true; 3765 } 3766 3767 static bool mas_wr_walk_index(struct ma_wr_state *wr_mas) 3768 { 3769 struct ma_state *mas = wr_mas->mas; 3770 3771 while (true) { 3772 mas_wr_walk_descend(wr_mas); 3773 wr_mas->content = mas_slot_locked(mas, wr_mas->slots, 3774 mas->offset); 3775 if (ma_is_leaf(wr_mas->type)) 3776 return true; 3777 mas_wr_walk_traverse(wr_mas); 3778 3779 } 3780 return true; 3781 } 3782 /* 3783 * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs. 3784 * @l_wr_mas: The left maple write state 3785 * @r_wr_mas: The right maple write state 3786 */ 3787 static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas, 3788 struct ma_wr_state *r_wr_mas) 3789 { 3790 struct ma_state *r_mas = r_wr_mas->mas; 3791 struct ma_state *l_mas = l_wr_mas->mas; 3792 unsigned char l_slot; 3793 3794 l_slot = l_mas->offset; 3795 if (!l_wr_mas->content) 3796 l_mas->index = l_wr_mas->r_min; 3797 3798 if ((l_mas->index == l_wr_mas->r_min) && 3799 (l_slot && 3800 !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) { 3801 if (l_slot > 1) 3802 l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1; 3803 else 3804 l_mas->index = l_mas->min; 3805 3806 l_mas->offset = l_slot - 1; 3807 } 3808 3809 if (!r_wr_mas->content) { 3810 if (r_mas->last < r_wr_mas->r_max) 3811 r_mas->last = r_wr_mas->r_max; 3812 r_mas->offset++; 3813 } else if ((r_mas->last == r_wr_mas->r_max) && 3814 (r_mas->last < r_mas->max) && 3815 !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) { 3816 r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots, 3817 r_wr_mas->type, r_mas->offset + 1); 3818 r_mas->offset++; 3819 } 3820 } 3821 3822 static inline void *mas_state_walk(struct ma_state *mas) 3823 { 3824 void *entry; 3825 3826 entry = mas_start(mas); 3827 if (mas_is_none(mas)) 3828 return NULL; 3829 3830 if (mas_is_ptr(mas)) 3831 return entry; 3832 3833 return mtree_range_walk(mas); 3834 } 3835 3836 /* 3837 * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up 3838 * to date. 3839 * 3840 * @mas: The maple state. 3841 * 3842 * Note: Leaves mas in undesirable state. 3843 * Return: The entry for @mas->index or %NULL on dead node. 3844 */ 3845 static inline void *mtree_lookup_walk(struct ma_state *mas) 3846 { 3847 unsigned long *pivots; 3848 unsigned char offset; 3849 struct maple_node *node; 3850 struct maple_enode *next; 3851 enum maple_type type; 3852 void __rcu **slots; 3853 unsigned char end; 3854 unsigned long max; 3855 3856 next = mas->node; 3857 max = ULONG_MAX; 3858 do { 3859 offset = 0; 3860 node = mte_to_node(next); 3861 type = mte_node_type(next); 3862 pivots = ma_pivots(node, type); 3863 end = ma_data_end(node, type, pivots, max); 3864 if (unlikely(ma_dead_node(node))) 3865 goto dead_node; 3866 do { 3867 if (pivots[offset] >= mas->index) { 3868 max = pivots[offset]; 3869 break; 3870 } 3871 } while (++offset < end); 3872 3873 slots = ma_slots(node, type); 3874 next = mt_slot(mas->tree, slots, offset); 3875 if (unlikely(ma_dead_node(node))) 3876 goto dead_node; 3877 } while (!ma_is_leaf(type)); 3878 3879 return (void *)next; 3880 3881 dead_node: 3882 mas_reset(mas); 3883 return NULL; 3884 } 3885 3886 /* 3887 * mas_new_root() - Create a new root node that only contains the entry passed 3888 * in. 3889 * @mas: The maple state 3890 * @entry: The entry to store. 3891 * 3892 * Only valid when the index == 0 and the last == ULONG_MAX 3893 * 3894 * Return 0 on error, 1 on success. 3895 */ 3896 static inline int mas_new_root(struct ma_state *mas, void *entry) 3897 { 3898 struct maple_enode *root = mas_root_locked(mas); 3899 enum maple_type type = maple_leaf_64; 3900 struct maple_node *node; 3901 void __rcu **slots; 3902 unsigned long *pivots; 3903 3904 if (!entry && !mas->index && mas->last == ULONG_MAX) { 3905 mas->depth = 0; 3906 mas_set_height(mas); 3907 rcu_assign_pointer(mas->tree->ma_root, entry); 3908 mas->node = MAS_START; 3909 goto done; 3910 } 3911 3912 mas_node_count(mas, 1); 3913 if (mas_is_err(mas)) 3914 return 0; 3915 3916 node = mas_pop_node(mas); 3917 pivots = ma_pivots(node, type); 3918 slots = ma_slots(node, type); 3919 node->parent = ma_parent_ptr( 3920 ((unsigned long)mas->tree | MA_ROOT_PARENT)); 3921 mas->node = mt_mk_node(node, type); 3922 rcu_assign_pointer(slots[0], entry); 3923 pivots[0] = mas->last; 3924 mas->depth = 1; 3925 mas_set_height(mas); 3926 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); 3927 3928 done: 3929 if (xa_is_node(root)) 3930 mte_destroy_walk(root, mas->tree); 3931 3932 return 1; 3933 } 3934 /* 3935 * mas_wr_spanning_store() - Create a subtree with the store operation completed 3936 * and new nodes where necessary, then place the sub-tree in the actual tree. 3937 * Note that mas is expected to point to the node which caused the store to 3938 * span. 3939 * @wr_mas: The maple write state 3940 * 3941 * Return: 0 on error, positive on success. 3942 */ 3943 static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas) 3944 { 3945 struct maple_subtree_state mast; 3946 struct maple_big_node b_node; 3947 struct ma_state *mas; 3948 unsigned char height; 3949 3950 /* Left and Right side of spanning store */ 3951 MA_STATE(l_mas, NULL, 0, 0); 3952 MA_STATE(r_mas, NULL, 0, 0); 3953 3954 MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry); 3955 MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry); 3956 3957 /* 3958 * A store operation that spans multiple nodes is called a spanning 3959 * store and is handled early in the store call stack by the function 3960 * mas_is_span_wr(). When a spanning store is identified, the maple 3961 * state is duplicated. The first maple state walks the left tree path 3962 * to ``index``, the duplicate walks the right tree path to ``last``. 3963 * The data in the two nodes are combined into a single node, two nodes, 3964 * or possibly three nodes (see the 3-way split above). A ``NULL`` 3965 * written to the last entry of a node is considered a spanning store as 3966 * a rebalance is required for the operation to complete and an overflow 3967 * of data may happen. 3968 */ 3969 mas = wr_mas->mas; 3970 trace_ma_op(__func__, mas); 3971 3972 if (unlikely(!mas->index && mas->last == ULONG_MAX)) 3973 return mas_new_root(mas, wr_mas->entry); 3974 /* 3975 * Node rebalancing may occur due to this store, so there may be three new 3976 * entries per level plus a new root. 3977 */ 3978 height = mas_mt_height(mas); 3979 mas_node_count(mas, 1 + height * 3); 3980 if (mas_is_err(mas)) 3981 return 0; 3982 3983 /* 3984 * Set up right side. Need to get to the next offset after the spanning 3985 * store to ensure it's not NULL and to combine both the next node and 3986 * the node with the start together. 3987 */ 3988 r_mas = *mas; 3989 /* Avoid overflow, walk to next slot in the tree. */ 3990 if (r_mas.last + 1) 3991 r_mas.last++; 3992 3993 r_mas.index = r_mas.last; 3994 mas_wr_walk_index(&r_wr_mas); 3995 r_mas.last = r_mas.index = mas->last; 3996 3997 /* Set up left side. */ 3998 l_mas = *mas; 3999 mas_wr_walk_index(&l_wr_mas); 4000 4001 if (!wr_mas->entry) { 4002 mas_extend_spanning_null(&l_wr_mas, &r_wr_mas); 4003 mas->offset = l_mas.offset; 4004 mas->index = l_mas.index; 4005 mas->last = l_mas.last = r_mas.last; 4006 } 4007 4008 /* expanding NULLs may make this cover the entire range */ 4009 if (!l_mas.index && r_mas.last == ULONG_MAX) { 4010 mas_set_range(mas, 0, ULONG_MAX); 4011 return mas_new_root(mas, wr_mas->entry); 4012 } 4013 4014 memset(&b_node, 0, sizeof(struct maple_big_node)); 4015 /* Copy l_mas and store the value in b_node. */ 4016 mas_store_b_node(&l_wr_mas, &b_node, l_wr_mas.node_end); 4017 /* Copy r_mas into b_node. */ 4018 if (r_mas.offset <= r_wr_mas.node_end) 4019 mas_mab_cp(&r_mas, r_mas.offset, r_wr_mas.node_end, 4020 &b_node, b_node.b_end + 1); 4021 else 4022 b_node.b_end++; 4023 4024 /* Stop spanning searches by searching for just index. */ 4025 l_mas.index = l_mas.last = mas->index; 4026 4027 mast.bn = &b_node; 4028 mast.orig_l = &l_mas; 4029 mast.orig_r = &r_mas; 4030 /* Combine l_mas and r_mas and split them up evenly again. */ 4031 return mas_spanning_rebalance(mas, &mast, height + 1); 4032 } 4033 4034 /* 4035 * mas_wr_node_store() - Attempt to store the value in a node 4036 * @wr_mas: The maple write state 4037 * 4038 * Attempts to reuse the node, but may allocate. 4039 * 4040 * Return: True if stored, false otherwise 4041 */ 4042 static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas, 4043 unsigned char new_end) 4044 { 4045 struct ma_state *mas = wr_mas->mas; 4046 void __rcu **dst_slots; 4047 unsigned long *dst_pivots; 4048 unsigned char dst_offset, offset_end = wr_mas->offset_end; 4049 struct maple_node reuse, *newnode; 4050 unsigned char copy_size, node_pivots = mt_pivots[wr_mas->type]; 4051 bool in_rcu = mt_in_rcu(mas->tree); 4052 4053 /* Check if there is enough data. The room is enough. */ 4054 if (!mte_is_root(mas->node) && (new_end <= mt_min_slots[wr_mas->type]) && 4055 !(mas->mas_flags & MA_STATE_BULK)) 4056 return false; 4057 4058 if (mas->last == wr_mas->end_piv) 4059 offset_end++; /* don't copy this offset */ 4060 else if (unlikely(wr_mas->r_max == ULONG_MAX)) 4061 mas_bulk_rebalance(mas, wr_mas->node_end, wr_mas->type); 4062 4063 /* set up node. */ 4064 if (in_rcu) { 4065 mas_node_count(mas, 1); 4066 if (mas_is_err(mas)) 4067 return false; 4068 4069 newnode = mas_pop_node(mas); 4070 } else { 4071 memset(&reuse, 0, sizeof(struct maple_node)); 4072 newnode = &reuse; 4073 } 4074 4075 newnode->parent = mas_mn(mas)->parent; 4076 dst_pivots = ma_pivots(newnode, wr_mas->type); 4077 dst_slots = ma_slots(newnode, wr_mas->type); 4078 /* Copy from start to insert point */ 4079 memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * mas->offset); 4080 memcpy(dst_slots, wr_mas->slots, sizeof(void *) * mas->offset); 4081 4082 /* Handle insert of new range starting after old range */ 4083 if (wr_mas->r_min < mas->index) { 4084 rcu_assign_pointer(dst_slots[mas->offset], wr_mas->content); 4085 dst_pivots[mas->offset++] = mas->index - 1; 4086 } 4087 4088 /* Store the new entry and range end. */ 4089 if (mas->offset < node_pivots) 4090 dst_pivots[mas->offset] = mas->last; 4091 rcu_assign_pointer(dst_slots[mas->offset], wr_mas->entry); 4092 4093 /* 4094 * this range wrote to the end of the node or it overwrote the rest of 4095 * the data 4096 */ 4097 if (offset_end > wr_mas->node_end) 4098 goto done; 4099 4100 dst_offset = mas->offset + 1; 4101 /* Copy to the end of node if necessary. */ 4102 copy_size = wr_mas->node_end - offset_end + 1; 4103 memcpy(dst_slots + dst_offset, wr_mas->slots + offset_end, 4104 sizeof(void *) * copy_size); 4105 memcpy(dst_pivots + dst_offset, wr_mas->pivots + offset_end, 4106 sizeof(unsigned long) * (copy_size - 1)); 4107 4108 if (new_end < node_pivots) 4109 dst_pivots[new_end] = mas->max; 4110 4111 done: 4112 mas_leaf_set_meta(mas, newnode, dst_pivots, maple_leaf_64, new_end); 4113 if (in_rcu) { 4114 mte_set_node_dead(mas->node); 4115 mas->node = mt_mk_node(newnode, wr_mas->type); 4116 mas_replace(mas, false); 4117 } else { 4118 memcpy(wr_mas->node, newnode, sizeof(struct maple_node)); 4119 } 4120 trace_ma_write(__func__, mas, 0, wr_mas->entry); 4121 mas_update_gap(mas); 4122 return true; 4123 } 4124 4125 /* 4126 * mas_wr_slot_store: Attempt to store a value in a slot. 4127 * @wr_mas: the maple write state 4128 * 4129 * Return: True if stored, false otherwise 4130 */ 4131 static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas) 4132 { 4133 struct ma_state *mas = wr_mas->mas; 4134 unsigned char offset = mas->offset; 4135 void __rcu **slots = wr_mas->slots; 4136 bool gap = false; 4137 4138 gap |= !mt_slot_locked(mas->tree, slots, offset); 4139 gap |= !mt_slot_locked(mas->tree, slots, offset + 1); 4140 4141 if (wr_mas->offset_end - offset == 1) { 4142 if (mas->index == wr_mas->r_min) { 4143 /* Overwriting the range and a part of the next one */ 4144 rcu_assign_pointer(slots[offset], wr_mas->entry); 4145 wr_mas->pivots[offset] = mas->last; 4146 } else { 4147 /* Overwriting a part of the range and the next one */ 4148 rcu_assign_pointer(slots[offset + 1], wr_mas->entry); 4149 wr_mas->pivots[offset] = mas->index - 1; 4150 mas->offset++; /* Keep mas accurate. */ 4151 } 4152 } else if (!mt_in_rcu(mas->tree)) { 4153 /* 4154 * Expand the range, only partially overwriting the previous and 4155 * next ranges 4156 */ 4157 gap |= !mt_slot_locked(mas->tree, slots, offset + 2); 4158 rcu_assign_pointer(slots[offset + 1], wr_mas->entry); 4159 wr_mas->pivots[offset] = mas->index - 1; 4160 wr_mas->pivots[offset + 1] = mas->last; 4161 mas->offset++; /* Keep mas accurate. */ 4162 } else { 4163 return false; 4164 } 4165 4166 trace_ma_write(__func__, mas, 0, wr_mas->entry); 4167 /* 4168 * Only update gap when the new entry is empty or there is an empty 4169 * entry in the original two ranges. 4170 */ 4171 if (!wr_mas->entry || gap) 4172 mas_update_gap(mas); 4173 4174 return true; 4175 } 4176 4177 static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas) 4178 { 4179 while ((wr_mas->offset_end < wr_mas->node_end) && 4180 (wr_mas->mas->last > wr_mas->pivots[wr_mas->offset_end])) 4181 wr_mas->offset_end++; 4182 4183 if (wr_mas->offset_end < wr_mas->node_end) 4184 wr_mas->end_piv = wr_mas->pivots[wr_mas->offset_end]; 4185 else 4186 wr_mas->end_piv = wr_mas->mas->max; 4187 } 4188 4189 static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas) 4190 { 4191 struct ma_state *mas = wr_mas->mas; 4192 4193 if (!wr_mas->slots[wr_mas->offset_end]) { 4194 /* If this one is null, the next and prev are not */ 4195 mas->last = wr_mas->end_piv; 4196 } else { 4197 /* Check next slot(s) if we are overwriting the end */ 4198 if ((mas->last == wr_mas->end_piv) && 4199 (wr_mas->node_end != wr_mas->offset_end) && 4200 !wr_mas->slots[wr_mas->offset_end + 1]) { 4201 wr_mas->offset_end++; 4202 if (wr_mas->offset_end == wr_mas->node_end) 4203 mas->last = mas->max; 4204 else 4205 mas->last = wr_mas->pivots[wr_mas->offset_end]; 4206 wr_mas->end_piv = mas->last; 4207 } 4208 } 4209 4210 if (!wr_mas->content) { 4211 /* If this one is null, the next and prev are not */ 4212 mas->index = wr_mas->r_min; 4213 } else { 4214 /* Check prev slot if we are overwriting the start */ 4215 if (mas->index == wr_mas->r_min && mas->offset && 4216 !wr_mas->slots[mas->offset - 1]) { 4217 mas->offset--; 4218 wr_mas->r_min = mas->index = 4219 mas_safe_min(mas, wr_mas->pivots, mas->offset); 4220 wr_mas->r_max = wr_mas->pivots[mas->offset]; 4221 } 4222 } 4223 } 4224 4225 static inline unsigned char mas_wr_new_end(struct ma_wr_state *wr_mas) 4226 { 4227 struct ma_state *mas = wr_mas->mas; 4228 unsigned char new_end = wr_mas->node_end + 2; 4229 4230 new_end -= wr_mas->offset_end - mas->offset; 4231 if (wr_mas->r_min == mas->index) 4232 new_end--; 4233 4234 if (wr_mas->end_piv == mas->last) 4235 new_end--; 4236 4237 return new_end; 4238 } 4239 4240 /* 4241 * mas_wr_append: Attempt to append 4242 * @wr_mas: the maple write state 4243 * 4244 * Return: True if appended, false otherwise 4245 */ 4246 static inline bool mas_wr_append(struct ma_wr_state *wr_mas, 4247 unsigned char new_end) 4248 { 4249 unsigned char end = wr_mas->node_end; 4250 struct ma_state *mas = wr_mas->mas; 4251 unsigned char node_pivots = mt_pivots[wr_mas->type]; 4252 4253 if (mas->offset != wr_mas->node_end) 4254 return false; 4255 4256 if (new_end < node_pivots) { 4257 wr_mas->pivots[new_end] = wr_mas->pivots[end]; 4258 ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end); 4259 } 4260 4261 if (new_end == wr_mas->node_end + 1) { 4262 if (mas->last == wr_mas->r_max) { 4263 /* Append to end of range */ 4264 rcu_assign_pointer(wr_mas->slots[new_end], 4265 wr_mas->entry); 4266 wr_mas->pivots[end] = mas->index - 1; 4267 mas->offset = new_end; 4268 } else { 4269 /* Append to start of range */ 4270 rcu_assign_pointer(wr_mas->slots[new_end], 4271 wr_mas->content); 4272 wr_mas->pivots[end] = mas->last; 4273 rcu_assign_pointer(wr_mas->slots[end], wr_mas->entry); 4274 } 4275 } else { 4276 /* Append to the range without touching any boundaries. */ 4277 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->content); 4278 wr_mas->pivots[end + 1] = mas->last; 4279 rcu_assign_pointer(wr_mas->slots[end + 1], wr_mas->entry); 4280 wr_mas->pivots[end] = mas->index - 1; 4281 mas->offset = end + 1; 4282 } 4283 4284 if (!wr_mas->content || !wr_mas->entry) 4285 mas_update_gap(mas); 4286 4287 return true; 4288 } 4289 4290 /* 4291 * mas_wr_bnode() - Slow path for a modification. 4292 * @wr_mas: The write maple state 4293 * 4294 * This is where split, rebalance end up. 4295 */ 4296 static void mas_wr_bnode(struct ma_wr_state *wr_mas) 4297 { 4298 struct maple_big_node b_node; 4299 4300 trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry); 4301 memset(&b_node, 0, sizeof(struct maple_big_node)); 4302 mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end); 4303 mas_commit_b_node(wr_mas, &b_node, wr_mas->node_end); 4304 } 4305 4306 static inline void mas_wr_modify(struct ma_wr_state *wr_mas) 4307 { 4308 struct ma_state *mas = wr_mas->mas; 4309 unsigned char new_end; 4310 4311 /* Direct replacement */ 4312 if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) { 4313 rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry); 4314 if (!!wr_mas->entry ^ !!wr_mas->content) 4315 mas_update_gap(mas); 4316 return; 4317 } 4318 4319 /* 4320 * new_end exceeds the size of the maple node and cannot enter the fast 4321 * path. 4322 */ 4323 new_end = mas_wr_new_end(wr_mas); 4324 if (new_end >= mt_slots[wr_mas->type]) 4325 goto slow_path; 4326 4327 /* Attempt to append */ 4328 if (mas_wr_append(wr_mas, new_end)) 4329 return; 4330 4331 if (new_end == wr_mas->node_end && mas_wr_slot_store(wr_mas)) 4332 return; 4333 4334 if (mas_wr_node_store(wr_mas, new_end)) 4335 return; 4336 4337 if (mas_is_err(mas)) 4338 return; 4339 4340 slow_path: 4341 mas_wr_bnode(wr_mas); 4342 } 4343 4344 /* 4345 * mas_wr_store_entry() - Internal call to store a value 4346 * @mas: The maple state 4347 * @entry: The entry to store. 4348 * 4349 * Return: The contents that was stored at the index. 4350 */ 4351 static inline void *mas_wr_store_entry(struct ma_wr_state *wr_mas) 4352 { 4353 struct ma_state *mas = wr_mas->mas; 4354 4355 wr_mas->content = mas_start(mas); 4356 if (mas_is_none(mas) || mas_is_ptr(mas)) { 4357 mas_store_root(mas, wr_mas->entry); 4358 return wr_mas->content; 4359 } 4360 4361 if (unlikely(!mas_wr_walk(wr_mas))) { 4362 mas_wr_spanning_store(wr_mas); 4363 return wr_mas->content; 4364 } 4365 4366 /* At this point, we are at the leaf node that needs to be altered. */ 4367 mas_wr_end_piv(wr_mas); 4368 4369 if (!wr_mas->entry) 4370 mas_wr_extend_null(wr_mas); 4371 4372 /* New root for a single pointer */ 4373 if (unlikely(!mas->index && mas->last == ULONG_MAX)) { 4374 mas_new_root(mas, wr_mas->entry); 4375 return wr_mas->content; 4376 } 4377 4378 mas_wr_modify(wr_mas); 4379 return wr_mas->content; 4380 } 4381 4382 /** 4383 * mas_insert() - Internal call to insert a value 4384 * @mas: The maple state 4385 * @entry: The entry to store 4386 * 4387 * Return: %NULL or the contents that already exists at the requested index 4388 * otherwise. The maple state needs to be checked for error conditions. 4389 */ 4390 static inline void *mas_insert(struct ma_state *mas, void *entry) 4391 { 4392 MA_WR_STATE(wr_mas, mas, entry); 4393 4394 /* 4395 * Inserting a new range inserts either 0, 1, or 2 pivots within the 4396 * tree. If the insert fits exactly into an existing gap with a value 4397 * of NULL, then the slot only needs to be written with the new value. 4398 * If the range being inserted is adjacent to another range, then only a 4399 * single pivot needs to be inserted (as well as writing the entry). If 4400 * the new range is within a gap but does not touch any other ranges, 4401 * then two pivots need to be inserted: the start - 1, and the end. As 4402 * usual, the entry must be written. Most operations require a new node 4403 * to be allocated and replace an existing node to ensure RCU safety, 4404 * when in RCU mode. The exception to requiring a newly allocated node 4405 * is when inserting at the end of a node (appending). When done 4406 * carefully, appending can reuse the node in place. 4407 */ 4408 wr_mas.content = mas_start(mas); 4409 if (wr_mas.content) 4410 goto exists; 4411 4412 if (mas_is_none(mas) || mas_is_ptr(mas)) { 4413 mas_store_root(mas, entry); 4414 return NULL; 4415 } 4416 4417 /* spanning writes always overwrite something */ 4418 if (!mas_wr_walk(&wr_mas)) 4419 goto exists; 4420 4421 /* At this point, we are at the leaf node that needs to be altered. */ 4422 wr_mas.offset_end = mas->offset; 4423 wr_mas.end_piv = wr_mas.r_max; 4424 4425 if (wr_mas.content || (mas->last > wr_mas.r_max)) 4426 goto exists; 4427 4428 if (!entry) 4429 return NULL; 4430 4431 mas_wr_modify(&wr_mas); 4432 return wr_mas.content; 4433 4434 exists: 4435 mas_set_err(mas, -EEXIST); 4436 return wr_mas.content; 4437 4438 } 4439 4440 static inline void mas_rewalk(struct ma_state *mas, unsigned long index) 4441 { 4442 retry: 4443 mas_set(mas, index); 4444 mas_state_walk(mas); 4445 if (mas_is_start(mas)) 4446 goto retry; 4447 } 4448 4449 static inline bool mas_rewalk_if_dead(struct ma_state *mas, 4450 struct maple_node *node, const unsigned long index) 4451 { 4452 if (unlikely(ma_dead_node(node))) { 4453 mas_rewalk(mas, index); 4454 return true; 4455 } 4456 return false; 4457 } 4458 4459 /* 4460 * mas_prev_node() - Find the prev non-null entry at the same level in the 4461 * tree. The prev value will be mas->node[mas->offset] or MAS_NONE. 4462 * @mas: The maple state 4463 * @min: The lower limit to search 4464 * 4465 * The prev node value will be mas->node[mas->offset] or MAS_NONE. 4466 * Return: 1 if the node is dead, 0 otherwise. 4467 */ 4468 static inline int mas_prev_node(struct ma_state *mas, unsigned long min) 4469 { 4470 enum maple_type mt; 4471 int offset, level; 4472 void __rcu **slots; 4473 struct maple_node *node; 4474 unsigned long *pivots; 4475 unsigned long max; 4476 4477 node = mas_mn(mas); 4478 if (!mas->min) 4479 goto no_entry; 4480 4481 max = mas->min - 1; 4482 if (max < min) 4483 goto no_entry; 4484 4485 level = 0; 4486 do { 4487 if (ma_is_root(node)) 4488 goto no_entry; 4489 4490 /* Walk up. */ 4491 if (unlikely(mas_ascend(mas))) 4492 return 1; 4493 offset = mas->offset; 4494 level++; 4495 node = mas_mn(mas); 4496 } while (!offset); 4497 4498 offset--; 4499 mt = mte_node_type(mas->node); 4500 while (level > 1) { 4501 level--; 4502 slots = ma_slots(node, mt); 4503 mas->node = mas_slot(mas, slots, offset); 4504 if (unlikely(ma_dead_node(node))) 4505 return 1; 4506 4507 mt = mte_node_type(mas->node); 4508 node = mas_mn(mas); 4509 pivots = ma_pivots(node, mt); 4510 offset = ma_data_end(node, mt, pivots, max); 4511 if (unlikely(ma_dead_node(node))) 4512 return 1; 4513 } 4514 4515 slots = ma_slots(node, mt); 4516 mas->node = mas_slot(mas, slots, offset); 4517 pivots = ma_pivots(node, mt); 4518 if (unlikely(ma_dead_node(node))) 4519 return 1; 4520 4521 if (likely(offset)) 4522 mas->min = pivots[offset - 1] + 1; 4523 mas->max = max; 4524 mas->offset = mas_data_end(mas); 4525 if (unlikely(mte_dead_node(mas->node))) 4526 return 1; 4527 4528 return 0; 4529 4530 no_entry: 4531 if (unlikely(ma_dead_node(node))) 4532 return 1; 4533 4534 mas->node = MAS_NONE; 4535 return 0; 4536 } 4537 4538 /* 4539 * mas_prev_slot() - Get the entry in the previous slot 4540 * 4541 * @mas: The maple state 4542 * @max: The minimum starting range 4543 * 4544 * Return: The entry in the previous slot which is possibly NULL 4545 */ 4546 static void *mas_prev_slot(struct ma_state *mas, unsigned long min, bool empty) 4547 { 4548 void *entry; 4549 void __rcu **slots; 4550 unsigned long pivot; 4551 enum maple_type type; 4552 unsigned long *pivots; 4553 struct maple_node *node; 4554 unsigned long save_point = mas->index; 4555 4556 retry: 4557 node = mas_mn(mas); 4558 type = mte_node_type(mas->node); 4559 pivots = ma_pivots(node, type); 4560 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4561 goto retry; 4562 4563 again: 4564 if (mas->min <= min) { 4565 pivot = mas_safe_min(mas, pivots, mas->offset); 4566 4567 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4568 goto retry; 4569 4570 if (pivot <= min) 4571 return NULL; 4572 } 4573 4574 if (likely(mas->offset)) { 4575 mas->offset--; 4576 mas->last = mas->index - 1; 4577 mas->index = mas_safe_min(mas, pivots, mas->offset); 4578 } else { 4579 if (mas_prev_node(mas, min)) { 4580 mas_rewalk(mas, save_point); 4581 goto retry; 4582 } 4583 4584 if (mas_is_none(mas)) 4585 return NULL; 4586 4587 mas->last = mas->max; 4588 node = mas_mn(mas); 4589 type = mte_node_type(mas->node); 4590 pivots = ma_pivots(node, type); 4591 mas->index = pivots[mas->offset - 1] + 1; 4592 } 4593 4594 slots = ma_slots(node, type); 4595 entry = mas_slot(mas, slots, mas->offset); 4596 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4597 goto retry; 4598 4599 if (likely(entry)) 4600 return entry; 4601 4602 if (!empty) 4603 goto again; 4604 4605 return entry; 4606 } 4607 4608 /* 4609 * mas_next_node() - Get the next node at the same level in the tree. 4610 * @mas: The maple state 4611 * @max: The maximum pivot value to check. 4612 * 4613 * The next value will be mas->node[mas->offset] or MAS_NONE. 4614 * Return: 1 on dead node, 0 otherwise. 4615 */ 4616 static inline int mas_next_node(struct ma_state *mas, struct maple_node *node, 4617 unsigned long max) 4618 { 4619 unsigned long min; 4620 unsigned long *pivots; 4621 struct maple_enode *enode; 4622 int level = 0; 4623 unsigned char node_end; 4624 enum maple_type mt; 4625 void __rcu **slots; 4626 4627 if (mas->max >= max) 4628 goto no_entry; 4629 4630 min = mas->max + 1; 4631 level = 0; 4632 do { 4633 if (ma_is_root(node)) 4634 goto no_entry; 4635 4636 /* Walk up. */ 4637 if (unlikely(mas_ascend(mas))) 4638 return 1; 4639 4640 level++; 4641 node = mas_mn(mas); 4642 mt = mte_node_type(mas->node); 4643 pivots = ma_pivots(node, mt); 4644 node_end = ma_data_end(node, mt, pivots, mas->max); 4645 if (unlikely(ma_dead_node(node))) 4646 return 1; 4647 4648 } while (unlikely(mas->offset == node_end)); 4649 4650 slots = ma_slots(node, mt); 4651 mas->offset++; 4652 enode = mas_slot(mas, slots, mas->offset); 4653 if (unlikely(ma_dead_node(node))) 4654 return 1; 4655 4656 if (level > 1) 4657 mas->offset = 0; 4658 4659 while (unlikely(level > 1)) { 4660 level--; 4661 mas->node = enode; 4662 node = mas_mn(mas); 4663 mt = mte_node_type(mas->node); 4664 slots = ma_slots(node, mt); 4665 enode = mas_slot(mas, slots, 0); 4666 if (unlikely(ma_dead_node(node))) 4667 return 1; 4668 } 4669 4670 if (!mas->offset) 4671 pivots = ma_pivots(node, mt); 4672 4673 mas->max = mas_safe_pivot(mas, pivots, mas->offset, mt); 4674 if (unlikely(ma_dead_node(node))) 4675 return 1; 4676 4677 mas->node = enode; 4678 mas->min = min; 4679 return 0; 4680 4681 no_entry: 4682 if (unlikely(ma_dead_node(node))) 4683 return 1; 4684 4685 mas->node = MAS_NONE; 4686 return 0; 4687 } 4688 4689 /* 4690 * mas_next_slot() - Get the entry in the next slot 4691 * 4692 * @mas: The maple state 4693 * @max: The maximum starting range 4694 * @empty: Can be empty 4695 * 4696 * Return: The entry in the next slot which is possibly NULL 4697 */ 4698 static void *mas_next_slot(struct ma_state *mas, unsigned long max, bool empty) 4699 { 4700 void __rcu **slots; 4701 unsigned long *pivots; 4702 unsigned long pivot; 4703 enum maple_type type; 4704 struct maple_node *node; 4705 unsigned char data_end; 4706 unsigned long save_point = mas->last; 4707 void *entry; 4708 4709 retry: 4710 node = mas_mn(mas); 4711 type = mte_node_type(mas->node); 4712 pivots = ma_pivots(node, type); 4713 data_end = ma_data_end(node, type, pivots, mas->max); 4714 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4715 goto retry; 4716 4717 again: 4718 if (mas->max >= max) { 4719 if (likely(mas->offset < data_end)) 4720 pivot = pivots[mas->offset]; 4721 else 4722 return NULL; /* must be mas->max */ 4723 4724 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4725 goto retry; 4726 4727 if (pivot >= max) 4728 return NULL; 4729 } 4730 4731 if (likely(mas->offset < data_end)) { 4732 mas->index = pivots[mas->offset] + 1; 4733 mas->offset++; 4734 if (likely(mas->offset < data_end)) 4735 mas->last = pivots[mas->offset]; 4736 else 4737 mas->last = mas->max; 4738 } else { 4739 if (mas_next_node(mas, node, max)) { 4740 mas_rewalk(mas, save_point); 4741 goto retry; 4742 } 4743 4744 if (mas_is_none(mas)) 4745 return NULL; 4746 4747 mas->offset = 0; 4748 mas->index = mas->min; 4749 node = mas_mn(mas); 4750 type = mte_node_type(mas->node); 4751 pivots = ma_pivots(node, type); 4752 mas->last = pivots[0]; 4753 } 4754 4755 slots = ma_slots(node, type); 4756 entry = mt_slot(mas->tree, slots, mas->offset); 4757 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4758 goto retry; 4759 4760 if (entry) 4761 return entry; 4762 4763 if (!empty) { 4764 if (!mas->offset) 4765 data_end = 2; 4766 goto again; 4767 } 4768 4769 return entry; 4770 } 4771 4772 /* 4773 * mas_next_entry() - Internal function to get the next entry. 4774 * @mas: The maple state 4775 * @limit: The maximum range start. 4776 * 4777 * Set the @mas->node to the next entry and the range_start to 4778 * the beginning value for the entry. Does not check beyond @limit. 4779 * Sets @mas->index and @mas->last to the limit if it is hit. 4780 * Restarts on dead nodes. 4781 * 4782 * Return: the next entry or %NULL. 4783 */ 4784 static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit) 4785 { 4786 if (mas->last >= limit) 4787 return NULL; 4788 4789 return mas_next_slot(mas, limit, false); 4790 } 4791 4792 /* 4793 * mas_rev_awalk() - Internal function. Reverse allocation walk. Find the 4794 * highest gap address of a given size in a given node and descend. 4795 * @mas: The maple state 4796 * @size: The needed size. 4797 * 4798 * Return: True if found in a leaf, false otherwise. 4799 * 4800 */ 4801 static bool mas_rev_awalk(struct ma_state *mas, unsigned long size, 4802 unsigned long *gap_min, unsigned long *gap_max) 4803 { 4804 enum maple_type type = mte_node_type(mas->node); 4805 struct maple_node *node = mas_mn(mas); 4806 unsigned long *pivots, *gaps; 4807 void __rcu **slots; 4808 unsigned long gap = 0; 4809 unsigned long max, min; 4810 unsigned char offset; 4811 4812 if (unlikely(mas_is_err(mas))) 4813 return true; 4814 4815 if (ma_is_dense(type)) { 4816 /* dense nodes. */ 4817 mas->offset = (unsigned char)(mas->index - mas->min); 4818 return true; 4819 } 4820 4821 pivots = ma_pivots(node, type); 4822 slots = ma_slots(node, type); 4823 gaps = ma_gaps(node, type); 4824 offset = mas->offset; 4825 min = mas_safe_min(mas, pivots, offset); 4826 /* Skip out of bounds. */ 4827 while (mas->last < min) 4828 min = mas_safe_min(mas, pivots, --offset); 4829 4830 max = mas_safe_pivot(mas, pivots, offset, type); 4831 while (mas->index <= max) { 4832 gap = 0; 4833 if (gaps) 4834 gap = gaps[offset]; 4835 else if (!mas_slot(mas, slots, offset)) 4836 gap = max - min + 1; 4837 4838 if (gap) { 4839 if ((size <= gap) && (size <= mas->last - min + 1)) 4840 break; 4841 4842 if (!gaps) { 4843 /* Skip the next slot, it cannot be a gap. */ 4844 if (offset < 2) 4845 goto ascend; 4846 4847 offset -= 2; 4848 max = pivots[offset]; 4849 min = mas_safe_min(mas, pivots, offset); 4850 continue; 4851 } 4852 } 4853 4854 if (!offset) 4855 goto ascend; 4856 4857 offset--; 4858 max = min - 1; 4859 min = mas_safe_min(mas, pivots, offset); 4860 } 4861 4862 if (unlikely((mas->index > max) || (size - 1 > max - mas->index))) 4863 goto no_space; 4864 4865 if (unlikely(ma_is_leaf(type))) { 4866 mas->offset = offset; 4867 *gap_min = min; 4868 *gap_max = min + gap - 1; 4869 return true; 4870 } 4871 4872 /* descend, only happens under lock. */ 4873 mas->node = mas_slot(mas, slots, offset); 4874 mas->min = min; 4875 mas->max = max; 4876 mas->offset = mas_data_end(mas); 4877 return false; 4878 4879 ascend: 4880 if (!mte_is_root(mas->node)) 4881 return false; 4882 4883 no_space: 4884 mas_set_err(mas, -EBUSY); 4885 return false; 4886 } 4887 4888 static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size) 4889 { 4890 enum maple_type type = mte_node_type(mas->node); 4891 unsigned long pivot, min, gap = 0; 4892 unsigned char offset, data_end; 4893 unsigned long *gaps, *pivots; 4894 void __rcu **slots; 4895 struct maple_node *node; 4896 bool found = false; 4897 4898 if (ma_is_dense(type)) { 4899 mas->offset = (unsigned char)(mas->index - mas->min); 4900 return true; 4901 } 4902 4903 node = mas_mn(mas); 4904 pivots = ma_pivots(node, type); 4905 slots = ma_slots(node, type); 4906 gaps = ma_gaps(node, type); 4907 offset = mas->offset; 4908 min = mas_safe_min(mas, pivots, offset); 4909 data_end = ma_data_end(node, type, pivots, mas->max); 4910 for (; offset <= data_end; offset++) { 4911 pivot = mas_safe_pivot(mas, pivots, offset, type); 4912 4913 /* Not within lower bounds */ 4914 if (mas->index > pivot) 4915 goto next_slot; 4916 4917 if (gaps) 4918 gap = gaps[offset]; 4919 else if (!mas_slot(mas, slots, offset)) 4920 gap = min(pivot, mas->last) - max(mas->index, min) + 1; 4921 else 4922 goto next_slot; 4923 4924 if (gap >= size) { 4925 if (ma_is_leaf(type)) { 4926 found = true; 4927 goto done; 4928 } 4929 if (mas->index <= pivot) { 4930 mas->node = mas_slot(mas, slots, offset); 4931 mas->min = min; 4932 mas->max = pivot; 4933 offset = 0; 4934 break; 4935 } 4936 } 4937 next_slot: 4938 min = pivot + 1; 4939 if (mas->last <= pivot) { 4940 mas_set_err(mas, -EBUSY); 4941 return true; 4942 } 4943 } 4944 4945 if (mte_is_root(mas->node)) 4946 found = true; 4947 done: 4948 mas->offset = offset; 4949 return found; 4950 } 4951 4952 /** 4953 * mas_walk() - Search for @mas->index in the tree. 4954 * @mas: The maple state. 4955 * 4956 * mas->index and mas->last will be set to the range if there is a value. If 4957 * mas->node is MAS_NONE, reset to MAS_START. 4958 * 4959 * Return: the entry at the location or %NULL. 4960 */ 4961 void *mas_walk(struct ma_state *mas) 4962 { 4963 void *entry; 4964 4965 if (mas_is_none(mas) || mas_is_paused(mas) || mas_is_ptr(mas)) 4966 mas->node = MAS_START; 4967 retry: 4968 entry = mas_state_walk(mas); 4969 if (mas_is_start(mas)) { 4970 goto retry; 4971 } else if (mas_is_none(mas)) { 4972 mas->index = 0; 4973 mas->last = ULONG_MAX; 4974 } else if (mas_is_ptr(mas)) { 4975 if (!mas->index) { 4976 mas->last = 0; 4977 return entry; 4978 } 4979 4980 mas->index = 1; 4981 mas->last = ULONG_MAX; 4982 mas->node = MAS_NONE; 4983 return NULL; 4984 } 4985 4986 return entry; 4987 } 4988 EXPORT_SYMBOL_GPL(mas_walk); 4989 4990 static inline bool mas_rewind_node(struct ma_state *mas) 4991 { 4992 unsigned char slot; 4993 4994 do { 4995 if (mte_is_root(mas->node)) { 4996 slot = mas->offset; 4997 if (!slot) 4998 return false; 4999 } else { 5000 mas_ascend(mas); 5001 slot = mas->offset; 5002 } 5003 } while (!slot); 5004 5005 mas->offset = --slot; 5006 return true; 5007 } 5008 5009 /* 5010 * mas_skip_node() - Internal function. Skip over a node. 5011 * @mas: The maple state. 5012 * 5013 * Return: true if there is another node, false otherwise. 5014 */ 5015 static inline bool mas_skip_node(struct ma_state *mas) 5016 { 5017 if (mas_is_err(mas)) 5018 return false; 5019 5020 do { 5021 if (mte_is_root(mas->node)) { 5022 if (mas->offset >= mas_data_end(mas)) { 5023 mas_set_err(mas, -EBUSY); 5024 return false; 5025 } 5026 } else { 5027 mas_ascend(mas); 5028 } 5029 } while (mas->offset >= mas_data_end(mas)); 5030 5031 mas->offset++; 5032 return true; 5033 } 5034 5035 /* 5036 * mas_awalk() - Allocation walk. Search from low address to high, for a gap of 5037 * @size 5038 * @mas: The maple state 5039 * @size: The size of the gap required 5040 * 5041 * Search between @mas->index and @mas->last for a gap of @size. 5042 */ 5043 static inline void mas_awalk(struct ma_state *mas, unsigned long size) 5044 { 5045 struct maple_enode *last = NULL; 5046 5047 /* 5048 * There are 4 options: 5049 * go to child (descend) 5050 * go back to parent (ascend) 5051 * no gap found. (return, slot == MAPLE_NODE_SLOTS) 5052 * found the gap. (return, slot != MAPLE_NODE_SLOTS) 5053 */ 5054 while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) { 5055 if (last == mas->node) 5056 mas_skip_node(mas); 5057 else 5058 last = mas->node; 5059 } 5060 } 5061 5062 /* 5063 * mas_sparse_area() - Internal function. Return upper or lower limit when 5064 * searching for a gap in an empty tree. 5065 * @mas: The maple state 5066 * @min: the minimum range 5067 * @max: The maximum range 5068 * @size: The size of the gap 5069 * @fwd: Searching forward or back 5070 */ 5071 static inline int mas_sparse_area(struct ma_state *mas, unsigned long min, 5072 unsigned long max, unsigned long size, bool fwd) 5073 { 5074 if (!unlikely(mas_is_none(mas)) && min == 0) { 5075 min++; 5076 /* 5077 * At this time, min is increased, we need to recheck whether 5078 * the size is satisfied. 5079 */ 5080 if (min > max || max - min + 1 < size) 5081 return -EBUSY; 5082 } 5083 /* mas_is_ptr */ 5084 5085 if (fwd) { 5086 mas->index = min; 5087 mas->last = min + size - 1; 5088 } else { 5089 mas->last = max; 5090 mas->index = max - size + 1; 5091 } 5092 return 0; 5093 } 5094 5095 /* 5096 * mas_empty_area() - Get the lowest address within the range that is 5097 * sufficient for the size requested. 5098 * @mas: The maple state 5099 * @min: The lowest value of the range 5100 * @max: The highest value of the range 5101 * @size: The size needed 5102 */ 5103 int mas_empty_area(struct ma_state *mas, unsigned long min, 5104 unsigned long max, unsigned long size) 5105 { 5106 unsigned char offset; 5107 unsigned long *pivots; 5108 enum maple_type mt; 5109 5110 if (min > max) 5111 return -EINVAL; 5112 5113 if (size == 0 || max - min < size - 1) 5114 return -EINVAL; 5115 5116 if (mas_is_start(mas)) 5117 mas_start(mas); 5118 else if (mas->offset >= 2) 5119 mas->offset -= 2; 5120 else if (!mas_skip_node(mas)) 5121 return -EBUSY; 5122 5123 /* Empty set */ 5124 if (mas_is_none(mas) || mas_is_ptr(mas)) 5125 return mas_sparse_area(mas, min, max, size, true); 5126 5127 /* The start of the window can only be within these values */ 5128 mas->index = min; 5129 mas->last = max; 5130 mas_awalk(mas, size); 5131 5132 if (unlikely(mas_is_err(mas))) 5133 return xa_err(mas->node); 5134 5135 offset = mas->offset; 5136 if (unlikely(offset == MAPLE_NODE_SLOTS)) 5137 return -EBUSY; 5138 5139 mt = mte_node_type(mas->node); 5140 pivots = ma_pivots(mas_mn(mas), mt); 5141 min = mas_safe_min(mas, pivots, offset); 5142 if (mas->index < min) 5143 mas->index = min; 5144 mas->last = mas->index + size - 1; 5145 return 0; 5146 } 5147 EXPORT_SYMBOL_GPL(mas_empty_area); 5148 5149 /* 5150 * mas_empty_area_rev() - Get the highest address within the range that is 5151 * sufficient for the size requested. 5152 * @mas: The maple state 5153 * @min: The lowest value of the range 5154 * @max: The highest value of the range 5155 * @size: The size needed 5156 */ 5157 int mas_empty_area_rev(struct ma_state *mas, unsigned long min, 5158 unsigned long max, unsigned long size) 5159 { 5160 struct maple_enode *last = mas->node; 5161 5162 if (min > max) 5163 return -EINVAL; 5164 5165 if (size == 0 || max - min < size - 1) 5166 return -EINVAL; 5167 5168 if (mas_is_start(mas)) { 5169 mas_start(mas); 5170 mas->offset = mas_data_end(mas); 5171 } else if (mas->offset >= 2) { 5172 mas->offset -= 2; 5173 } else if (!mas_rewind_node(mas)) { 5174 return -EBUSY; 5175 } 5176 5177 /* Empty set. */ 5178 if (mas_is_none(mas) || mas_is_ptr(mas)) 5179 return mas_sparse_area(mas, min, max, size, false); 5180 5181 /* The start of the window can only be within these values. */ 5182 mas->index = min; 5183 mas->last = max; 5184 5185 while (!mas_rev_awalk(mas, size, &min, &max)) { 5186 if (last == mas->node) { 5187 if (!mas_rewind_node(mas)) 5188 return -EBUSY; 5189 } else { 5190 last = mas->node; 5191 } 5192 } 5193 5194 if (mas_is_err(mas)) 5195 return xa_err(mas->node); 5196 5197 if (unlikely(mas->offset == MAPLE_NODE_SLOTS)) 5198 return -EBUSY; 5199 5200 /* Trim the upper limit to the max. */ 5201 if (max < mas->last) 5202 mas->last = max; 5203 5204 mas->index = mas->last - size + 1; 5205 return 0; 5206 } 5207 EXPORT_SYMBOL_GPL(mas_empty_area_rev); 5208 5209 /* 5210 * mte_dead_leaves() - Mark all leaves of a node as dead. 5211 * @mas: The maple state 5212 * @slots: Pointer to the slot array 5213 * @type: The maple node type 5214 * 5215 * Must hold the write lock. 5216 * 5217 * Return: The number of leaves marked as dead. 5218 */ 5219 static inline 5220 unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt, 5221 void __rcu **slots) 5222 { 5223 struct maple_node *node; 5224 enum maple_type type; 5225 void *entry; 5226 int offset; 5227 5228 for (offset = 0; offset < mt_slot_count(enode); offset++) { 5229 entry = mt_slot(mt, slots, offset); 5230 type = mte_node_type(entry); 5231 node = mte_to_node(entry); 5232 /* Use both node and type to catch LE & BE metadata */ 5233 if (!node || !type) 5234 break; 5235 5236 mte_set_node_dead(entry); 5237 node->type = type; 5238 rcu_assign_pointer(slots[offset], node); 5239 } 5240 5241 return offset; 5242 } 5243 5244 /** 5245 * mte_dead_walk() - Walk down a dead tree to just before the leaves 5246 * @enode: The maple encoded node 5247 * @offset: The starting offset 5248 * 5249 * Note: This can only be used from the RCU callback context. 5250 */ 5251 static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset) 5252 { 5253 struct maple_node *node, *next; 5254 void __rcu **slots = NULL; 5255 5256 next = mte_to_node(*enode); 5257 do { 5258 *enode = ma_enode_ptr(next); 5259 node = mte_to_node(*enode); 5260 slots = ma_slots(node, node->type); 5261 next = rcu_dereference_protected(slots[offset], 5262 lock_is_held(&rcu_callback_map)); 5263 offset = 0; 5264 } while (!ma_is_leaf(next->type)); 5265 5266 return slots; 5267 } 5268 5269 /** 5270 * mt_free_walk() - Walk & free a tree in the RCU callback context 5271 * @head: The RCU head that's within the node. 5272 * 5273 * Note: This can only be used from the RCU callback context. 5274 */ 5275 static void mt_free_walk(struct rcu_head *head) 5276 { 5277 void __rcu **slots; 5278 struct maple_node *node, *start; 5279 struct maple_enode *enode; 5280 unsigned char offset; 5281 enum maple_type type; 5282 5283 node = container_of(head, struct maple_node, rcu); 5284 5285 if (ma_is_leaf(node->type)) 5286 goto free_leaf; 5287 5288 start = node; 5289 enode = mt_mk_node(node, node->type); 5290 slots = mte_dead_walk(&enode, 0); 5291 node = mte_to_node(enode); 5292 do { 5293 mt_free_bulk(node->slot_len, slots); 5294 offset = node->parent_slot + 1; 5295 enode = node->piv_parent; 5296 if (mte_to_node(enode) == node) 5297 goto free_leaf; 5298 5299 type = mte_node_type(enode); 5300 slots = ma_slots(mte_to_node(enode), type); 5301 if ((offset < mt_slots[type]) && 5302 rcu_dereference_protected(slots[offset], 5303 lock_is_held(&rcu_callback_map))) 5304 slots = mte_dead_walk(&enode, offset); 5305 node = mte_to_node(enode); 5306 } while ((node != start) || (node->slot_len < offset)); 5307 5308 slots = ma_slots(node, node->type); 5309 mt_free_bulk(node->slot_len, slots); 5310 5311 free_leaf: 5312 mt_free_rcu(&node->rcu); 5313 } 5314 5315 static inline void __rcu **mte_destroy_descend(struct maple_enode **enode, 5316 struct maple_tree *mt, struct maple_enode *prev, unsigned char offset) 5317 { 5318 struct maple_node *node; 5319 struct maple_enode *next = *enode; 5320 void __rcu **slots = NULL; 5321 enum maple_type type; 5322 unsigned char next_offset = 0; 5323 5324 do { 5325 *enode = next; 5326 node = mte_to_node(*enode); 5327 type = mte_node_type(*enode); 5328 slots = ma_slots(node, type); 5329 next = mt_slot_locked(mt, slots, next_offset); 5330 if ((mte_dead_node(next))) 5331 next = mt_slot_locked(mt, slots, ++next_offset); 5332 5333 mte_set_node_dead(*enode); 5334 node->type = type; 5335 node->piv_parent = prev; 5336 node->parent_slot = offset; 5337 offset = next_offset; 5338 next_offset = 0; 5339 prev = *enode; 5340 } while (!mte_is_leaf(next)); 5341 5342 return slots; 5343 } 5344 5345 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt, 5346 bool free) 5347 { 5348 void __rcu **slots; 5349 struct maple_node *node = mte_to_node(enode); 5350 struct maple_enode *start; 5351 5352 if (mte_is_leaf(enode)) { 5353 node->type = mte_node_type(enode); 5354 goto free_leaf; 5355 } 5356 5357 start = enode; 5358 slots = mte_destroy_descend(&enode, mt, start, 0); 5359 node = mte_to_node(enode); // Updated in the above call. 5360 do { 5361 enum maple_type type; 5362 unsigned char offset; 5363 struct maple_enode *parent, *tmp; 5364 5365 node->slot_len = mte_dead_leaves(enode, mt, slots); 5366 if (free) 5367 mt_free_bulk(node->slot_len, slots); 5368 offset = node->parent_slot + 1; 5369 enode = node->piv_parent; 5370 if (mte_to_node(enode) == node) 5371 goto free_leaf; 5372 5373 type = mte_node_type(enode); 5374 slots = ma_slots(mte_to_node(enode), type); 5375 if (offset >= mt_slots[type]) 5376 goto next; 5377 5378 tmp = mt_slot_locked(mt, slots, offset); 5379 if (mte_node_type(tmp) && mte_to_node(tmp)) { 5380 parent = enode; 5381 enode = tmp; 5382 slots = mte_destroy_descend(&enode, mt, parent, offset); 5383 } 5384 next: 5385 node = mte_to_node(enode); 5386 } while (start != enode); 5387 5388 node = mte_to_node(enode); 5389 node->slot_len = mte_dead_leaves(enode, mt, slots); 5390 if (free) 5391 mt_free_bulk(node->slot_len, slots); 5392 5393 free_leaf: 5394 if (free) 5395 mt_free_rcu(&node->rcu); 5396 else 5397 mt_clear_meta(mt, node, node->type); 5398 } 5399 5400 /* 5401 * mte_destroy_walk() - Free a tree or sub-tree. 5402 * @enode: the encoded maple node (maple_enode) to start 5403 * @mt: the tree to free - needed for node types. 5404 * 5405 * Must hold the write lock. 5406 */ 5407 static inline void mte_destroy_walk(struct maple_enode *enode, 5408 struct maple_tree *mt) 5409 { 5410 struct maple_node *node = mte_to_node(enode); 5411 5412 if (mt_in_rcu(mt)) { 5413 mt_destroy_walk(enode, mt, false); 5414 call_rcu(&node->rcu, mt_free_walk); 5415 } else { 5416 mt_destroy_walk(enode, mt, true); 5417 } 5418 } 5419 5420 static void mas_wr_store_setup(struct ma_wr_state *wr_mas) 5421 { 5422 if (unlikely(mas_is_paused(wr_mas->mas))) 5423 mas_reset(wr_mas->mas); 5424 5425 if (!mas_is_start(wr_mas->mas)) { 5426 if (mas_is_none(wr_mas->mas)) { 5427 mas_reset(wr_mas->mas); 5428 } else { 5429 wr_mas->r_max = wr_mas->mas->max; 5430 wr_mas->type = mte_node_type(wr_mas->mas->node); 5431 if (mas_is_span_wr(wr_mas)) 5432 mas_reset(wr_mas->mas); 5433 } 5434 } 5435 } 5436 5437 /* Interface */ 5438 5439 /** 5440 * mas_store() - Store an @entry. 5441 * @mas: The maple state. 5442 * @entry: The entry to store. 5443 * 5444 * The @mas->index and @mas->last is used to set the range for the @entry. 5445 * Note: The @mas should have pre-allocated entries to ensure there is memory to 5446 * store the entry. Please see mas_expected_entries()/mas_destroy() for more details. 5447 * 5448 * Return: the first entry between mas->index and mas->last or %NULL. 5449 */ 5450 void *mas_store(struct ma_state *mas, void *entry) 5451 { 5452 MA_WR_STATE(wr_mas, mas, entry); 5453 5454 trace_ma_write(__func__, mas, 0, entry); 5455 #ifdef CONFIG_DEBUG_MAPLE_TREE 5456 if (MAS_WARN_ON(mas, mas->index > mas->last)) 5457 pr_err("Error %lX > %lX %p\n", mas->index, mas->last, entry); 5458 5459 if (mas->index > mas->last) { 5460 mas_set_err(mas, -EINVAL); 5461 return NULL; 5462 } 5463 5464 #endif 5465 5466 /* 5467 * Storing is the same operation as insert with the added caveat that it 5468 * can overwrite entries. Although this seems simple enough, one may 5469 * want to examine what happens if a single store operation was to 5470 * overwrite multiple entries within a self-balancing B-Tree. 5471 */ 5472 mas_wr_store_setup(&wr_mas); 5473 mas_wr_store_entry(&wr_mas); 5474 return wr_mas.content; 5475 } 5476 EXPORT_SYMBOL_GPL(mas_store); 5477 5478 /** 5479 * mas_store_gfp() - Store a value into the tree. 5480 * @mas: The maple state 5481 * @entry: The entry to store 5482 * @gfp: The GFP_FLAGS to use for allocations if necessary. 5483 * 5484 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not 5485 * be allocated. 5486 */ 5487 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp) 5488 { 5489 MA_WR_STATE(wr_mas, mas, entry); 5490 5491 mas_wr_store_setup(&wr_mas); 5492 trace_ma_write(__func__, mas, 0, entry); 5493 retry: 5494 mas_wr_store_entry(&wr_mas); 5495 if (unlikely(mas_nomem(mas, gfp))) 5496 goto retry; 5497 5498 if (unlikely(mas_is_err(mas))) 5499 return xa_err(mas->node); 5500 5501 return 0; 5502 } 5503 EXPORT_SYMBOL_GPL(mas_store_gfp); 5504 5505 /** 5506 * mas_store_prealloc() - Store a value into the tree using memory 5507 * preallocated in the maple state. 5508 * @mas: The maple state 5509 * @entry: The entry to store. 5510 */ 5511 void mas_store_prealloc(struct ma_state *mas, void *entry) 5512 { 5513 MA_WR_STATE(wr_mas, mas, entry); 5514 5515 mas_wr_store_setup(&wr_mas); 5516 trace_ma_write(__func__, mas, 0, entry); 5517 mas_wr_store_entry(&wr_mas); 5518 MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas)); 5519 mas_destroy(mas); 5520 } 5521 EXPORT_SYMBOL_GPL(mas_store_prealloc); 5522 5523 /** 5524 * mas_preallocate() - Preallocate enough nodes for a store operation 5525 * @mas: The maple state 5526 * @gfp: The GFP_FLAGS to use for allocations. 5527 * 5528 * Return: 0 on success, -ENOMEM if memory could not be allocated. 5529 */ 5530 int mas_preallocate(struct ma_state *mas, gfp_t gfp) 5531 { 5532 int ret; 5533 5534 mas_node_count_gfp(mas, 1 + mas_mt_height(mas) * 3, gfp); 5535 mas->mas_flags |= MA_STATE_PREALLOC; 5536 if (likely(!mas_is_err(mas))) 5537 return 0; 5538 5539 mas_set_alloc_req(mas, 0); 5540 ret = xa_err(mas->node); 5541 mas_reset(mas); 5542 mas_destroy(mas); 5543 mas_reset(mas); 5544 return ret; 5545 } 5546 EXPORT_SYMBOL_GPL(mas_preallocate); 5547 5548 /* 5549 * mas_destroy() - destroy a maple state. 5550 * @mas: The maple state 5551 * 5552 * Upon completion, check the left-most node and rebalance against the node to 5553 * the right if necessary. Frees any allocated nodes associated with this maple 5554 * state. 5555 */ 5556 void mas_destroy(struct ma_state *mas) 5557 { 5558 struct maple_alloc *node; 5559 unsigned long total; 5560 5561 /* 5562 * When using mas_for_each() to insert an expected number of elements, 5563 * it is possible that the number inserted is less than the expected 5564 * number. To fix an invalid final node, a check is performed here to 5565 * rebalance the previous node with the final node. 5566 */ 5567 if (mas->mas_flags & MA_STATE_REBALANCE) { 5568 unsigned char end; 5569 5570 mas_start(mas); 5571 mtree_range_walk(mas); 5572 end = mas_data_end(mas) + 1; 5573 if (end < mt_min_slot_count(mas->node) - 1) 5574 mas_destroy_rebalance(mas, end); 5575 5576 mas->mas_flags &= ~MA_STATE_REBALANCE; 5577 } 5578 mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC); 5579 5580 total = mas_allocated(mas); 5581 while (total) { 5582 node = mas->alloc; 5583 mas->alloc = node->slot[0]; 5584 if (node->node_count > 1) { 5585 size_t count = node->node_count - 1; 5586 5587 mt_free_bulk(count, (void __rcu **)&node->slot[1]); 5588 total -= count; 5589 } 5590 kmem_cache_free(maple_node_cache, node); 5591 total--; 5592 } 5593 5594 mas->alloc = NULL; 5595 } 5596 EXPORT_SYMBOL_GPL(mas_destroy); 5597 5598 /* 5599 * mas_expected_entries() - Set the expected number of entries that will be inserted. 5600 * @mas: The maple state 5601 * @nr_entries: The number of expected entries. 5602 * 5603 * This will attempt to pre-allocate enough nodes to store the expected number 5604 * of entries. The allocations will occur using the bulk allocator interface 5605 * for speed. Please call mas_destroy() on the @mas after inserting the entries 5606 * to ensure any unused nodes are freed. 5607 * 5608 * Return: 0 on success, -ENOMEM if memory could not be allocated. 5609 */ 5610 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries) 5611 { 5612 int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2; 5613 struct maple_enode *enode = mas->node; 5614 int nr_nodes; 5615 int ret; 5616 5617 /* 5618 * Sometimes it is necessary to duplicate a tree to a new tree, such as 5619 * forking a process and duplicating the VMAs from one tree to a new 5620 * tree. When such a situation arises, it is known that the new tree is 5621 * not going to be used until the entire tree is populated. For 5622 * performance reasons, it is best to use a bulk load with RCU disabled. 5623 * This allows for optimistic splitting that favours the left and reuse 5624 * of nodes during the operation. 5625 */ 5626 5627 /* Optimize splitting for bulk insert in-order */ 5628 mas->mas_flags |= MA_STATE_BULK; 5629 5630 /* 5631 * Avoid overflow, assume a gap between each entry and a trailing null. 5632 * If this is wrong, it just means allocation can happen during 5633 * insertion of entries. 5634 */ 5635 nr_nodes = max(nr_entries, nr_entries * 2 + 1); 5636 if (!mt_is_alloc(mas->tree)) 5637 nonleaf_cap = MAPLE_RANGE64_SLOTS - 2; 5638 5639 /* Leaves; reduce slots to keep space for expansion */ 5640 nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2); 5641 /* Internal nodes */ 5642 nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap); 5643 /* Add working room for split (2 nodes) + new parents */ 5644 mas_node_count(mas, nr_nodes + 3); 5645 5646 /* Detect if allocations run out */ 5647 mas->mas_flags |= MA_STATE_PREALLOC; 5648 5649 if (!mas_is_err(mas)) 5650 return 0; 5651 5652 ret = xa_err(mas->node); 5653 mas->node = enode; 5654 mas_destroy(mas); 5655 return ret; 5656 5657 } 5658 EXPORT_SYMBOL_GPL(mas_expected_entries); 5659 5660 static inline bool mas_next_setup(struct ma_state *mas, unsigned long max, 5661 void **entry) 5662 { 5663 bool was_none = mas_is_none(mas); 5664 5665 if (mas_is_none(mas) || mas_is_paused(mas)) 5666 mas->node = MAS_START; 5667 5668 if (mas_is_start(mas)) 5669 *entry = mas_walk(mas); /* Retries on dead nodes handled by mas_walk */ 5670 5671 if (mas_is_ptr(mas)) { 5672 *entry = NULL; 5673 if (was_none && mas->index == 0) { 5674 mas->index = mas->last = 0; 5675 return true; 5676 } 5677 mas->index = 1; 5678 mas->last = ULONG_MAX; 5679 mas->node = MAS_NONE; 5680 return true; 5681 } 5682 5683 if (mas_is_none(mas)) 5684 return true; 5685 return false; 5686 } 5687 5688 /** 5689 * mas_next() - Get the next entry. 5690 * @mas: The maple state 5691 * @max: The maximum index to check. 5692 * 5693 * Returns the next entry after @mas->index. 5694 * Must hold rcu_read_lock or the write lock. 5695 * Can return the zero entry. 5696 * 5697 * Return: The next entry or %NULL 5698 */ 5699 void *mas_next(struct ma_state *mas, unsigned long max) 5700 { 5701 void *entry = NULL; 5702 5703 if (mas_next_setup(mas, max, &entry)) 5704 return entry; 5705 5706 /* Retries on dead nodes handled by mas_next_slot */ 5707 return mas_next_slot(mas, max, false); 5708 } 5709 EXPORT_SYMBOL_GPL(mas_next); 5710 5711 /** 5712 * mas_next_range() - Advance the maple state to the next range 5713 * @mas: The maple state 5714 * @max: The maximum index to check. 5715 * 5716 * Sets @mas->index and @mas->last to the range. 5717 * Must hold rcu_read_lock or the write lock. 5718 * Can return the zero entry. 5719 * 5720 * Return: The next entry or %NULL 5721 */ 5722 void *mas_next_range(struct ma_state *mas, unsigned long max) 5723 { 5724 void *entry = NULL; 5725 5726 if (mas_next_setup(mas, max, &entry)) 5727 return entry; 5728 5729 /* Retries on dead nodes handled by mas_next_slot */ 5730 return mas_next_slot(mas, max, true); 5731 } 5732 EXPORT_SYMBOL_GPL(mas_next_range); 5733 5734 /** 5735 * mt_next() - get the next value in the maple tree 5736 * @mt: The maple tree 5737 * @index: The start index 5738 * @max: The maximum index to check 5739 * 5740 * Takes RCU read lock internally to protect the search, which does not 5741 * protect the returned pointer after dropping RCU read lock. 5742 * See also: Documentation/core-api/maple_tree.rst 5743 * 5744 * Return: The entry higher than @index or %NULL if nothing is found. 5745 */ 5746 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max) 5747 { 5748 void *entry = NULL; 5749 MA_STATE(mas, mt, index, index); 5750 5751 rcu_read_lock(); 5752 entry = mas_next(&mas, max); 5753 rcu_read_unlock(); 5754 return entry; 5755 } 5756 EXPORT_SYMBOL_GPL(mt_next); 5757 5758 static inline bool mas_prev_setup(struct ma_state *mas, unsigned long min, 5759 void **entry) 5760 { 5761 if (mas->index <= min) 5762 goto none; 5763 5764 if (mas_is_none(mas) || mas_is_paused(mas)) 5765 mas->node = MAS_START; 5766 5767 if (mas_is_start(mas)) { 5768 mas_walk(mas); 5769 if (!mas->index) 5770 goto none; 5771 } 5772 5773 if (unlikely(mas_is_ptr(mas))) { 5774 if (!mas->index) 5775 goto none; 5776 mas->index = mas->last = 0; 5777 *entry = mas_root(mas); 5778 return true; 5779 } 5780 5781 if (mas_is_none(mas)) { 5782 if (mas->index) { 5783 /* Walked to out-of-range pointer? */ 5784 mas->index = mas->last = 0; 5785 mas->node = MAS_ROOT; 5786 *entry = mas_root(mas); 5787 return true; 5788 } 5789 return true; 5790 } 5791 5792 return false; 5793 5794 none: 5795 mas->node = MAS_NONE; 5796 return true; 5797 } 5798 5799 /** 5800 * mas_prev() - Get the previous entry 5801 * @mas: The maple state 5802 * @min: The minimum value to check. 5803 * 5804 * Must hold rcu_read_lock or the write lock. 5805 * Will reset mas to MAS_START if the node is MAS_NONE. Will stop on not 5806 * searchable nodes. 5807 * 5808 * Return: the previous value or %NULL. 5809 */ 5810 void *mas_prev(struct ma_state *mas, unsigned long min) 5811 { 5812 void *entry = NULL; 5813 5814 if (mas_prev_setup(mas, min, &entry)) 5815 return entry; 5816 5817 return mas_prev_slot(mas, min, false); 5818 } 5819 EXPORT_SYMBOL_GPL(mas_prev); 5820 5821 /** 5822 * mas_prev_range() - Advance to the previous range 5823 * @mas: The maple state 5824 * @min: The minimum value to check. 5825 * 5826 * Sets @mas->index and @mas->last to the range. 5827 * Must hold rcu_read_lock or the write lock. 5828 * Will reset mas to MAS_START if the node is MAS_NONE. Will stop on not 5829 * searchable nodes. 5830 * 5831 * Return: the previous value or %NULL. 5832 */ 5833 void *mas_prev_range(struct ma_state *mas, unsigned long min) 5834 { 5835 void *entry = NULL; 5836 5837 if (mas_prev_setup(mas, min, &entry)) 5838 return entry; 5839 5840 return mas_prev_slot(mas, min, true); 5841 } 5842 EXPORT_SYMBOL_GPL(mas_prev_range); 5843 5844 /** 5845 * mt_prev() - get the previous value in the maple tree 5846 * @mt: The maple tree 5847 * @index: The start index 5848 * @min: The minimum index to check 5849 * 5850 * Takes RCU read lock internally to protect the search, which does not 5851 * protect the returned pointer after dropping RCU read lock. 5852 * See also: Documentation/core-api/maple_tree.rst 5853 * 5854 * Return: The entry before @index or %NULL if nothing is found. 5855 */ 5856 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min) 5857 { 5858 void *entry = NULL; 5859 MA_STATE(mas, mt, index, index); 5860 5861 rcu_read_lock(); 5862 entry = mas_prev(&mas, min); 5863 rcu_read_unlock(); 5864 return entry; 5865 } 5866 EXPORT_SYMBOL_GPL(mt_prev); 5867 5868 /** 5869 * mas_pause() - Pause a mas_find/mas_for_each to drop the lock. 5870 * @mas: The maple state to pause 5871 * 5872 * Some users need to pause a walk and drop the lock they're holding in 5873 * order to yield to a higher priority thread or carry out an operation 5874 * on an entry. Those users should call this function before they drop 5875 * the lock. It resets the @mas to be suitable for the next iteration 5876 * of the loop after the user has reacquired the lock. If most entries 5877 * found during a walk require you to call mas_pause(), the mt_for_each() 5878 * iterator may be more appropriate. 5879 * 5880 */ 5881 void mas_pause(struct ma_state *mas) 5882 { 5883 mas->node = MAS_PAUSE; 5884 } 5885 EXPORT_SYMBOL_GPL(mas_pause); 5886 5887 /** 5888 * mas_find_setup() - Internal function to set up mas_find*(). 5889 * @mas: The maple state 5890 * @max: The maximum index 5891 * @entry: Pointer to the entry 5892 * 5893 * Returns: True if entry is the answer, false otherwise. 5894 */ 5895 static inline bool mas_find_setup(struct ma_state *mas, unsigned long max, 5896 void **entry) 5897 { 5898 *entry = NULL; 5899 5900 if (unlikely(mas_is_none(mas))) { 5901 if (unlikely(mas->last >= max)) 5902 return true; 5903 5904 mas->index = mas->last; 5905 mas->node = MAS_START; 5906 } else if (unlikely(mas_is_paused(mas))) { 5907 if (unlikely(mas->last >= max)) 5908 return true; 5909 5910 mas->node = MAS_START; 5911 mas->index = ++mas->last; 5912 } else if (unlikely(mas_is_ptr(mas))) 5913 goto ptr_out_of_range; 5914 5915 if (unlikely(mas_is_start(mas))) { 5916 /* First run or continue */ 5917 if (mas->index > max) 5918 return true; 5919 5920 *entry = mas_walk(mas); 5921 if (*entry) 5922 return true; 5923 5924 } 5925 5926 if (unlikely(!mas_searchable(mas))) { 5927 if (unlikely(mas_is_ptr(mas))) 5928 goto ptr_out_of_range; 5929 5930 return true; 5931 } 5932 5933 if (mas->index == max) 5934 return true; 5935 5936 return false; 5937 5938 ptr_out_of_range: 5939 mas->node = MAS_NONE; 5940 mas->index = 1; 5941 mas->last = ULONG_MAX; 5942 return true; 5943 } 5944 5945 /** 5946 * mas_find() - On the first call, find the entry at or after mas->index up to 5947 * %max. Otherwise, find the entry after mas->index. 5948 * @mas: The maple state 5949 * @max: The maximum value to check. 5950 * 5951 * Must hold rcu_read_lock or the write lock. 5952 * If an entry exists, last and index are updated accordingly. 5953 * May set @mas->node to MAS_NONE. 5954 * 5955 * Return: The entry or %NULL. 5956 */ 5957 void *mas_find(struct ma_state *mas, unsigned long max) 5958 { 5959 void *entry = NULL; 5960 5961 if (mas_find_setup(mas, max, &entry)) 5962 return entry; 5963 5964 /* Retries on dead nodes handled by mas_next_slot */ 5965 return mas_next_slot(mas, max, false); 5966 } 5967 EXPORT_SYMBOL_GPL(mas_find); 5968 5969 /** 5970 * mas_find_range() - On the first call, find the entry at or after 5971 * mas->index up to %max. Otherwise, advance to the next slot mas->index. 5972 * @mas: The maple state 5973 * @max: The maximum value to check. 5974 * 5975 * Must hold rcu_read_lock or the write lock. 5976 * If an entry exists, last and index are updated accordingly. 5977 * May set @mas->node to MAS_NONE. 5978 * 5979 * Return: The entry or %NULL. 5980 */ 5981 void *mas_find_range(struct ma_state *mas, unsigned long max) 5982 { 5983 void *entry; 5984 5985 if (mas_find_setup(mas, max, &entry)) 5986 return entry; 5987 5988 /* Retries on dead nodes handled by mas_next_slot */ 5989 return mas_next_slot(mas, max, true); 5990 } 5991 EXPORT_SYMBOL_GPL(mas_find_range); 5992 5993 /** 5994 * mas_find_rev_setup() - Internal function to set up mas_find_*_rev() 5995 * @mas: The maple state 5996 * @min: The minimum index 5997 * @entry: Pointer to the entry 5998 * 5999 * Returns: True if entry is the answer, false otherwise. 6000 */ 6001 static inline bool mas_find_rev_setup(struct ma_state *mas, unsigned long min, 6002 void **entry) 6003 { 6004 *entry = NULL; 6005 6006 if (unlikely(mas_is_none(mas))) { 6007 if (mas->index <= min) 6008 goto none; 6009 6010 mas->last = mas->index; 6011 mas->node = MAS_START; 6012 } 6013 6014 if (unlikely(mas_is_paused(mas))) { 6015 if (unlikely(mas->index <= min)) { 6016 mas->node = MAS_NONE; 6017 return true; 6018 } 6019 mas->node = MAS_START; 6020 mas->last = --mas->index; 6021 } 6022 6023 if (unlikely(mas_is_start(mas))) { 6024 /* First run or continue */ 6025 if (mas->index < min) 6026 return true; 6027 6028 *entry = mas_walk(mas); 6029 if (*entry) 6030 return true; 6031 } 6032 6033 if (unlikely(!mas_searchable(mas))) { 6034 if (mas_is_ptr(mas)) 6035 goto none; 6036 6037 if (mas_is_none(mas)) { 6038 /* 6039 * Walked to the location, and there was nothing so the 6040 * previous location is 0. 6041 */ 6042 mas->last = mas->index = 0; 6043 mas->node = MAS_ROOT; 6044 *entry = mas_root(mas); 6045 return true; 6046 } 6047 } 6048 6049 if (mas->index < min) 6050 return true; 6051 6052 return false; 6053 6054 none: 6055 mas->node = MAS_NONE; 6056 return true; 6057 } 6058 6059 /** 6060 * mas_find_rev: On the first call, find the first non-null entry at or below 6061 * mas->index down to %min. Otherwise find the first non-null entry below 6062 * mas->index down to %min. 6063 * @mas: The maple state 6064 * @min: The minimum value to check. 6065 * 6066 * Must hold rcu_read_lock or the write lock. 6067 * If an entry exists, last and index are updated accordingly. 6068 * May set @mas->node to MAS_NONE. 6069 * 6070 * Return: The entry or %NULL. 6071 */ 6072 void *mas_find_rev(struct ma_state *mas, unsigned long min) 6073 { 6074 void *entry; 6075 6076 if (mas_find_rev_setup(mas, min, &entry)) 6077 return entry; 6078 6079 /* Retries on dead nodes handled by mas_prev_slot */ 6080 return mas_prev_slot(mas, min, false); 6081 6082 } 6083 EXPORT_SYMBOL_GPL(mas_find_rev); 6084 6085 /** 6086 * mas_find_range_rev: On the first call, find the first non-null entry at or 6087 * below mas->index down to %min. Otherwise advance to the previous slot after 6088 * mas->index down to %min. 6089 * @mas: The maple state 6090 * @min: The minimum value to check. 6091 * 6092 * Must hold rcu_read_lock or the write lock. 6093 * If an entry exists, last and index are updated accordingly. 6094 * May set @mas->node to MAS_NONE. 6095 * 6096 * Return: The entry or %NULL. 6097 */ 6098 void *mas_find_range_rev(struct ma_state *mas, unsigned long min) 6099 { 6100 void *entry; 6101 6102 if (mas_find_rev_setup(mas, min, &entry)) 6103 return entry; 6104 6105 /* Retries on dead nodes handled by mas_prev_slot */ 6106 return mas_prev_slot(mas, min, true); 6107 } 6108 EXPORT_SYMBOL_GPL(mas_find_range_rev); 6109 6110 /** 6111 * mas_erase() - Find the range in which index resides and erase the entire 6112 * range. 6113 * @mas: The maple state 6114 * 6115 * Must hold the write lock. 6116 * Searches for @mas->index, sets @mas->index and @mas->last to the range and 6117 * erases that range. 6118 * 6119 * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated. 6120 */ 6121 void *mas_erase(struct ma_state *mas) 6122 { 6123 void *entry; 6124 MA_WR_STATE(wr_mas, mas, NULL); 6125 6126 if (mas_is_none(mas) || mas_is_paused(mas)) 6127 mas->node = MAS_START; 6128 6129 /* Retry unnecessary when holding the write lock. */ 6130 entry = mas_state_walk(mas); 6131 if (!entry) 6132 return NULL; 6133 6134 write_retry: 6135 /* Must reset to ensure spanning writes of last slot are detected */ 6136 mas_reset(mas); 6137 mas_wr_store_setup(&wr_mas); 6138 mas_wr_store_entry(&wr_mas); 6139 if (mas_nomem(mas, GFP_KERNEL)) 6140 goto write_retry; 6141 6142 return entry; 6143 } 6144 EXPORT_SYMBOL_GPL(mas_erase); 6145 6146 /** 6147 * mas_nomem() - Check if there was an error allocating and do the allocation 6148 * if necessary If there are allocations, then free them. 6149 * @mas: The maple state 6150 * @gfp: The GFP_FLAGS to use for allocations 6151 * Return: true on allocation, false otherwise. 6152 */ 6153 bool mas_nomem(struct ma_state *mas, gfp_t gfp) 6154 __must_hold(mas->tree->ma_lock) 6155 { 6156 if (likely(mas->node != MA_ERROR(-ENOMEM))) { 6157 mas_destroy(mas); 6158 return false; 6159 } 6160 6161 if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) { 6162 mtree_unlock(mas->tree); 6163 mas_alloc_nodes(mas, gfp); 6164 mtree_lock(mas->tree); 6165 } else { 6166 mas_alloc_nodes(mas, gfp); 6167 } 6168 6169 if (!mas_allocated(mas)) 6170 return false; 6171 6172 mas->node = MAS_START; 6173 return true; 6174 } 6175 6176 void __init maple_tree_init(void) 6177 { 6178 maple_node_cache = kmem_cache_create("maple_node", 6179 sizeof(struct maple_node), sizeof(struct maple_node), 6180 SLAB_PANIC, NULL); 6181 } 6182 6183 /** 6184 * mtree_load() - Load a value stored in a maple tree 6185 * @mt: The maple tree 6186 * @index: The index to load 6187 * 6188 * Return: the entry or %NULL 6189 */ 6190 void *mtree_load(struct maple_tree *mt, unsigned long index) 6191 { 6192 MA_STATE(mas, mt, index, index); 6193 void *entry; 6194 6195 trace_ma_read(__func__, &mas); 6196 rcu_read_lock(); 6197 retry: 6198 entry = mas_start(&mas); 6199 if (unlikely(mas_is_none(&mas))) 6200 goto unlock; 6201 6202 if (unlikely(mas_is_ptr(&mas))) { 6203 if (index) 6204 entry = NULL; 6205 6206 goto unlock; 6207 } 6208 6209 entry = mtree_lookup_walk(&mas); 6210 if (!entry && unlikely(mas_is_start(&mas))) 6211 goto retry; 6212 unlock: 6213 rcu_read_unlock(); 6214 if (xa_is_zero(entry)) 6215 return NULL; 6216 6217 return entry; 6218 } 6219 EXPORT_SYMBOL(mtree_load); 6220 6221 /** 6222 * mtree_store_range() - Store an entry at a given range. 6223 * @mt: The maple tree 6224 * @index: The start of the range 6225 * @last: The end of the range 6226 * @entry: The entry to store 6227 * @gfp: The GFP_FLAGS to use for allocations 6228 * 6229 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not 6230 * be allocated. 6231 */ 6232 int mtree_store_range(struct maple_tree *mt, unsigned long index, 6233 unsigned long last, void *entry, gfp_t gfp) 6234 { 6235 MA_STATE(mas, mt, index, last); 6236 MA_WR_STATE(wr_mas, &mas, entry); 6237 6238 trace_ma_write(__func__, &mas, 0, entry); 6239 if (WARN_ON_ONCE(xa_is_advanced(entry))) 6240 return -EINVAL; 6241 6242 if (index > last) 6243 return -EINVAL; 6244 6245 mtree_lock(mt); 6246 retry: 6247 mas_wr_store_entry(&wr_mas); 6248 if (mas_nomem(&mas, gfp)) 6249 goto retry; 6250 6251 mtree_unlock(mt); 6252 if (mas_is_err(&mas)) 6253 return xa_err(mas.node); 6254 6255 return 0; 6256 } 6257 EXPORT_SYMBOL(mtree_store_range); 6258 6259 /** 6260 * mtree_store() - Store an entry at a given index. 6261 * @mt: The maple tree 6262 * @index: The index to store the value 6263 * @entry: The entry to store 6264 * @gfp: The GFP_FLAGS to use for allocations 6265 * 6266 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not 6267 * be allocated. 6268 */ 6269 int mtree_store(struct maple_tree *mt, unsigned long index, void *entry, 6270 gfp_t gfp) 6271 { 6272 return mtree_store_range(mt, index, index, entry, gfp); 6273 } 6274 EXPORT_SYMBOL(mtree_store); 6275 6276 /** 6277 * mtree_insert_range() - Insert an entry at a give range if there is no value. 6278 * @mt: The maple tree 6279 * @first: The start of the range 6280 * @last: The end of the range 6281 * @entry: The entry to store 6282 * @gfp: The GFP_FLAGS to use for allocations. 6283 * 6284 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid 6285 * request, -ENOMEM if memory could not be allocated. 6286 */ 6287 int mtree_insert_range(struct maple_tree *mt, unsigned long first, 6288 unsigned long last, void *entry, gfp_t gfp) 6289 { 6290 MA_STATE(ms, mt, first, last); 6291 6292 if (WARN_ON_ONCE(xa_is_advanced(entry))) 6293 return -EINVAL; 6294 6295 if (first > last) 6296 return -EINVAL; 6297 6298 mtree_lock(mt); 6299 retry: 6300 mas_insert(&ms, entry); 6301 if (mas_nomem(&ms, gfp)) 6302 goto retry; 6303 6304 mtree_unlock(mt); 6305 if (mas_is_err(&ms)) 6306 return xa_err(ms.node); 6307 6308 return 0; 6309 } 6310 EXPORT_SYMBOL(mtree_insert_range); 6311 6312 /** 6313 * mtree_insert() - Insert an entry at a give index if there is no value. 6314 * @mt: The maple tree 6315 * @index : The index to store the value 6316 * @entry: The entry to store 6317 * @gfp: The FGP_FLAGS to use for allocations. 6318 * 6319 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid 6320 * request, -ENOMEM if memory could not be allocated. 6321 */ 6322 int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry, 6323 gfp_t gfp) 6324 { 6325 return mtree_insert_range(mt, index, index, entry, gfp); 6326 } 6327 EXPORT_SYMBOL(mtree_insert); 6328 6329 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp, 6330 void *entry, unsigned long size, unsigned long min, 6331 unsigned long max, gfp_t gfp) 6332 { 6333 int ret = 0; 6334 6335 MA_STATE(mas, mt, 0, 0); 6336 if (!mt_is_alloc(mt)) 6337 return -EINVAL; 6338 6339 if (WARN_ON_ONCE(mt_is_reserved(entry))) 6340 return -EINVAL; 6341 6342 mtree_lock(mt); 6343 retry: 6344 ret = mas_empty_area(&mas, min, max, size); 6345 if (ret) 6346 goto unlock; 6347 6348 mas_insert(&mas, entry); 6349 /* 6350 * mas_nomem() may release the lock, causing the allocated area 6351 * to be unavailable, so try to allocate a free area again. 6352 */ 6353 if (mas_nomem(&mas, gfp)) 6354 goto retry; 6355 6356 if (mas_is_err(&mas)) 6357 ret = xa_err(mas.node); 6358 else 6359 *startp = mas.index; 6360 6361 unlock: 6362 mtree_unlock(mt); 6363 return ret; 6364 } 6365 EXPORT_SYMBOL(mtree_alloc_range); 6366 6367 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp, 6368 void *entry, unsigned long size, unsigned long min, 6369 unsigned long max, gfp_t gfp) 6370 { 6371 int ret = 0; 6372 6373 MA_STATE(mas, mt, 0, 0); 6374 if (!mt_is_alloc(mt)) 6375 return -EINVAL; 6376 6377 if (WARN_ON_ONCE(mt_is_reserved(entry))) 6378 return -EINVAL; 6379 6380 mtree_lock(mt); 6381 retry: 6382 ret = mas_empty_area_rev(&mas, min, max, size); 6383 if (ret) 6384 goto unlock; 6385 6386 mas_insert(&mas, entry); 6387 /* 6388 * mas_nomem() may release the lock, causing the allocated area 6389 * to be unavailable, so try to allocate a free area again. 6390 */ 6391 if (mas_nomem(&mas, gfp)) 6392 goto retry; 6393 6394 if (mas_is_err(&mas)) 6395 ret = xa_err(mas.node); 6396 else 6397 *startp = mas.index; 6398 6399 unlock: 6400 mtree_unlock(mt); 6401 return ret; 6402 } 6403 EXPORT_SYMBOL(mtree_alloc_rrange); 6404 6405 /** 6406 * mtree_erase() - Find an index and erase the entire range. 6407 * @mt: The maple tree 6408 * @index: The index to erase 6409 * 6410 * Erasing is the same as a walk to an entry then a store of a NULL to that 6411 * ENTIRE range. In fact, it is implemented as such using the advanced API. 6412 * 6413 * Return: The entry stored at the @index or %NULL 6414 */ 6415 void *mtree_erase(struct maple_tree *mt, unsigned long index) 6416 { 6417 void *entry = NULL; 6418 6419 MA_STATE(mas, mt, index, index); 6420 trace_ma_op(__func__, &mas); 6421 6422 mtree_lock(mt); 6423 entry = mas_erase(&mas); 6424 mtree_unlock(mt); 6425 6426 return entry; 6427 } 6428 EXPORT_SYMBOL(mtree_erase); 6429 6430 /** 6431 * __mt_destroy() - Walk and free all nodes of a locked maple tree. 6432 * @mt: The maple tree 6433 * 6434 * Note: Does not handle locking. 6435 */ 6436 void __mt_destroy(struct maple_tree *mt) 6437 { 6438 void *root = mt_root_locked(mt); 6439 6440 rcu_assign_pointer(mt->ma_root, NULL); 6441 if (xa_is_node(root)) 6442 mte_destroy_walk(root, mt); 6443 6444 mt->ma_flags = 0; 6445 } 6446 EXPORT_SYMBOL_GPL(__mt_destroy); 6447 6448 /** 6449 * mtree_destroy() - Destroy a maple tree 6450 * @mt: The maple tree 6451 * 6452 * Frees all resources used by the tree. Handles locking. 6453 */ 6454 void mtree_destroy(struct maple_tree *mt) 6455 { 6456 mtree_lock(mt); 6457 __mt_destroy(mt); 6458 mtree_unlock(mt); 6459 } 6460 EXPORT_SYMBOL(mtree_destroy); 6461 6462 /** 6463 * mt_find() - Search from the start up until an entry is found. 6464 * @mt: The maple tree 6465 * @index: Pointer which contains the start location of the search 6466 * @max: The maximum value of the search range 6467 * 6468 * Takes RCU read lock internally to protect the search, which does not 6469 * protect the returned pointer after dropping RCU read lock. 6470 * See also: Documentation/core-api/maple_tree.rst 6471 * 6472 * In case that an entry is found @index is updated to point to the next 6473 * possible entry independent whether the found entry is occupying a 6474 * single index or a range if indices. 6475 * 6476 * Return: The entry at or after the @index or %NULL 6477 */ 6478 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max) 6479 { 6480 MA_STATE(mas, mt, *index, *index); 6481 void *entry; 6482 #ifdef CONFIG_DEBUG_MAPLE_TREE 6483 unsigned long copy = *index; 6484 #endif 6485 6486 trace_ma_read(__func__, &mas); 6487 6488 if ((*index) > max) 6489 return NULL; 6490 6491 rcu_read_lock(); 6492 retry: 6493 entry = mas_state_walk(&mas); 6494 if (mas_is_start(&mas)) 6495 goto retry; 6496 6497 if (unlikely(xa_is_zero(entry))) 6498 entry = NULL; 6499 6500 if (entry) 6501 goto unlock; 6502 6503 while (mas_searchable(&mas) && (mas.last < max)) { 6504 entry = mas_next_entry(&mas, max); 6505 if (likely(entry && !xa_is_zero(entry))) 6506 break; 6507 } 6508 6509 if (unlikely(xa_is_zero(entry))) 6510 entry = NULL; 6511 unlock: 6512 rcu_read_unlock(); 6513 if (likely(entry)) { 6514 *index = mas.last + 1; 6515 #ifdef CONFIG_DEBUG_MAPLE_TREE 6516 if (MT_WARN_ON(mt, (*index) && ((*index) <= copy))) 6517 pr_err("index not increased! %lx <= %lx\n", 6518 *index, copy); 6519 #endif 6520 } 6521 6522 return entry; 6523 } 6524 EXPORT_SYMBOL(mt_find); 6525 6526 /** 6527 * mt_find_after() - Search from the start up until an entry is found. 6528 * @mt: The maple tree 6529 * @index: Pointer which contains the start location of the search 6530 * @max: The maximum value to check 6531 * 6532 * Same as mt_find() except that it checks @index for 0 before 6533 * searching. If @index == 0, the search is aborted. This covers a wrap 6534 * around of @index to 0 in an iterator loop. 6535 * 6536 * Return: The entry at or after the @index or %NULL 6537 */ 6538 void *mt_find_after(struct maple_tree *mt, unsigned long *index, 6539 unsigned long max) 6540 { 6541 if (!(*index)) 6542 return NULL; 6543 6544 return mt_find(mt, index, max); 6545 } 6546 EXPORT_SYMBOL(mt_find_after); 6547 6548 #ifdef CONFIG_DEBUG_MAPLE_TREE 6549 atomic_t maple_tree_tests_run; 6550 EXPORT_SYMBOL_GPL(maple_tree_tests_run); 6551 atomic_t maple_tree_tests_passed; 6552 EXPORT_SYMBOL_GPL(maple_tree_tests_passed); 6553 6554 #ifndef __KERNEL__ 6555 extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int); 6556 void mt_set_non_kernel(unsigned int val) 6557 { 6558 kmem_cache_set_non_kernel(maple_node_cache, val); 6559 } 6560 6561 extern unsigned long kmem_cache_get_alloc(struct kmem_cache *); 6562 unsigned long mt_get_alloc_size(void) 6563 { 6564 return kmem_cache_get_alloc(maple_node_cache); 6565 } 6566 6567 extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *); 6568 void mt_zero_nr_tallocated(void) 6569 { 6570 kmem_cache_zero_nr_tallocated(maple_node_cache); 6571 } 6572 6573 extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *); 6574 unsigned int mt_nr_tallocated(void) 6575 { 6576 return kmem_cache_nr_tallocated(maple_node_cache); 6577 } 6578 6579 extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *); 6580 unsigned int mt_nr_allocated(void) 6581 { 6582 return kmem_cache_nr_allocated(maple_node_cache); 6583 } 6584 6585 /* 6586 * mas_dead_node() - Check if the maple state is pointing to a dead node. 6587 * @mas: The maple state 6588 * @index: The index to restore in @mas. 6589 * 6590 * Used in test code. 6591 * Return: 1 if @mas has been reset to MAS_START, 0 otherwise. 6592 */ 6593 static inline int mas_dead_node(struct ma_state *mas, unsigned long index) 6594 { 6595 if (unlikely(!mas_searchable(mas) || mas_is_start(mas))) 6596 return 0; 6597 6598 if (likely(!mte_dead_node(mas->node))) 6599 return 0; 6600 6601 mas_rewalk(mas, index); 6602 return 1; 6603 } 6604 6605 void mt_cache_shrink(void) 6606 { 6607 } 6608 #else 6609 /* 6610 * mt_cache_shrink() - For testing, don't use this. 6611 * 6612 * Certain testcases can trigger an OOM when combined with other memory 6613 * debugging configuration options. This function is used to reduce the 6614 * possibility of an out of memory even due to kmem_cache objects remaining 6615 * around for longer than usual. 6616 */ 6617 void mt_cache_shrink(void) 6618 { 6619 kmem_cache_shrink(maple_node_cache); 6620 6621 } 6622 EXPORT_SYMBOL_GPL(mt_cache_shrink); 6623 6624 #endif /* not defined __KERNEL__ */ 6625 /* 6626 * mas_get_slot() - Get the entry in the maple state node stored at @offset. 6627 * @mas: The maple state 6628 * @offset: The offset into the slot array to fetch. 6629 * 6630 * Return: The entry stored at @offset. 6631 */ 6632 static inline struct maple_enode *mas_get_slot(struct ma_state *mas, 6633 unsigned char offset) 6634 { 6635 return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)), 6636 offset); 6637 } 6638 6639 /* Depth first search, post-order */ 6640 static void mas_dfs_postorder(struct ma_state *mas, unsigned long max) 6641 { 6642 6643 struct maple_enode *p = MAS_NONE, *mn = mas->node; 6644 unsigned long p_min, p_max; 6645 6646 mas_next_node(mas, mas_mn(mas), max); 6647 if (!mas_is_none(mas)) 6648 return; 6649 6650 if (mte_is_root(mn)) 6651 return; 6652 6653 mas->node = mn; 6654 mas_ascend(mas); 6655 do { 6656 p = mas->node; 6657 p_min = mas->min; 6658 p_max = mas->max; 6659 mas_prev_node(mas, 0); 6660 } while (!mas_is_none(mas)); 6661 6662 mas->node = p; 6663 mas->max = p_max; 6664 mas->min = p_min; 6665 } 6666 6667 /* Tree validations */ 6668 static void mt_dump_node(const struct maple_tree *mt, void *entry, 6669 unsigned long min, unsigned long max, unsigned int depth, 6670 enum mt_dump_format format); 6671 static void mt_dump_range(unsigned long min, unsigned long max, 6672 unsigned int depth, enum mt_dump_format format) 6673 { 6674 static const char spaces[] = " "; 6675 6676 switch(format) { 6677 case mt_dump_hex: 6678 if (min == max) 6679 pr_info("%.*s%lx: ", depth * 2, spaces, min); 6680 else 6681 pr_info("%.*s%lx-%lx: ", depth * 2, spaces, min, max); 6682 break; 6683 default: 6684 case mt_dump_dec: 6685 if (min == max) 6686 pr_info("%.*s%lu: ", depth * 2, spaces, min); 6687 else 6688 pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max); 6689 } 6690 } 6691 6692 static void mt_dump_entry(void *entry, unsigned long min, unsigned long max, 6693 unsigned int depth, enum mt_dump_format format) 6694 { 6695 mt_dump_range(min, max, depth, format); 6696 6697 if (xa_is_value(entry)) 6698 pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry), 6699 xa_to_value(entry), entry); 6700 else if (xa_is_zero(entry)) 6701 pr_cont("zero (%ld)\n", xa_to_internal(entry)); 6702 else if (mt_is_reserved(entry)) 6703 pr_cont("UNKNOWN ENTRY (%p)\n", entry); 6704 else 6705 pr_cont("%p\n", entry); 6706 } 6707 6708 static void mt_dump_range64(const struct maple_tree *mt, void *entry, 6709 unsigned long min, unsigned long max, unsigned int depth, 6710 enum mt_dump_format format) 6711 { 6712 struct maple_range_64 *node = &mte_to_node(entry)->mr64; 6713 bool leaf = mte_is_leaf(entry); 6714 unsigned long first = min; 6715 int i; 6716 6717 pr_cont(" contents: "); 6718 for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++) { 6719 switch(format) { 6720 case mt_dump_hex: 6721 pr_cont("%p %lX ", node->slot[i], node->pivot[i]); 6722 break; 6723 default: 6724 case mt_dump_dec: 6725 pr_cont("%p %lu ", node->slot[i], node->pivot[i]); 6726 } 6727 } 6728 pr_cont("%p\n", node->slot[i]); 6729 for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) { 6730 unsigned long last = max; 6731 6732 if (i < (MAPLE_RANGE64_SLOTS - 1)) 6733 last = node->pivot[i]; 6734 else if (!node->slot[i] && max != mt_node_max(entry)) 6735 break; 6736 if (last == 0 && i > 0) 6737 break; 6738 if (leaf) 6739 mt_dump_entry(mt_slot(mt, node->slot, i), 6740 first, last, depth + 1, format); 6741 else if (node->slot[i]) 6742 mt_dump_node(mt, mt_slot(mt, node->slot, i), 6743 first, last, depth + 1, format); 6744 6745 if (last == max) 6746 break; 6747 if (last > max) { 6748 switch(format) { 6749 case mt_dump_hex: 6750 pr_err("node %p last (%lx) > max (%lx) at pivot %d!\n", 6751 node, last, max, i); 6752 break; 6753 default: 6754 case mt_dump_dec: 6755 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n", 6756 node, last, max, i); 6757 } 6758 } 6759 first = last + 1; 6760 } 6761 } 6762 6763 static void mt_dump_arange64(const struct maple_tree *mt, void *entry, 6764 unsigned long min, unsigned long max, unsigned int depth, 6765 enum mt_dump_format format) 6766 { 6767 struct maple_arange_64 *node = &mte_to_node(entry)->ma64; 6768 bool leaf = mte_is_leaf(entry); 6769 unsigned long first = min; 6770 int i; 6771 6772 pr_cont(" contents: "); 6773 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) 6774 pr_cont("%lu ", node->gap[i]); 6775 pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap); 6776 for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++) 6777 pr_cont("%p %lu ", node->slot[i], node->pivot[i]); 6778 pr_cont("%p\n", node->slot[i]); 6779 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) { 6780 unsigned long last = max; 6781 6782 if (i < (MAPLE_ARANGE64_SLOTS - 1)) 6783 last = node->pivot[i]; 6784 else if (!node->slot[i]) 6785 break; 6786 if (last == 0 && i > 0) 6787 break; 6788 if (leaf) 6789 mt_dump_entry(mt_slot(mt, node->slot, i), 6790 first, last, depth + 1, format); 6791 else if (node->slot[i]) 6792 mt_dump_node(mt, mt_slot(mt, node->slot, i), 6793 first, last, depth + 1, format); 6794 6795 if (last == max) 6796 break; 6797 if (last > max) { 6798 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n", 6799 node, last, max, i); 6800 break; 6801 } 6802 first = last + 1; 6803 } 6804 } 6805 6806 static void mt_dump_node(const struct maple_tree *mt, void *entry, 6807 unsigned long min, unsigned long max, unsigned int depth, 6808 enum mt_dump_format format) 6809 { 6810 struct maple_node *node = mte_to_node(entry); 6811 unsigned int type = mte_node_type(entry); 6812 unsigned int i; 6813 6814 mt_dump_range(min, max, depth, format); 6815 6816 pr_cont("node %p depth %d type %d parent %p", node, depth, type, 6817 node ? node->parent : NULL); 6818 switch (type) { 6819 case maple_dense: 6820 pr_cont("\n"); 6821 for (i = 0; i < MAPLE_NODE_SLOTS; i++) { 6822 if (min + i > max) 6823 pr_cont("OUT OF RANGE: "); 6824 mt_dump_entry(mt_slot(mt, node->slot, i), 6825 min + i, min + i, depth, format); 6826 } 6827 break; 6828 case maple_leaf_64: 6829 case maple_range_64: 6830 mt_dump_range64(mt, entry, min, max, depth, format); 6831 break; 6832 case maple_arange_64: 6833 mt_dump_arange64(mt, entry, min, max, depth, format); 6834 break; 6835 6836 default: 6837 pr_cont(" UNKNOWN TYPE\n"); 6838 } 6839 } 6840 6841 void mt_dump(const struct maple_tree *mt, enum mt_dump_format format) 6842 { 6843 void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt)); 6844 6845 pr_info("maple_tree(%p) flags %X, height %u root %p\n", 6846 mt, mt->ma_flags, mt_height(mt), entry); 6847 if (!xa_is_node(entry)) 6848 mt_dump_entry(entry, 0, 0, 0, format); 6849 else if (entry) 6850 mt_dump_node(mt, entry, 0, mt_node_max(entry), 0, format); 6851 } 6852 EXPORT_SYMBOL_GPL(mt_dump); 6853 6854 /* 6855 * Calculate the maximum gap in a node and check if that's what is reported in 6856 * the parent (unless root). 6857 */ 6858 static void mas_validate_gaps(struct ma_state *mas) 6859 { 6860 struct maple_enode *mte = mas->node; 6861 struct maple_node *p_mn, *node = mte_to_node(mte); 6862 enum maple_type mt = mte_node_type(mas->node); 6863 unsigned long gap = 0, max_gap = 0; 6864 unsigned long p_end, p_start = mas->min; 6865 unsigned char p_slot, offset; 6866 unsigned long *gaps = NULL; 6867 unsigned long *pivots = ma_pivots(node, mt); 6868 unsigned int i; 6869 6870 if (ma_is_dense(mt)) { 6871 for (i = 0; i < mt_slot_count(mte); i++) { 6872 if (mas_get_slot(mas, i)) { 6873 if (gap > max_gap) 6874 max_gap = gap; 6875 gap = 0; 6876 continue; 6877 } 6878 gap++; 6879 } 6880 goto counted; 6881 } 6882 6883 gaps = ma_gaps(node, mt); 6884 for (i = 0; i < mt_slot_count(mte); i++) { 6885 p_end = mas_safe_pivot(mas, pivots, i, mt); 6886 6887 if (!gaps) { 6888 if (!mas_get_slot(mas, i)) 6889 gap = p_end - p_start + 1; 6890 } else { 6891 void *entry = mas_get_slot(mas, i); 6892 6893 gap = gaps[i]; 6894 MT_BUG_ON(mas->tree, !entry); 6895 6896 if (gap > p_end - p_start + 1) { 6897 pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n", 6898 mas_mn(mas), i, gap, p_end, p_start, 6899 p_end - p_start + 1); 6900 MT_BUG_ON(mas->tree, gap > p_end - p_start + 1); 6901 } 6902 } 6903 6904 if (gap > max_gap) 6905 max_gap = gap; 6906 6907 p_start = p_end + 1; 6908 if (p_end >= mas->max) 6909 break; 6910 } 6911 6912 counted: 6913 if (mt == maple_arange_64) { 6914 offset = ma_meta_gap(node, mt); 6915 if (offset > i) { 6916 pr_err("gap offset %p[%u] is invalid\n", node, offset); 6917 MT_BUG_ON(mas->tree, 1); 6918 } 6919 6920 if (gaps[offset] != max_gap) { 6921 pr_err("gap %p[%u] is not the largest gap %lu\n", 6922 node, offset, max_gap); 6923 MT_BUG_ON(mas->tree, 1); 6924 } 6925 6926 MT_BUG_ON(mas->tree, !gaps); 6927 for (i++ ; i < mt_slot_count(mte); i++) { 6928 if (gaps[i] != 0) { 6929 pr_err("gap %p[%u] beyond node limit != 0\n", 6930 node, i); 6931 MT_BUG_ON(mas->tree, 1); 6932 } 6933 } 6934 } 6935 6936 if (mte_is_root(mte)) 6937 return; 6938 6939 p_slot = mte_parent_slot(mas->node); 6940 p_mn = mte_parent(mte); 6941 MT_BUG_ON(mas->tree, max_gap > mas->max); 6942 if (ma_gaps(p_mn, mas_parent_type(mas, mte))[p_slot] != max_gap) { 6943 pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap); 6944 mt_dump(mas->tree, mt_dump_hex); 6945 MT_BUG_ON(mas->tree, 1); 6946 } 6947 } 6948 6949 static void mas_validate_parent_slot(struct ma_state *mas) 6950 { 6951 struct maple_node *parent; 6952 struct maple_enode *node; 6953 enum maple_type p_type; 6954 unsigned char p_slot; 6955 void __rcu **slots; 6956 int i; 6957 6958 if (mte_is_root(mas->node)) 6959 return; 6960 6961 p_slot = mte_parent_slot(mas->node); 6962 p_type = mas_parent_type(mas, mas->node); 6963 parent = mte_parent(mas->node); 6964 slots = ma_slots(parent, p_type); 6965 MT_BUG_ON(mas->tree, mas_mn(mas) == parent); 6966 6967 /* Check prev/next parent slot for duplicate node entry */ 6968 6969 for (i = 0; i < mt_slots[p_type]; i++) { 6970 node = mas_slot(mas, slots, i); 6971 if (i == p_slot) { 6972 if (node != mas->node) 6973 pr_err("parent %p[%u] does not have %p\n", 6974 parent, i, mas_mn(mas)); 6975 MT_BUG_ON(mas->tree, node != mas->node); 6976 } else if (node == mas->node) { 6977 pr_err("Invalid child %p at parent %p[%u] p_slot %u\n", 6978 mas_mn(mas), parent, i, p_slot); 6979 MT_BUG_ON(mas->tree, node == mas->node); 6980 } 6981 } 6982 } 6983 6984 static void mas_validate_child_slot(struct ma_state *mas) 6985 { 6986 enum maple_type type = mte_node_type(mas->node); 6987 void __rcu **slots = ma_slots(mte_to_node(mas->node), type); 6988 unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type); 6989 struct maple_enode *child; 6990 unsigned char i; 6991 6992 if (mte_is_leaf(mas->node)) 6993 return; 6994 6995 for (i = 0; i < mt_slots[type]; i++) { 6996 child = mas_slot(mas, slots, i); 6997 6998 if (!child) { 6999 pr_err("Non-leaf node lacks child at %p[%u]\n", 7000 mas_mn(mas), i); 7001 MT_BUG_ON(mas->tree, 1); 7002 } 7003 7004 if (mte_parent_slot(child) != i) { 7005 pr_err("Slot error at %p[%u]: child %p has pslot %u\n", 7006 mas_mn(mas), i, mte_to_node(child), 7007 mte_parent_slot(child)); 7008 MT_BUG_ON(mas->tree, 1); 7009 } 7010 7011 if (mte_parent(child) != mte_to_node(mas->node)) { 7012 pr_err("child %p has parent %p not %p\n", 7013 mte_to_node(child), mte_parent(child), 7014 mte_to_node(mas->node)); 7015 MT_BUG_ON(mas->tree, 1); 7016 } 7017 7018 if (i < mt_pivots[type] && pivots[i] == mas->max) 7019 break; 7020 } 7021 } 7022 7023 /* 7024 * Validate all pivots are within mas->min and mas->max, check metadata ends 7025 * where the maximum ends and ensure there is no slots or pivots set outside of 7026 * the end of the data. 7027 */ 7028 static void mas_validate_limits(struct ma_state *mas) 7029 { 7030 int i; 7031 unsigned long prev_piv = 0; 7032 enum maple_type type = mte_node_type(mas->node); 7033 void __rcu **slots = ma_slots(mte_to_node(mas->node), type); 7034 unsigned long *pivots = ma_pivots(mas_mn(mas), type); 7035 7036 for (i = 0; i < mt_slots[type]; i++) { 7037 unsigned long piv; 7038 7039 piv = mas_safe_pivot(mas, pivots, i, type); 7040 7041 if (!piv && (i != 0)) { 7042 pr_err("Missing node limit pivot at %p[%u]", 7043 mas_mn(mas), i); 7044 MAS_WARN_ON(mas, 1); 7045 } 7046 7047 if (prev_piv > piv) { 7048 pr_err("%p[%u] piv %lu < prev_piv %lu\n", 7049 mas_mn(mas), i, piv, prev_piv); 7050 MAS_WARN_ON(mas, piv < prev_piv); 7051 } 7052 7053 if (piv < mas->min) { 7054 pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i, 7055 piv, mas->min); 7056 MAS_WARN_ON(mas, piv < mas->min); 7057 } 7058 if (piv > mas->max) { 7059 pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i, 7060 piv, mas->max); 7061 MAS_WARN_ON(mas, piv > mas->max); 7062 } 7063 prev_piv = piv; 7064 if (piv == mas->max) 7065 break; 7066 } 7067 7068 if (mas_data_end(mas) != i) { 7069 pr_err("node%p: data_end %u != the last slot offset %u\n", 7070 mas_mn(mas), mas_data_end(mas), i); 7071 MT_BUG_ON(mas->tree, 1); 7072 } 7073 7074 for (i += 1; i < mt_slots[type]; i++) { 7075 void *entry = mas_slot(mas, slots, i); 7076 7077 if (entry && (i != mt_slots[type] - 1)) { 7078 pr_err("%p[%u] should not have entry %p\n", mas_mn(mas), 7079 i, entry); 7080 MT_BUG_ON(mas->tree, entry != NULL); 7081 } 7082 7083 if (i < mt_pivots[type]) { 7084 unsigned long piv = pivots[i]; 7085 7086 if (!piv) 7087 continue; 7088 7089 pr_err("%p[%u] should not have piv %lu\n", 7090 mas_mn(mas), i, piv); 7091 MAS_WARN_ON(mas, i < mt_pivots[type] - 1); 7092 } 7093 } 7094 } 7095 7096 static void mt_validate_nulls(struct maple_tree *mt) 7097 { 7098 void *entry, *last = (void *)1; 7099 unsigned char offset = 0; 7100 void __rcu **slots; 7101 MA_STATE(mas, mt, 0, 0); 7102 7103 mas_start(&mas); 7104 if (mas_is_none(&mas) || (mas.node == MAS_ROOT)) 7105 return; 7106 7107 while (!mte_is_leaf(mas.node)) 7108 mas_descend(&mas); 7109 7110 slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node)); 7111 do { 7112 entry = mas_slot(&mas, slots, offset); 7113 if (!last && !entry) { 7114 pr_err("Sequential nulls end at %p[%u]\n", 7115 mas_mn(&mas), offset); 7116 } 7117 MT_BUG_ON(mt, !last && !entry); 7118 last = entry; 7119 if (offset == mas_data_end(&mas)) { 7120 mas_next_node(&mas, mas_mn(&mas), ULONG_MAX); 7121 if (mas_is_none(&mas)) 7122 return; 7123 offset = 0; 7124 slots = ma_slots(mte_to_node(mas.node), 7125 mte_node_type(mas.node)); 7126 } else { 7127 offset++; 7128 } 7129 7130 } while (!mas_is_none(&mas)); 7131 } 7132 7133 /* 7134 * validate a maple tree by checking: 7135 * 1. The limits (pivots are within mas->min to mas->max) 7136 * 2. The gap is correctly set in the parents 7137 */ 7138 void mt_validate(struct maple_tree *mt) 7139 { 7140 unsigned char end; 7141 7142 MA_STATE(mas, mt, 0, 0); 7143 rcu_read_lock(); 7144 mas_start(&mas); 7145 if (!mas_searchable(&mas)) 7146 goto done; 7147 7148 while (!mte_is_leaf(mas.node)) 7149 mas_descend(&mas); 7150 7151 while (!mas_is_none(&mas)) { 7152 MAS_WARN_ON(&mas, mte_dead_node(mas.node)); 7153 end = mas_data_end(&mas); 7154 if (MAS_WARN_ON(&mas, (end < mt_min_slot_count(mas.node)) && 7155 (mas.max != ULONG_MAX))) { 7156 pr_err("Invalid size %u of %p\n", end, mas_mn(&mas)); 7157 } 7158 7159 mas_validate_parent_slot(&mas); 7160 mas_validate_limits(&mas); 7161 mas_validate_child_slot(&mas); 7162 if (mt_is_alloc(mt)) 7163 mas_validate_gaps(&mas); 7164 mas_dfs_postorder(&mas, ULONG_MAX); 7165 } 7166 mt_validate_nulls(mt); 7167 done: 7168 rcu_read_unlock(); 7169 7170 } 7171 EXPORT_SYMBOL_GPL(mt_validate); 7172 7173 void mas_dump(const struct ma_state *mas) 7174 { 7175 pr_err("MAS: tree=%p enode=%p ", mas->tree, mas->node); 7176 if (mas_is_none(mas)) 7177 pr_err("(MAS_NONE) "); 7178 else if (mas_is_ptr(mas)) 7179 pr_err("(MAS_ROOT) "); 7180 else if (mas_is_start(mas)) 7181 pr_err("(MAS_START) "); 7182 else if (mas_is_paused(mas)) 7183 pr_err("(MAS_PAUSED) "); 7184 7185 pr_err("[%u] index=%lx last=%lx\n", mas->offset, mas->index, mas->last); 7186 pr_err(" min=%lx max=%lx alloc=%p, depth=%u, flags=%x\n", 7187 mas->min, mas->max, mas->alloc, mas->depth, mas->mas_flags); 7188 if (mas->index > mas->last) 7189 pr_err("Check index & last\n"); 7190 } 7191 EXPORT_SYMBOL_GPL(mas_dump); 7192 7193 void mas_wr_dump(const struct ma_wr_state *wr_mas) 7194 { 7195 pr_err("WR_MAS: node=%p r_min=%lx r_max=%lx\n", 7196 wr_mas->node, wr_mas->r_min, wr_mas->r_max); 7197 pr_err(" type=%u off_end=%u, node_end=%u, end_piv=%lx\n", 7198 wr_mas->type, wr_mas->offset_end, wr_mas->node_end, 7199 wr_mas->end_piv); 7200 } 7201 EXPORT_SYMBOL_GPL(mas_wr_dump); 7202 7203 #endif /* CONFIG_DEBUG_MAPLE_TREE */ 7204