xref: /linux/lib/maple_tree.c (revision 3027ce13e04eee76539ca65c2cb1028a01c8c508)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Maple Tree implementation
4  * Copyright (c) 2018-2022 Oracle Corporation
5  * Authors: Liam R. Howlett <Liam.Howlett@oracle.com>
6  *	    Matthew Wilcox <willy@infradead.org>
7  * Copyright (c) 2023 ByteDance
8  * Author: Peng Zhang <zhangpeng.00@bytedance.com>
9  */
10 
11 /*
12  * DOC: Interesting implementation details of the Maple Tree
13  *
14  * Each node type has a number of slots for entries and a number of slots for
15  * pivots.  In the case of dense nodes, the pivots are implied by the position
16  * and are simply the slot index + the minimum of the node.
17  *
18  * In regular B-Tree terms, pivots are called keys.  The term pivot is used to
19  * indicate that the tree is specifying ranges.  Pivots may appear in the
20  * subtree with an entry attached to the value whereas keys are unique to a
21  * specific position of a B-tree.  Pivot values are inclusive of the slot with
22  * the same index.
23  *
24  *
25  * The following illustrates the layout of a range64 nodes slots and pivots.
26  *
27  *
28  *  Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
29  *           ┬   ┬   ┬   ┬     ┬    ┬    ┬    ┬    ┬
30  *           │   │   │   │     │    │    │    │    └─ Implied maximum
31  *           │   │   │   │     │    │    │    └─ Pivot 14
32  *           │   │   │   │     │    │    └─ Pivot 13
33  *           │   │   │   │     │    └─ Pivot 12
34  *           │   │   │   │     └─ Pivot 11
35  *           │   │   │   └─ Pivot 2
36  *           │   │   └─ Pivot 1
37  *           │   └─ Pivot 0
38  *           └─  Implied minimum
39  *
40  * Slot contents:
41  *  Internal (non-leaf) nodes contain pointers to other nodes.
42  *  Leaf nodes contain entries.
43  *
44  * The location of interest is often referred to as an offset.  All offsets have
45  * a slot, but the last offset has an implied pivot from the node above (or
46  * UINT_MAX for the root node.
47  *
48  * Ranges complicate certain write activities.  When modifying any of
49  * the B-tree variants, it is known that one entry will either be added or
50  * deleted.  When modifying the Maple Tree, one store operation may overwrite
51  * the entire data set, or one half of the tree, or the middle half of the tree.
52  *
53  */
54 
55 
56 #include <linux/maple_tree.h>
57 #include <linux/xarray.h>
58 #include <linux/types.h>
59 #include <linux/export.h>
60 #include <linux/slab.h>
61 #include <linux/limits.h>
62 #include <asm/barrier.h>
63 
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/maple_tree.h>
66 
67 #define MA_ROOT_PARENT 1
68 
69 /*
70  * Maple state flags
71  * * MA_STATE_BULK		- Bulk insert mode
72  * * MA_STATE_REBALANCE		- Indicate a rebalance during bulk insert
73  * * MA_STATE_PREALLOC		- Preallocated nodes, WARN_ON allocation
74  */
75 #define MA_STATE_BULK		1
76 #define MA_STATE_REBALANCE	2
77 #define MA_STATE_PREALLOC	4
78 
79 #define ma_parent_ptr(x) ((struct maple_pnode *)(x))
80 #define mas_tree_parent(x) ((unsigned long)(x->tree) | MA_ROOT_PARENT)
81 #define ma_mnode_ptr(x) ((struct maple_node *)(x))
82 #define ma_enode_ptr(x) ((struct maple_enode *)(x))
83 static struct kmem_cache *maple_node_cache;
84 
85 #ifdef CONFIG_DEBUG_MAPLE_TREE
86 static const unsigned long mt_max[] = {
87 	[maple_dense]		= MAPLE_NODE_SLOTS,
88 	[maple_leaf_64]		= ULONG_MAX,
89 	[maple_range_64]	= ULONG_MAX,
90 	[maple_arange_64]	= ULONG_MAX,
91 };
92 #define mt_node_max(x) mt_max[mte_node_type(x)]
93 #endif
94 
95 static const unsigned char mt_slots[] = {
96 	[maple_dense]		= MAPLE_NODE_SLOTS,
97 	[maple_leaf_64]		= MAPLE_RANGE64_SLOTS,
98 	[maple_range_64]	= MAPLE_RANGE64_SLOTS,
99 	[maple_arange_64]	= MAPLE_ARANGE64_SLOTS,
100 };
101 #define mt_slot_count(x) mt_slots[mte_node_type(x)]
102 
103 static const unsigned char mt_pivots[] = {
104 	[maple_dense]		= 0,
105 	[maple_leaf_64]		= MAPLE_RANGE64_SLOTS - 1,
106 	[maple_range_64]	= MAPLE_RANGE64_SLOTS - 1,
107 	[maple_arange_64]	= MAPLE_ARANGE64_SLOTS - 1,
108 };
109 #define mt_pivot_count(x) mt_pivots[mte_node_type(x)]
110 
111 static const unsigned char mt_min_slots[] = {
112 	[maple_dense]		= MAPLE_NODE_SLOTS / 2,
113 	[maple_leaf_64]		= (MAPLE_RANGE64_SLOTS / 2) - 2,
114 	[maple_range_64]	= (MAPLE_RANGE64_SLOTS / 2) - 2,
115 	[maple_arange_64]	= (MAPLE_ARANGE64_SLOTS / 2) - 1,
116 };
117 #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)]
118 
119 #define MAPLE_BIG_NODE_SLOTS	(MAPLE_RANGE64_SLOTS * 2 + 2)
120 #define MAPLE_BIG_NODE_GAPS	(MAPLE_ARANGE64_SLOTS * 2 + 1)
121 
122 struct maple_big_node {
123 	struct maple_pnode *parent;
124 	unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1];
125 	union {
126 		struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS];
127 		struct {
128 			unsigned long padding[MAPLE_BIG_NODE_GAPS];
129 			unsigned long gap[MAPLE_BIG_NODE_GAPS];
130 		};
131 	};
132 	unsigned char b_end;
133 	enum maple_type type;
134 };
135 
136 /*
137  * The maple_subtree_state is used to build a tree to replace a segment of an
138  * existing tree in a more atomic way.  Any walkers of the older tree will hit a
139  * dead node and restart on updates.
140  */
141 struct maple_subtree_state {
142 	struct ma_state *orig_l;	/* Original left side of subtree */
143 	struct ma_state *orig_r;	/* Original right side of subtree */
144 	struct ma_state *l;		/* New left side of subtree */
145 	struct ma_state *m;		/* New middle of subtree (rare) */
146 	struct ma_state *r;		/* New right side of subtree */
147 	struct ma_topiary *free;	/* nodes to be freed */
148 	struct ma_topiary *destroy;	/* Nodes to be destroyed (walked and freed) */
149 	struct maple_big_node *bn;
150 };
151 
152 #ifdef CONFIG_KASAN_STACK
153 /* Prevent mas_wr_bnode() from exceeding the stack frame limit */
154 #define noinline_for_kasan noinline_for_stack
155 #else
156 #define noinline_for_kasan inline
157 #endif
158 
159 /* Functions */
160 static inline struct maple_node *mt_alloc_one(gfp_t gfp)
161 {
162 	return kmem_cache_alloc(maple_node_cache, gfp);
163 }
164 
165 static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes)
166 {
167 	return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes);
168 }
169 
170 static inline void mt_free_one(struct maple_node *node)
171 {
172 	kmem_cache_free(maple_node_cache, node);
173 }
174 
175 static inline void mt_free_bulk(size_t size, void __rcu **nodes)
176 {
177 	kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes);
178 }
179 
180 static void mt_free_rcu(struct rcu_head *head)
181 {
182 	struct maple_node *node = container_of(head, struct maple_node, rcu);
183 
184 	kmem_cache_free(maple_node_cache, node);
185 }
186 
187 /*
188  * ma_free_rcu() - Use rcu callback to free a maple node
189  * @node: The node to free
190  *
191  * The maple tree uses the parent pointer to indicate this node is no longer in
192  * use and will be freed.
193  */
194 static void ma_free_rcu(struct maple_node *node)
195 {
196 	WARN_ON(node->parent != ma_parent_ptr(node));
197 	call_rcu(&node->rcu, mt_free_rcu);
198 }
199 
200 static void mas_set_height(struct ma_state *mas)
201 {
202 	unsigned int new_flags = mas->tree->ma_flags;
203 
204 	new_flags &= ~MT_FLAGS_HEIGHT_MASK;
205 	MAS_BUG_ON(mas, mas->depth > MAPLE_HEIGHT_MAX);
206 	new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET;
207 	mas->tree->ma_flags = new_flags;
208 }
209 
210 static unsigned int mas_mt_height(struct ma_state *mas)
211 {
212 	return mt_height(mas->tree);
213 }
214 
215 static inline unsigned int mt_attr(struct maple_tree *mt)
216 {
217 	return mt->ma_flags & ~MT_FLAGS_HEIGHT_MASK;
218 }
219 
220 static __always_inline enum maple_type mte_node_type(
221 		const struct maple_enode *entry)
222 {
223 	return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) &
224 		MAPLE_NODE_TYPE_MASK;
225 }
226 
227 static __always_inline bool ma_is_dense(const enum maple_type type)
228 {
229 	return type < maple_leaf_64;
230 }
231 
232 static __always_inline bool ma_is_leaf(const enum maple_type type)
233 {
234 	return type < maple_range_64;
235 }
236 
237 static __always_inline bool mte_is_leaf(const struct maple_enode *entry)
238 {
239 	return ma_is_leaf(mte_node_type(entry));
240 }
241 
242 /*
243  * We also reserve values with the bottom two bits set to '10' which are
244  * below 4096
245  */
246 static __always_inline bool mt_is_reserved(const void *entry)
247 {
248 	return ((unsigned long)entry < MAPLE_RESERVED_RANGE) &&
249 		xa_is_internal(entry);
250 }
251 
252 static __always_inline void mas_set_err(struct ma_state *mas, long err)
253 {
254 	mas->node = MA_ERROR(err);
255 	mas->status = ma_error;
256 }
257 
258 static __always_inline bool mas_is_ptr(const struct ma_state *mas)
259 {
260 	return mas->status == ma_root;
261 }
262 
263 static __always_inline bool mas_is_start(const struct ma_state *mas)
264 {
265 	return mas->status == ma_start;
266 }
267 
268 static __always_inline bool mas_is_none(const struct ma_state *mas)
269 {
270 	return mas->status == ma_none;
271 }
272 
273 static __always_inline bool mas_is_paused(const struct ma_state *mas)
274 {
275 	return mas->status == ma_pause;
276 }
277 
278 static __always_inline bool mas_is_overflow(struct ma_state *mas)
279 {
280 	return mas->status == ma_overflow;
281 }
282 
283 static inline bool mas_is_underflow(struct ma_state *mas)
284 {
285 	return mas->status == ma_underflow;
286 }
287 
288 static __always_inline struct maple_node *mte_to_node(
289 		const struct maple_enode *entry)
290 {
291 	return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK);
292 }
293 
294 /*
295  * mte_to_mat() - Convert a maple encoded node to a maple topiary node.
296  * @entry: The maple encoded node
297  *
298  * Return: a maple topiary pointer
299  */
300 static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
301 {
302 	return (struct maple_topiary *)
303 		((unsigned long)entry & ~MAPLE_NODE_MASK);
304 }
305 
306 /*
307  * mas_mn() - Get the maple state node.
308  * @mas: The maple state
309  *
310  * Return: the maple node (not encoded - bare pointer).
311  */
312 static inline struct maple_node *mas_mn(const struct ma_state *mas)
313 {
314 	return mte_to_node(mas->node);
315 }
316 
317 /*
318  * mte_set_node_dead() - Set a maple encoded node as dead.
319  * @mn: The maple encoded node.
320  */
321 static inline void mte_set_node_dead(struct maple_enode *mn)
322 {
323 	mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn));
324 	smp_wmb(); /* Needed for RCU */
325 }
326 
327 /* Bit 1 indicates the root is a node */
328 #define MAPLE_ROOT_NODE			0x02
329 /* maple_type stored bit 3-6 */
330 #define MAPLE_ENODE_TYPE_SHIFT		0x03
331 /* Bit 2 means a NULL somewhere below */
332 #define MAPLE_ENODE_NULL		0x04
333 
334 static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
335 					     enum maple_type type)
336 {
337 	return (void *)((unsigned long)node |
338 			(type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL);
339 }
340 
341 static inline void *mte_mk_root(const struct maple_enode *node)
342 {
343 	return (void *)((unsigned long)node | MAPLE_ROOT_NODE);
344 }
345 
346 static inline void *mte_safe_root(const struct maple_enode *node)
347 {
348 	return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE);
349 }
350 
351 static inline void *mte_set_full(const struct maple_enode *node)
352 {
353 	return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL);
354 }
355 
356 static inline void *mte_clear_full(const struct maple_enode *node)
357 {
358 	return (void *)((unsigned long)node | MAPLE_ENODE_NULL);
359 }
360 
361 static inline bool mte_has_null(const struct maple_enode *node)
362 {
363 	return (unsigned long)node & MAPLE_ENODE_NULL;
364 }
365 
366 static __always_inline bool ma_is_root(struct maple_node *node)
367 {
368 	return ((unsigned long)node->parent & MA_ROOT_PARENT);
369 }
370 
371 static __always_inline bool mte_is_root(const struct maple_enode *node)
372 {
373 	return ma_is_root(mte_to_node(node));
374 }
375 
376 static inline bool mas_is_root_limits(const struct ma_state *mas)
377 {
378 	return !mas->min && mas->max == ULONG_MAX;
379 }
380 
381 static __always_inline bool mt_is_alloc(struct maple_tree *mt)
382 {
383 	return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE);
384 }
385 
386 /*
387  * The Parent Pointer
388  * Excluding root, the parent pointer is 256B aligned like all other tree nodes.
389  * When storing a 32 or 64 bit values, the offset can fit into 5 bits.  The 16
390  * bit values need an extra bit to store the offset.  This extra bit comes from
391  * a reuse of the last bit in the node type.  This is possible by using bit 1 to
392  * indicate if bit 2 is part of the type or the slot.
393  *
394  * Note types:
395  *  0x??1 = Root
396  *  0x?00 = 16 bit nodes
397  *  0x010 = 32 bit nodes
398  *  0x110 = 64 bit nodes
399  *
400  * Slot size and alignment
401  *  0b??1 : Root
402  *  0b?00 : 16 bit values, type in 0-1, slot in 2-7
403  *  0b010 : 32 bit values, type in 0-2, slot in 3-7
404  *  0b110 : 64 bit values, type in 0-2, slot in 3-7
405  */
406 
407 #define MAPLE_PARENT_ROOT		0x01
408 
409 #define MAPLE_PARENT_SLOT_SHIFT		0x03
410 #define MAPLE_PARENT_SLOT_MASK		0xF8
411 
412 #define MAPLE_PARENT_16B_SLOT_SHIFT	0x02
413 #define MAPLE_PARENT_16B_SLOT_MASK	0xFC
414 
415 #define MAPLE_PARENT_RANGE64		0x06
416 #define MAPLE_PARENT_RANGE32		0x04
417 #define MAPLE_PARENT_NOT_RANGE16	0x02
418 
419 /*
420  * mte_parent_shift() - Get the parent shift for the slot storage.
421  * @parent: The parent pointer cast as an unsigned long
422  * Return: The shift into that pointer to the star to of the slot
423  */
424 static inline unsigned long mte_parent_shift(unsigned long parent)
425 {
426 	/* Note bit 1 == 0 means 16B */
427 	if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
428 		return MAPLE_PARENT_SLOT_SHIFT;
429 
430 	return MAPLE_PARENT_16B_SLOT_SHIFT;
431 }
432 
433 /*
434  * mte_parent_slot_mask() - Get the slot mask for the parent.
435  * @parent: The parent pointer cast as an unsigned long.
436  * Return: The slot mask for that parent.
437  */
438 static inline unsigned long mte_parent_slot_mask(unsigned long parent)
439 {
440 	/* Note bit 1 == 0 means 16B */
441 	if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
442 		return MAPLE_PARENT_SLOT_MASK;
443 
444 	return MAPLE_PARENT_16B_SLOT_MASK;
445 }
446 
447 /*
448  * mas_parent_type() - Return the maple_type of the parent from the stored
449  * parent type.
450  * @mas: The maple state
451  * @enode: The maple_enode to extract the parent's enum
452  * Return: The node->parent maple_type
453  */
454 static inline
455 enum maple_type mas_parent_type(struct ma_state *mas, struct maple_enode *enode)
456 {
457 	unsigned long p_type;
458 
459 	p_type = (unsigned long)mte_to_node(enode)->parent;
460 	if (WARN_ON(p_type & MAPLE_PARENT_ROOT))
461 		return 0;
462 
463 	p_type &= MAPLE_NODE_MASK;
464 	p_type &= ~mte_parent_slot_mask(p_type);
465 	switch (p_type) {
466 	case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */
467 		if (mt_is_alloc(mas->tree))
468 			return maple_arange_64;
469 		return maple_range_64;
470 	}
471 
472 	return 0;
473 }
474 
475 /*
476  * mas_set_parent() - Set the parent node and encode the slot
477  * @enode: The encoded maple node.
478  * @parent: The encoded maple node that is the parent of @enode.
479  * @slot: The slot that @enode resides in @parent.
480  *
481  * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
482  * parent type.
483  */
484 static inline
485 void mas_set_parent(struct ma_state *mas, struct maple_enode *enode,
486 		    const struct maple_enode *parent, unsigned char slot)
487 {
488 	unsigned long val = (unsigned long)parent;
489 	unsigned long shift;
490 	unsigned long type;
491 	enum maple_type p_type = mte_node_type(parent);
492 
493 	MAS_BUG_ON(mas, p_type == maple_dense);
494 	MAS_BUG_ON(mas, p_type == maple_leaf_64);
495 
496 	switch (p_type) {
497 	case maple_range_64:
498 	case maple_arange_64:
499 		shift = MAPLE_PARENT_SLOT_SHIFT;
500 		type = MAPLE_PARENT_RANGE64;
501 		break;
502 	default:
503 	case maple_dense:
504 	case maple_leaf_64:
505 		shift = type = 0;
506 		break;
507 	}
508 
509 	val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */
510 	val |= (slot << shift) | type;
511 	mte_to_node(enode)->parent = ma_parent_ptr(val);
512 }
513 
514 /*
515  * mte_parent_slot() - get the parent slot of @enode.
516  * @enode: The encoded maple node.
517  *
518  * Return: The slot in the parent node where @enode resides.
519  */
520 static __always_inline
521 unsigned int mte_parent_slot(const struct maple_enode *enode)
522 {
523 	unsigned long val = (unsigned long)mte_to_node(enode)->parent;
524 
525 	if (unlikely(val & MA_ROOT_PARENT))
526 		return 0;
527 
528 	/*
529 	 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost
530 	 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT
531 	 */
532 	return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val);
533 }
534 
535 /*
536  * mte_parent() - Get the parent of @node.
537  * @node: The encoded maple node.
538  *
539  * Return: The parent maple node.
540  */
541 static __always_inline
542 struct maple_node *mte_parent(const struct maple_enode *enode)
543 {
544 	return (void *)((unsigned long)
545 			(mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK);
546 }
547 
548 /*
549  * ma_dead_node() - check if the @enode is dead.
550  * @enode: The encoded maple node
551  *
552  * Return: true if dead, false otherwise.
553  */
554 static __always_inline bool ma_dead_node(const struct maple_node *node)
555 {
556 	struct maple_node *parent;
557 
558 	/* Do not reorder reads from the node prior to the parent check */
559 	smp_rmb();
560 	parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK);
561 	return (parent == node);
562 }
563 
564 /*
565  * mte_dead_node() - check if the @enode is dead.
566  * @enode: The encoded maple node
567  *
568  * Return: true if dead, false otherwise.
569  */
570 static __always_inline bool mte_dead_node(const struct maple_enode *enode)
571 {
572 	struct maple_node *parent, *node;
573 
574 	node = mte_to_node(enode);
575 	/* Do not reorder reads from the node prior to the parent check */
576 	smp_rmb();
577 	parent = mte_parent(enode);
578 	return (parent == node);
579 }
580 
581 /*
582  * mas_allocated() - Get the number of nodes allocated in a maple state.
583  * @mas: The maple state
584  *
585  * The ma_state alloc member is overloaded to hold a pointer to the first
586  * allocated node or to the number of requested nodes to allocate.  If bit 0 is
587  * set, then the alloc contains the number of requested nodes.  If there is an
588  * allocated node, then the total allocated nodes is in that node.
589  *
590  * Return: The total number of nodes allocated
591  */
592 static inline unsigned long mas_allocated(const struct ma_state *mas)
593 {
594 	if (!mas->alloc || ((unsigned long)mas->alloc & 0x1))
595 		return 0;
596 
597 	return mas->alloc->total;
598 }
599 
600 /*
601  * mas_set_alloc_req() - Set the requested number of allocations.
602  * @mas: the maple state
603  * @count: the number of allocations.
604  *
605  * The requested number of allocations is either in the first allocated node,
606  * located in @mas->alloc->request_count, or directly in @mas->alloc if there is
607  * no allocated node.  Set the request either in the node or do the necessary
608  * encoding to store in @mas->alloc directly.
609  */
610 static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count)
611 {
612 	if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) {
613 		if (!count)
614 			mas->alloc = NULL;
615 		else
616 			mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U);
617 		return;
618 	}
619 
620 	mas->alloc->request_count = count;
621 }
622 
623 /*
624  * mas_alloc_req() - get the requested number of allocations.
625  * @mas: The maple state
626  *
627  * The alloc count is either stored directly in @mas, or in
628  * @mas->alloc->request_count if there is at least one node allocated.  Decode
629  * the request count if it's stored directly in @mas->alloc.
630  *
631  * Return: The allocation request count.
632  */
633 static inline unsigned int mas_alloc_req(const struct ma_state *mas)
634 {
635 	if ((unsigned long)mas->alloc & 0x1)
636 		return (unsigned long)(mas->alloc) >> 1;
637 	else if (mas->alloc)
638 		return mas->alloc->request_count;
639 	return 0;
640 }
641 
642 /*
643  * ma_pivots() - Get a pointer to the maple node pivots.
644  * @node - the maple node
645  * @type - the node type
646  *
647  * In the event of a dead node, this array may be %NULL
648  *
649  * Return: A pointer to the maple node pivots
650  */
651 static inline unsigned long *ma_pivots(struct maple_node *node,
652 					   enum maple_type type)
653 {
654 	switch (type) {
655 	case maple_arange_64:
656 		return node->ma64.pivot;
657 	case maple_range_64:
658 	case maple_leaf_64:
659 		return node->mr64.pivot;
660 	case maple_dense:
661 		return NULL;
662 	}
663 	return NULL;
664 }
665 
666 /*
667  * ma_gaps() - Get a pointer to the maple node gaps.
668  * @node - the maple node
669  * @type - the node type
670  *
671  * Return: A pointer to the maple node gaps
672  */
673 static inline unsigned long *ma_gaps(struct maple_node *node,
674 				     enum maple_type type)
675 {
676 	switch (type) {
677 	case maple_arange_64:
678 		return node->ma64.gap;
679 	case maple_range_64:
680 	case maple_leaf_64:
681 	case maple_dense:
682 		return NULL;
683 	}
684 	return NULL;
685 }
686 
687 /*
688  * mas_safe_pivot() - get the pivot at @piv or mas->max.
689  * @mas: The maple state
690  * @pivots: The pointer to the maple node pivots
691  * @piv: The pivot to fetch
692  * @type: The maple node type
693  *
694  * Return: The pivot at @piv within the limit of the @pivots array, @mas->max
695  * otherwise.
696  */
697 static __always_inline unsigned long
698 mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
699 	       unsigned char piv, enum maple_type type)
700 {
701 	if (piv >= mt_pivots[type])
702 		return mas->max;
703 
704 	return pivots[piv];
705 }
706 
707 /*
708  * mas_safe_min() - Return the minimum for a given offset.
709  * @mas: The maple state
710  * @pivots: The pointer to the maple node pivots
711  * @offset: The offset into the pivot array
712  *
713  * Return: The minimum range value that is contained in @offset.
714  */
715 static inline unsigned long
716 mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
717 {
718 	if (likely(offset))
719 		return pivots[offset - 1] + 1;
720 
721 	return mas->min;
722 }
723 
724 /*
725  * mte_set_pivot() - Set a pivot to a value in an encoded maple node.
726  * @mn: The encoded maple node
727  * @piv: The pivot offset
728  * @val: The value of the pivot
729  */
730 static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
731 				unsigned long val)
732 {
733 	struct maple_node *node = mte_to_node(mn);
734 	enum maple_type type = mte_node_type(mn);
735 
736 	BUG_ON(piv >= mt_pivots[type]);
737 	switch (type) {
738 	case maple_range_64:
739 	case maple_leaf_64:
740 		node->mr64.pivot[piv] = val;
741 		break;
742 	case maple_arange_64:
743 		node->ma64.pivot[piv] = val;
744 		break;
745 	case maple_dense:
746 		break;
747 	}
748 
749 }
750 
751 /*
752  * ma_slots() - Get a pointer to the maple node slots.
753  * @mn: The maple node
754  * @mt: The maple node type
755  *
756  * Return: A pointer to the maple node slots
757  */
758 static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
759 {
760 	switch (mt) {
761 	case maple_arange_64:
762 		return mn->ma64.slot;
763 	case maple_range_64:
764 	case maple_leaf_64:
765 		return mn->mr64.slot;
766 	case maple_dense:
767 		return mn->slot;
768 	}
769 
770 	return NULL;
771 }
772 
773 static inline bool mt_write_locked(const struct maple_tree *mt)
774 {
775 	return mt_external_lock(mt) ? mt_write_lock_is_held(mt) :
776 		lockdep_is_held(&mt->ma_lock);
777 }
778 
779 static __always_inline bool mt_locked(const struct maple_tree *mt)
780 {
781 	return mt_external_lock(mt) ? mt_lock_is_held(mt) :
782 		lockdep_is_held(&mt->ma_lock);
783 }
784 
785 static __always_inline void *mt_slot(const struct maple_tree *mt,
786 		void __rcu **slots, unsigned char offset)
787 {
788 	return rcu_dereference_check(slots[offset], mt_locked(mt));
789 }
790 
791 static __always_inline void *mt_slot_locked(struct maple_tree *mt,
792 		void __rcu **slots, unsigned char offset)
793 {
794 	return rcu_dereference_protected(slots[offset], mt_write_locked(mt));
795 }
796 /*
797  * mas_slot_locked() - Get the slot value when holding the maple tree lock.
798  * @mas: The maple state
799  * @slots: The pointer to the slots
800  * @offset: The offset into the slots array to fetch
801  *
802  * Return: The entry stored in @slots at the @offset.
803  */
804 static __always_inline void *mas_slot_locked(struct ma_state *mas,
805 		void __rcu **slots, unsigned char offset)
806 {
807 	return mt_slot_locked(mas->tree, slots, offset);
808 }
809 
810 /*
811  * mas_slot() - Get the slot value when not holding the maple tree lock.
812  * @mas: The maple state
813  * @slots: The pointer to the slots
814  * @offset: The offset into the slots array to fetch
815  *
816  * Return: The entry stored in @slots at the @offset
817  */
818 static __always_inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
819 		unsigned char offset)
820 {
821 	return mt_slot(mas->tree, slots, offset);
822 }
823 
824 /*
825  * mas_root() - Get the maple tree root.
826  * @mas: The maple state.
827  *
828  * Return: The pointer to the root of the tree
829  */
830 static __always_inline void *mas_root(struct ma_state *mas)
831 {
832 	return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree));
833 }
834 
835 static inline void *mt_root_locked(struct maple_tree *mt)
836 {
837 	return rcu_dereference_protected(mt->ma_root, mt_write_locked(mt));
838 }
839 
840 /*
841  * mas_root_locked() - Get the maple tree root when holding the maple tree lock.
842  * @mas: The maple state.
843  *
844  * Return: The pointer to the root of the tree
845  */
846 static inline void *mas_root_locked(struct ma_state *mas)
847 {
848 	return mt_root_locked(mas->tree);
849 }
850 
851 static inline struct maple_metadata *ma_meta(struct maple_node *mn,
852 					     enum maple_type mt)
853 {
854 	switch (mt) {
855 	case maple_arange_64:
856 		return &mn->ma64.meta;
857 	default:
858 		return &mn->mr64.meta;
859 	}
860 }
861 
862 /*
863  * ma_set_meta() - Set the metadata information of a node.
864  * @mn: The maple node
865  * @mt: The maple node type
866  * @offset: The offset of the highest sub-gap in this node.
867  * @end: The end of the data in this node.
868  */
869 static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
870 			       unsigned char offset, unsigned char end)
871 {
872 	struct maple_metadata *meta = ma_meta(mn, mt);
873 
874 	meta->gap = offset;
875 	meta->end = end;
876 }
877 
878 /*
879  * mt_clear_meta() - clear the metadata information of a node, if it exists
880  * @mt: The maple tree
881  * @mn: The maple node
882  * @type: The maple node type
883  * @offset: The offset of the highest sub-gap in this node.
884  * @end: The end of the data in this node.
885  */
886 static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn,
887 				  enum maple_type type)
888 {
889 	struct maple_metadata *meta;
890 	unsigned long *pivots;
891 	void __rcu **slots;
892 	void *next;
893 
894 	switch (type) {
895 	case maple_range_64:
896 		pivots = mn->mr64.pivot;
897 		if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) {
898 			slots = mn->mr64.slot;
899 			next = mt_slot_locked(mt, slots,
900 					      MAPLE_RANGE64_SLOTS - 1);
901 			if (unlikely((mte_to_node(next) &&
902 				      mte_node_type(next))))
903 				return; /* no metadata, could be node */
904 		}
905 		fallthrough;
906 	case maple_arange_64:
907 		meta = ma_meta(mn, type);
908 		break;
909 	default:
910 		return;
911 	}
912 
913 	meta->gap = 0;
914 	meta->end = 0;
915 }
916 
917 /*
918  * ma_meta_end() - Get the data end of a node from the metadata
919  * @mn: The maple node
920  * @mt: The maple node type
921  */
922 static inline unsigned char ma_meta_end(struct maple_node *mn,
923 					enum maple_type mt)
924 {
925 	struct maple_metadata *meta = ma_meta(mn, mt);
926 
927 	return meta->end;
928 }
929 
930 /*
931  * ma_meta_gap() - Get the largest gap location of a node from the metadata
932  * @mn: The maple node
933  */
934 static inline unsigned char ma_meta_gap(struct maple_node *mn)
935 {
936 	return mn->ma64.meta.gap;
937 }
938 
939 /*
940  * ma_set_meta_gap() - Set the largest gap location in a nodes metadata
941  * @mn: The maple node
942  * @mn: The maple node type
943  * @offset: The location of the largest gap.
944  */
945 static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
946 				   unsigned char offset)
947 {
948 
949 	struct maple_metadata *meta = ma_meta(mn, mt);
950 
951 	meta->gap = offset;
952 }
953 
954 /*
955  * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
956  * @mat - the ma_topiary, a linked list of dead nodes.
957  * @dead_enode - the node to be marked as dead and added to the tail of the list
958  *
959  * Add the @dead_enode to the linked list in @mat.
960  */
961 static inline void mat_add(struct ma_topiary *mat,
962 			   struct maple_enode *dead_enode)
963 {
964 	mte_set_node_dead(dead_enode);
965 	mte_to_mat(dead_enode)->next = NULL;
966 	if (!mat->tail) {
967 		mat->tail = mat->head = dead_enode;
968 		return;
969 	}
970 
971 	mte_to_mat(mat->tail)->next = dead_enode;
972 	mat->tail = dead_enode;
973 }
974 
975 static void mt_free_walk(struct rcu_head *head);
976 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
977 			    bool free);
978 /*
979  * mas_mat_destroy() - Free all nodes and subtrees in a dead list.
980  * @mas - the maple state
981  * @mat - the ma_topiary linked list of dead nodes to free.
982  *
983  * Destroy walk a dead list.
984  */
985 static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
986 {
987 	struct maple_enode *next;
988 	struct maple_node *node;
989 	bool in_rcu = mt_in_rcu(mas->tree);
990 
991 	while (mat->head) {
992 		next = mte_to_mat(mat->head)->next;
993 		node = mte_to_node(mat->head);
994 		mt_destroy_walk(mat->head, mas->tree, !in_rcu);
995 		if (in_rcu)
996 			call_rcu(&node->rcu, mt_free_walk);
997 		mat->head = next;
998 	}
999 }
1000 /*
1001  * mas_descend() - Descend into the slot stored in the ma_state.
1002  * @mas - the maple state.
1003  *
1004  * Note: Not RCU safe, only use in write side or debug code.
1005  */
1006 static inline void mas_descend(struct ma_state *mas)
1007 {
1008 	enum maple_type type;
1009 	unsigned long *pivots;
1010 	struct maple_node *node;
1011 	void __rcu **slots;
1012 
1013 	node = mas_mn(mas);
1014 	type = mte_node_type(mas->node);
1015 	pivots = ma_pivots(node, type);
1016 	slots = ma_slots(node, type);
1017 
1018 	if (mas->offset)
1019 		mas->min = pivots[mas->offset - 1] + 1;
1020 	mas->max = mas_safe_pivot(mas, pivots, mas->offset, type);
1021 	mas->node = mas_slot(mas, slots, mas->offset);
1022 }
1023 
1024 /*
1025  * mte_set_gap() - Set a maple node gap.
1026  * @mn: The encoded maple node
1027  * @gap: The offset of the gap to set
1028  * @val: The gap value
1029  */
1030 static inline void mte_set_gap(const struct maple_enode *mn,
1031 				 unsigned char gap, unsigned long val)
1032 {
1033 	switch (mte_node_type(mn)) {
1034 	default:
1035 		break;
1036 	case maple_arange_64:
1037 		mte_to_node(mn)->ma64.gap[gap] = val;
1038 		break;
1039 	}
1040 }
1041 
1042 /*
1043  * mas_ascend() - Walk up a level of the tree.
1044  * @mas: The maple state
1045  *
1046  * Sets the @mas->max and @mas->min to the correct values when walking up.  This
1047  * may cause several levels of walking up to find the correct min and max.
1048  * May find a dead node which will cause a premature return.
1049  * Return: 1 on dead node, 0 otherwise
1050  */
1051 static int mas_ascend(struct ma_state *mas)
1052 {
1053 	struct maple_enode *p_enode; /* parent enode. */
1054 	struct maple_enode *a_enode; /* ancestor enode. */
1055 	struct maple_node *a_node; /* ancestor node. */
1056 	struct maple_node *p_node; /* parent node. */
1057 	unsigned char a_slot;
1058 	enum maple_type a_type;
1059 	unsigned long min, max;
1060 	unsigned long *pivots;
1061 	bool set_max = false, set_min = false;
1062 
1063 	a_node = mas_mn(mas);
1064 	if (ma_is_root(a_node)) {
1065 		mas->offset = 0;
1066 		return 0;
1067 	}
1068 
1069 	p_node = mte_parent(mas->node);
1070 	if (unlikely(a_node == p_node))
1071 		return 1;
1072 
1073 	a_type = mas_parent_type(mas, mas->node);
1074 	mas->offset = mte_parent_slot(mas->node);
1075 	a_enode = mt_mk_node(p_node, a_type);
1076 
1077 	/* Check to make sure all parent information is still accurate */
1078 	if (p_node != mte_parent(mas->node))
1079 		return 1;
1080 
1081 	mas->node = a_enode;
1082 
1083 	if (mte_is_root(a_enode)) {
1084 		mas->max = ULONG_MAX;
1085 		mas->min = 0;
1086 		return 0;
1087 	}
1088 
1089 	min = 0;
1090 	max = ULONG_MAX;
1091 	if (!mas->offset) {
1092 		min = mas->min;
1093 		set_min = true;
1094 	}
1095 
1096 	if (mas->max == ULONG_MAX)
1097 		set_max = true;
1098 
1099 	do {
1100 		p_enode = a_enode;
1101 		a_type = mas_parent_type(mas, p_enode);
1102 		a_node = mte_parent(p_enode);
1103 		a_slot = mte_parent_slot(p_enode);
1104 		a_enode = mt_mk_node(a_node, a_type);
1105 		pivots = ma_pivots(a_node, a_type);
1106 
1107 		if (unlikely(ma_dead_node(a_node)))
1108 			return 1;
1109 
1110 		if (!set_min && a_slot) {
1111 			set_min = true;
1112 			min = pivots[a_slot - 1] + 1;
1113 		}
1114 
1115 		if (!set_max && a_slot < mt_pivots[a_type]) {
1116 			set_max = true;
1117 			max = pivots[a_slot];
1118 		}
1119 
1120 		if (unlikely(ma_dead_node(a_node)))
1121 			return 1;
1122 
1123 		if (unlikely(ma_is_root(a_node)))
1124 			break;
1125 
1126 	} while (!set_min || !set_max);
1127 
1128 	mas->max = max;
1129 	mas->min = min;
1130 	return 0;
1131 }
1132 
1133 /*
1134  * mas_pop_node() - Get a previously allocated maple node from the maple state.
1135  * @mas: The maple state
1136  *
1137  * Return: A pointer to a maple node.
1138  */
1139 static inline struct maple_node *mas_pop_node(struct ma_state *mas)
1140 {
1141 	struct maple_alloc *ret, *node = mas->alloc;
1142 	unsigned long total = mas_allocated(mas);
1143 	unsigned int req = mas_alloc_req(mas);
1144 
1145 	/* nothing or a request pending. */
1146 	if (WARN_ON(!total))
1147 		return NULL;
1148 
1149 	if (total == 1) {
1150 		/* single allocation in this ma_state */
1151 		mas->alloc = NULL;
1152 		ret = node;
1153 		goto single_node;
1154 	}
1155 
1156 	if (node->node_count == 1) {
1157 		/* Single allocation in this node. */
1158 		mas->alloc = node->slot[0];
1159 		mas->alloc->total = node->total - 1;
1160 		ret = node;
1161 		goto new_head;
1162 	}
1163 	node->total--;
1164 	ret = node->slot[--node->node_count];
1165 	node->slot[node->node_count] = NULL;
1166 
1167 single_node:
1168 new_head:
1169 	if (req) {
1170 		req++;
1171 		mas_set_alloc_req(mas, req);
1172 	}
1173 
1174 	memset(ret, 0, sizeof(*ret));
1175 	return (struct maple_node *)ret;
1176 }
1177 
1178 /*
1179  * mas_push_node() - Push a node back on the maple state allocation.
1180  * @mas: The maple state
1181  * @used: The used maple node
1182  *
1183  * Stores the maple node back into @mas->alloc for reuse.  Updates allocated and
1184  * requested node count as necessary.
1185  */
1186 static inline void mas_push_node(struct ma_state *mas, struct maple_node *used)
1187 {
1188 	struct maple_alloc *reuse = (struct maple_alloc *)used;
1189 	struct maple_alloc *head = mas->alloc;
1190 	unsigned long count;
1191 	unsigned int requested = mas_alloc_req(mas);
1192 
1193 	count = mas_allocated(mas);
1194 
1195 	reuse->request_count = 0;
1196 	reuse->node_count = 0;
1197 	if (count && (head->node_count < MAPLE_ALLOC_SLOTS)) {
1198 		head->slot[head->node_count++] = reuse;
1199 		head->total++;
1200 		goto done;
1201 	}
1202 
1203 	reuse->total = 1;
1204 	if ((head) && !((unsigned long)head & 0x1)) {
1205 		reuse->slot[0] = head;
1206 		reuse->node_count = 1;
1207 		reuse->total += head->total;
1208 	}
1209 
1210 	mas->alloc = reuse;
1211 done:
1212 	if (requested > 1)
1213 		mas_set_alloc_req(mas, requested - 1);
1214 }
1215 
1216 /*
1217  * mas_alloc_nodes() - Allocate nodes into a maple state
1218  * @mas: The maple state
1219  * @gfp: The GFP Flags
1220  */
1221 static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
1222 {
1223 	struct maple_alloc *node;
1224 	unsigned long allocated = mas_allocated(mas);
1225 	unsigned int requested = mas_alloc_req(mas);
1226 	unsigned int count;
1227 	void **slots = NULL;
1228 	unsigned int max_req = 0;
1229 
1230 	if (!requested)
1231 		return;
1232 
1233 	mas_set_alloc_req(mas, 0);
1234 	if (mas->mas_flags & MA_STATE_PREALLOC) {
1235 		if (allocated)
1236 			return;
1237 		BUG_ON(!allocated);
1238 		WARN_ON(!allocated);
1239 	}
1240 
1241 	if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) {
1242 		node = (struct maple_alloc *)mt_alloc_one(gfp);
1243 		if (!node)
1244 			goto nomem_one;
1245 
1246 		if (allocated) {
1247 			node->slot[0] = mas->alloc;
1248 			node->node_count = 1;
1249 		} else {
1250 			node->node_count = 0;
1251 		}
1252 
1253 		mas->alloc = node;
1254 		node->total = ++allocated;
1255 		requested--;
1256 	}
1257 
1258 	node = mas->alloc;
1259 	node->request_count = 0;
1260 	while (requested) {
1261 		max_req = MAPLE_ALLOC_SLOTS - node->node_count;
1262 		slots = (void **)&node->slot[node->node_count];
1263 		max_req = min(requested, max_req);
1264 		count = mt_alloc_bulk(gfp, max_req, slots);
1265 		if (!count)
1266 			goto nomem_bulk;
1267 
1268 		if (node->node_count == 0) {
1269 			node->slot[0]->node_count = 0;
1270 			node->slot[0]->request_count = 0;
1271 		}
1272 
1273 		node->node_count += count;
1274 		allocated += count;
1275 		node = node->slot[0];
1276 		requested -= count;
1277 	}
1278 	mas->alloc->total = allocated;
1279 	return;
1280 
1281 nomem_bulk:
1282 	/* Clean up potential freed allocations on bulk failure */
1283 	memset(slots, 0, max_req * sizeof(unsigned long));
1284 nomem_one:
1285 	mas_set_alloc_req(mas, requested);
1286 	if (mas->alloc && !(((unsigned long)mas->alloc & 0x1)))
1287 		mas->alloc->total = allocated;
1288 	mas_set_err(mas, -ENOMEM);
1289 }
1290 
1291 /*
1292  * mas_free() - Free an encoded maple node
1293  * @mas: The maple state
1294  * @used: The encoded maple node to free.
1295  *
1296  * Uses rcu free if necessary, pushes @used back on the maple state allocations
1297  * otherwise.
1298  */
1299 static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
1300 {
1301 	struct maple_node *tmp = mte_to_node(used);
1302 
1303 	if (mt_in_rcu(mas->tree))
1304 		ma_free_rcu(tmp);
1305 	else
1306 		mas_push_node(mas, tmp);
1307 }
1308 
1309 /*
1310  * mas_node_count_gfp() - Check if enough nodes are allocated and request more
1311  * if there is not enough nodes.
1312  * @mas: The maple state
1313  * @count: The number of nodes needed
1314  * @gfp: the gfp flags
1315  */
1316 static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp)
1317 {
1318 	unsigned long allocated = mas_allocated(mas);
1319 
1320 	if (allocated < count) {
1321 		mas_set_alloc_req(mas, count - allocated);
1322 		mas_alloc_nodes(mas, gfp);
1323 	}
1324 }
1325 
1326 /*
1327  * mas_node_count() - Check if enough nodes are allocated and request more if
1328  * there is not enough nodes.
1329  * @mas: The maple state
1330  * @count: The number of nodes needed
1331  *
1332  * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags.
1333  */
1334 static void mas_node_count(struct ma_state *mas, int count)
1335 {
1336 	return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN);
1337 }
1338 
1339 /*
1340  * mas_start() - Sets up maple state for operations.
1341  * @mas: The maple state.
1342  *
1343  * If mas->status == mas_start, then set the min, max and depth to
1344  * defaults.
1345  *
1346  * Return:
1347  * - If mas->node is an error or not mas_start, return NULL.
1348  * - If it's an empty tree:     NULL & mas->status == ma_none
1349  * - If it's a single entry:    The entry & mas->status == mas_root
1350  * - If it's a tree:            NULL & mas->status == safe root node.
1351  */
1352 static inline struct maple_enode *mas_start(struct ma_state *mas)
1353 {
1354 	if (likely(mas_is_start(mas))) {
1355 		struct maple_enode *root;
1356 
1357 		mas->min = 0;
1358 		mas->max = ULONG_MAX;
1359 
1360 retry:
1361 		mas->depth = 0;
1362 		root = mas_root(mas);
1363 		/* Tree with nodes */
1364 		if (likely(xa_is_node(root))) {
1365 			mas->depth = 1;
1366 			mas->status = ma_active;
1367 			mas->node = mte_safe_root(root);
1368 			mas->offset = 0;
1369 			if (mte_dead_node(mas->node))
1370 				goto retry;
1371 
1372 			return NULL;
1373 		}
1374 
1375 		/* empty tree */
1376 		if (unlikely(!root)) {
1377 			mas->node = NULL;
1378 			mas->status = ma_none;
1379 			mas->offset = MAPLE_NODE_SLOTS;
1380 			return NULL;
1381 		}
1382 
1383 		/* Single entry tree */
1384 		mas->status = ma_root;
1385 		mas->offset = MAPLE_NODE_SLOTS;
1386 
1387 		/* Single entry tree. */
1388 		if (mas->index > 0)
1389 			return NULL;
1390 
1391 		return root;
1392 	}
1393 
1394 	return NULL;
1395 }
1396 
1397 /*
1398  * ma_data_end() - Find the end of the data in a node.
1399  * @node: The maple node
1400  * @type: The maple node type
1401  * @pivots: The array of pivots in the node
1402  * @max: The maximum value in the node
1403  *
1404  * Uses metadata to find the end of the data when possible.
1405  * Return: The zero indexed last slot with data (may be null).
1406  */
1407 static __always_inline unsigned char ma_data_end(struct maple_node *node,
1408 		enum maple_type type, unsigned long *pivots, unsigned long max)
1409 {
1410 	unsigned char offset;
1411 
1412 	if (!pivots)
1413 		return 0;
1414 
1415 	if (type == maple_arange_64)
1416 		return ma_meta_end(node, type);
1417 
1418 	offset = mt_pivots[type] - 1;
1419 	if (likely(!pivots[offset]))
1420 		return ma_meta_end(node, type);
1421 
1422 	if (likely(pivots[offset] == max))
1423 		return offset;
1424 
1425 	return mt_pivots[type];
1426 }
1427 
1428 /*
1429  * mas_data_end() - Find the end of the data (slot).
1430  * @mas: the maple state
1431  *
1432  * This method is optimized to check the metadata of a node if the node type
1433  * supports data end metadata.
1434  *
1435  * Return: The zero indexed last slot with data (may be null).
1436  */
1437 static inline unsigned char mas_data_end(struct ma_state *mas)
1438 {
1439 	enum maple_type type;
1440 	struct maple_node *node;
1441 	unsigned char offset;
1442 	unsigned long *pivots;
1443 
1444 	type = mte_node_type(mas->node);
1445 	node = mas_mn(mas);
1446 	if (type == maple_arange_64)
1447 		return ma_meta_end(node, type);
1448 
1449 	pivots = ma_pivots(node, type);
1450 	if (unlikely(ma_dead_node(node)))
1451 		return 0;
1452 
1453 	offset = mt_pivots[type] - 1;
1454 	if (likely(!pivots[offset]))
1455 		return ma_meta_end(node, type);
1456 
1457 	if (likely(pivots[offset] == mas->max))
1458 		return offset;
1459 
1460 	return mt_pivots[type];
1461 }
1462 
1463 /*
1464  * mas_leaf_max_gap() - Returns the largest gap in a leaf node
1465  * @mas - the maple state
1466  *
1467  * Return: The maximum gap in the leaf.
1468  */
1469 static unsigned long mas_leaf_max_gap(struct ma_state *mas)
1470 {
1471 	enum maple_type mt;
1472 	unsigned long pstart, gap, max_gap;
1473 	struct maple_node *mn;
1474 	unsigned long *pivots;
1475 	void __rcu **slots;
1476 	unsigned char i;
1477 	unsigned char max_piv;
1478 
1479 	mt = mte_node_type(mas->node);
1480 	mn = mas_mn(mas);
1481 	slots = ma_slots(mn, mt);
1482 	max_gap = 0;
1483 	if (unlikely(ma_is_dense(mt))) {
1484 		gap = 0;
1485 		for (i = 0; i < mt_slots[mt]; i++) {
1486 			if (slots[i]) {
1487 				if (gap > max_gap)
1488 					max_gap = gap;
1489 				gap = 0;
1490 			} else {
1491 				gap++;
1492 			}
1493 		}
1494 		if (gap > max_gap)
1495 			max_gap = gap;
1496 		return max_gap;
1497 	}
1498 
1499 	/*
1500 	 * Check the first implied pivot optimizes the loop below and slot 1 may
1501 	 * be skipped if there is a gap in slot 0.
1502 	 */
1503 	pivots = ma_pivots(mn, mt);
1504 	if (likely(!slots[0])) {
1505 		max_gap = pivots[0] - mas->min + 1;
1506 		i = 2;
1507 	} else {
1508 		i = 1;
1509 	}
1510 
1511 	/* reduce max_piv as the special case is checked before the loop */
1512 	max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1;
1513 	/*
1514 	 * Check end implied pivot which can only be a gap on the right most
1515 	 * node.
1516 	 */
1517 	if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) {
1518 		gap = ULONG_MAX - pivots[max_piv];
1519 		if (gap > max_gap)
1520 			max_gap = gap;
1521 
1522 		if (max_gap > pivots[max_piv] - mas->min)
1523 			return max_gap;
1524 	}
1525 
1526 	for (; i <= max_piv; i++) {
1527 		/* data == no gap. */
1528 		if (likely(slots[i]))
1529 			continue;
1530 
1531 		pstart = pivots[i - 1];
1532 		gap = pivots[i] - pstart;
1533 		if (gap > max_gap)
1534 			max_gap = gap;
1535 
1536 		/* There cannot be two gaps in a row. */
1537 		i++;
1538 	}
1539 	return max_gap;
1540 }
1541 
1542 /*
1543  * ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
1544  * @node: The maple node
1545  * @gaps: The pointer to the gaps
1546  * @mt: The maple node type
1547  * @*off: Pointer to store the offset location of the gap.
1548  *
1549  * Uses the metadata data end to scan backwards across set gaps.
1550  *
1551  * Return: The maximum gap value
1552  */
1553 static inline unsigned long
1554 ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
1555 	    unsigned char *off)
1556 {
1557 	unsigned char offset, i;
1558 	unsigned long max_gap = 0;
1559 
1560 	i = offset = ma_meta_end(node, mt);
1561 	do {
1562 		if (gaps[i] > max_gap) {
1563 			max_gap = gaps[i];
1564 			offset = i;
1565 		}
1566 	} while (i--);
1567 
1568 	*off = offset;
1569 	return max_gap;
1570 }
1571 
1572 /*
1573  * mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
1574  * @mas: The maple state.
1575  *
1576  * Return: The gap value.
1577  */
1578 static inline unsigned long mas_max_gap(struct ma_state *mas)
1579 {
1580 	unsigned long *gaps;
1581 	unsigned char offset;
1582 	enum maple_type mt;
1583 	struct maple_node *node;
1584 
1585 	mt = mte_node_type(mas->node);
1586 	if (ma_is_leaf(mt))
1587 		return mas_leaf_max_gap(mas);
1588 
1589 	node = mas_mn(mas);
1590 	MAS_BUG_ON(mas, mt != maple_arange_64);
1591 	offset = ma_meta_gap(node);
1592 	gaps = ma_gaps(node, mt);
1593 	return gaps[offset];
1594 }
1595 
1596 /*
1597  * mas_parent_gap() - Set the parent gap and any gaps above, as needed
1598  * @mas: The maple state
1599  * @offset: The gap offset in the parent to set
1600  * @new: The new gap value.
1601  *
1602  * Set the parent gap then continue to set the gap upwards, using the metadata
1603  * of the parent to see if it is necessary to check the node above.
1604  */
1605 static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
1606 		unsigned long new)
1607 {
1608 	unsigned long meta_gap = 0;
1609 	struct maple_node *pnode;
1610 	struct maple_enode *penode;
1611 	unsigned long *pgaps;
1612 	unsigned char meta_offset;
1613 	enum maple_type pmt;
1614 
1615 	pnode = mte_parent(mas->node);
1616 	pmt = mas_parent_type(mas, mas->node);
1617 	penode = mt_mk_node(pnode, pmt);
1618 	pgaps = ma_gaps(pnode, pmt);
1619 
1620 ascend:
1621 	MAS_BUG_ON(mas, pmt != maple_arange_64);
1622 	meta_offset = ma_meta_gap(pnode);
1623 	meta_gap = pgaps[meta_offset];
1624 
1625 	pgaps[offset] = new;
1626 
1627 	if (meta_gap == new)
1628 		return;
1629 
1630 	if (offset != meta_offset) {
1631 		if (meta_gap > new)
1632 			return;
1633 
1634 		ma_set_meta_gap(pnode, pmt, offset);
1635 	} else if (new < meta_gap) {
1636 		new = ma_max_gap(pnode, pgaps, pmt, &meta_offset);
1637 		ma_set_meta_gap(pnode, pmt, meta_offset);
1638 	}
1639 
1640 	if (ma_is_root(pnode))
1641 		return;
1642 
1643 	/* Go to the parent node. */
1644 	pnode = mte_parent(penode);
1645 	pmt = mas_parent_type(mas, penode);
1646 	pgaps = ma_gaps(pnode, pmt);
1647 	offset = mte_parent_slot(penode);
1648 	penode = mt_mk_node(pnode, pmt);
1649 	goto ascend;
1650 }
1651 
1652 /*
1653  * mas_update_gap() - Update a nodes gaps and propagate up if necessary.
1654  * @mas - the maple state.
1655  */
1656 static inline void mas_update_gap(struct ma_state *mas)
1657 {
1658 	unsigned char pslot;
1659 	unsigned long p_gap;
1660 	unsigned long max_gap;
1661 
1662 	if (!mt_is_alloc(mas->tree))
1663 		return;
1664 
1665 	if (mte_is_root(mas->node))
1666 		return;
1667 
1668 	max_gap = mas_max_gap(mas);
1669 
1670 	pslot = mte_parent_slot(mas->node);
1671 	p_gap = ma_gaps(mte_parent(mas->node),
1672 			mas_parent_type(mas, mas->node))[pslot];
1673 
1674 	if (p_gap != max_gap)
1675 		mas_parent_gap(mas, pslot, max_gap);
1676 }
1677 
1678 /*
1679  * mas_adopt_children() - Set the parent pointer of all nodes in @parent to
1680  * @parent with the slot encoded.
1681  * @mas - the maple state (for the tree)
1682  * @parent - the maple encoded node containing the children.
1683  */
1684 static inline void mas_adopt_children(struct ma_state *mas,
1685 		struct maple_enode *parent)
1686 {
1687 	enum maple_type type = mte_node_type(parent);
1688 	struct maple_node *node = mte_to_node(parent);
1689 	void __rcu **slots = ma_slots(node, type);
1690 	unsigned long *pivots = ma_pivots(node, type);
1691 	struct maple_enode *child;
1692 	unsigned char offset;
1693 
1694 	offset = ma_data_end(node, type, pivots, mas->max);
1695 	do {
1696 		child = mas_slot_locked(mas, slots, offset);
1697 		mas_set_parent(mas, child, parent, offset);
1698 	} while (offset--);
1699 }
1700 
1701 /*
1702  * mas_put_in_tree() - Put a new node in the tree, smp_wmb(), and mark the old
1703  * node as dead.
1704  * @mas - the maple state with the new node
1705  * @old_enode - The old maple encoded node to replace.
1706  */
1707 static inline void mas_put_in_tree(struct ma_state *mas,
1708 		struct maple_enode *old_enode)
1709 	__must_hold(mas->tree->ma_lock)
1710 {
1711 	unsigned char offset;
1712 	void __rcu **slots;
1713 
1714 	if (mte_is_root(mas->node)) {
1715 		mas_mn(mas)->parent = ma_parent_ptr(mas_tree_parent(mas));
1716 		rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
1717 		mas_set_height(mas);
1718 	} else {
1719 
1720 		offset = mte_parent_slot(mas->node);
1721 		slots = ma_slots(mte_parent(mas->node),
1722 				 mas_parent_type(mas, mas->node));
1723 		rcu_assign_pointer(slots[offset], mas->node);
1724 	}
1725 
1726 	mte_set_node_dead(old_enode);
1727 }
1728 
1729 /*
1730  * mas_replace_node() - Replace a node by putting it in the tree, marking it
1731  * dead, and freeing it.
1732  * the parent encoding to locate the maple node in the tree.
1733  * @mas - the ma_state with @mas->node pointing to the new node.
1734  * @old_enode - The old maple encoded node.
1735  */
1736 static inline void mas_replace_node(struct ma_state *mas,
1737 		struct maple_enode *old_enode)
1738 	__must_hold(mas->tree->ma_lock)
1739 {
1740 	mas_put_in_tree(mas, old_enode);
1741 	mas_free(mas, old_enode);
1742 }
1743 
1744 /*
1745  * mas_find_child() - Find a child who has the parent @mas->node.
1746  * @mas: the maple state with the parent.
1747  * @child: the maple state to store the child.
1748  */
1749 static inline bool mas_find_child(struct ma_state *mas, struct ma_state *child)
1750 	__must_hold(mas->tree->ma_lock)
1751 {
1752 	enum maple_type mt;
1753 	unsigned char offset;
1754 	unsigned char end;
1755 	unsigned long *pivots;
1756 	struct maple_enode *entry;
1757 	struct maple_node *node;
1758 	void __rcu **slots;
1759 
1760 	mt = mte_node_type(mas->node);
1761 	node = mas_mn(mas);
1762 	slots = ma_slots(node, mt);
1763 	pivots = ma_pivots(node, mt);
1764 	end = ma_data_end(node, mt, pivots, mas->max);
1765 	for (offset = mas->offset; offset <= end; offset++) {
1766 		entry = mas_slot_locked(mas, slots, offset);
1767 		if (mte_parent(entry) == node) {
1768 			*child = *mas;
1769 			mas->offset = offset + 1;
1770 			child->offset = offset;
1771 			mas_descend(child);
1772 			child->offset = 0;
1773 			return true;
1774 		}
1775 	}
1776 	return false;
1777 }
1778 
1779 /*
1780  * mab_shift_right() - Shift the data in mab right. Note, does not clean out the
1781  * old data or set b_node->b_end.
1782  * @b_node: the maple_big_node
1783  * @shift: the shift count
1784  */
1785 static inline void mab_shift_right(struct maple_big_node *b_node,
1786 				 unsigned char shift)
1787 {
1788 	unsigned long size = b_node->b_end * sizeof(unsigned long);
1789 
1790 	memmove(b_node->pivot + shift, b_node->pivot, size);
1791 	memmove(b_node->slot + shift, b_node->slot, size);
1792 	if (b_node->type == maple_arange_64)
1793 		memmove(b_node->gap + shift, b_node->gap, size);
1794 }
1795 
1796 /*
1797  * mab_middle_node() - Check if a middle node is needed (unlikely)
1798  * @b_node: the maple_big_node that contains the data.
1799  * @size: the amount of data in the b_node
1800  * @split: the potential split location
1801  * @slot_count: the size that can be stored in a single node being considered.
1802  *
1803  * Return: true if a middle node is required.
1804  */
1805 static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
1806 				   unsigned char slot_count)
1807 {
1808 	unsigned char size = b_node->b_end;
1809 
1810 	if (size >= 2 * slot_count)
1811 		return true;
1812 
1813 	if (!b_node->slot[split] && (size >= 2 * slot_count - 1))
1814 		return true;
1815 
1816 	return false;
1817 }
1818 
1819 /*
1820  * mab_no_null_split() - ensure the split doesn't fall on a NULL
1821  * @b_node: the maple_big_node with the data
1822  * @split: the suggested split location
1823  * @slot_count: the number of slots in the node being considered.
1824  *
1825  * Return: the split location.
1826  */
1827 static inline int mab_no_null_split(struct maple_big_node *b_node,
1828 				    unsigned char split, unsigned char slot_count)
1829 {
1830 	if (!b_node->slot[split]) {
1831 		/*
1832 		 * If the split is less than the max slot && the right side will
1833 		 * still be sufficient, then increment the split on NULL.
1834 		 */
1835 		if ((split < slot_count - 1) &&
1836 		    (b_node->b_end - split) > (mt_min_slots[b_node->type]))
1837 			split++;
1838 		else
1839 			split--;
1840 	}
1841 	return split;
1842 }
1843 
1844 /*
1845  * mab_calc_split() - Calculate the split location and if there needs to be two
1846  * splits.
1847  * @bn: The maple_big_node with the data
1848  * @mid_split: The second split, if required.  0 otherwise.
1849  *
1850  * Return: The first split location.  The middle split is set in @mid_split.
1851  */
1852 static inline int mab_calc_split(struct ma_state *mas,
1853 	 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min)
1854 {
1855 	unsigned char b_end = bn->b_end;
1856 	int split = b_end / 2; /* Assume equal split. */
1857 	unsigned char slot_min, slot_count = mt_slots[bn->type];
1858 
1859 	/*
1860 	 * To support gap tracking, all NULL entries are kept together and a node cannot
1861 	 * end on a NULL entry, with the exception of the left-most leaf.  The
1862 	 * limitation means that the split of a node must be checked for this condition
1863 	 * and be able to put more data in one direction or the other.
1864 	 */
1865 	if (unlikely((mas->mas_flags & MA_STATE_BULK))) {
1866 		*mid_split = 0;
1867 		split = b_end - mt_min_slots[bn->type];
1868 
1869 		if (!ma_is_leaf(bn->type))
1870 			return split;
1871 
1872 		mas->mas_flags |= MA_STATE_REBALANCE;
1873 		if (!bn->slot[split])
1874 			split--;
1875 		return split;
1876 	}
1877 
1878 	/*
1879 	 * Although extremely rare, it is possible to enter what is known as the 3-way
1880 	 * split scenario.  The 3-way split comes about by means of a store of a range
1881 	 * that overwrites the end and beginning of two full nodes.  The result is a set
1882 	 * of entries that cannot be stored in 2 nodes.  Sometimes, these two nodes can
1883 	 * also be located in different parent nodes which are also full.  This can
1884 	 * carry upwards all the way to the root in the worst case.
1885 	 */
1886 	if (unlikely(mab_middle_node(bn, split, slot_count))) {
1887 		split = b_end / 3;
1888 		*mid_split = split * 2;
1889 	} else {
1890 		slot_min = mt_min_slots[bn->type];
1891 
1892 		*mid_split = 0;
1893 		/*
1894 		 * Avoid having a range less than the slot count unless it
1895 		 * causes one node to be deficient.
1896 		 * NOTE: mt_min_slots is 1 based, b_end and split are zero.
1897 		 */
1898 		while ((split < slot_count - 1) &&
1899 		       ((bn->pivot[split] - min) < slot_count - 1) &&
1900 		       (b_end - split > slot_min))
1901 			split++;
1902 	}
1903 
1904 	/* Avoid ending a node on a NULL entry */
1905 	split = mab_no_null_split(bn, split, slot_count);
1906 
1907 	if (unlikely(*mid_split))
1908 		*mid_split = mab_no_null_split(bn, *mid_split, slot_count);
1909 
1910 	return split;
1911 }
1912 
1913 /*
1914  * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
1915  * and set @b_node->b_end to the next free slot.
1916  * @mas: The maple state
1917  * @mas_start: The starting slot to copy
1918  * @mas_end: The end slot to copy (inclusively)
1919  * @b_node: The maple_big_node to place the data
1920  * @mab_start: The starting location in maple_big_node to store the data.
1921  */
1922 static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
1923 			unsigned char mas_end, struct maple_big_node *b_node,
1924 			unsigned char mab_start)
1925 {
1926 	enum maple_type mt;
1927 	struct maple_node *node;
1928 	void __rcu **slots;
1929 	unsigned long *pivots, *gaps;
1930 	int i = mas_start, j = mab_start;
1931 	unsigned char piv_end;
1932 
1933 	node = mas_mn(mas);
1934 	mt = mte_node_type(mas->node);
1935 	pivots = ma_pivots(node, mt);
1936 	if (!i) {
1937 		b_node->pivot[j] = pivots[i++];
1938 		if (unlikely(i > mas_end))
1939 			goto complete;
1940 		j++;
1941 	}
1942 
1943 	piv_end = min(mas_end, mt_pivots[mt]);
1944 	for (; i < piv_end; i++, j++) {
1945 		b_node->pivot[j] = pivots[i];
1946 		if (unlikely(!b_node->pivot[j]))
1947 			break;
1948 
1949 		if (unlikely(mas->max == b_node->pivot[j]))
1950 			goto complete;
1951 	}
1952 
1953 	if (likely(i <= mas_end))
1954 		b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt);
1955 
1956 complete:
1957 	b_node->b_end = ++j;
1958 	j -= mab_start;
1959 	slots = ma_slots(node, mt);
1960 	memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j);
1961 	if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) {
1962 		gaps = ma_gaps(node, mt);
1963 		memcpy(b_node->gap + mab_start, gaps + mas_start,
1964 		       sizeof(unsigned long) * j);
1965 	}
1966 }
1967 
1968 /*
1969  * mas_leaf_set_meta() - Set the metadata of a leaf if possible.
1970  * @node: The maple node
1971  * @mt: The maple type
1972  * @end: The node end
1973  */
1974 static inline void mas_leaf_set_meta(struct maple_node *node,
1975 		enum maple_type mt, unsigned char end)
1976 {
1977 	if (end < mt_slots[mt] - 1)
1978 		ma_set_meta(node, mt, 0, end);
1979 }
1980 
1981 /*
1982  * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
1983  * @b_node: the maple_big_node that has the data
1984  * @mab_start: the start location in @b_node.
1985  * @mab_end: The end location in @b_node (inclusively)
1986  * @mas: The maple state with the maple encoded node.
1987  */
1988 static inline void mab_mas_cp(struct maple_big_node *b_node,
1989 			      unsigned char mab_start, unsigned char mab_end,
1990 			      struct ma_state *mas, bool new_max)
1991 {
1992 	int i, j = 0;
1993 	enum maple_type mt = mte_node_type(mas->node);
1994 	struct maple_node *node = mte_to_node(mas->node);
1995 	void __rcu **slots = ma_slots(node, mt);
1996 	unsigned long *pivots = ma_pivots(node, mt);
1997 	unsigned long *gaps = NULL;
1998 	unsigned char end;
1999 
2000 	if (mab_end - mab_start > mt_pivots[mt])
2001 		mab_end--;
2002 
2003 	if (!pivots[mt_pivots[mt] - 1])
2004 		slots[mt_pivots[mt]] = NULL;
2005 
2006 	i = mab_start;
2007 	do {
2008 		pivots[j++] = b_node->pivot[i++];
2009 	} while (i <= mab_end && likely(b_node->pivot[i]));
2010 
2011 	memcpy(slots, b_node->slot + mab_start,
2012 	       sizeof(void *) * (i - mab_start));
2013 
2014 	if (new_max)
2015 		mas->max = b_node->pivot[i - 1];
2016 
2017 	end = j - 1;
2018 	if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) {
2019 		unsigned long max_gap = 0;
2020 		unsigned char offset = 0;
2021 
2022 		gaps = ma_gaps(node, mt);
2023 		do {
2024 			gaps[--j] = b_node->gap[--i];
2025 			if (gaps[j] > max_gap) {
2026 				offset = j;
2027 				max_gap = gaps[j];
2028 			}
2029 		} while (j);
2030 
2031 		ma_set_meta(node, mt, offset, end);
2032 	} else {
2033 		mas_leaf_set_meta(node, mt, end);
2034 	}
2035 }
2036 
2037 /*
2038  * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert.
2039  * @mas: The maple state
2040  * @end: The maple node end
2041  * @mt: The maple node type
2042  */
2043 static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end,
2044 				      enum maple_type mt)
2045 {
2046 	if (!(mas->mas_flags & MA_STATE_BULK))
2047 		return;
2048 
2049 	if (mte_is_root(mas->node))
2050 		return;
2051 
2052 	if (end > mt_min_slots[mt]) {
2053 		mas->mas_flags &= ~MA_STATE_REBALANCE;
2054 		return;
2055 	}
2056 }
2057 
2058 /*
2059  * mas_store_b_node() - Store an @entry into the b_node while also copying the
2060  * data from a maple encoded node.
2061  * @wr_mas: the maple write state
2062  * @b_node: the maple_big_node to fill with data
2063  * @offset_end: the offset to end copying
2064  *
2065  * Return: The actual end of the data stored in @b_node
2066  */
2067 static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas,
2068 		struct maple_big_node *b_node, unsigned char offset_end)
2069 {
2070 	unsigned char slot;
2071 	unsigned char b_end;
2072 	/* Possible underflow of piv will wrap back to 0 before use. */
2073 	unsigned long piv;
2074 	struct ma_state *mas = wr_mas->mas;
2075 
2076 	b_node->type = wr_mas->type;
2077 	b_end = 0;
2078 	slot = mas->offset;
2079 	if (slot) {
2080 		/* Copy start data up to insert. */
2081 		mas_mab_cp(mas, 0, slot - 1, b_node, 0);
2082 		b_end = b_node->b_end;
2083 		piv = b_node->pivot[b_end - 1];
2084 	} else
2085 		piv = mas->min - 1;
2086 
2087 	if (piv + 1 < mas->index) {
2088 		/* Handle range starting after old range */
2089 		b_node->slot[b_end] = wr_mas->content;
2090 		if (!wr_mas->content)
2091 			b_node->gap[b_end] = mas->index - 1 - piv;
2092 		b_node->pivot[b_end++] = mas->index - 1;
2093 	}
2094 
2095 	/* Store the new entry. */
2096 	mas->offset = b_end;
2097 	b_node->slot[b_end] = wr_mas->entry;
2098 	b_node->pivot[b_end] = mas->last;
2099 
2100 	/* Appended. */
2101 	if (mas->last >= mas->max)
2102 		goto b_end;
2103 
2104 	/* Handle new range ending before old range ends */
2105 	piv = mas_safe_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type);
2106 	if (piv > mas->last) {
2107 		if (piv == ULONG_MAX)
2108 			mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type);
2109 
2110 		if (offset_end != slot)
2111 			wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
2112 							  offset_end);
2113 
2114 		b_node->slot[++b_end] = wr_mas->content;
2115 		if (!wr_mas->content)
2116 			b_node->gap[b_end] = piv - mas->last + 1;
2117 		b_node->pivot[b_end] = piv;
2118 	}
2119 
2120 	slot = offset_end + 1;
2121 	if (slot > mas->end)
2122 		goto b_end;
2123 
2124 	/* Copy end data to the end of the node. */
2125 	mas_mab_cp(mas, slot, mas->end + 1, b_node, ++b_end);
2126 	b_node->b_end--;
2127 	return;
2128 
2129 b_end:
2130 	b_node->b_end = b_end;
2131 }
2132 
2133 /*
2134  * mas_prev_sibling() - Find the previous node with the same parent.
2135  * @mas: the maple state
2136  *
2137  * Return: True if there is a previous sibling, false otherwise.
2138  */
2139 static inline bool mas_prev_sibling(struct ma_state *mas)
2140 {
2141 	unsigned int p_slot = mte_parent_slot(mas->node);
2142 
2143 	if (mte_is_root(mas->node))
2144 		return false;
2145 
2146 	if (!p_slot)
2147 		return false;
2148 
2149 	mas_ascend(mas);
2150 	mas->offset = p_slot - 1;
2151 	mas_descend(mas);
2152 	return true;
2153 }
2154 
2155 /*
2156  * mas_next_sibling() - Find the next node with the same parent.
2157  * @mas: the maple state
2158  *
2159  * Return: true if there is a next sibling, false otherwise.
2160  */
2161 static inline bool mas_next_sibling(struct ma_state *mas)
2162 {
2163 	MA_STATE(parent, mas->tree, mas->index, mas->last);
2164 
2165 	if (mte_is_root(mas->node))
2166 		return false;
2167 
2168 	parent = *mas;
2169 	mas_ascend(&parent);
2170 	parent.offset = mte_parent_slot(mas->node) + 1;
2171 	if (parent.offset > mas_data_end(&parent))
2172 		return false;
2173 
2174 	*mas = parent;
2175 	mas_descend(mas);
2176 	return true;
2177 }
2178 
2179 /*
2180  * mte_node_or_none() - Set the enode and state.
2181  * @enode: The encoded maple node.
2182  *
2183  * Set the node to the enode and the status.
2184  */
2185 static inline void mas_node_or_none(struct ma_state *mas,
2186 		struct maple_enode *enode)
2187 {
2188 	if (enode) {
2189 		mas->node = enode;
2190 		mas->status = ma_active;
2191 	} else {
2192 		mas->node = NULL;
2193 		mas->status = ma_none;
2194 	}
2195 }
2196 
2197 /*
2198  * mas_wr_node_walk() - Find the correct offset for the index in the @mas.
2199  * @wr_mas: The maple write state
2200  *
2201  * Uses mas_slot_locked() and does not need to worry about dead nodes.
2202  */
2203 static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
2204 {
2205 	struct ma_state *mas = wr_mas->mas;
2206 	unsigned char count, offset;
2207 
2208 	if (unlikely(ma_is_dense(wr_mas->type))) {
2209 		wr_mas->r_max = wr_mas->r_min = mas->index;
2210 		mas->offset = mas->index = mas->min;
2211 		return;
2212 	}
2213 
2214 	wr_mas->node = mas_mn(wr_mas->mas);
2215 	wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type);
2216 	count = mas->end = ma_data_end(wr_mas->node, wr_mas->type,
2217 				       wr_mas->pivots, mas->max);
2218 	offset = mas->offset;
2219 
2220 	while (offset < count && mas->index > wr_mas->pivots[offset])
2221 		offset++;
2222 
2223 	wr_mas->r_max = offset < count ? wr_mas->pivots[offset] : mas->max;
2224 	wr_mas->r_min = mas_safe_min(mas, wr_mas->pivots, offset);
2225 	wr_mas->offset_end = mas->offset = offset;
2226 }
2227 
2228 /*
2229  * mast_rebalance_next() - Rebalance against the next node
2230  * @mast: The maple subtree state
2231  * @old_r: The encoded maple node to the right (next node).
2232  */
2233 static inline void mast_rebalance_next(struct maple_subtree_state *mast)
2234 {
2235 	unsigned char b_end = mast->bn->b_end;
2236 
2237 	mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node),
2238 		   mast->bn, b_end);
2239 	mast->orig_r->last = mast->orig_r->max;
2240 }
2241 
2242 /*
2243  * mast_rebalance_prev() - Rebalance against the previous node
2244  * @mast: The maple subtree state
2245  * @old_l: The encoded maple node to the left (previous node)
2246  */
2247 static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
2248 {
2249 	unsigned char end = mas_data_end(mast->orig_l) + 1;
2250 	unsigned char b_end = mast->bn->b_end;
2251 
2252 	mab_shift_right(mast->bn, end);
2253 	mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0);
2254 	mast->l->min = mast->orig_l->min;
2255 	mast->orig_l->index = mast->orig_l->min;
2256 	mast->bn->b_end = end + b_end;
2257 	mast->l->offset += end;
2258 }
2259 
2260 /*
2261  * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
2262  * the node to the right.  Checking the nodes to the right then the left at each
2263  * level upwards until root is reached.
2264  * Data is copied into the @mast->bn.
2265  * @mast: The maple_subtree_state.
2266  */
2267 static inline
2268 bool mast_spanning_rebalance(struct maple_subtree_state *mast)
2269 {
2270 	struct ma_state r_tmp = *mast->orig_r;
2271 	struct ma_state l_tmp = *mast->orig_l;
2272 	unsigned char depth = 0;
2273 
2274 	do {
2275 		mas_ascend(mast->orig_r);
2276 		mas_ascend(mast->orig_l);
2277 		depth++;
2278 		if (mast->orig_r->offset < mas_data_end(mast->orig_r)) {
2279 			mast->orig_r->offset++;
2280 			do {
2281 				mas_descend(mast->orig_r);
2282 				mast->orig_r->offset = 0;
2283 			} while (--depth);
2284 
2285 			mast_rebalance_next(mast);
2286 			*mast->orig_l = l_tmp;
2287 			return true;
2288 		} else if (mast->orig_l->offset != 0) {
2289 			mast->orig_l->offset--;
2290 			do {
2291 				mas_descend(mast->orig_l);
2292 				mast->orig_l->offset =
2293 					mas_data_end(mast->orig_l);
2294 			} while (--depth);
2295 
2296 			mast_rebalance_prev(mast);
2297 			*mast->orig_r = r_tmp;
2298 			return true;
2299 		}
2300 	} while (!mte_is_root(mast->orig_r->node));
2301 
2302 	*mast->orig_r = r_tmp;
2303 	*mast->orig_l = l_tmp;
2304 	return false;
2305 }
2306 
2307 /*
2308  * mast_ascend() - Ascend the original left and right maple states.
2309  * @mast: the maple subtree state.
2310  *
2311  * Ascend the original left and right sides.  Set the offsets to point to the
2312  * data already in the new tree (@mast->l and @mast->r).
2313  */
2314 static inline void mast_ascend(struct maple_subtree_state *mast)
2315 {
2316 	MA_WR_STATE(wr_mas, mast->orig_r,  NULL);
2317 	mas_ascend(mast->orig_l);
2318 	mas_ascend(mast->orig_r);
2319 
2320 	mast->orig_r->offset = 0;
2321 	mast->orig_r->index = mast->r->max;
2322 	/* last should be larger than or equal to index */
2323 	if (mast->orig_r->last < mast->orig_r->index)
2324 		mast->orig_r->last = mast->orig_r->index;
2325 
2326 	wr_mas.type = mte_node_type(mast->orig_r->node);
2327 	mas_wr_node_walk(&wr_mas);
2328 	/* Set up the left side of things */
2329 	mast->orig_l->offset = 0;
2330 	mast->orig_l->index = mast->l->min;
2331 	wr_mas.mas = mast->orig_l;
2332 	wr_mas.type = mte_node_type(mast->orig_l->node);
2333 	mas_wr_node_walk(&wr_mas);
2334 
2335 	mast->bn->type = wr_mas.type;
2336 }
2337 
2338 /*
2339  * mas_new_ma_node() - Create and return a new maple node.  Helper function.
2340  * @mas: the maple state with the allocations.
2341  * @b_node: the maple_big_node with the type encoding.
2342  *
2343  * Use the node type from the maple_big_node to allocate a new node from the
2344  * ma_state.  This function exists mainly for code readability.
2345  *
2346  * Return: A new maple encoded node
2347  */
2348 static inline struct maple_enode
2349 *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
2350 {
2351 	return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type);
2352 }
2353 
2354 /*
2355  * mas_mab_to_node() - Set up right and middle nodes
2356  *
2357  * @mas: the maple state that contains the allocations.
2358  * @b_node: the node which contains the data.
2359  * @left: The pointer which will have the left node
2360  * @right: The pointer which may have the right node
2361  * @middle: the pointer which may have the middle node (rare)
2362  * @mid_split: the split location for the middle node
2363  *
2364  * Return: the split of left.
2365  */
2366 static inline unsigned char mas_mab_to_node(struct ma_state *mas,
2367 	struct maple_big_node *b_node, struct maple_enode **left,
2368 	struct maple_enode **right, struct maple_enode **middle,
2369 	unsigned char *mid_split, unsigned long min)
2370 {
2371 	unsigned char split = 0;
2372 	unsigned char slot_count = mt_slots[b_node->type];
2373 
2374 	*left = mas_new_ma_node(mas, b_node);
2375 	*right = NULL;
2376 	*middle = NULL;
2377 	*mid_split = 0;
2378 
2379 	if (b_node->b_end < slot_count) {
2380 		split = b_node->b_end;
2381 	} else {
2382 		split = mab_calc_split(mas, b_node, mid_split, min);
2383 		*right = mas_new_ma_node(mas, b_node);
2384 	}
2385 
2386 	if (*mid_split)
2387 		*middle = mas_new_ma_node(mas, b_node);
2388 
2389 	return split;
2390 
2391 }
2392 
2393 /*
2394  * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
2395  * pointer.
2396  * @b_node - the big node to add the entry
2397  * @mas - the maple state to get the pivot (mas->max)
2398  * @entry - the entry to add, if NULL nothing happens.
2399  */
2400 static inline void mab_set_b_end(struct maple_big_node *b_node,
2401 				 struct ma_state *mas,
2402 				 void *entry)
2403 {
2404 	if (!entry)
2405 		return;
2406 
2407 	b_node->slot[b_node->b_end] = entry;
2408 	if (mt_is_alloc(mas->tree))
2409 		b_node->gap[b_node->b_end] = mas_max_gap(mas);
2410 	b_node->pivot[b_node->b_end++] = mas->max;
2411 }
2412 
2413 /*
2414  * mas_set_split_parent() - combine_then_separate helper function.  Sets the parent
2415  * of @mas->node to either @left or @right, depending on @slot and @split
2416  *
2417  * @mas - the maple state with the node that needs a parent
2418  * @left - possible parent 1
2419  * @right - possible parent 2
2420  * @slot - the slot the mas->node was placed
2421  * @split - the split location between @left and @right
2422  */
2423 static inline void mas_set_split_parent(struct ma_state *mas,
2424 					struct maple_enode *left,
2425 					struct maple_enode *right,
2426 					unsigned char *slot, unsigned char split)
2427 {
2428 	if (mas_is_none(mas))
2429 		return;
2430 
2431 	if ((*slot) <= split)
2432 		mas_set_parent(mas, mas->node, left, *slot);
2433 	else if (right)
2434 		mas_set_parent(mas, mas->node, right, (*slot) - split - 1);
2435 
2436 	(*slot)++;
2437 }
2438 
2439 /*
2440  * mte_mid_split_check() - Check if the next node passes the mid-split
2441  * @**l: Pointer to left encoded maple node.
2442  * @**m: Pointer to middle encoded maple node.
2443  * @**r: Pointer to right encoded maple node.
2444  * @slot: The offset
2445  * @*split: The split location.
2446  * @mid_split: The middle split.
2447  */
2448 static inline void mte_mid_split_check(struct maple_enode **l,
2449 				       struct maple_enode **r,
2450 				       struct maple_enode *right,
2451 				       unsigned char slot,
2452 				       unsigned char *split,
2453 				       unsigned char mid_split)
2454 {
2455 	if (*r == right)
2456 		return;
2457 
2458 	if (slot < mid_split)
2459 		return;
2460 
2461 	*l = *r;
2462 	*r = right;
2463 	*split = mid_split;
2464 }
2465 
2466 /*
2467  * mast_set_split_parents() - Helper function to set three nodes parents.  Slot
2468  * is taken from @mast->l.
2469  * @mast - the maple subtree state
2470  * @left - the left node
2471  * @right - the right node
2472  * @split - the split location.
2473  */
2474 static inline void mast_set_split_parents(struct maple_subtree_state *mast,
2475 					  struct maple_enode *left,
2476 					  struct maple_enode *middle,
2477 					  struct maple_enode *right,
2478 					  unsigned char split,
2479 					  unsigned char mid_split)
2480 {
2481 	unsigned char slot;
2482 	struct maple_enode *l = left;
2483 	struct maple_enode *r = right;
2484 
2485 	if (mas_is_none(mast->l))
2486 		return;
2487 
2488 	if (middle)
2489 		r = middle;
2490 
2491 	slot = mast->l->offset;
2492 
2493 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2494 	mas_set_split_parent(mast->l, l, r, &slot, split);
2495 
2496 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2497 	mas_set_split_parent(mast->m, l, r, &slot, split);
2498 
2499 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2500 	mas_set_split_parent(mast->r, l, r, &slot, split);
2501 }
2502 
2503 /*
2504  * mas_topiary_node() - Dispose of a single node
2505  * @mas: The maple state for pushing nodes
2506  * @enode: The encoded maple node
2507  * @in_rcu: If the tree is in rcu mode
2508  *
2509  * The node will either be RCU freed or pushed back on the maple state.
2510  */
2511 static inline void mas_topiary_node(struct ma_state *mas,
2512 		struct ma_state *tmp_mas, bool in_rcu)
2513 {
2514 	struct maple_node *tmp;
2515 	struct maple_enode *enode;
2516 
2517 	if (mas_is_none(tmp_mas))
2518 		return;
2519 
2520 	enode = tmp_mas->node;
2521 	tmp = mte_to_node(enode);
2522 	mte_set_node_dead(enode);
2523 	if (in_rcu)
2524 		ma_free_rcu(tmp);
2525 	else
2526 		mas_push_node(mas, tmp);
2527 }
2528 
2529 /*
2530  * mas_topiary_replace() - Replace the data with new data, then repair the
2531  * parent links within the new tree.  Iterate over the dead sub-tree and collect
2532  * the dead subtrees and topiary the nodes that are no longer of use.
2533  *
2534  * The new tree will have up to three children with the correct parent.  Keep
2535  * track of the new entries as they need to be followed to find the next level
2536  * of new entries.
2537  *
2538  * The old tree will have up to three children with the old parent.  Keep track
2539  * of the old entries as they may have more nodes below replaced.  Nodes within
2540  * [index, last] are dead subtrees, others need to be freed and followed.
2541  *
2542  * @mas: The maple state pointing at the new data
2543  * @old_enode: The maple encoded node being replaced
2544  *
2545  */
2546 static inline void mas_topiary_replace(struct ma_state *mas,
2547 		struct maple_enode *old_enode)
2548 {
2549 	struct ma_state tmp[3], tmp_next[3];
2550 	MA_TOPIARY(subtrees, mas->tree);
2551 	bool in_rcu;
2552 	int i, n;
2553 
2554 	/* Place data in tree & then mark node as old */
2555 	mas_put_in_tree(mas, old_enode);
2556 
2557 	/* Update the parent pointers in the tree */
2558 	tmp[0] = *mas;
2559 	tmp[0].offset = 0;
2560 	tmp[1].status = ma_none;
2561 	tmp[2].status = ma_none;
2562 	while (!mte_is_leaf(tmp[0].node)) {
2563 		n = 0;
2564 		for (i = 0; i < 3; i++) {
2565 			if (mas_is_none(&tmp[i]))
2566 				continue;
2567 
2568 			while (n < 3) {
2569 				if (!mas_find_child(&tmp[i], &tmp_next[n]))
2570 					break;
2571 				n++;
2572 			}
2573 
2574 			mas_adopt_children(&tmp[i], tmp[i].node);
2575 		}
2576 
2577 		if (MAS_WARN_ON(mas, n == 0))
2578 			break;
2579 
2580 		while (n < 3)
2581 			tmp_next[n++].status = ma_none;
2582 
2583 		for (i = 0; i < 3; i++)
2584 			tmp[i] = tmp_next[i];
2585 	}
2586 
2587 	/* Collect the old nodes that need to be discarded */
2588 	if (mte_is_leaf(old_enode))
2589 		return mas_free(mas, old_enode);
2590 
2591 	tmp[0] = *mas;
2592 	tmp[0].offset = 0;
2593 	tmp[0].node = old_enode;
2594 	tmp[1].status = ma_none;
2595 	tmp[2].status = ma_none;
2596 	in_rcu = mt_in_rcu(mas->tree);
2597 	do {
2598 		n = 0;
2599 		for (i = 0; i < 3; i++) {
2600 			if (mas_is_none(&tmp[i]))
2601 				continue;
2602 
2603 			while (n < 3) {
2604 				if (!mas_find_child(&tmp[i], &tmp_next[n]))
2605 					break;
2606 
2607 				if ((tmp_next[n].min >= tmp_next->index) &&
2608 				    (tmp_next[n].max <= tmp_next->last)) {
2609 					mat_add(&subtrees, tmp_next[n].node);
2610 					tmp_next[n].status = ma_none;
2611 				} else {
2612 					n++;
2613 				}
2614 			}
2615 		}
2616 
2617 		if (MAS_WARN_ON(mas, n == 0))
2618 			break;
2619 
2620 		while (n < 3)
2621 			tmp_next[n++].status = ma_none;
2622 
2623 		for (i = 0; i < 3; i++) {
2624 			mas_topiary_node(mas, &tmp[i], in_rcu);
2625 			tmp[i] = tmp_next[i];
2626 		}
2627 	} while (!mte_is_leaf(tmp[0].node));
2628 
2629 	for (i = 0; i < 3; i++)
2630 		mas_topiary_node(mas, &tmp[i], in_rcu);
2631 
2632 	mas_mat_destroy(mas, &subtrees);
2633 }
2634 
2635 /*
2636  * mas_wmb_replace() - Write memory barrier and replace
2637  * @mas: The maple state
2638  * @old: The old maple encoded node that is being replaced.
2639  *
2640  * Updates gap as necessary.
2641  */
2642 static inline void mas_wmb_replace(struct ma_state *mas,
2643 		struct maple_enode *old_enode)
2644 {
2645 	/* Insert the new data in the tree */
2646 	mas_topiary_replace(mas, old_enode);
2647 
2648 	if (mte_is_leaf(mas->node))
2649 		return;
2650 
2651 	mas_update_gap(mas);
2652 }
2653 
2654 /*
2655  * mast_cp_to_nodes() - Copy data out to nodes.
2656  * @mast: The maple subtree state
2657  * @left: The left encoded maple node
2658  * @middle: The middle encoded maple node
2659  * @right: The right encoded maple node
2660  * @split: The location to split between left and (middle ? middle : right)
2661  * @mid_split: The location to split between middle and right.
2662  */
2663 static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
2664 	struct maple_enode *left, struct maple_enode *middle,
2665 	struct maple_enode *right, unsigned char split, unsigned char mid_split)
2666 {
2667 	bool new_lmax = true;
2668 
2669 	mas_node_or_none(mast->l, left);
2670 	mas_node_or_none(mast->m, middle);
2671 	mas_node_or_none(mast->r, right);
2672 
2673 	mast->l->min = mast->orig_l->min;
2674 	if (split == mast->bn->b_end) {
2675 		mast->l->max = mast->orig_r->max;
2676 		new_lmax = false;
2677 	}
2678 
2679 	mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax);
2680 
2681 	if (middle) {
2682 		mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true);
2683 		mast->m->min = mast->bn->pivot[split] + 1;
2684 		split = mid_split;
2685 	}
2686 
2687 	mast->r->max = mast->orig_r->max;
2688 	if (right) {
2689 		mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false);
2690 		mast->r->min = mast->bn->pivot[split] + 1;
2691 	}
2692 }
2693 
2694 /*
2695  * mast_combine_cp_left - Copy in the original left side of the tree into the
2696  * combined data set in the maple subtree state big node.
2697  * @mast: The maple subtree state
2698  */
2699 static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
2700 {
2701 	unsigned char l_slot = mast->orig_l->offset;
2702 
2703 	if (!l_slot)
2704 		return;
2705 
2706 	mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0);
2707 }
2708 
2709 /*
2710  * mast_combine_cp_right: Copy in the original right side of the tree into the
2711  * combined data set in the maple subtree state big node.
2712  * @mast: The maple subtree state
2713  */
2714 static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
2715 {
2716 	if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max)
2717 		return;
2718 
2719 	mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1,
2720 		   mt_slot_count(mast->orig_r->node), mast->bn,
2721 		   mast->bn->b_end);
2722 	mast->orig_r->last = mast->orig_r->max;
2723 }
2724 
2725 /*
2726  * mast_sufficient: Check if the maple subtree state has enough data in the big
2727  * node to create at least one sufficient node
2728  * @mast: the maple subtree state
2729  */
2730 static inline bool mast_sufficient(struct maple_subtree_state *mast)
2731 {
2732 	if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node))
2733 		return true;
2734 
2735 	return false;
2736 }
2737 
2738 /*
2739  * mast_overflow: Check if there is too much data in the subtree state for a
2740  * single node.
2741  * @mast: The maple subtree state
2742  */
2743 static inline bool mast_overflow(struct maple_subtree_state *mast)
2744 {
2745 	if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node))
2746 		return true;
2747 
2748 	return false;
2749 }
2750 
2751 static inline void *mtree_range_walk(struct ma_state *mas)
2752 {
2753 	unsigned long *pivots;
2754 	unsigned char offset;
2755 	struct maple_node *node;
2756 	struct maple_enode *next, *last;
2757 	enum maple_type type;
2758 	void __rcu **slots;
2759 	unsigned char end;
2760 	unsigned long max, min;
2761 	unsigned long prev_max, prev_min;
2762 
2763 	next = mas->node;
2764 	min = mas->min;
2765 	max = mas->max;
2766 	do {
2767 		last = next;
2768 		node = mte_to_node(next);
2769 		type = mte_node_type(next);
2770 		pivots = ma_pivots(node, type);
2771 		end = ma_data_end(node, type, pivots, max);
2772 		prev_min = min;
2773 		prev_max = max;
2774 		if (pivots[0] >= mas->index) {
2775 			offset = 0;
2776 			max = pivots[0];
2777 			goto next;
2778 		}
2779 
2780 		offset = 1;
2781 		while (offset < end) {
2782 			if (pivots[offset] >= mas->index) {
2783 				max = pivots[offset];
2784 				break;
2785 			}
2786 			offset++;
2787 		}
2788 
2789 		min = pivots[offset - 1] + 1;
2790 next:
2791 		slots = ma_slots(node, type);
2792 		next = mt_slot(mas->tree, slots, offset);
2793 		if (unlikely(ma_dead_node(node)))
2794 			goto dead_node;
2795 	} while (!ma_is_leaf(type));
2796 
2797 	mas->end = end;
2798 	mas->offset = offset;
2799 	mas->index = min;
2800 	mas->last = max;
2801 	mas->min = prev_min;
2802 	mas->max = prev_max;
2803 	mas->node = last;
2804 	return (void *)next;
2805 
2806 dead_node:
2807 	mas_reset(mas);
2808 	return NULL;
2809 }
2810 
2811 /*
2812  * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
2813  * @mas: The starting maple state
2814  * @mast: The maple_subtree_state, keeps track of 4 maple states.
2815  * @count: The estimated count of iterations needed.
2816  *
2817  * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
2818  * is hit.  First @b_node is split into two entries which are inserted into the
2819  * next iteration of the loop.  @b_node is returned populated with the final
2820  * iteration. @mas is used to obtain allocations.  orig_l_mas keeps track of the
2821  * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
2822  * to account of what has been copied into the new sub-tree.  The update of
2823  * orig_l_mas->last is used in mas_consume to find the slots that will need to
2824  * be either freed or destroyed.  orig_l_mas->depth keeps track of the height of
2825  * the new sub-tree in case the sub-tree becomes the full tree.
2826  *
2827  * Return: the number of elements in b_node during the last loop.
2828  */
2829 static int mas_spanning_rebalance(struct ma_state *mas,
2830 		struct maple_subtree_state *mast, unsigned char count)
2831 {
2832 	unsigned char split, mid_split;
2833 	unsigned char slot = 0;
2834 	struct maple_enode *left = NULL, *middle = NULL, *right = NULL;
2835 	struct maple_enode *old_enode;
2836 
2837 	MA_STATE(l_mas, mas->tree, mas->index, mas->index);
2838 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2839 	MA_STATE(m_mas, mas->tree, mas->index, mas->index);
2840 
2841 	/*
2842 	 * The tree needs to be rebalanced and leaves need to be kept at the same level.
2843 	 * Rebalancing is done by use of the ``struct maple_topiary``.
2844 	 */
2845 	mast->l = &l_mas;
2846 	mast->m = &m_mas;
2847 	mast->r = &r_mas;
2848 	l_mas.status = r_mas.status = m_mas.status = ma_none;
2849 
2850 	/* Check if this is not root and has sufficient data.  */
2851 	if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) &&
2852 	    unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type]))
2853 		mast_spanning_rebalance(mast);
2854 
2855 	l_mas.depth = 0;
2856 
2857 	/*
2858 	 * Each level of the tree is examined and balanced, pushing data to the left or
2859 	 * right, or rebalancing against left or right nodes is employed to avoid
2860 	 * rippling up the tree to limit the amount of churn.  Once a new sub-section of
2861 	 * the tree is created, there may be a mix of new and old nodes.  The old nodes
2862 	 * will have the incorrect parent pointers and currently be in two trees: the
2863 	 * original tree and the partially new tree.  To remedy the parent pointers in
2864 	 * the old tree, the new data is swapped into the active tree and a walk down
2865 	 * the tree is performed and the parent pointers are updated.
2866 	 * See mas_topiary_replace() for more information.
2867 	 */
2868 	while (count--) {
2869 		mast->bn->b_end--;
2870 		mast->bn->type = mte_node_type(mast->orig_l->node);
2871 		split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle,
2872 					&mid_split, mast->orig_l->min);
2873 		mast_set_split_parents(mast, left, middle, right, split,
2874 				       mid_split);
2875 		mast_cp_to_nodes(mast, left, middle, right, split, mid_split);
2876 
2877 		/*
2878 		 * Copy data from next level in the tree to mast->bn from next
2879 		 * iteration
2880 		 */
2881 		memset(mast->bn, 0, sizeof(struct maple_big_node));
2882 		mast->bn->type = mte_node_type(left);
2883 		l_mas.depth++;
2884 
2885 		/* Root already stored in l->node. */
2886 		if (mas_is_root_limits(mast->l))
2887 			goto new_root;
2888 
2889 		mast_ascend(mast);
2890 		mast_combine_cp_left(mast);
2891 		l_mas.offset = mast->bn->b_end;
2892 		mab_set_b_end(mast->bn, &l_mas, left);
2893 		mab_set_b_end(mast->bn, &m_mas, middle);
2894 		mab_set_b_end(mast->bn, &r_mas, right);
2895 
2896 		/* Copy anything necessary out of the right node. */
2897 		mast_combine_cp_right(mast);
2898 		mast->orig_l->last = mast->orig_l->max;
2899 
2900 		if (mast_sufficient(mast))
2901 			continue;
2902 
2903 		if (mast_overflow(mast))
2904 			continue;
2905 
2906 		/* May be a new root stored in mast->bn */
2907 		if (mas_is_root_limits(mast->orig_l))
2908 			break;
2909 
2910 		mast_spanning_rebalance(mast);
2911 
2912 		/* rebalancing from other nodes may require another loop. */
2913 		if (!count)
2914 			count++;
2915 	}
2916 
2917 	l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)),
2918 				mte_node_type(mast->orig_l->node));
2919 	l_mas.depth++;
2920 	mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true);
2921 	mas_set_parent(mas, left, l_mas.node, slot);
2922 	if (middle)
2923 		mas_set_parent(mas, middle, l_mas.node, ++slot);
2924 
2925 	if (right)
2926 		mas_set_parent(mas, right, l_mas.node, ++slot);
2927 
2928 	if (mas_is_root_limits(mast->l)) {
2929 new_root:
2930 		mas_mn(mast->l)->parent = ma_parent_ptr(mas_tree_parent(mas));
2931 		while (!mte_is_root(mast->orig_l->node))
2932 			mast_ascend(mast);
2933 	} else {
2934 		mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent;
2935 	}
2936 
2937 	old_enode = mast->orig_l->node;
2938 	mas->depth = l_mas.depth;
2939 	mas->node = l_mas.node;
2940 	mas->min = l_mas.min;
2941 	mas->max = l_mas.max;
2942 	mas->offset = l_mas.offset;
2943 	mas_wmb_replace(mas, old_enode);
2944 	mtree_range_walk(mas);
2945 	return mast->bn->b_end;
2946 }
2947 
2948 /*
2949  * mas_rebalance() - Rebalance a given node.
2950  * @mas: The maple state
2951  * @b_node: The big maple node.
2952  *
2953  * Rebalance two nodes into a single node or two new nodes that are sufficient.
2954  * Continue upwards until tree is sufficient.
2955  *
2956  * Return: the number of elements in b_node during the last loop.
2957  */
2958 static inline int mas_rebalance(struct ma_state *mas,
2959 				struct maple_big_node *b_node)
2960 {
2961 	char empty_count = mas_mt_height(mas);
2962 	struct maple_subtree_state mast;
2963 	unsigned char shift, b_end = ++b_node->b_end;
2964 
2965 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
2966 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2967 
2968 	trace_ma_op(__func__, mas);
2969 
2970 	/*
2971 	 * Rebalancing occurs if a node is insufficient.  Data is rebalanced
2972 	 * against the node to the right if it exists, otherwise the node to the
2973 	 * left of this node is rebalanced against this node.  If rebalancing
2974 	 * causes just one node to be produced instead of two, then the parent
2975 	 * is also examined and rebalanced if it is insufficient.  Every level
2976 	 * tries to combine the data in the same way.  If one node contains the
2977 	 * entire range of the tree, then that node is used as a new root node.
2978 	 */
2979 	mas_node_count(mas, empty_count * 2 - 1);
2980 	if (mas_is_err(mas))
2981 		return 0;
2982 
2983 	mast.orig_l = &l_mas;
2984 	mast.orig_r = &r_mas;
2985 	mast.bn = b_node;
2986 	mast.bn->type = mte_node_type(mas->node);
2987 
2988 	l_mas = r_mas = *mas;
2989 
2990 	if (mas_next_sibling(&r_mas)) {
2991 		mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end);
2992 		r_mas.last = r_mas.index = r_mas.max;
2993 	} else {
2994 		mas_prev_sibling(&l_mas);
2995 		shift = mas_data_end(&l_mas) + 1;
2996 		mab_shift_right(b_node, shift);
2997 		mas->offset += shift;
2998 		mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0);
2999 		b_node->b_end = shift + b_end;
3000 		l_mas.index = l_mas.last = l_mas.min;
3001 	}
3002 
3003 	return mas_spanning_rebalance(mas, &mast, empty_count);
3004 }
3005 
3006 /*
3007  * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple
3008  * state.
3009  * @mas: The maple state
3010  * @end: The end of the left-most node.
3011  *
3012  * During a mass-insert event (such as forking), it may be necessary to
3013  * rebalance the left-most node when it is not sufficient.
3014  */
3015 static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end)
3016 {
3017 	enum maple_type mt = mte_node_type(mas->node);
3018 	struct maple_node reuse, *newnode, *parent, *new_left, *left, *node;
3019 	struct maple_enode *eparent, *old_eparent;
3020 	unsigned char offset, tmp, split = mt_slots[mt] / 2;
3021 	void __rcu **l_slots, **slots;
3022 	unsigned long *l_pivs, *pivs, gap;
3023 	bool in_rcu = mt_in_rcu(mas->tree);
3024 
3025 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3026 
3027 	l_mas = *mas;
3028 	mas_prev_sibling(&l_mas);
3029 
3030 	/* set up node. */
3031 	if (in_rcu) {
3032 		/* Allocate for both left and right as well as parent. */
3033 		mas_node_count(mas, 3);
3034 		if (mas_is_err(mas))
3035 			return;
3036 
3037 		newnode = mas_pop_node(mas);
3038 	} else {
3039 		newnode = &reuse;
3040 	}
3041 
3042 	node = mas_mn(mas);
3043 	newnode->parent = node->parent;
3044 	slots = ma_slots(newnode, mt);
3045 	pivs = ma_pivots(newnode, mt);
3046 	left = mas_mn(&l_mas);
3047 	l_slots = ma_slots(left, mt);
3048 	l_pivs = ma_pivots(left, mt);
3049 	if (!l_slots[split])
3050 		split++;
3051 	tmp = mas_data_end(&l_mas) - split;
3052 
3053 	memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp);
3054 	memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp);
3055 	pivs[tmp] = l_mas.max;
3056 	memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end);
3057 	memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end);
3058 
3059 	l_mas.max = l_pivs[split];
3060 	mas->min = l_mas.max + 1;
3061 	old_eparent = mt_mk_node(mte_parent(l_mas.node),
3062 			     mas_parent_type(&l_mas, l_mas.node));
3063 	tmp += end;
3064 	if (!in_rcu) {
3065 		unsigned char max_p = mt_pivots[mt];
3066 		unsigned char max_s = mt_slots[mt];
3067 
3068 		if (tmp < max_p)
3069 			memset(pivs + tmp, 0,
3070 			       sizeof(unsigned long) * (max_p - tmp));
3071 
3072 		if (tmp < mt_slots[mt])
3073 			memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3074 
3075 		memcpy(node, newnode, sizeof(struct maple_node));
3076 		ma_set_meta(node, mt, 0, tmp - 1);
3077 		mte_set_pivot(old_eparent, mte_parent_slot(l_mas.node),
3078 			      l_pivs[split]);
3079 
3080 		/* Remove data from l_pivs. */
3081 		tmp = split + 1;
3082 		memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp));
3083 		memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3084 		ma_set_meta(left, mt, 0, split);
3085 		eparent = old_eparent;
3086 
3087 		goto done;
3088 	}
3089 
3090 	/* RCU requires replacing both l_mas, mas, and parent. */
3091 	mas->node = mt_mk_node(newnode, mt);
3092 	ma_set_meta(newnode, mt, 0, tmp);
3093 
3094 	new_left = mas_pop_node(mas);
3095 	new_left->parent = left->parent;
3096 	mt = mte_node_type(l_mas.node);
3097 	slots = ma_slots(new_left, mt);
3098 	pivs = ma_pivots(new_left, mt);
3099 	memcpy(slots, l_slots, sizeof(void *) * split);
3100 	memcpy(pivs, l_pivs, sizeof(unsigned long) * split);
3101 	ma_set_meta(new_left, mt, 0, split);
3102 	l_mas.node = mt_mk_node(new_left, mt);
3103 
3104 	/* replace parent. */
3105 	offset = mte_parent_slot(mas->node);
3106 	mt = mas_parent_type(&l_mas, l_mas.node);
3107 	parent = mas_pop_node(mas);
3108 	slots = ma_slots(parent, mt);
3109 	pivs = ma_pivots(parent, mt);
3110 	memcpy(parent, mte_to_node(old_eparent), sizeof(struct maple_node));
3111 	rcu_assign_pointer(slots[offset], mas->node);
3112 	rcu_assign_pointer(slots[offset - 1], l_mas.node);
3113 	pivs[offset - 1] = l_mas.max;
3114 	eparent = mt_mk_node(parent, mt);
3115 done:
3116 	gap = mas_leaf_max_gap(mas);
3117 	mte_set_gap(eparent, mte_parent_slot(mas->node), gap);
3118 	gap = mas_leaf_max_gap(&l_mas);
3119 	mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap);
3120 	mas_ascend(mas);
3121 
3122 	if (in_rcu) {
3123 		mas_replace_node(mas, old_eparent);
3124 		mas_adopt_children(mas, mas->node);
3125 	}
3126 
3127 	mas_update_gap(mas);
3128 }
3129 
3130 /*
3131  * mas_split_final_node() - Split the final node in a subtree operation.
3132  * @mast: the maple subtree state
3133  * @mas: The maple state
3134  * @height: The height of the tree in case it's a new root.
3135  */
3136 static inline void mas_split_final_node(struct maple_subtree_state *mast,
3137 					struct ma_state *mas, int height)
3138 {
3139 	struct maple_enode *ancestor;
3140 
3141 	if (mte_is_root(mas->node)) {
3142 		if (mt_is_alloc(mas->tree))
3143 			mast->bn->type = maple_arange_64;
3144 		else
3145 			mast->bn->type = maple_range_64;
3146 		mas->depth = height;
3147 	}
3148 	/*
3149 	 * Only a single node is used here, could be root.
3150 	 * The Big_node data should just fit in a single node.
3151 	 */
3152 	ancestor = mas_new_ma_node(mas, mast->bn);
3153 	mas_set_parent(mas, mast->l->node, ancestor, mast->l->offset);
3154 	mas_set_parent(mas, mast->r->node, ancestor, mast->r->offset);
3155 	mte_to_node(ancestor)->parent = mas_mn(mas)->parent;
3156 
3157 	mast->l->node = ancestor;
3158 	mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true);
3159 	mas->offset = mast->bn->b_end - 1;
3160 }
3161 
3162 /*
3163  * mast_fill_bnode() - Copy data into the big node in the subtree state
3164  * @mast: The maple subtree state
3165  * @mas: the maple state
3166  * @skip: The number of entries to skip for new nodes insertion.
3167  */
3168 static inline void mast_fill_bnode(struct maple_subtree_state *mast,
3169 					 struct ma_state *mas,
3170 					 unsigned char skip)
3171 {
3172 	bool cp = true;
3173 	unsigned char split;
3174 
3175 	memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap));
3176 	memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot));
3177 	memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot));
3178 	mast->bn->b_end = 0;
3179 
3180 	if (mte_is_root(mas->node)) {
3181 		cp = false;
3182 	} else {
3183 		mas_ascend(mas);
3184 		mas->offset = mte_parent_slot(mas->node);
3185 	}
3186 
3187 	if (cp && mast->l->offset)
3188 		mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0);
3189 
3190 	split = mast->bn->b_end;
3191 	mab_set_b_end(mast->bn, mast->l, mast->l->node);
3192 	mast->r->offset = mast->bn->b_end;
3193 	mab_set_b_end(mast->bn, mast->r, mast->r->node);
3194 	if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max)
3195 		cp = false;
3196 
3197 	if (cp)
3198 		mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1,
3199 			   mast->bn, mast->bn->b_end);
3200 
3201 	mast->bn->b_end--;
3202 	mast->bn->type = mte_node_type(mas->node);
3203 }
3204 
3205 /*
3206  * mast_split_data() - Split the data in the subtree state big node into regular
3207  * nodes.
3208  * @mast: The maple subtree state
3209  * @mas: The maple state
3210  * @split: The location to split the big node
3211  */
3212 static inline void mast_split_data(struct maple_subtree_state *mast,
3213 	   struct ma_state *mas, unsigned char split)
3214 {
3215 	unsigned char p_slot;
3216 
3217 	mab_mas_cp(mast->bn, 0, split, mast->l, true);
3218 	mte_set_pivot(mast->r->node, 0, mast->r->max);
3219 	mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false);
3220 	mast->l->offset = mte_parent_slot(mas->node);
3221 	mast->l->max = mast->bn->pivot[split];
3222 	mast->r->min = mast->l->max + 1;
3223 	if (mte_is_leaf(mas->node))
3224 		return;
3225 
3226 	p_slot = mast->orig_l->offset;
3227 	mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node,
3228 			     &p_slot, split);
3229 	mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node,
3230 			     &p_slot, split);
3231 }
3232 
3233 /*
3234  * mas_push_data() - Instead of splitting a node, it is beneficial to push the
3235  * data to the right or left node if there is room.
3236  * @mas: The maple state
3237  * @height: The current height of the maple state
3238  * @mast: The maple subtree state
3239  * @left: Push left or not.
3240  *
3241  * Keeping the height of the tree low means faster lookups.
3242  *
3243  * Return: True if pushed, false otherwise.
3244  */
3245 static inline bool mas_push_data(struct ma_state *mas, int height,
3246 				 struct maple_subtree_state *mast, bool left)
3247 {
3248 	unsigned char slot_total = mast->bn->b_end;
3249 	unsigned char end, space, split;
3250 
3251 	MA_STATE(tmp_mas, mas->tree, mas->index, mas->last);
3252 	tmp_mas = *mas;
3253 	tmp_mas.depth = mast->l->depth;
3254 
3255 	if (left && !mas_prev_sibling(&tmp_mas))
3256 		return false;
3257 	else if (!left && !mas_next_sibling(&tmp_mas))
3258 		return false;
3259 
3260 	end = mas_data_end(&tmp_mas);
3261 	slot_total += end;
3262 	space = 2 * mt_slot_count(mas->node) - 2;
3263 	/* -2 instead of -1 to ensure there isn't a triple split */
3264 	if (ma_is_leaf(mast->bn->type))
3265 		space--;
3266 
3267 	if (mas->max == ULONG_MAX)
3268 		space--;
3269 
3270 	if (slot_total >= space)
3271 		return false;
3272 
3273 	/* Get the data; Fill mast->bn */
3274 	mast->bn->b_end++;
3275 	if (left) {
3276 		mab_shift_right(mast->bn, end + 1);
3277 		mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0);
3278 		mast->bn->b_end = slot_total + 1;
3279 	} else {
3280 		mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end);
3281 	}
3282 
3283 	/* Configure mast for splitting of mast->bn */
3284 	split = mt_slots[mast->bn->type] - 2;
3285 	if (left) {
3286 		/*  Switch mas to prev node  */
3287 		*mas = tmp_mas;
3288 		/* Start using mast->l for the left side. */
3289 		tmp_mas.node = mast->l->node;
3290 		*mast->l = tmp_mas;
3291 	} else {
3292 		tmp_mas.node = mast->r->node;
3293 		*mast->r = tmp_mas;
3294 		split = slot_total - split;
3295 	}
3296 	split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]);
3297 	/* Update parent slot for split calculation. */
3298 	if (left)
3299 		mast->orig_l->offset += end + 1;
3300 
3301 	mast_split_data(mast, mas, split);
3302 	mast_fill_bnode(mast, mas, 2);
3303 	mas_split_final_node(mast, mas, height + 1);
3304 	return true;
3305 }
3306 
3307 /*
3308  * mas_split() - Split data that is too big for one node into two.
3309  * @mas: The maple state
3310  * @b_node: The maple big node
3311  * Return: 1 on success, 0 on failure.
3312  */
3313 static int mas_split(struct ma_state *mas, struct maple_big_node *b_node)
3314 {
3315 	struct maple_subtree_state mast;
3316 	int height = 0;
3317 	unsigned char mid_split, split = 0;
3318 	struct maple_enode *old;
3319 
3320 	/*
3321 	 * Splitting is handled differently from any other B-tree; the Maple
3322 	 * Tree splits upwards.  Splitting up means that the split operation
3323 	 * occurs when the walk of the tree hits the leaves and not on the way
3324 	 * down.  The reason for splitting up is that it is impossible to know
3325 	 * how much space will be needed until the leaf is (or leaves are)
3326 	 * reached.  Since overwriting data is allowed and a range could
3327 	 * overwrite more than one range or result in changing one entry into 3
3328 	 * entries, it is impossible to know if a split is required until the
3329 	 * data is examined.
3330 	 *
3331 	 * Splitting is a balancing act between keeping allocations to a minimum
3332 	 * and avoiding a 'jitter' event where a tree is expanded to make room
3333 	 * for an entry followed by a contraction when the entry is removed.  To
3334 	 * accomplish the balance, there are empty slots remaining in both left
3335 	 * and right nodes after a split.
3336 	 */
3337 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3338 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3339 	MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last);
3340 	MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last);
3341 
3342 	trace_ma_op(__func__, mas);
3343 	mas->depth = mas_mt_height(mas);
3344 	/* Allocation failures will happen early. */
3345 	mas_node_count(mas, 1 + mas->depth * 2);
3346 	if (mas_is_err(mas))
3347 		return 0;
3348 
3349 	mast.l = &l_mas;
3350 	mast.r = &r_mas;
3351 	mast.orig_l = &prev_l_mas;
3352 	mast.orig_r = &prev_r_mas;
3353 	mast.bn = b_node;
3354 
3355 	while (height++ <= mas->depth) {
3356 		if (mt_slots[b_node->type] > b_node->b_end) {
3357 			mas_split_final_node(&mast, mas, height);
3358 			break;
3359 		}
3360 
3361 		l_mas = r_mas = *mas;
3362 		l_mas.node = mas_new_ma_node(mas, b_node);
3363 		r_mas.node = mas_new_ma_node(mas, b_node);
3364 		/*
3365 		 * Another way that 'jitter' is avoided is to terminate a split up early if the
3366 		 * left or right node has space to spare.  This is referred to as "pushing left"
3367 		 * or "pushing right" and is similar to the B* tree, except the nodes left or
3368 		 * right can rarely be reused due to RCU, but the ripple upwards is halted which
3369 		 * is a significant savings.
3370 		 */
3371 		/* Try to push left. */
3372 		if (mas_push_data(mas, height, &mast, true))
3373 			break;
3374 		/* Try to push right. */
3375 		if (mas_push_data(mas, height, &mast, false))
3376 			break;
3377 
3378 		split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min);
3379 		mast_split_data(&mast, mas, split);
3380 		/*
3381 		 * Usually correct, mab_mas_cp in the above call overwrites
3382 		 * r->max.
3383 		 */
3384 		mast.r->max = mas->max;
3385 		mast_fill_bnode(&mast, mas, 1);
3386 		prev_l_mas = *mast.l;
3387 		prev_r_mas = *mast.r;
3388 	}
3389 
3390 	/* Set the original node as dead */
3391 	old = mas->node;
3392 	mas->node = l_mas.node;
3393 	mas_wmb_replace(mas, old);
3394 	mtree_range_walk(mas);
3395 	return 1;
3396 }
3397 
3398 /*
3399  * mas_reuse_node() - Reuse the node to store the data.
3400  * @wr_mas: The maple write state
3401  * @bn: The maple big node
3402  * @end: The end of the data.
3403  *
3404  * Will always return false in RCU mode.
3405  *
3406  * Return: True if node was reused, false otherwise.
3407  */
3408 static inline bool mas_reuse_node(struct ma_wr_state *wr_mas,
3409 			  struct maple_big_node *bn, unsigned char end)
3410 {
3411 	/* Need to be rcu safe. */
3412 	if (mt_in_rcu(wr_mas->mas->tree))
3413 		return false;
3414 
3415 	if (end > bn->b_end) {
3416 		int clear = mt_slots[wr_mas->type] - bn->b_end;
3417 
3418 		memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--);
3419 		memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear);
3420 	}
3421 	mab_mas_cp(bn, 0, bn->b_end, wr_mas->mas, false);
3422 	return true;
3423 }
3424 
3425 /*
3426  * mas_commit_b_node() - Commit the big node into the tree.
3427  * @wr_mas: The maple write state
3428  * @b_node: The maple big node
3429  * @end: The end of the data.
3430  */
3431 static noinline_for_kasan int mas_commit_b_node(struct ma_wr_state *wr_mas,
3432 			    struct maple_big_node *b_node, unsigned char end)
3433 {
3434 	struct maple_node *node;
3435 	struct maple_enode *old_enode;
3436 	unsigned char b_end = b_node->b_end;
3437 	enum maple_type b_type = b_node->type;
3438 
3439 	old_enode = wr_mas->mas->node;
3440 	if ((b_end < mt_min_slots[b_type]) &&
3441 	    (!mte_is_root(old_enode)) &&
3442 	    (mas_mt_height(wr_mas->mas) > 1))
3443 		return mas_rebalance(wr_mas->mas, b_node);
3444 
3445 	if (b_end >= mt_slots[b_type])
3446 		return mas_split(wr_mas->mas, b_node);
3447 
3448 	if (mas_reuse_node(wr_mas, b_node, end))
3449 		goto reuse_node;
3450 
3451 	mas_node_count(wr_mas->mas, 1);
3452 	if (mas_is_err(wr_mas->mas))
3453 		return 0;
3454 
3455 	node = mas_pop_node(wr_mas->mas);
3456 	node->parent = mas_mn(wr_mas->mas)->parent;
3457 	wr_mas->mas->node = mt_mk_node(node, b_type);
3458 	mab_mas_cp(b_node, 0, b_end, wr_mas->mas, false);
3459 	mas_replace_node(wr_mas->mas, old_enode);
3460 reuse_node:
3461 	mas_update_gap(wr_mas->mas);
3462 	wr_mas->mas->end = b_end;
3463 	return 1;
3464 }
3465 
3466 /*
3467  * mas_root_expand() - Expand a root to a node
3468  * @mas: The maple state
3469  * @entry: The entry to store into the tree
3470  */
3471 static inline int mas_root_expand(struct ma_state *mas, void *entry)
3472 {
3473 	void *contents = mas_root_locked(mas);
3474 	enum maple_type type = maple_leaf_64;
3475 	struct maple_node *node;
3476 	void __rcu **slots;
3477 	unsigned long *pivots;
3478 	int slot = 0;
3479 
3480 	mas_node_count(mas, 1);
3481 	if (unlikely(mas_is_err(mas)))
3482 		return 0;
3483 
3484 	node = mas_pop_node(mas);
3485 	pivots = ma_pivots(node, type);
3486 	slots = ma_slots(node, type);
3487 	node->parent = ma_parent_ptr(mas_tree_parent(mas));
3488 	mas->node = mt_mk_node(node, type);
3489 	mas->status = ma_active;
3490 
3491 	if (mas->index) {
3492 		if (contents) {
3493 			rcu_assign_pointer(slots[slot], contents);
3494 			if (likely(mas->index > 1))
3495 				slot++;
3496 		}
3497 		pivots[slot++] = mas->index - 1;
3498 	}
3499 
3500 	rcu_assign_pointer(slots[slot], entry);
3501 	mas->offset = slot;
3502 	pivots[slot] = mas->last;
3503 	if (mas->last != ULONG_MAX)
3504 		pivots[++slot] = ULONG_MAX;
3505 
3506 	mas->depth = 1;
3507 	mas_set_height(mas);
3508 	ma_set_meta(node, maple_leaf_64, 0, slot);
3509 	/* swap the new root into the tree */
3510 	rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3511 	return slot;
3512 }
3513 
3514 static inline void mas_store_root(struct ma_state *mas, void *entry)
3515 {
3516 	if (likely((mas->last != 0) || (mas->index != 0)))
3517 		mas_root_expand(mas, entry);
3518 	else if (((unsigned long) (entry) & 3) == 2)
3519 		mas_root_expand(mas, entry);
3520 	else {
3521 		rcu_assign_pointer(mas->tree->ma_root, entry);
3522 		mas->status = ma_start;
3523 	}
3524 }
3525 
3526 /*
3527  * mas_is_span_wr() - Check if the write needs to be treated as a write that
3528  * spans the node.
3529  * @mas: The maple state
3530  * @piv: The pivot value being written
3531  * @type: The maple node type
3532  * @entry: The data to write
3533  *
3534  * Spanning writes are writes that start in one node and end in another OR if
3535  * the write of a %NULL will cause the node to end with a %NULL.
3536  *
3537  * Return: True if this is a spanning write, false otherwise.
3538  */
3539 static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
3540 {
3541 	unsigned long max = wr_mas->r_max;
3542 	unsigned long last = wr_mas->mas->last;
3543 	enum maple_type type = wr_mas->type;
3544 	void *entry = wr_mas->entry;
3545 
3546 	/* Contained in this pivot, fast path */
3547 	if (last < max)
3548 		return false;
3549 
3550 	if (ma_is_leaf(type)) {
3551 		max = wr_mas->mas->max;
3552 		if (last < max)
3553 			return false;
3554 	}
3555 
3556 	if (last == max) {
3557 		/*
3558 		 * The last entry of leaf node cannot be NULL unless it is the
3559 		 * rightmost node (writing ULONG_MAX), otherwise it spans slots.
3560 		 */
3561 		if (entry || last == ULONG_MAX)
3562 			return false;
3563 	}
3564 
3565 	trace_ma_write(__func__, wr_mas->mas, wr_mas->r_max, entry);
3566 	return true;
3567 }
3568 
3569 static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
3570 {
3571 	wr_mas->type = mte_node_type(wr_mas->mas->node);
3572 	mas_wr_node_walk(wr_mas);
3573 	wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type);
3574 }
3575 
3576 static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
3577 {
3578 	wr_mas->mas->max = wr_mas->r_max;
3579 	wr_mas->mas->min = wr_mas->r_min;
3580 	wr_mas->mas->node = wr_mas->content;
3581 	wr_mas->mas->offset = 0;
3582 	wr_mas->mas->depth++;
3583 }
3584 /*
3585  * mas_wr_walk() - Walk the tree for a write.
3586  * @wr_mas: The maple write state
3587  *
3588  * Uses mas_slot_locked() and does not need to worry about dead nodes.
3589  *
3590  * Return: True if it's contained in a node, false on spanning write.
3591  */
3592 static bool mas_wr_walk(struct ma_wr_state *wr_mas)
3593 {
3594 	struct ma_state *mas = wr_mas->mas;
3595 
3596 	while (true) {
3597 		mas_wr_walk_descend(wr_mas);
3598 		if (unlikely(mas_is_span_wr(wr_mas)))
3599 			return false;
3600 
3601 		wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3602 						  mas->offset);
3603 		if (ma_is_leaf(wr_mas->type))
3604 			return true;
3605 
3606 		mas_wr_walk_traverse(wr_mas);
3607 	}
3608 
3609 	return true;
3610 }
3611 
3612 static bool mas_wr_walk_index(struct ma_wr_state *wr_mas)
3613 {
3614 	struct ma_state *mas = wr_mas->mas;
3615 
3616 	while (true) {
3617 		mas_wr_walk_descend(wr_mas);
3618 		wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3619 						  mas->offset);
3620 		if (ma_is_leaf(wr_mas->type))
3621 			return true;
3622 		mas_wr_walk_traverse(wr_mas);
3623 
3624 	}
3625 	return true;
3626 }
3627 /*
3628  * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
3629  * @l_wr_mas: The left maple write state
3630  * @r_wr_mas: The right maple write state
3631  */
3632 static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
3633 					    struct ma_wr_state *r_wr_mas)
3634 {
3635 	struct ma_state *r_mas = r_wr_mas->mas;
3636 	struct ma_state *l_mas = l_wr_mas->mas;
3637 	unsigned char l_slot;
3638 
3639 	l_slot = l_mas->offset;
3640 	if (!l_wr_mas->content)
3641 		l_mas->index = l_wr_mas->r_min;
3642 
3643 	if ((l_mas->index == l_wr_mas->r_min) &&
3644 		 (l_slot &&
3645 		  !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) {
3646 		if (l_slot > 1)
3647 			l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1;
3648 		else
3649 			l_mas->index = l_mas->min;
3650 
3651 		l_mas->offset = l_slot - 1;
3652 	}
3653 
3654 	if (!r_wr_mas->content) {
3655 		if (r_mas->last < r_wr_mas->r_max)
3656 			r_mas->last = r_wr_mas->r_max;
3657 		r_mas->offset++;
3658 	} else if ((r_mas->last == r_wr_mas->r_max) &&
3659 	    (r_mas->last < r_mas->max) &&
3660 	    !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) {
3661 		r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots,
3662 					     r_wr_mas->type, r_mas->offset + 1);
3663 		r_mas->offset++;
3664 	}
3665 }
3666 
3667 static inline void *mas_state_walk(struct ma_state *mas)
3668 {
3669 	void *entry;
3670 
3671 	entry = mas_start(mas);
3672 	if (mas_is_none(mas))
3673 		return NULL;
3674 
3675 	if (mas_is_ptr(mas))
3676 		return entry;
3677 
3678 	return mtree_range_walk(mas);
3679 }
3680 
3681 /*
3682  * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
3683  * to date.
3684  *
3685  * @mas: The maple state.
3686  *
3687  * Note: Leaves mas in undesirable state.
3688  * Return: The entry for @mas->index or %NULL on dead node.
3689  */
3690 static inline void *mtree_lookup_walk(struct ma_state *mas)
3691 {
3692 	unsigned long *pivots;
3693 	unsigned char offset;
3694 	struct maple_node *node;
3695 	struct maple_enode *next;
3696 	enum maple_type type;
3697 	void __rcu **slots;
3698 	unsigned char end;
3699 
3700 	next = mas->node;
3701 	do {
3702 		node = mte_to_node(next);
3703 		type = mte_node_type(next);
3704 		pivots = ma_pivots(node, type);
3705 		end = mt_pivots[type];
3706 		offset = 0;
3707 		do {
3708 			if (pivots[offset] >= mas->index)
3709 				break;
3710 		} while (++offset < end);
3711 
3712 		slots = ma_slots(node, type);
3713 		next = mt_slot(mas->tree, slots, offset);
3714 		if (unlikely(ma_dead_node(node)))
3715 			goto dead_node;
3716 	} while (!ma_is_leaf(type));
3717 
3718 	return (void *)next;
3719 
3720 dead_node:
3721 	mas_reset(mas);
3722 	return NULL;
3723 }
3724 
3725 static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
3726 /*
3727  * mas_new_root() - Create a new root node that only contains the entry passed
3728  * in.
3729  * @mas: The maple state
3730  * @entry: The entry to store.
3731  *
3732  * Only valid when the index == 0 and the last == ULONG_MAX
3733  *
3734  * Return 0 on error, 1 on success.
3735  */
3736 static inline int mas_new_root(struct ma_state *mas, void *entry)
3737 {
3738 	struct maple_enode *root = mas_root_locked(mas);
3739 	enum maple_type type = maple_leaf_64;
3740 	struct maple_node *node;
3741 	void __rcu **slots;
3742 	unsigned long *pivots;
3743 
3744 	if (!entry && !mas->index && mas->last == ULONG_MAX) {
3745 		mas->depth = 0;
3746 		mas_set_height(mas);
3747 		rcu_assign_pointer(mas->tree->ma_root, entry);
3748 		mas->status = ma_start;
3749 		goto done;
3750 	}
3751 
3752 	mas_node_count(mas, 1);
3753 	if (mas_is_err(mas))
3754 		return 0;
3755 
3756 	node = mas_pop_node(mas);
3757 	pivots = ma_pivots(node, type);
3758 	slots = ma_slots(node, type);
3759 	node->parent = ma_parent_ptr(mas_tree_parent(mas));
3760 	mas->node = mt_mk_node(node, type);
3761 	mas->status = ma_active;
3762 	rcu_assign_pointer(slots[0], entry);
3763 	pivots[0] = mas->last;
3764 	mas->depth = 1;
3765 	mas_set_height(mas);
3766 	rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3767 
3768 done:
3769 	if (xa_is_node(root))
3770 		mte_destroy_walk(root, mas->tree);
3771 
3772 	return 1;
3773 }
3774 /*
3775  * mas_wr_spanning_store() - Create a subtree with the store operation completed
3776  * and new nodes where necessary, then place the sub-tree in the actual tree.
3777  * Note that mas is expected to point to the node which caused the store to
3778  * span.
3779  * @wr_mas: The maple write state
3780  *
3781  * Return: 0 on error, positive on success.
3782  */
3783 static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas)
3784 {
3785 	struct maple_subtree_state mast;
3786 	struct maple_big_node b_node;
3787 	struct ma_state *mas;
3788 	unsigned char height;
3789 
3790 	/* Left and Right side of spanning store */
3791 	MA_STATE(l_mas, NULL, 0, 0);
3792 	MA_STATE(r_mas, NULL, 0, 0);
3793 	MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry);
3794 	MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry);
3795 
3796 	/*
3797 	 * A store operation that spans multiple nodes is called a spanning
3798 	 * store and is handled early in the store call stack by the function
3799 	 * mas_is_span_wr().  When a spanning store is identified, the maple
3800 	 * state is duplicated.  The first maple state walks the left tree path
3801 	 * to ``index``, the duplicate walks the right tree path to ``last``.
3802 	 * The data in the two nodes are combined into a single node, two nodes,
3803 	 * or possibly three nodes (see the 3-way split above).  A ``NULL``
3804 	 * written to the last entry of a node is considered a spanning store as
3805 	 * a rebalance is required for the operation to complete and an overflow
3806 	 * of data may happen.
3807 	 */
3808 	mas = wr_mas->mas;
3809 	trace_ma_op(__func__, mas);
3810 
3811 	if (unlikely(!mas->index && mas->last == ULONG_MAX))
3812 		return mas_new_root(mas, wr_mas->entry);
3813 	/*
3814 	 * Node rebalancing may occur due to this store, so there may be three new
3815 	 * entries per level plus a new root.
3816 	 */
3817 	height = mas_mt_height(mas);
3818 	mas_node_count(mas, 1 + height * 3);
3819 	if (mas_is_err(mas))
3820 		return 0;
3821 
3822 	/*
3823 	 * Set up right side.  Need to get to the next offset after the spanning
3824 	 * store to ensure it's not NULL and to combine both the next node and
3825 	 * the node with the start together.
3826 	 */
3827 	r_mas = *mas;
3828 	/* Avoid overflow, walk to next slot in the tree. */
3829 	if (r_mas.last + 1)
3830 		r_mas.last++;
3831 
3832 	r_mas.index = r_mas.last;
3833 	mas_wr_walk_index(&r_wr_mas);
3834 	r_mas.last = r_mas.index = mas->last;
3835 
3836 	/* Set up left side. */
3837 	l_mas = *mas;
3838 	mas_wr_walk_index(&l_wr_mas);
3839 
3840 	if (!wr_mas->entry) {
3841 		mas_extend_spanning_null(&l_wr_mas, &r_wr_mas);
3842 		mas->offset = l_mas.offset;
3843 		mas->index = l_mas.index;
3844 		mas->last = l_mas.last = r_mas.last;
3845 	}
3846 
3847 	/* expanding NULLs may make this cover the entire range */
3848 	if (!l_mas.index && r_mas.last == ULONG_MAX) {
3849 		mas_set_range(mas, 0, ULONG_MAX);
3850 		return mas_new_root(mas, wr_mas->entry);
3851 	}
3852 
3853 	memset(&b_node, 0, sizeof(struct maple_big_node));
3854 	/* Copy l_mas and store the value in b_node. */
3855 	mas_store_b_node(&l_wr_mas, &b_node, l_mas.end);
3856 	/* Copy r_mas into b_node. */
3857 	if (r_mas.offset <= r_mas.end)
3858 		mas_mab_cp(&r_mas, r_mas.offset, r_mas.end,
3859 			   &b_node, b_node.b_end + 1);
3860 	else
3861 		b_node.b_end++;
3862 
3863 	/* Stop spanning searches by searching for just index. */
3864 	l_mas.index = l_mas.last = mas->index;
3865 
3866 	mast.bn = &b_node;
3867 	mast.orig_l = &l_mas;
3868 	mast.orig_r = &r_mas;
3869 	/* Combine l_mas and r_mas and split them up evenly again. */
3870 	return mas_spanning_rebalance(mas, &mast, height + 1);
3871 }
3872 
3873 /*
3874  * mas_wr_node_store() - Attempt to store the value in a node
3875  * @wr_mas: The maple write state
3876  *
3877  * Attempts to reuse the node, but may allocate.
3878  *
3879  * Return: True if stored, false otherwise
3880  */
3881 static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas,
3882 				     unsigned char new_end)
3883 {
3884 	struct ma_state *mas = wr_mas->mas;
3885 	void __rcu **dst_slots;
3886 	unsigned long *dst_pivots;
3887 	unsigned char dst_offset, offset_end = wr_mas->offset_end;
3888 	struct maple_node reuse, *newnode;
3889 	unsigned char copy_size, node_pivots = mt_pivots[wr_mas->type];
3890 	bool in_rcu = mt_in_rcu(mas->tree);
3891 
3892 	/* Check if there is enough data. The room is enough. */
3893 	if (!mte_is_root(mas->node) && (new_end <= mt_min_slots[wr_mas->type]) &&
3894 	    !(mas->mas_flags & MA_STATE_BULK))
3895 		return false;
3896 
3897 	if (mas->last == wr_mas->end_piv)
3898 		offset_end++; /* don't copy this offset */
3899 	else if (unlikely(wr_mas->r_max == ULONG_MAX))
3900 		mas_bulk_rebalance(mas, mas->end, wr_mas->type);
3901 
3902 	/* set up node. */
3903 	if (in_rcu) {
3904 		mas_node_count(mas, 1);
3905 		if (mas_is_err(mas))
3906 			return false;
3907 
3908 		newnode = mas_pop_node(mas);
3909 	} else {
3910 		memset(&reuse, 0, sizeof(struct maple_node));
3911 		newnode = &reuse;
3912 	}
3913 
3914 	newnode->parent = mas_mn(mas)->parent;
3915 	dst_pivots = ma_pivots(newnode, wr_mas->type);
3916 	dst_slots = ma_slots(newnode, wr_mas->type);
3917 	/* Copy from start to insert point */
3918 	memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * mas->offset);
3919 	memcpy(dst_slots, wr_mas->slots, sizeof(void *) * mas->offset);
3920 
3921 	/* Handle insert of new range starting after old range */
3922 	if (wr_mas->r_min < mas->index) {
3923 		rcu_assign_pointer(dst_slots[mas->offset], wr_mas->content);
3924 		dst_pivots[mas->offset++] = mas->index - 1;
3925 	}
3926 
3927 	/* Store the new entry and range end. */
3928 	if (mas->offset < node_pivots)
3929 		dst_pivots[mas->offset] = mas->last;
3930 	rcu_assign_pointer(dst_slots[mas->offset], wr_mas->entry);
3931 
3932 	/*
3933 	 * this range wrote to the end of the node or it overwrote the rest of
3934 	 * the data
3935 	 */
3936 	if (offset_end > mas->end)
3937 		goto done;
3938 
3939 	dst_offset = mas->offset + 1;
3940 	/* Copy to the end of node if necessary. */
3941 	copy_size = mas->end - offset_end + 1;
3942 	memcpy(dst_slots + dst_offset, wr_mas->slots + offset_end,
3943 	       sizeof(void *) * copy_size);
3944 	memcpy(dst_pivots + dst_offset, wr_mas->pivots + offset_end,
3945 	       sizeof(unsigned long) * (copy_size - 1));
3946 
3947 	if (new_end < node_pivots)
3948 		dst_pivots[new_end] = mas->max;
3949 
3950 done:
3951 	mas_leaf_set_meta(newnode, maple_leaf_64, new_end);
3952 	if (in_rcu) {
3953 		struct maple_enode *old_enode = mas->node;
3954 
3955 		mas->node = mt_mk_node(newnode, wr_mas->type);
3956 		mas_replace_node(mas, old_enode);
3957 	} else {
3958 		memcpy(wr_mas->node, newnode, sizeof(struct maple_node));
3959 	}
3960 	trace_ma_write(__func__, mas, 0, wr_mas->entry);
3961 	mas_update_gap(mas);
3962 	mas->end = new_end;
3963 	return true;
3964 }
3965 
3966 /*
3967  * mas_wr_slot_store: Attempt to store a value in a slot.
3968  * @wr_mas: the maple write state
3969  *
3970  * Return: True if stored, false otherwise
3971  */
3972 static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas)
3973 {
3974 	struct ma_state *mas = wr_mas->mas;
3975 	unsigned char offset = mas->offset;
3976 	void __rcu **slots = wr_mas->slots;
3977 	bool gap = false;
3978 
3979 	gap |= !mt_slot_locked(mas->tree, slots, offset);
3980 	gap |= !mt_slot_locked(mas->tree, slots, offset + 1);
3981 
3982 	if (wr_mas->offset_end - offset == 1) {
3983 		if (mas->index == wr_mas->r_min) {
3984 			/* Overwriting the range and a part of the next one */
3985 			rcu_assign_pointer(slots[offset], wr_mas->entry);
3986 			wr_mas->pivots[offset] = mas->last;
3987 		} else {
3988 			/* Overwriting a part of the range and the next one */
3989 			rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
3990 			wr_mas->pivots[offset] = mas->index - 1;
3991 			mas->offset++; /* Keep mas accurate. */
3992 		}
3993 	} else if (!mt_in_rcu(mas->tree)) {
3994 		/*
3995 		 * Expand the range, only partially overwriting the previous and
3996 		 * next ranges
3997 		 */
3998 		gap |= !mt_slot_locked(mas->tree, slots, offset + 2);
3999 		rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
4000 		wr_mas->pivots[offset] = mas->index - 1;
4001 		wr_mas->pivots[offset + 1] = mas->last;
4002 		mas->offset++; /* Keep mas accurate. */
4003 	} else {
4004 		return false;
4005 	}
4006 
4007 	trace_ma_write(__func__, mas, 0, wr_mas->entry);
4008 	/*
4009 	 * Only update gap when the new entry is empty or there is an empty
4010 	 * entry in the original two ranges.
4011 	 */
4012 	if (!wr_mas->entry || gap)
4013 		mas_update_gap(mas);
4014 
4015 	return true;
4016 }
4017 
4018 static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
4019 {
4020 	struct ma_state *mas = wr_mas->mas;
4021 
4022 	if (!wr_mas->slots[wr_mas->offset_end]) {
4023 		/* If this one is null, the next and prev are not */
4024 		mas->last = wr_mas->end_piv;
4025 	} else {
4026 		/* Check next slot(s) if we are overwriting the end */
4027 		if ((mas->last == wr_mas->end_piv) &&
4028 		    (mas->end != wr_mas->offset_end) &&
4029 		    !wr_mas->slots[wr_mas->offset_end + 1]) {
4030 			wr_mas->offset_end++;
4031 			if (wr_mas->offset_end == mas->end)
4032 				mas->last = mas->max;
4033 			else
4034 				mas->last = wr_mas->pivots[wr_mas->offset_end];
4035 			wr_mas->end_piv = mas->last;
4036 		}
4037 	}
4038 
4039 	if (!wr_mas->content) {
4040 		/* If this one is null, the next and prev are not */
4041 		mas->index = wr_mas->r_min;
4042 	} else {
4043 		/* Check prev slot if we are overwriting the start */
4044 		if (mas->index == wr_mas->r_min && mas->offset &&
4045 		    !wr_mas->slots[mas->offset - 1]) {
4046 			mas->offset--;
4047 			wr_mas->r_min = mas->index =
4048 				mas_safe_min(mas, wr_mas->pivots, mas->offset);
4049 			wr_mas->r_max = wr_mas->pivots[mas->offset];
4050 		}
4051 	}
4052 }
4053 
4054 static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
4055 {
4056 	while ((wr_mas->offset_end < wr_mas->mas->end) &&
4057 	       (wr_mas->mas->last > wr_mas->pivots[wr_mas->offset_end]))
4058 		wr_mas->offset_end++;
4059 
4060 	if (wr_mas->offset_end < wr_mas->mas->end)
4061 		wr_mas->end_piv = wr_mas->pivots[wr_mas->offset_end];
4062 	else
4063 		wr_mas->end_piv = wr_mas->mas->max;
4064 
4065 	if (!wr_mas->entry)
4066 		mas_wr_extend_null(wr_mas);
4067 }
4068 
4069 static inline unsigned char mas_wr_new_end(struct ma_wr_state *wr_mas)
4070 {
4071 	struct ma_state *mas = wr_mas->mas;
4072 	unsigned char new_end = mas->end + 2;
4073 
4074 	new_end -= wr_mas->offset_end - mas->offset;
4075 	if (wr_mas->r_min == mas->index)
4076 		new_end--;
4077 
4078 	if (wr_mas->end_piv == mas->last)
4079 		new_end--;
4080 
4081 	return new_end;
4082 }
4083 
4084 /*
4085  * mas_wr_append: Attempt to append
4086  * @wr_mas: the maple write state
4087  * @new_end: The end of the node after the modification
4088  *
4089  * This is currently unsafe in rcu mode since the end of the node may be cached
4090  * by readers while the node contents may be updated which could result in
4091  * inaccurate information.
4092  *
4093  * Return: True if appended, false otherwise
4094  */
4095 static inline bool mas_wr_append(struct ma_wr_state *wr_mas,
4096 		unsigned char new_end)
4097 {
4098 	struct ma_state *mas;
4099 	void __rcu **slots;
4100 	unsigned char end;
4101 
4102 	mas = wr_mas->mas;
4103 	if (mt_in_rcu(mas->tree))
4104 		return false;
4105 
4106 	end = mas->end;
4107 	if (mas->offset != end)
4108 		return false;
4109 
4110 	if (new_end < mt_pivots[wr_mas->type]) {
4111 		wr_mas->pivots[new_end] = wr_mas->pivots[end];
4112 		ma_set_meta(wr_mas->node, wr_mas->type, 0, new_end);
4113 	}
4114 
4115 	slots = wr_mas->slots;
4116 	if (new_end == end + 1) {
4117 		if (mas->last == wr_mas->r_max) {
4118 			/* Append to end of range */
4119 			rcu_assign_pointer(slots[new_end], wr_mas->entry);
4120 			wr_mas->pivots[end] = mas->index - 1;
4121 			mas->offset = new_end;
4122 		} else {
4123 			/* Append to start of range */
4124 			rcu_assign_pointer(slots[new_end], wr_mas->content);
4125 			wr_mas->pivots[end] = mas->last;
4126 			rcu_assign_pointer(slots[end], wr_mas->entry);
4127 		}
4128 	} else {
4129 		/* Append to the range without touching any boundaries. */
4130 		rcu_assign_pointer(slots[new_end], wr_mas->content);
4131 		wr_mas->pivots[end + 1] = mas->last;
4132 		rcu_assign_pointer(slots[end + 1], wr_mas->entry);
4133 		wr_mas->pivots[end] = mas->index - 1;
4134 		mas->offset = end + 1;
4135 	}
4136 
4137 	if (!wr_mas->content || !wr_mas->entry)
4138 		mas_update_gap(mas);
4139 
4140 	mas->end = new_end;
4141 	trace_ma_write(__func__, mas, new_end, wr_mas->entry);
4142 	return  true;
4143 }
4144 
4145 /*
4146  * mas_wr_bnode() - Slow path for a modification.
4147  * @wr_mas: The write maple state
4148  *
4149  * This is where split, rebalance end up.
4150  */
4151 static void mas_wr_bnode(struct ma_wr_state *wr_mas)
4152 {
4153 	struct maple_big_node b_node;
4154 
4155 	trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry);
4156 	memset(&b_node, 0, sizeof(struct maple_big_node));
4157 	mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end);
4158 	mas_commit_b_node(wr_mas, &b_node, wr_mas->mas->end);
4159 }
4160 
4161 static inline void mas_wr_modify(struct ma_wr_state *wr_mas)
4162 {
4163 	struct ma_state *mas = wr_mas->mas;
4164 	unsigned char new_end;
4165 
4166 	/* Direct replacement */
4167 	if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) {
4168 		rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry);
4169 		if (!!wr_mas->entry ^ !!wr_mas->content)
4170 			mas_update_gap(mas);
4171 		return;
4172 	}
4173 
4174 	/*
4175 	 * new_end exceeds the size of the maple node and cannot enter the fast
4176 	 * path.
4177 	 */
4178 	new_end = mas_wr_new_end(wr_mas);
4179 	if (new_end >= mt_slots[wr_mas->type])
4180 		goto slow_path;
4181 
4182 	/* Attempt to append */
4183 	if (mas_wr_append(wr_mas, new_end))
4184 		return;
4185 
4186 	if (new_end == mas->end && mas_wr_slot_store(wr_mas))
4187 		return;
4188 
4189 	if (mas_wr_node_store(wr_mas, new_end))
4190 		return;
4191 
4192 	if (mas_is_err(mas))
4193 		return;
4194 
4195 slow_path:
4196 	mas_wr_bnode(wr_mas);
4197 }
4198 
4199 /*
4200  * mas_wr_store_entry() - Internal call to store a value
4201  * @mas: The maple state
4202  * @entry: The entry to store.
4203  *
4204  * Return: The contents that was stored at the index.
4205  */
4206 static inline void *mas_wr_store_entry(struct ma_wr_state *wr_mas)
4207 {
4208 	struct ma_state *mas = wr_mas->mas;
4209 
4210 	wr_mas->content = mas_start(mas);
4211 	if (mas_is_none(mas) || mas_is_ptr(mas)) {
4212 		mas_store_root(mas, wr_mas->entry);
4213 		return wr_mas->content;
4214 	}
4215 
4216 	if (unlikely(!mas_wr_walk(wr_mas))) {
4217 		mas_wr_spanning_store(wr_mas);
4218 		return wr_mas->content;
4219 	}
4220 
4221 	/* At this point, we are at the leaf node that needs to be altered. */
4222 	mas_wr_end_piv(wr_mas);
4223 	/* New root for a single pointer */
4224 	if (unlikely(!mas->index && mas->last == ULONG_MAX)) {
4225 		mas_new_root(mas, wr_mas->entry);
4226 		return wr_mas->content;
4227 	}
4228 
4229 	mas_wr_modify(wr_mas);
4230 	return wr_mas->content;
4231 }
4232 
4233 /**
4234  * mas_insert() - Internal call to insert a value
4235  * @mas: The maple state
4236  * @entry: The entry to store
4237  *
4238  * Return: %NULL or the contents that already exists at the requested index
4239  * otherwise.  The maple state needs to be checked for error conditions.
4240  */
4241 static inline void *mas_insert(struct ma_state *mas, void *entry)
4242 {
4243 	MA_WR_STATE(wr_mas, mas, entry);
4244 
4245 	/*
4246 	 * Inserting a new range inserts either 0, 1, or 2 pivots within the
4247 	 * tree.  If the insert fits exactly into an existing gap with a value
4248 	 * of NULL, then the slot only needs to be written with the new value.
4249 	 * If the range being inserted is adjacent to another range, then only a
4250 	 * single pivot needs to be inserted (as well as writing the entry).  If
4251 	 * the new range is within a gap but does not touch any other ranges,
4252 	 * then two pivots need to be inserted: the start - 1, and the end.  As
4253 	 * usual, the entry must be written.  Most operations require a new node
4254 	 * to be allocated and replace an existing node to ensure RCU safety,
4255 	 * when in RCU mode.  The exception to requiring a newly allocated node
4256 	 * is when inserting at the end of a node (appending).  When done
4257 	 * carefully, appending can reuse the node in place.
4258 	 */
4259 	wr_mas.content = mas_start(mas);
4260 	if (wr_mas.content)
4261 		goto exists;
4262 
4263 	if (mas_is_none(mas) || mas_is_ptr(mas)) {
4264 		mas_store_root(mas, entry);
4265 		return NULL;
4266 	}
4267 
4268 	/* spanning writes always overwrite something */
4269 	if (!mas_wr_walk(&wr_mas))
4270 		goto exists;
4271 
4272 	/* At this point, we are at the leaf node that needs to be altered. */
4273 	wr_mas.offset_end = mas->offset;
4274 	wr_mas.end_piv = wr_mas.r_max;
4275 
4276 	if (wr_mas.content || (mas->last > wr_mas.r_max))
4277 		goto exists;
4278 
4279 	if (!entry)
4280 		return NULL;
4281 
4282 	mas_wr_modify(&wr_mas);
4283 	return wr_mas.content;
4284 
4285 exists:
4286 	mas_set_err(mas, -EEXIST);
4287 	return wr_mas.content;
4288 
4289 }
4290 
4291 /**
4292  * mas_alloc_cyclic() - Internal call to find somewhere to store an entry
4293  * @mas: The maple state.
4294  * @startp: Pointer to ID.
4295  * @range_lo: Lower bound of range to search.
4296  * @range_hi: Upper bound of range to search.
4297  * @entry: The entry to store.
4298  * @next: Pointer to next ID to allocate.
4299  * @gfp: The GFP_FLAGS to use for allocations.
4300  *
4301  * Return: 0 if the allocation succeeded without wrapping, 1 if the
4302  * allocation succeeded after wrapping, or -EBUSY if there are no
4303  * free entries.
4304  */
4305 int mas_alloc_cyclic(struct ma_state *mas, unsigned long *startp,
4306 		void *entry, unsigned long range_lo, unsigned long range_hi,
4307 		unsigned long *next, gfp_t gfp)
4308 {
4309 	unsigned long min = range_lo;
4310 	int ret = 0;
4311 
4312 	range_lo = max(min, *next);
4313 	ret = mas_empty_area(mas, range_lo, range_hi, 1);
4314 	if ((mas->tree->ma_flags & MT_FLAGS_ALLOC_WRAPPED) && ret == 0) {
4315 		mas->tree->ma_flags &= ~MT_FLAGS_ALLOC_WRAPPED;
4316 		ret = 1;
4317 	}
4318 	if (ret < 0 && range_lo > min) {
4319 		ret = mas_empty_area(mas, min, range_hi, 1);
4320 		if (ret == 0)
4321 			ret = 1;
4322 	}
4323 	if (ret < 0)
4324 		return ret;
4325 
4326 	do {
4327 		mas_insert(mas, entry);
4328 	} while (mas_nomem(mas, gfp));
4329 	if (mas_is_err(mas))
4330 		return xa_err(mas->node);
4331 
4332 	*startp = mas->index;
4333 	*next = *startp + 1;
4334 	if (*next == 0)
4335 		mas->tree->ma_flags |= MT_FLAGS_ALLOC_WRAPPED;
4336 
4337 	return ret;
4338 }
4339 EXPORT_SYMBOL(mas_alloc_cyclic);
4340 
4341 static __always_inline void mas_rewalk(struct ma_state *mas, unsigned long index)
4342 {
4343 retry:
4344 	mas_set(mas, index);
4345 	mas_state_walk(mas);
4346 	if (mas_is_start(mas))
4347 		goto retry;
4348 }
4349 
4350 static __always_inline bool mas_rewalk_if_dead(struct ma_state *mas,
4351 		struct maple_node *node, const unsigned long index)
4352 {
4353 	if (unlikely(ma_dead_node(node))) {
4354 		mas_rewalk(mas, index);
4355 		return true;
4356 	}
4357 	return false;
4358 }
4359 
4360 /*
4361  * mas_prev_node() - Find the prev non-null entry at the same level in the
4362  * tree.  The prev value will be mas->node[mas->offset] or the status will be
4363  * ma_none.
4364  * @mas: The maple state
4365  * @min: The lower limit to search
4366  *
4367  * The prev node value will be mas->node[mas->offset] or the status will be
4368  * ma_none.
4369  * Return: 1 if the node is dead, 0 otherwise.
4370  */
4371 static int mas_prev_node(struct ma_state *mas, unsigned long min)
4372 {
4373 	enum maple_type mt;
4374 	int offset, level;
4375 	void __rcu **slots;
4376 	struct maple_node *node;
4377 	unsigned long *pivots;
4378 	unsigned long max;
4379 
4380 	node = mas_mn(mas);
4381 	if (!mas->min)
4382 		goto no_entry;
4383 
4384 	max = mas->min - 1;
4385 	if (max < min)
4386 		goto no_entry;
4387 
4388 	level = 0;
4389 	do {
4390 		if (ma_is_root(node))
4391 			goto no_entry;
4392 
4393 		/* Walk up. */
4394 		if (unlikely(mas_ascend(mas)))
4395 			return 1;
4396 		offset = mas->offset;
4397 		level++;
4398 		node = mas_mn(mas);
4399 	} while (!offset);
4400 
4401 	offset--;
4402 	mt = mte_node_type(mas->node);
4403 	while (level > 1) {
4404 		level--;
4405 		slots = ma_slots(node, mt);
4406 		mas->node = mas_slot(mas, slots, offset);
4407 		if (unlikely(ma_dead_node(node)))
4408 			return 1;
4409 
4410 		mt = mte_node_type(mas->node);
4411 		node = mas_mn(mas);
4412 		pivots = ma_pivots(node, mt);
4413 		offset = ma_data_end(node, mt, pivots, max);
4414 		if (unlikely(ma_dead_node(node)))
4415 			return 1;
4416 	}
4417 
4418 	slots = ma_slots(node, mt);
4419 	mas->node = mas_slot(mas, slots, offset);
4420 	pivots = ma_pivots(node, mt);
4421 	if (unlikely(ma_dead_node(node)))
4422 		return 1;
4423 
4424 	if (likely(offset))
4425 		mas->min = pivots[offset - 1] + 1;
4426 	mas->max = max;
4427 	mas->offset = mas_data_end(mas);
4428 	if (unlikely(mte_dead_node(mas->node)))
4429 		return 1;
4430 
4431 	mas->end = mas->offset;
4432 	return 0;
4433 
4434 no_entry:
4435 	if (unlikely(ma_dead_node(node)))
4436 		return 1;
4437 
4438 	mas->status = ma_underflow;
4439 	return 0;
4440 }
4441 
4442 /*
4443  * mas_prev_slot() - Get the entry in the previous slot
4444  *
4445  * @mas: The maple state
4446  * @max: The minimum starting range
4447  * @empty: Can be empty
4448  * @set_underflow: Set the @mas->node to underflow state on limit.
4449  *
4450  * Return: The entry in the previous slot which is possibly NULL
4451  */
4452 static void *mas_prev_slot(struct ma_state *mas, unsigned long min, bool empty)
4453 {
4454 	void *entry;
4455 	void __rcu **slots;
4456 	unsigned long pivot;
4457 	enum maple_type type;
4458 	unsigned long *pivots;
4459 	struct maple_node *node;
4460 	unsigned long save_point = mas->index;
4461 
4462 retry:
4463 	node = mas_mn(mas);
4464 	type = mte_node_type(mas->node);
4465 	pivots = ma_pivots(node, type);
4466 	if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4467 		goto retry;
4468 
4469 	if (mas->min <= min) {
4470 		pivot = mas_safe_min(mas, pivots, mas->offset);
4471 
4472 		if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4473 			goto retry;
4474 
4475 		if (pivot <= min)
4476 			goto underflow;
4477 	}
4478 
4479 again:
4480 	if (likely(mas->offset)) {
4481 		mas->offset--;
4482 		mas->last = mas->index - 1;
4483 		mas->index = mas_safe_min(mas, pivots, mas->offset);
4484 	} else  {
4485 		if (mas->index <= min)
4486 			goto underflow;
4487 
4488 		if (mas_prev_node(mas, min)) {
4489 			mas_rewalk(mas, save_point);
4490 			goto retry;
4491 		}
4492 
4493 		if (WARN_ON_ONCE(mas_is_underflow(mas)))
4494 			return NULL;
4495 
4496 		mas->last = mas->max;
4497 		node = mas_mn(mas);
4498 		type = mte_node_type(mas->node);
4499 		pivots = ma_pivots(node, type);
4500 		mas->index = pivots[mas->offset - 1] + 1;
4501 	}
4502 
4503 	slots = ma_slots(node, type);
4504 	entry = mas_slot(mas, slots, mas->offset);
4505 	if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4506 		goto retry;
4507 
4508 
4509 	if (likely(entry))
4510 		return entry;
4511 
4512 	if (!empty) {
4513 		if (mas->index <= min) {
4514 			mas->status = ma_underflow;
4515 			return NULL;
4516 		}
4517 
4518 		goto again;
4519 	}
4520 
4521 	return entry;
4522 
4523 underflow:
4524 	mas->status = ma_underflow;
4525 	return NULL;
4526 }
4527 
4528 /*
4529  * mas_next_node() - Get the next node at the same level in the tree.
4530  * @mas: The maple state
4531  * @max: The maximum pivot value to check.
4532  *
4533  * The next value will be mas->node[mas->offset] or the status will have
4534  * overflowed.
4535  * Return: 1 on dead node, 0 otherwise.
4536  */
4537 static int mas_next_node(struct ma_state *mas, struct maple_node *node,
4538 		unsigned long max)
4539 {
4540 	unsigned long min;
4541 	unsigned long *pivots;
4542 	struct maple_enode *enode;
4543 	struct maple_node *tmp;
4544 	int level = 0;
4545 	unsigned char node_end;
4546 	enum maple_type mt;
4547 	void __rcu **slots;
4548 
4549 	if (mas->max >= max)
4550 		goto overflow;
4551 
4552 	min = mas->max + 1;
4553 	level = 0;
4554 	do {
4555 		if (ma_is_root(node))
4556 			goto overflow;
4557 
4558 		/* Walk up. */
4559 		if (unlikely(mas_ascend(mas)))
4560 			return 1;
4561 
4562 		level++;
4563 		node = mas_mn(mas);
4564 		mt = mte_node_type(mas->node);
4565 		pivots = ma_pivots(node, mt);
4566 		node_end = ma_data_end(node, mt, pivots, mas->max);
4567 		if (unlikely(ma_dead_node(node)))
4568 			return 1;
4569 
4570 	} while (unlikely(mas->offset == node_end));
4571 
4572 	slots = ma_slots(node, mt);
4573 	mas->offset++;
4574 	enode = mas_slot(mas, slots, mas->offset);
4575 	if (unlikely(ma_dead_node(node)))
4576 		return 1;
4577 
4578 	if (level > 1)
4579 		mas->offset = 0;
4580 
4581 	while (unlikely(level > 1)) {
4582 		level--;
4583 		mas->node = enode;
4584 		node = mas_mn(mas);
4585 		mt = mte_node_type(mas->node);
4586 		slots = ma_slots(node, mt);
4587 		enode = mas_slot(mas, slots, 0);
4588 		if (unlikely(ma_dead_node(node)))
4589 			return 1;
4590 	}
4591 
4592 	if (!mas->offset)
4593 		pivots = ma_pivots(node, mt);
4594 
4595 	mas->max = mas_safe_pivot(mas, pivots, mas->offset, mt);
4596 	tmp = mte_to_node(enode);
4597 	mt = mte_node_type(enode);
4598 	pivots = ma_pivots(tmp, mt);
4599 	mas->end = ma_data_end(tmp, mt, pivots, mas->max);
4600 	if (unlikely(ma_dead_node(node)))
4601 		return 1;
4602 
4603 	mas->node = enode;
4604 	mas->min = min;
4605 	return 0;
4606 
4607 overflow:
4608 	if (unlikely(ma_dead_node(node)))
4609 		return 1;
4610 
4611 	mas->status = ma_overflow;
4612 	return 0;
4613 }
4614 
4615 /*
4616  * mas_next_slot() - Get the entry in the next slot
4617  *
4618  * @mas: The maple state
4619  * @max: The maximum starting range
4620  * @empty: Can be empty
4621  * @set_overflow: Should @mas->node be set to overflow when the limit is
4622  * reached.
4623  *
4624  * Return: The entry in the next slot which is possibly NULL
4625  */
4626 static void *mas_next_slot(struct ma_state *mas, unsigned long max, bool empty)
4627 {
4628 	void __rcu **slots;
4629 	unsigned long *pivots;
4630 	unsigned long pivot;
4631 	enum maple_type type;
4632 	struct maple_node *node;
4633 	unsigned long save_point = mas->last;
4634 	void *entry;
4635 
4636 retry:
4637 	node = mas_mn(mas);
4638 	type = mte_node_type(mas->node);
4639 	pivots = ma_pivots(node, type);
4640 	if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4641 		goto retry;
4642 
4643 	if (mas->max >= max) {
4644 		if (likely(mas->offset < mas->end))
4645 			pivot = pivots[mas->offset];
4646 		else
4647 			pivot = mas->max;
4648 
4649 		if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4650 			goto retry;
4651 
4652 		if (pivot >= max) { /* Was at the limit, next will extend beyond */
4653 			mas->status = ma_overflow;
4654 			return NULL;
4655 		}
4656 	}
4657 
4658 	if (likely(mas->offset < mas->end)) {
4659 		mas->index = pivots[mas->offset] + 1;
4660 again:
4661 		mas->offset++;
4662 		if (likely(mas->offset < mas->end))
4663 			mas->last = pivots[mas->offset];
4664 		else
4665 			mas->last = mas->max;
4666 	} else  {
4667 		if (mas->last >= max) {
4668 			mas->status = ma_overflow;
4669 			return NULL;
4670 		}
4671 
4672 		if (mas_next_node(mas, node, max)) {
4673 			mas_rewalk(mas, save_point);
4674 			goto retry;
4675 		}
4676 
4677 		if (WARN_ON_ONCE(mas_is_overflow(mas)))
4678 			return NULL;
4679 
4680 		mas->offset = 0;
4681 		mas->index = mas->min;
4682 		node = mas_mn(mas);
4683 		type = mte_node_type(mas->node);
4684 		pivots = ma_pivots(node, type);
4685 		mas->last = pivots[0];
4686 	}
4687 
4688 	slots = ma_slots(node, type);
4689 	entry = mt_slot(mas->tree, slots, mas->offset);
4690 	if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4691 		goto retry;
4692 
4693 	if (entry)
4694 		return entry;
4695 
4696 
4697 	if (!empty) {
4698 		if (mas->last >= max) {
4699 			mas->status = ma_overflow;
4700 			return NULL;
4701 		}
4702 
4703 		mas->index = mas->last + 1;
4704 		goto again;
4705 	}
4706 
4707 	return entry;
4708 }
4709 
4710 /*
4711  * mas_next_entry() - Internal function to get the next entry.
4712  * @mas: The maple state
4713  * @limit: The maximum range start.
4714  *
4715  * Set the @mas->node to the next entry and the range_start to
4716  * the beginning value for the entry.  Does not check beyond @limit.
4717  * Sets @mas->index and @mas->last to the range, Does not update @mas->index and
4718  * @mas->last on overflow.
4719  * Restarts on dead nodes.
4720  *
4721  * Return: the next entry or %NULL.
4722  */
4723 static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit)
4724 {
4725 	if (mas->last >= limit) {
4726 		mas->status = ma_overflow;
4727 		return NULL;
4728 	}
4729 
4730 	return mas_next_slot(mas, limit, false);
4731 }
4732 
4733 /*
4734  * mas_rev_awalk() - Internal function.  Reverse allocation walk.  Find the
4735  * highest gap address of a given size in a given node and descend.
4736  * @mas: The maple state
4737  * @size: The needed size.
4738  *
4739  * Return: True if found in a leaf, false otherwise.
4740  *
4741  */
4742 static bool mas_rev_awalk(struct ma_state *mas, unsigned long size,
4743 		unsigned long *gap_min, unsigned long *gap_max)
4744 {
4745 	enum maple_type type = mte_node_type(mas->node);
4746 	struct maple_node *node = mas_mn(mas);
4747 	unsigned long *pivots, *gaps;
4748 	void __rcu **slots;
4749 	unsigned long gap = 0;
4750 	unsigned long max, min;
4751 	unsigned char offset;
4752 
4753 	if (unlikely(mas_is_err(mas)))
4754 		return true;
4755 
4756 	if (ma_is_dense(type)) {
4757 		/* dense nodes. */
4758 		mas->offset = (unsigned char)(mas->index - mas->min);
4759 		return true;
4760 	}
4761 
4762 	pivots = ma_pivots(node, type);
4763 	slots = ma_slots(node, type);
4764 	gaps = ma_gaps(node, type);
4765 	offset = mas->offset;
4766 	min = mas_safe_min(mas, pivots, offset);
4767 	/* Skip out of bounds. */
4768 	while (mas->last < min)
4769 		min = mas_safe_min(mas, pivots, --offset);
4770 
4771 	max = mas_safe_pivot(mas, pivots, offset, type);
4772 	while (mas->index <= max) {
4773 		gap = 0;
4774 		if (gaps)
4775 			gap = gaps[offset];
4776 		else if (!mas_slot(mas, slots, offset))
4777 			gap = max - min + 1;
4778 
4779 		if (gap) {
4780 			if ((size <= gap) && (size <= mas->last - min + 1))
4781 				break;
4782 
4783 			if (!gaps) {
4784 				/* Skip the next slot, it cannot be a gap. */
4785 				if (offset < 2)
4786 					goto ascend;
4787 
4788 				offset -= 2;
4789 				max = pivots[offset];
4790 				min = mas_safe_min(mas, pivots, offset);
4791 				continue;
4792 			}
4793 		}
4794 
4795 		if (!offset)
4796 			goto ascend;
4797 
4798 		offset--;
4799 		max = min - 1;
4800 		min = mas_safe_min(mas, pivots, offset);
4801 	}
4802 
4803 	if (unlikely((mas->index > max) || (size - 1 > max - mas->index)))
4804 		goto no_space;
4805 
4806 	if (unlikely(ma_is_leaf(type))) {
4807 		mas->offset = offset;
4808 		*gap_min = min;
4809 		*gap_max = min + gap - 1;
4810 		return true;
4811 	}
4812 
4813 	/* descend, only happens under lock. */
4814 	mas->node = mas_slot(mas, slots, offset);
4815 	mas->min = min;
4816 	mas->max = max;
4817 	mas->offset = mas_data_end(mas);
4818 	return false;
4819 
4820 ascend:
4821 	if (!mte_is_root(mas->node))
4822 		return false;
4823 
4824 no_space:
4825 	mas_set_err(mas, -EBUSY);
4826 	return false;
4827 }
4828 
4829 static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
4830 {
4831 	enum maple_type type = mte_node_type(mas->node);
4832 	unsigned long pivot, min, gap = 0;
4833 	unsigned char offset, data_end;
4834 	unsigned long *gaps, *pivots;
4835 	void __rcu **slots;
4836 	struct maple_node *node;
4837 	bool found = false;
4838 
4839 	if (ma_is_dense(type)) {
4840 		mas->offset = (unsigned char)(mas->index - mas->min);
4841 		return true;
4842 	}
4843 
4844 	node = mas_mn(mas);
4845 	pivots = ma_pivots(node, type);
4846 	slots = ma_slots(node, type);
4847 	gaps = ma_gaps(node, type);
4848 	offset = mas->offset;
4849 	min = mas_safe_min(mas, pivots, offset);
4850 	data_end = ma_data_end(node, type, pivots, mas->max);
4851 	for (; offset <= data_end; offset++) {
4852 		pivot = mas_safe_pivot(mas, pivots, offset, type);
4853 
4854 		/* Not within lower bounds */
4855 		if (mas->index > pivot)
4856 			goto next_slot;
4857 
4858 		if (gaps)
4859 			gap = gaps[offset];
4860 		else if (!mas_slot(mas, slots, offset))
4861 			gap = min(pivot, mas->last) - max(mas->index, min) + 1;
4862 		else
4863 			goto next_slot;
4864 
4865 		if (gap >= size) {
4866 			if (ma_is_leaf(type)) {
4867 				found = true;
4868 				goto done;
4869 			}
4870 			if (mas->index <= pivot) {
4871 				mas->node = mas_slot(mas, slots, offset);
4872 				mas->min = min;
4873 				mas->max = pivot;
4874 				offset = 0;
4875 				break;
4876 			}
4877 		}
4878 next_slot:
4879 		min = pivot + 1;
4880 		if (mas->last <= pivot) {
4881 			mas_set_err(mas, -EBUSY);
4882 			return true;
4883 		}
4884 	}
4885 
4886 	if (mte_is_root(mas->node))
4887 		found = true;
4888 done:
4889 	mas->offset = offset;
4890 	return found;
4891 }
4892 
4893 /**
4894  * mas_walk() - Search for @mas->index in the tree.
4895  * @mas: The maple state.
4896  *
4897  * mas->index and mas->last will be set to the range if there is a value.  If
4898  * mas->status is ma_none, reset to ma_start
4899  *
4900  * Return: the entry at the location or %NULL.
4901  */
4902 void *mas_walk(struct ma_state *mas)
4903 {
4904 	void *entry;
4905 
4906 	if (!mas_is_active(mas) || !mas_is_start(mas))
4907 		mas->status = ma_start;
4908 retry:
4909 	entry = mas_state_walk(mas);
4910 	if (mas_is_start(mas)) {
4911 		goto retry;
4912 	} else if (mas_is_none(mas)) {
4913 		mas->index = 0;
4914 		mas->last = ULONG_MAX;
4915 	} else if (mas_is_ptr(mas)) {
4916 		if (!mas->index) {
4917 			mas->last = 0;
4918 			return entry;
4919 		}
4920 
4921 		mas->index = 1;
4922 		mas->last = ULONG_MAX;
4923 		mas->status = ma_none;
4924 		return NULL;
4925 	}
4926 
4927 	return entry;
4928 }
4929 EXPORT_SYMBOL_GPL(mas_walk);
4930 
4931 static inline bool mas_rewind_node(struct ma_state *mas)
4932 {
4933 	unsigned char slot;
4934 
4935 	do {
4936 		if (mte_is_root(mas->node)) {
4937 			slot = mas->offset;
4938 			if (!slot)
4939 				return false;
4940 		} else {
4941 			mas_ascend(mas);
4942 			slot = mas->offset;
4943 		}
4944 	} while (!slot);
4945 
4946 	mas->offset = --slot;
4947 	return true;
4948 }
4949 
4950 /*
4951  * mas_skip_node() - Internal function.  Skip over a node.
4952  * @mas: The maple state.
4953  *
4954  * Return: true if there is another node, false otherwise.
4955  */
4956 static inline bool mas_skip_node(struct ma_state *mas)
4957 {
4958 	if (mas_is_err(mas))
4959 		return false;
4960 
4961 	do {
4962 		if (mte_is_root(mas->node)) {
4963 			if (mas->offset >= mas_data_end(mas)) {
4964 				mas_set_err(mas, -EBUSY);
4965 				return false;
4966 			}
4967 		} else {
4968 			mas_ascend(mas);
4969 		}
4970 	} while (mas->offset >= mas_data_end(mas));
4971 
4972 	mas->offset++;
4973 	return true;
4974 }
4975 
4976 /*
4977  * mas_awalk() - Allocation walk.  Search from low address to high, for a gap of
4978  * @size
4979  * @mas: The maple state
4980  * @size: The size of the gap required
4981  *
4982  * Search between @mas->index and @mas->last for a gap of @size.
4983  */
4984 static inline void mas_awalk(struct ma_state *mas, unsigned long size)
4985 {
4986 	struct maple_enode *last = NULL;
4987 
4988 	/*
4989 	 * There are 4 options:
4990 	 * go to child (descend)
4991 	 * go back to parent (ascend)
4992 	 * no gap found. (return, slot == MAPLE_NODE_SLOTS)
4993 	 * found the gap. (return, slot != MAPLE_NODE_SLOTS)
4994 	 */
4995 	while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) {
4996 		if (last == mas->node)
4997 			mas_skip_node(mas);
4998 		else
4999 			last = mas->node;
5000 	}
5001 }
5002 
5003 /*
5004  * mas_sparse_area() - Internal function.  Return upper or lower limit when
5005  * searching for a gap in an empty tree.
5006  * @mas: The maple state
5007  * @min: the minimum range
5008  * @max: The maximum range
5009  * @size: The size of the gap
5010  * @fwd: Searching forward or back
5011  */
5012 static inline int mas_sparse_area(struct ma_state *mas, unsigned long min,
5013 				unsigned long max, unsigned long size, bool fwd)
5014 {
5015 	if (!unlikely(mas_is_none(mas)) && min == 0) {
5016 		min++;
5017 		/*
5018 		 * At this time, min is increased, we need to recheck whether
5019 		 * the size is satisfied.
5020 		 */
5021 		if (min > max || max - min + 1 < size)
5022 			return -EBUSY;
5023 	}
5024 	/* mas_is_ptr */
5025 
5026 	if (fwd) {
5027 		mas->index = min;
5028 		mas->last = min + size - 1;
5029 	} else {
5030 		mas->last = max;
5031 		mas->index = max - size + 1;
5032 	}
5033 	return 0;
5034 }
5035 
5036 /*
5037  * mas_empty_area() - Get the lowest address within the range that is
5038  * sufficient for the size requested.
5039  * @mas: The maple state
5040  * @min: The lowest value of the range
5041  * @max: The highest value of the range
5042  * @size: The size needed
5043  */
5044 int mas_empty_area(struct ma_state *mas, unsigned long min,
5045 		unsigned long max, unsigned long size)
5046 {
5047 	unsigned char offset;
5048 	unsigned long *pivots;
5049 	enum maple_type mt;
5050 	struct maple_node *node;
5051 
5052 	if (min > max)
5053 		return -EINVAL;
5054 
5055 	if (size == 0 || max - min < size - 1)
5056 		return -EINVAL;
5057 
5058 	if (mas_is_start(mas))
5059 		mas_start(mas);
5060 	else if (mas->offset >= 2)
5061 		mas->offset -= 2;
5062 	else if (!mas_skip_node(mas))
5063 		return -EBUSY;
5064 
5065 	/* Empty set */
5066 	if (mas_is_none(mas) || mas_is_ptr(mas))
5067 		return mas_sparse_area(mas, min, max, size, true);
5068 
5069 	/* The start of the window can only be within these values */
5070 	mas->index = min;
5071 	mas->last = max;
5072 	mas_awalk(mas, size);
5073 
5074 	if (unlikely(mas_is_err(mas)))
5075 		return xa_err(mas->node);
5076 
5077 	offset = mas->offset;
5078 	if (unlikely(offset == MAPLE_NODE_SLOTS))
5079 		return -EBUSY;
5080 
5081 	node = mas_mn(mas);
5082 	mt = mte_node_type(mas->node);
5083 	pivots = ma_pivots(node, mt);
5084 	min = mas_safe_min(mas, pivots, offset);
5085 	if (mas->index < min)
5086 		mas->index = min;
5087 	mas->last = mas->index + size - 1;
5088 	mas->end = ma_data_end(node, mt, pivots, mas->max);
5089 	return 0;
5090 }
5091 EXPORT_SYMBOL_GPL(mas_empty_area);
5092 
5093 /*
5094  * mas_empty_area_rev() - Get the highest address within the range that is
5095  * sufficient for the size requested.
5096  * @mas: The maple state
5097  * @min: The lowest value of the range
5098  * @max: The highest value of the range
5099  * @size: The size needed
5100  */
5101 int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
5102 		unsigned long max, unsigned long size)
5103 {
5104 	struct maple_enode *last = mas->node;
5105 
5106 	if (min > max)
5107 		return -EINVAL;
5108 
5109 	if (size == 0 || max - min < size - 1)
5110 		return -EINVAL;
5111 
5112 	if (mas_is_start(mas)) {
5113 		mas_start(mas);
5114 		mas->offset = mas_data_end(mas);
5115 	} else if (mas->offset >= 2) {
5116 		mas->offset -= 2;
5117 	} else if (!mas_rewind_node(mas)) {
5118 		return -EBUSY;
5119 	}
5120 
5121 	/* Empty set. */
5122 	if (mas_is_none(mas) || mas_is_ptr(mas))
5123 		return mas_sparse_area(mas, min, max, size, false);
5124 
5125 	/* The start of the window can only be within these values. */
5126 	mas->index = min;
5127 	mas->last = max;
5128 
5129 	while (!mas_rev_awalk(mas, size, &min, &max)) {
5130 		if (last == mas->node) {
5131 			if (!mas_rewind_node(mas))
5132 				return -EBUSY;
5133 		} else {
5134 			last = mas->node;
5135 		}
5136 	}
5137 
5138 	if (mas_is_err(mas))
5139 		return xa_err(mas->node);
5140 
5141 	if (unlikely(mas->offset == MAPLE_NODE_SLOTS))
5142 		return -EBUSY;
5143 
5144 	/* Trim the upper limit to the max. */
5145 	if (max < mas->last)
5146 		mas->last = max;
5147 
5148 	mas->index = mas->last - size + 1;
5149 	mas->end = mas_data_end(mas);
5150 	return 0;
5151 }
5152 EXPORT_SYMBOL_GPL(mas_empty_area_rev);
5153 
5154 /*
5155  * mte_dead_leaves() - Mark all leaves of a node as dead.
5156  * @mas: The maple state
5157  * @slots: Pointer to the slot array
5158  * @type: The maple node type
5159  *
5160  * Must hold the write lock.
5161  *
5162  * Return: The number of leaves marked as dead.
5163  */
5164 static inline
5165 unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt,
5166 			      void __rcu **slots)
5167 {
5168 	struct maple_node *node;
5169 	enum maple_type type;
5170 	void *entry;
5171 	int offset;
5172 
5173 	for (offset = 0; offset < mt_slot_count(enode); offset++) {
5174 		entry = mt_slot(mt, slots, offset);
5175 		type = mte_node_type(entry);
5176 		node = mte_to_node(entry);
5177 		/* Use both node and type to catch LE & BE metadata */
5178 		if (!node || !type)
5179 			break;
5180 
5181 		mte_set_node_dead(entry);
5182 		node->type = type;
5183 		rcu_assign_pointer(slots[offset], node);
5184 	}
5185 
5186 	return offset;
5187 }
5188 
5189 /**
5190  * mte_dead_walk() - Walk down a dead tree to just before the leaves
5191  * @enode: The maple encoded node
5192  * @offset: The starting offset
5193  *
5194  * Note: This can only be used from the RCU callback context.
5195  */
5196 static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset)
5197 {
5198 	struct maple_node *node, *next;
5199 	void __rcu **slots = NULL;
5200 
5201 	next = mte_to_node(*enode);
5202 	do {
5203 		*enode = ma_enode_ptr(next);
5204 		node = mte_to_node(*enode);
5205 		slots = ma_slots(node, node->type);
5206 		next = rcu_dereference_protected(slots[offset],
5207 					lock_is_held(&rcu_callback_map));
5208 		offset = 0;
5209 	} while (!ma_is_leaf(next->type));
5210 
5211 	return slots;
5212 }
5213 
5214 /**
5215  * mt_free_walk() - Walk & free a tree in the RCU callback context
5216  * @head: The RCU head that's within the node.
5217  *
5218  * Note: This can only be used from the RCU callback context.
5219  */
5220 static void mt_free_walk(struct rcu_head *head)
5221 {
5222 	void __rcu **slots;
5223 	struct maple_node *node, *start;
5224 	struct maple_enode *enode;
5225 	unsigned char offset;
5226 	enum maple_type type;
5227 
5228 	node = container_of(head, struct maple_node, rcu);
5229 
5230 	if (ma_is_leaf(node->type))
5231 		goto free_leaf;
5232 
5233 	start = node;
5234 	enode = mt_mk_node(node, node->type);
5235 	slots = mte_dead_walk(&enode, 0);
5236 	node = mte_to_node(enode);
5237 	do {
5238 		mt_free_bulk(node->slot_len, slots);
5239 		offset = node->parent_slot + 1;
5240 		enode = node->piv_parent;
5241 		if (mte_to_node(enode) == node)
5242 			goto free_leaf;
5243 
5244 		type = mte_node_type(enode);
5245 		slots = ma_slots(mte_to_node(enode), type);
5246 		if ((offset < mt_slots[type]) &&
5247 		    rcu_dereference_protected(slots[offset],
5248 					      lock_is_held(&rcu_callback_map)))
5249 			slots = mte_dead_walk(&enode, offset);
5250 		node = mte_to_node(enode);
5251 	} while ((node != start) || (node->slot_len < offset));
5252 
5253 	slots = ma_slots(node, node->type);
5254 	mt_free_bulk(node->slot_len, slots);
5255 
5256 free_leaf:
5257 	mt_free_rcu(&node->rcu);
5258 }
5259 
5260 static inline void __rcu **mte_destroy_descend(struct maple_enode **enode,
5261 	struct maple_tree *mt, struct maple_enode *prev, unsigned char offset)
5262 {
5263 	struct maple_node *node;
5264 	struct maple_enode *next = *enode;
5265 	void __rcu **slots = NULL;
5266 	enum maple_type type;
5267 	unsigned char next_offset = 0;
5268 
5269 	do {
5270 		*enode = next;
5271 		node = mte_to_node(*enode);
5272 		type = mte_node_type(*enode);
5273 		slots = ma_slots(node, type);
5274 		next = mt_slot_locked(mt, slots, next_offset);
5275 		if ((mte_dead_node(next)))
5276 			next = mt_slot_locked(mt, slots, ++next_offset);
5277 
5278 		mte_set_node_dead(*enode);
5279 		node->type = type;
5280 		node->piv_parent = prev;
5281 		node->parent_slot = offset;
5282 		offset = next_offset;
5283 		next_offset = 0;
5284 		prev = *enode;
5285 	} while (!mte_is_leaf(next));
5286 
5287 	return slots;
5288 }
5289 
5290 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
5291 			    bool free)
5292 {
5293 	void __rcu **slots;
5294 	struct maple_node *node = mte_to_node(enode);
5295 	struct maple_enode *start;
5296 
5297 	if (mte_is_leaf(enode)) {
5298 		node->type = mte_node_type(enode);
5299 		goto free_leaf;
5300 	}
5301 
5302 	start = enode;
5303 	slots = mte_destroy_descend(&enode, mt, start, 0);
5304 	node = mte_to_node(enode); // Updated in the above call.
5305 	do {
5306 		enum maple_type type;
5307 		unsigned char offset;
5308 		struct maple_enode *parent, *tmp;
5309 
5310 		node->slot_len = mte_dead_leaves(enode, mt, slots);
5311 		if (free)
5312 			mt_free_bulk(node->slot_len, slots);
5313 		offset = node->parent_slot + 1;
5314 		enode = node->piv_parent;
5315 		if (mte_to_node(enode) == node)
5316 			goto free_leaf;
5317 
5318 		type = mte_node_type(enode);
5319 		slots = ma_slots(mte_to_node(enode), type);
5320 		if (offset >= mt_slots[type])
5321 			goto next;
5322 
5323 		tmp = mt_slot_locked(mt, slots, offset);
5324 		if (mte_node_type(tmp) && mte_to_node(tmp)) {
5325 			parent = enode;
5326 			enode = tmp;
5327 			slots = mte_destroy_descend(&enode, mt, parent, offset);
5328 		}
5329 next:
5330 		node = mte_to_node(enode);
5331 	} while (start != enode);
5332 
5333 	node = mte_to_node(enode);
5334 	node->slot_len = mte_dead_leaves(enode, mt, slots);
5335 	if (free)
5336 		mt_free_bulk(node->slot_len, slots);
5337 
5338 free_leaf:
5339 	if (free)
5340 		mt_free_rcu(&node->rcu);
5341 	else
5342 		mt_clear_meta(mt, node, node->type);
5343 }
5344 
5345 /*
5346  * mte_destroy_walk() - Free a tree or sub-tree.
5347  * @enode: the encoded maple node (maple_enode) to start
5348  * @mt: the tree to free - needed for node types.
5349  *
5350  * Must hold the write lock.
5351  */
5352 static inline void mte_destroy_walk(struct maple_enode *enode,
5353 				    struct maple_tree *mt)
5354 {
5355 	struct maple_node *node = mte_to_node(enode);
5356 
5357 	if (mt_in_rcu(mt)) {
5358 		mt_destroy_walk(enode, mt, false);
5359 		call_rcu(&node->rcu, mt_free_walk);
5360 	} else {
5361 		mt_destroy_walk(enode, mt, true);
5362 	}
5363 }
5364 
5365 static void mas_wr_store_setup(struct ma_wr_state *wr_mas)
5366 {
5367 	if (!mas_is_active(wr_mas->mas)) {
5368 		if (mas_is_start(wr_mas->mas))
5369 			return;
5370 
5371 		if (unlikely(mas_is_paused(wr_mas->mas)))
5372 			goto reset;
5373 
5374 		if (unlikely(mas_is_none(wr_mas->mas)))
5375 			goto reset;
5376 
5377 		if (unlikely(mas_is_overflow(wr_mas->mas)))
5378 			goto reset;
5379 
5380 		if (unlikely(mas_is_underflow(wr_mas->mas)))
5381 			goto reset;
5382 	}
5383 
5384 	/*
5385 	 * A less strict version of mas_is_span_wr() where we allow spanning
5386 	 * writes within this node.  This is to stop partial walks in
5387 	 * mas_prealloc() from being reset.
5388 	 */
5389 	if (wr_mas->mas->last > wr_mas->mas->max)
5390 		goto reset;
5391 
5392 	if (wr_mas->entry)
5393 		return;
5394 
5395 	if (mte_is_leaf(wr_mas->mas->node) &&
5396 	    wr_mas->mas->last == wr_mas->mas->max)
5397 		goto reset;
5398 
5399 	return;
5400 
5401 reset:
5402 	mas_reset(wr_mas->mas);
5403 }
5404 
5405 /* Interface */
5406 
5407 /**
5408  * mas_store() - Store an @entry.
5409  * @mas: The maple state.
5410  * @entry: The entry to store.
5411  *
5412  * The @mas->index and @mas->last is used to set the range for the @entry.
5413  * Note: The @mas should have pre-allocated entries to ensure there is memory to
5414  * store the entry.  Please see mas_expected_entries()/mas_destroy() for more details.
5415  *
5416  * Return: the first entry between mas->index and mas->last or %NULL.
5417  */
5418 void *mas_store(struct ma_state *mas, void *entry)
5419 {
5420 	MA_WR_STATE(wr_mas, mas, entry);
5421 
5422 	trace_ma_write(__func__, mas, 0, entry);
5423 #ifdef CONFIG_DEBUG_MAPLE_TREE
5424 	if (MAS_WARN_ON(mas, mas->index > mas->last))
5425 		pr_err("Error %lX > %lX %p\n", mas->index, mas->last, entry);
5426 
5427 	if (mas->index > mas->last) {
5428 		mas_set_err(mas, -EINVAL);
5429 		return NULL;
5430 	}
5431 
5432 #endif
5433 
5434 	/*
5435 	 * Storing is the same operation as insert with the added caveat that it
5436 	 * can overwrite entries.  Although this seems simple enough, one may
5437 	 * want to examine what happens if a single store operation was to
5438 	 * overwrite multiple entries within a self-balancing B-Tree.
5439 	 */
5440 	mas_wr_store_setup(&wr_mas);
5441 	mas_wr_store_entry(&wr_mas);
5442 	return wr_mas.content;
5443 }
5444 EXPORT_SYMBOL_GPL(mas_store);
5445 
5446 /**
5447  * mas_store_gfp() - Store a value into the tree.
5448  * @mas: The maple state
5449  * @entry: The entry to store
5450  * @gfp: The GFP_FLAGS to use for allocations if necessary.
5451  *
5452  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
5453  * be allocated.
5454  */
5455 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
5456 {
5457 	MA_WR_STATE(wr_mas, mas, entry);
5458 
5459 	mas_wr_store_setup(&wr_mas);
5460 	trace_ma_write(__func__, mas, 0, entry);
5461 retry:
5462 	mas_wr_store_entry(&wr_mas);
5463 	if (unlikely(mas_nomem(mas, gfp)))
5464 		goto retry;
5465 
5466 	if (unlikely(mas_is_err(mas)))
5467 		return xa_err(mas->node);
5468 
5469 	return 0;
5470 }
5471 EXPORT_SYMBOL_GPL(mas_store_gfp);
5472 
5473 /**
5474  * mas_store_prealloc() - Store a value into the tree using memory
5475  * preallocated in the maple state.
5476  * @mas: The maple state
5477  * @entry: The entry to store.
5478  */
5479 void mas_store_prealloc(struct ma_state *mas, void *entry)
5480 {
5481 	MA_WR_STATE(wr_mas, mas, entry);
5482 
5483 	mas_wr_store_setup(&wr_mas);
5484 	trace_ma_write(__func__, mas, 0, entry);
5485 	mas_wr_store_entry(&wr_mas);
5486 	MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas));
5487 	mas_destroy(mas);
5488 }
5489 EXPORT_SYMBOL_GPL(mas_store_prealloc);
5490 
5491 /**
5492  * mas_preallocate() - Preallocate enough nodes for a store operation
5493  * @mas: The maple state
5494  * @entry: The entry that will be stored
5495  * @gfp: The GFP_FLAGS to use for allocations.
5496  *
5497  * Return: 0 on success, -ENOMEM if memory could not be allocated.
5498  */
5499 int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp)
5500 {
5501 	MA_WR_STATE(wr_mas, mas, entry);
5502 	unsigned char node_size;
5503 	int request = 1;
5504 	int ret;
5505 
5506 
5507 	if (unlikely(!mas->index && mas->last == ULONG_MAX))
5508 		goto ask_now;
5509 
5510 	mas_wr_store_setup(&wr_mas);
5511 	wr_mas.content = mas_start(mas);
5512 	/* Root expand */
5513 	if (unlikely(mas_is_none(mas) || mas_is_ptr(mas)))
5514 		goto ask_now;
5515 
5516 	if (unlikely(!mas_wr_walk(&wr_mas))) {
5517 		/* Spanning store, use worst case for now */
5518 		request = 1 + mas_mt_height(mas) * 3;
5519 		goto ask_now;
5520 	}
5521 
5522 	/* At this point, we are at the leaf node that needs to be altered. */
5523 	/* Exact fit, no nodes needed. */
5524 	if (wr_mas.r_min == mas->index && wr_mas.r_max == mas->last)
5525 		return 0;
5526 
5527 	mas_wr_end_piv(&wr_mas);
5528 	node_size = mas_wr_new_end(&wr_mas);
5529 
5530 	/* Slot store, does not require additional nodes */
5531 	if (node_size == mas->end) {
5532 		/* reuse node */
5533 		if (!mt_in_rcu(mas->tree))
5534 			return 0;
5535 		/* shifting boundary */
5536 		if (wr_mas.offset_end - mas->offset == 1)
5537 			return 0;
5538 	}
5539 
5540 	if (node_size >= mt_slots[wr_mas.type]) {
5541 		/* Split, worst case for now. */
5542 		request = 1 + mas_mt_height(mas) * 2;
5543 		goto ask_now;
5544 	}
5545 
5546 	/* New root needs a single node */
5547 	if (unlikely(mte_is_root(mas->node)))
5548 		goto ask_now;
5549 
5550 	/* Potential spanning rebalance collapsing a node, use worst-case */
5551 	if (node_size  - 1 <= mt_min_slots[wr_mas.type])
5552 		request = mas_mt_height(mas) * 2 - 1;
5553 
5554 	/* node store, slot store needs one node */
5555 ask_now:
5556 	mas_node_count_gfp(mas, request, gfp);
5557 	mas->mas_flags |= MA_STATE_PREALLOC;
5558 	if (likely(!mas_is_err(mas)))
5559 		return 0;
5560 
5561 	mas_set_alloc_req(mas, 0);
5562 	ret = xa_err(mas->node);
5563 	mas_reset(mas);
5564 	mas_destroy(mas);
5565 	mas_reset(mas);
5566 	return ret;
5567 }
5568 EXPORT_SYMBOL_GPL(mas_preallocate);
5569 
5570 /*
5571  * mas_destroy() - destroy a maple state.
5572  * @mas: The maple state
5573  *
5574  * Upon completion, check the left-most node and rebalance against the node to
5575  * the right if necessary.  Frees any allocated nodes associated with this maple
5576  * state.
5577  */
5578 void mas_destroy(struct ma_state *mas)
5579 {
5580 	struct maple_alloc *node;
5581 	unsigned long total;
5582 
5583 	/*
5584 	 * When using mas_for_each() to insert an expected number of elements,
5585 	 * it is possible that the number inserted is less than the expected
5586 	 * number.  To fix an invalid final node, a check is performed here to
5587 	 * rebalance the previous node with the final node.
5588 	 */
5589 	if (mas->mas_flags & MA_STATE_REBALANCE) {
5590 		unsigned char end;
5591 
5592 		mas_start(mas);
5593 		mtree_range_walk(mas);
5594 		end = mas->end + 1;
5595 		if (end < mt_min_slot_count(mas->node) - 1)
5596 			mas_destroy_rebalance(mas, end);
5597 
5598 		mas->mas_flags &= ~MA_STATE_REBALANCE;
5599 	}
5600 	mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC);
5601 
5602 	total = mas_allocated(mas);
5603 	while (total) {
5604 		node = mas->alloc;
5605 		mas->alloc = node->slot[0];
5606 		if (node->node_count > 1) {
5607 			size_t count = node->node_count - 1;
5608 
5609 			mt_free_bulk(count, (void __rcu **)&node->slot[1]);
5610 			total -= count;
5611 		}
5612 		mt_free_one(ma_mnode_ptr(node));
5613 		total--;
5614 	}
5615 
5616 	mas->alloc = NULL;
5617 }
5618 EXPORT_SYMBOL_GPL(mas_destroy);
5619 
5620 /*
5621  * mas_expected_entries() - Set the expected number of entries that will be inserted.
5622  * @mas: The maple state
5623  * @nr_entries: The number of expected entries.
5624  *
5625  * This will attempt to pre-allocate enough nodes to store the expected number
5626  * of entries.  The allocations will occur using the bulk allocator interface
5627  * for speed.  Please call mas_destroy() on the @mas after inserting the entries
5628  * to ensure any unused nodes are freed.
5629  *
5630  * Return: 0 on success, -ENOMEM if memory could not be allocated.
5631  */
5632 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries)
5633 {
5634 	int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2;
5635 	struct maple_enode *enode = mas->node;
5636 	int nr_nodes;
5637 	int ret;
5638 
5639 	/*
5640 	 * Sometimes it is necessary to duplicate a tree to a new tree, such as
5641 	 * forking a process and duplicating the VMAs from one tree to a new
5642 	 * tree.  When such a situation arises, it is known that the new tree is
5643 	 * not going to be used until the entire tree is populated.  For
5644 	 * performance reasons, it is best to use a bulk load with RCU disabled.
5645 	 * This allows for optimistic splitting that favours the left and reuse
5646 	 * of nodes during the operation.
5647 	 */
5648 
5649 	/* Optimize splitting for bulk insert in-order */
5650 	mas->mas_flags |= MA_STATE_BULK;
5651 
5652 	/*
5653 	 * Avoid overflow, assume a gap between each entry and a trailing null.
5654 	 * If this is wrong, it just means allocation can happen during
5655 	 * insertion of entries.
5656 	 */
5657 	nr_nodes = max(nr_entries, nr_entries * 2 + 1);
5658 	if (!mt_is_alloc(mas->tree))
5659 		nonleaf_cap = MAPLE_RANGE64_SLOTS - 2;
5660 
5661 	/* Leaves; reduce slots to keep space for expansion */
5662 	nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2);
5663 	/* Internal nodes */
5664 	nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap);
5665 	/* Add working room for split (2 nodes) + new parents */
5666 	mas_node_count_gfp(mas, nr_nodes + 3, GFP_KERNEL);
5667 
5668 	/* Detect if allocations run out */
5669 	mas->mas_flags |= MA_STATE_PREALLOC;
5670 
5671 	if (!mas_is_err(mas))
5672 		return 0;
5673 
5674 	ret = xa_err(mas->node);
5675 	mas->node = enode;
5676 	mas_destroy(mas);
5677 	return ret;
5678 
5679 }
5680 EXPORT_SYMBOL_GPL(mas_expected_entries);
5681 
5682 static bool mas_next_setup(struct ma_state *mas, unsigned long max,
5683 		void **entry)
5684 {
5685 	bool was_none = mas_is_none(mas);
5686 
5687 	if (unlikely(mas->last >= max)) {
5688 		mas->status = ma_overflow;
5689 		return true;
5690 	}
5691 
5692 	switch (mas->status) {
5693 	case ma_active:
5694 		return false;
5695 	case ma_none:
5696 		fallthrough;
5697 	case ma_pause:
5698 		mas->status = ma_start;
5699 		fallthrough;
5700 	case ma_start:
5701 		mas_walk(mas); /* Retries on dead nodes handled by mas_walk */
5702 		break;
5703 	case ma_overflow:
5704 		/* Overflowed before, but the max changed */
5705 		mas->status = ma_active;
5706 		break;
5707 	case ma_underflow:
5708 		/* The user expects the mas to be one before where it is */
5709 		mas->status = ma_active;
5710 		*entry = mas_walk(mas);
5711 		if (*entry)
5712 			return true;
5713 		break;
5714 	case ma_root:
5715 		break;
5716 	case ma_error:
5717 		return true;
5718 	}
5719 
5720 	if (likely(mas_is_active(mas))) /* Fast path */
5721 		return false;
5722 
5723 	if (mas_is_ptr(mas)) {
5724 		*entry = NULL;
5725 		if (was_none && mas->index == 0) {
5726 			mas->index = mas->last = 0;
5727 			return true;
5728 		}
5729 		mas->index = 1;
5730 		mas->last = ULONG_MAX;
5731 		mas->status = ma_none;
5732 		return true;
5733 	}
5734 
5735 	if (mas_is_none(mas))
5736 		return true;
5737 
5738 	return false;
5739 }
5740 
5741 /**
5742  * mas_next() - Get the next entry.
5743  * @mas: The maple state
5744  * @max: The maximum index to check.
5745  *
5746  * Returns the next entry after @mas->index.
5747  * Must hold rcu_read_lock or the write lock.
5748  * Can return the zero entry.
5749  *
5750  * Return: The next entry or %NULL
5751  */
5752 void *mas_next(struct ma_state *mas, unsigned long max)
5753 {
5754 	void *entry = NULL;
5755 
5756 	if (mas_next_setup(mas, max, &entry))
5757 		return entry;
5758 
5759 	/* Retries on dead nodes handled by mas_next_slot */
5760 	return mas_next_slot(mas, max, false);
5761 }
5762 EXPORT_SYMBOL_GPL(mas_next);
5763 
5764 /**
5765  * mas_next_range() - Advance the maple state to the next range
5766  * @mas: The maple state
5767  * @max: The maximum index to check.
5768  *
5769  * Sets @mas->index and @mas->last to the range.
5770  * Must hold rcu_read_lock or the write lock.
5771  * Can return the zero entry.
5772  *
5773  * Return: The next entry or %NULL
5774  */
5775 void *mas_next_range(struct ma_state *mas, unsigned long max)
5776 {
5777 	void *entry = NULL;
5778 
5779 	if (mas_next_setup(mas, max, &entry))
5780 		return entry;
5781 
5782 	/* Retries on dead nodes handled by mas_next_slot */
5783 	return mas_next_slot(mas, max, true);
5784 }
5785 EXPORT_SYMBOL_GPL(mas_next_range);
5786 
5787 /**
5788  * mt_next() - get the next value in the maple tree
5789  * @mt: The maple tree
5790  * @index: The start index
5791  * @max: The maximum index to check
5792  *
5793  * Takes RCU read lock internally to protect the search, which does not
5794  * protect the returned pointer after dropping RCU read lock.
5795  * See also: Documentation/core-api/maple_tree.rst
5796  *
5797  * Return: The entry higher than @index or %NULL if nothing is found.
5798  */
5799 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
5800 {
5801 	void *entry = NULL;
5802 	MA_STATE(mas, mt, index, index);
5803 
5804 	rcu_read_lock();
5805 	entry = mas_next(&mas, max);
5806 	rcu_read_unlock();
5807 	return entry;
5808 }
5809 EXPORT_SYMBOL_GPL(mt_next);
5810 
5811 static bool mas_prev_setup(struct ma_state *mas, unsigned long min, void **entry)
5812 {
5813 	if (unlikely(mas->index <= min)) {
5814 		mas->status = ma_underflow;
5815 		return true;
5816 	}
5817 
5818 	switch (mas->status) {
5819 	case ma_active:
5820 		return false;
5821 	case ma_start:
5822 		break;
5823 	case ma_none:
5824 		fallthrough;
5825 	case ma_pause:
5826 		mas->status = ma_start;
5827 		break;
5828 	case ma_underflow:
5829 		/* underflowed before but the min changed */
5830 		mas->status = ma_active;
5831 		break;
5832 	case ma_overflow:
5833 		/* User expects mas to be one after where it is */
5834 		mas->status = ma_active;
5835 		*entry = mas_walk(mas);
5836 		if (*entry)
5837 			return true;
5838 		break;
5839 	case ma_root:
5840 		break;
5841 	case ma_error:
5842 		return true;
5843 	}
5844 
5845 	if (mas_is_start(mas))
5846 		mas_walk(mas);
5847 
5848 	if (unlikely(mas_is_ptr(mas))) {
5849 		if (!mas->index) {
5850 			mas->status = ma_none;
5851 			return true;
5852 		}
5853 		mas->index = mas->last = 0;
5854 		*entry = mas_root(mas);
5855 		return true;
5856 	}
5857 
5858 	if (mas_is_none(mas)) {
5859 		if (mas->index) {
5860 			/* Walked to out-of-range pointer? */
5861 			mas->index = mas->last = 0;
5862 			mas->status = ma_root;
5863 			*entry = mas_root(mas);
5864 			return true;
5865 		}
5866 		return true;
5867 	}
5868 
5869 	return false;
5870 }
5871 
5872 /**
5873  * mas_prev() - Get the previous entry
5874  * @mas: The maple state
5875  * @min: The minimum value to check.
5876  *
5877  * Must hold rcu_read_lock or the write lock.
5878  * Will reset mas to ma_start if the status is ma_none.  Will stop on not
5879  * searchable nodes.
5880  *
5881  * Return: the previous value or %NULL.
5882  */
5883 void *mas_prev(struct ma_state *mas, unsigned long min)
5884 {
5885 	void *entry = NULL;
5886 
5887 	if (mas_prev_setup(mas, min, &entry))
5888 		return entry;
5889 
5890 	return mas_prev_slot(mas, min, false);
5891 }
5892 EXPORT_SYMBOL_GPL(mas_prev);
5893 
5894 /**
5895  * mas_prev_range() - Advance to the previous range
5896  * @mas: The maple state
5897  * @min: The minimum value to check.
5898  *
5899  * Sets @mas->index and @mas->last to the range.
5900  * Must hold rcu_read_lock or the write lock.
5901  * Will reset mas to ma_start if the node is ma_none.  Will stop on not
5902  * searchable nodes.
5903  *
5904  * Return: the previous value or %NULL.
5905  */
5906 void *mas_prev_range(struct ma_state *mas, unsigned long min)
5907 {
5908 	void *entry = NULL;
5909 
5910 	if (mas_prev_setup(mas, min, &entry))
5911 		return entry;
5912 
5913 	return mas_prev_slot(mas, min, true);
5914 }
5915 EXPORT_SYMBOL_GPL(mas_prev_range);
5916 
5917 /**
5918  * mt_prev() - get the previous value in the maple tree
5919  * @mt: The maple tree
5920  * @index: The start index
5921  * @min: The minimum index to check
5922  *
5923  * Takes RCU read lock internally to protect the search, which does not
5924  * protect the returned pointer after dropping RCU read lock.
5925  * See also: Documentation/core-api/maple_tree.rst
5926  *
5927  * Return: The entry before @index or %NULL if nothing is found.
5928  */
5929 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
5930 {
5931 	void *entry = NULL;
5932 	MA_STATE(mas, mt, index, index);
5933 
5934 	rcu_read_lock();
5935 	entry = mas_prev(&mas, min);
5936 	rcu_read_unlock();
5937 	return entry;
5938 }
5939 EXPORT_SYMBOL_GPL(mt_prev);
5940 
5941 /**
5942  * mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
5943  * @mas: The maple state to pause
5944  *
5945  * Some users need to pause a walk and drop the lock they're holding in
5946  * order to yield to a higher priority thread or carry out an operation
5947  * on an entry.  Those users should call this function before they drop
5948  * the lock.  It resets the @mas to be suitable for the next iteration
5949  * of the loop after the user has reacquired the lock.  If most entries
5950  * found during a walk require you to call mas_pause(), the mt_for_each()
5951  * iterator may be more appropriate.
5952  *
5953  */
5954 void mas_pause(struct ma_state *mas)
5955 {
5956 	mas->status = ma_pause;
5957 	mas->node = NULL;
5958 }
5959 EXPORT_SYMBOL_GPL(mas_pause);
5960 
5961 /**
5962  * mas_find_setup() - Internal function to set up mas_find*().
5963  * @mas: The maple state
5964  * @max: The maximum index
5965  * @entry: Pointer to the entry
5966  *
5967  * Returns: True if entry is the answer, false otherwise.
5968  */
5969 static __always_inline bool mas_find_setup(struct ma_state *mas, unsigned long max, void **entry)
5970 {
5971 	switch (mas->status) {
5972 	case ma_active:
5973 		if (mas->last < max)
5974 			return false;
5975 		return true;
5976 	case ma_start:
5977 		break;
5978 	case ma_pause:
5979 		if (unlikely(mas->last >= max))
5980 			return true;
5981 
5982 		mas->index = ++mas->last;
5983 		mas->status = ma_start;
5984 		break;
5985 	case ma_none:
5986 		if (unlikely(mas->last >= max))
5987 			return true;
5988 
5989 		mas->index = mas->last;
5990 		mas->status = ma_start;
5991 		break;
5992 	case ma_underflow:
5993 		/* mas is pointing at entry before unable to go lower */
5994 		if (unlikely(mas->index >= max)) {
5995 			mas->status = ma_overflow;
5996 			return true;
5997 		}
5998 
5999 		mas->status = ma_active;
6000 		*entry = mas_walk(mas);
6001 		if (*entry)
6002 			return true;
6003 		break;
6004 	case ma_overflow:
6005 		if (unlikely(mas->last >= max))
6006 			return true;
6007 
6008 		mas->status = ma_active;
6009 		*entry = mas_walk(mas);
6010 		if (*entry)
6011 			return true;
6012 		break;
6013 	case ma_root:
6014 		break;
6015 	case ma_error:
6016 		return true;
6017 	}
6018 
6019 	if (mas_is_start(mas)) {
6020 		/* First run or continue */
6021 		if (mas->index > max)
6022 			return true;
6023 
6024 		*entry = mas_walk(mas);
6025 		if (*entry)
6026 			return true;
6027 
6028 	}
6029 
6030 	if (unlikely(mas_is_ptr(mas)))
6031 		goto ptr_out_of_range;
6032 
6033 	if (unlikely(mas_is_none(mas)))
6034 		return true;
6035 
6036 	if (mas->index == max)
6037 		return true;
6038 
6039 	return false;
6040 
6041 ptr_out_of_range:
6042 	mas->status = ma_none;
6043 	mas->index = 1;
6044 	mas->last = ULONG_MAX;
6045 	return true;
6046 }
6047 
6048 /**
6049  * mas_find() - On the first call, find the entry at or after mas->index up to
6050  * %max.  Otherwise, find the entry after mas->index.
6051  * @mas: The maple state
6052  * @max: The maximum value to check.
6053  *
6054  * Must hold rcu_read_lock or the write lock.
6055  * If an entry exists, last and index are updated accordingly.
6056  * May set @mas->status to ma_overflow.
6057  *
6058  * Return: The entry or %NULL.
6059  */
6060 void *mas_find(struct ma_state *mas, unsigned long max)
6061 {
6062 	void *entry = NULL;
6063 
6064 	if (mas_find_setup(mas, max, &entry))
6065 		return entry;
6066 
6067 	/* Retries on dead nodes handled by mas_next_slot */
6068 	entry = mas_next_slot(mas, max, false);
6069 	/* Ignore overflow */
6070 	mas->status = ma_active;
6071 	return entry;
6072 }
6073 EXPORT_SYMBOL_GPL(mas_find);
6074 
6075 /**
6076  * mas_find_range() - On the first call, find the entry at or after
6077  * mas->index up to %max.  Otherwise, advance to the next slot mas->index.
6078  * @mas: The maple state
6079  * @max: The maximum value to check.
6080  *
6081  * Must hold rcu_read_lock or the write lock.
6082  * If an entry exists, last and index are updated accordingly.
6083  * May set @mas->status to ma_overflow.
6084  *
6085  * Return: The entry or %NULL.
6086  */
6087 void *mas_find_range(struct ma_state *mas, unsigned long max)
6088 {
6089 	void *entry = NULL;
6090 
6091 	if (mas_find_setup(mas, max, &entry))
6092 		return entry;
6093 
6094 	/* Retries on dead nodes handled by mas_next_slot */
6095 	return mas_next_slot(mas, max, true);
6096 }
6097 EXPORT_SYMBOL_GPL(mas_find_range);
6098 
6099 /**
6100  * mas_find_rev_setup() - Internal function to set up mas_find_*_rev()
6101  * @mas: The maple state
6102  * @min: The minimum index
6103  * @entry: Pointer to the entry
6104  *
6105  * Returns: True if entry is the answer, false otherwise.
6106  */
6107 static bool mas_find_rev_setup(struct ma_state *mas, unsigned long min,
6108 		void **entry)
6109 {
6110 
6111 	switch (mas->status) {
6112 	case ma_active:
6113 		goto active;
6114 	case ma_start:
6115 		break;
6116 	case ma_pause:
6117 		if (unlikely(mas->index <= min)) {
6118 			mas->status = ma_underflow;
6119 			return true;
6120 		}
6121 		mas->last = --mas->index;
6122 		mas->status = ma_start;
6123 		break;
6124 	case ma_none:
6125 		if (mas->index <= min)
6126 			goto none;
6127 
6128 		mas->last = mas->index;
6129 		mas->status = ma_start;
6130 		break;
6131 	case ma_overflow: /* user expects the mas to be one after where it is */
6132 		if (unlikely(mas->index <= min)) {
6133 			mas->status = ma_underflow;
6134 			return true;
6135 		}
6136 
6137 		mas->status = ma_active;
6138 		break;
6139 	case ma_underflow: /* user expects the mas to be one before where it is */
6140 		if (unlikely(mas->index <= min))
6141 			return true;
6142 
6143 		mas->status = ma_active;
6144 		break;
6145 	case ma_root:
6146 		break;
6147 	case ma_error:
6148 		return true;
6149 	}
6150 
6151 	if (mas_is_start(mas)) {
6152 		/* First run or continue */
6153 		if (mas->index < min)
6154 			return true;
6155 
6156 		*entry = mas_walk(mas);
6157 		if (*entry)
6158 			return true;
6159 	}
6160 
6161 	if (unlikely(mas_is_ptr(mas)))
6162 		goto none;
6163 
6164 	if (unlikely(mas_is_none(mas))) {
6165 		/*
6166 		 * Walked to the location, and there was nothing so the previous
6167 		 * location is 0.
6168 		 */
6169 		mas->last = mas->index = 0;
6170 		mas->status = ma_root;
6171 		*entry = mas_root(mas);
6172 		return true;
6173 	}
6174 
6175 active:
6176 	if (mas->index < min)
6177 		return true;
6178 
6179 	return false;
6180 
6181 none:
6182 	mas->status = ma_none;
6183 	return true;
6184 }
6185 
6186 /**
6187  * mas_find_rev: On the first call, find the first non-null entry at or below
6188  * mas->index down to %min.  Otherwise find the first non-null entry below
6189  * mas->index down to %min.
6190  * @mas: The maple state
6191  * @min: The minimum value to check.
6192  *
6193  * Must hold rcu_read_lock or the write lock.
6194  * If an entry exists, last and index are updated accordingly.
6195  * May set @mas->status to ma_underflow.
6196  *
6197  * Return: The entry or %NULL.
6198  */
6199 void *mas_find_rev(struct ma_state *mas, unsigned long min)
6200 {
6201 	void *entry = NULL;
6202 
6203 	if (mas_find_rev_setup(mas, min, &entry))
6204 		return entry;
6205 
6206 	/* Retries on dead nodes handled by mas_prev_slot */
6207 	return mas_prev_slot(mas, min, false);
6208 
6209 }
6210 EXPORT_SYMBOL_GPL(mas_find_rev);
6211 
6212 /**
6213  * mas_find_range_rev: On the first call, find the first non-null entry at or
6214  * below mas->index down to %min.  Otherwise advance to the previous slot after
6215  * mas->index down to %min.
6216  * @mas: The maple state
6217  * @min: The minimum value to check.
6218  *
6219  * Must hold rcu_read_lock or the write lock.
6220  * If an entry exists, last and index are updated accordingly.
6221  * May set @mas->status to ma_underflow.
6222  *
6223  * Return: The entry or %NULL.
6224  */
6225 void *mas_find_range_rev(struct ma_state *mas, unsigned long min)
6226 {
6227 	void *entry = NULL;
6228 
6229 	if (mas_find_rev_setup(mas, min, &entry))
6230 		return entry;
6231 
6232 	/* Retries on dead nodes handled by mas_prev_slot */
6233 	return mas_prev_slot(mas, min, true);
6234 }
6235 EXPORT_SYMBOL_GPL(mas_find_range_rev);
6236 
6237 /**
6238  * mas_erase() - Find the range in which index resides and erase the entire
6239  * range.
6240  * @mas: The maple state
6241  *
6242  * Must hold the write lock.
6243  * Searches for @mas->index, sets @mas->index and @mas->last to the range and
6244  * erases that range.
6245  *
6246  * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
6247  */
6248 void *mas_erase(struct ma_state *mas)
6249 {
6250 	void *entry;
6251 	MA_WR_STATE(wr_mas, mas, NULL);
6252 
6253 	if (!mas_is_active(mas) || !mas_is_start(mas))
6254 		mas->status = ma_start;
6255 
6256 	/* Retry unnecessary when holding the write lock. */
6257 	entry = mas_state_walk(mas);
6258 	if (!entry)
6259 		return NULL;
6260 
6261 write_retry:
6262 	/* Must reset to ensure spanning writes of last slot are detected */
6263 	mas_reset(mas);
6264 	mas_wr_store_setup(&wr_mas);
6265 	mas_wr_store_entry(&wr_mas);
6266 	if (mas_nomem(mas, GFP_KERNEL))
6267 		goto write_retry;
6268 
6269 	return entry;
6270 }
6271 EXPORT_SYMBOL_GPL(mas_erase);
6272 
6273 /**
6274  * mas_nomem() - Check if there was an error allocating and do the allocation
6275  * if necessary If there are allocations, then free them.
6276  * @mas: The maple state
6277  * @gfp: The GFP_FLAGS to use for allocations
6278  * Return: true on allocation, false otherwise.
6279  */
6280 bool mas_nomem(struct ma_state *mas, gfp_t gfp)
6281 	__must_hold(mas->tree->ma_lock)
6282 {
6283 	if (likely(mas->node != MA_ERROR(-ENOMEM))) {
6284 		mas_destroy(mas);
6285 		return false;
6286 	}
6287 
6288 	if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) {
6289 		mtree_unlock(mas->tree);
6290 		mas_alloc_nodes(mas, gfp);
6291 		mtree_lock(mas->tree);
6292 	} else {
6293 		mas_alloc_nodes(mas, gfp);
6294 	}
6295 
6296 	if (!mas_allocated(mas))
6297 		return false;
6298 
6299 	mas->status = ma_start;
6300 	return true;
6301 }
6302 
6303 void __init maple_tree_init(void)
6304 {
6305 	maple_node_cache = kmem_cache_create("maple_node",
6306 			sizeof(struct maple_node), sizeof(struct maple_node),
6307 			SLAB_PANIC, NULL);
6308 }
6309 
6310 /**
6311  * mtree_load() - Load a value stored in a maple tree
6312  * @mt: The maple tree
6313  * @index: The index to load
6314  *
6315  * Return: the entry or %NULL
6316  */
6317 void *mtree_load(struct maple_tree *mt, unsigned long index)
6318 {
6319 	MA_STATE(mas, mt, index, index);
6320 	void *entry;
6321 
6322 	trace_ma_read(__func__, &mas);
6323 	rcu_read_lock();
6324 retry:
6325 	entry = mas_start(&mas);
6326 	if (unlikely(mas_is_none(&mas)))
6327 		goto unlock;
6328 
6329 	if (unlikely(mas_is_ptr(&mas))) {
6330 		if (index)
6331 			entry = NULL;
6332 
6333 		goto unlock;
6334 	}
6335 
6336 	entry = mtree_lookup_walk(&mas);
6337 	if (!entry && unlikely(mas_is_start(&mas)))
6338 		goto retry;
6339 unlock:
6340 	rcu_read_unlock();
6341 	if (xa_is_zero(entry))
6342 		return NULL;
6343 
6344 	return entry;
6345 }
6346 EXPORT_SYMBOL(mtree_load);
6347 
6348 /**
6349  * mtree_store_range() - Store an entry at a given range.
6350  * @mt: The maple tree
6351  * @index: The start of the range
6352  * @last: The end of the range
6353  * @entry: The entry to store
6354  * @gfp: The GFP_FLAGS to use for allocations
6355  *
6356  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6357  * be allocated.
6358  */
6359 int mtree_store_range(struct maple_tree *mt, unsigned long index,
6360 		unsigned long last, void *entry, gfp_t gfp)
6361 {
6362 	MA_STATE(mas, mt, index, last);
6363 	MA_WR_STATE(wr_mas, &mas, entry);
6364 
6365 	trace_ma_write(__func__, &mas, 0, entry);
6366 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
6367 		return -EINVAL;
6368 
6369 	if (index > last)
6370 		return -EINVAL;
6371 
6372 	mtree_lock(mt);
6373 retry:
6374 	mas_wr_store_entry(&wr_mas);
6375 	if (mas_nomem(&mas, gfp))
6376 		goto retry;
6377 
6378 	mtree_unlock(mt);
6379 	if (mas_is_err(&mas))
6380 		return xa_err(mas.node);
6381 
6382 	return 0;
6383 }
6384 EXPORT_SYMBOL(mtree_store_range);
6385 
6386 /**
6387  * mtree_store() - Store an entry at a given index.
6388  * @mt: The maple tree
6389  * @index: The index to store the value
6390  * @entry: The entry to store
6391  * @gfp: The GFP_FLAGS to use for allocations
6392  *
6393  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6394  * be allocated.
6395  */
6396 int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
6397 		 gfp_t gfp)
6398 {
6399 	return mtree_store_range(mt, index, index, entry, gfp);
6400 }
6401 EXPORT_SYMBOL(mtree_store);
6402 
6403 /**
6404  * mtree_insert_range() - Insert an entry at a given range if there is no value.
6405  * @mt: The maple tree
6406  * @first: The start of the range
6407  * @last: The end of the range
6408  * @entry: The entry to store
6409  * @gfp: The GFP_FLAGS to use for allocations.
6410  *
6411  * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6412  * request, -ENOMEM if memory could not be allocated.
6413  */
6414 int mtree_insert_range(struct maple_tree *mt, unsigned long first,
6415 		unsigned long last, void *entry, gfp_t gfp)
6416 {
6417 	MA_STATE(ms, mt, first, last);
6418 
6419 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
6420 		return -EINVAL;
6421 
6422 	if (first > last)
6423 		return -EINVAL;
6424 
6425 	mtree_lock(mt);
6426 retry:
6427 	mas_insert(&ms, entry);
6428 	if (mas_nomem(&ms, gfp))
6429 		goto retry;
6430 
6431 	mtree_unlock(mt);
6432 	if (mas_is_err(&ms))
6433 		return xa_err(ms.node);
6434 
6435 	return 0;
6436 }
6437 EXPORT_SYMBOL(mtree_insert_range);
6438 
6439 /**
6440  * mtree_insert() - Insert an entry at a given index if there is no value.
6441  * @mt: The maple tree
6442  * @index : The index to store the value
6443  * @entry: The entry to store
6444  * @gfp: The GFP_FLAGS to use for allocations.
6445  *
6446  * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6447  * request, -ENOMEM if memory could not be allocated.
6448  */
6449 int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
6450 		 gfp_t gfp)
6451 {
6452 	return mtree_insert_range(mt, index, index, entry, gfp);
6453 }
6454 EXPORT_SYMBOL(mtree_insert);
6455 
6456 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
6457 		void *entry, unsigned long size, unsigned long min,
6458 		unsigned long max, gfp_t gfp)
6459 {
6460 	int ret = 0;
6461 
6462 	MA_STATE(mas, mt, 0, 0);
6463 	if (!mt_is_alloc(mt))
6464 		return -EINVAL;
6465 
6466 	if (WARN_ON_ONCE(mt_is_reserved(entry)))
6467 		return -EINVAL;
6468 
6469 	mtree_lock(mt);
6470 retry:
6471 	ret = mas_empty_area(&mas, min, max, size);
6472 	if (ret)
6473 		goto unlock;
6474 
6475 	mas_insert(&mas, entry);
6476 	/*
6477 	 * mas_nomem() may release the lock, causing the allocated area
6478 	 * to be unavailable, so try to allocate a free area again.
6479 	 */
6480 	if (mas_nomem(&mas, gfp))
6481 		goto retry;
6482 
6483 	if (mas_is_err(&mas))
6484 		ret = xa_err(mas.node);
6485 	else
6486 		*startp = mas.index;
6487 
6488 unlock:
6489 	mtree_unlock(mt);
6490 	return ret;
6491 }
6492 EXPORT_SYMBOL(mtree_alloc_range);
6493 
6494 /**
6495  * mtree_alloc_cyclic() - Find somewhere to store this entry in the tree.
6496  * @mt: The maple tree.
6497  * @startp: Pointer to ID.
6498  * @range_lo: Lower bound of range to search.
6499  * @range_hi: Upper bound of range to search.
6500  * @entry: The entry to store.
6501  * @next: Pointer to next ID to allocate.
6502  * @gfp: The GFP_FLAGS to use for allocations.
6503  *
6504  * Finds an empty entry in @mt after @next, stores the new index into
6505  * the @id pointer, stores the entry at that index, then updates @next.
6506  *
6507  * @mt must be initialized with the MT_FLAGS_ALLOC_RANGE flag.
6508  *
6509  * Context: Any context.  Takes and releases the mt.lock.  May sleep if
6510  * the @gfp flags permit.
6511  *
6512  * Return: 0 if the allocation succeeded without wrapping, 1 if the
6513  * allocation succeeded after wrapping, -ENOMEM if memory could not be
6514  * allocated, -EINVAL if @mt cannot be used, or -EBUSY if there are no
6515  * free entries.
6516  */
6517 int mtree_alloc_cyclic(struct maple_tree *mt, unsigned long *startp,
6518 		void *entry, unsigned long range_lo, unsigned long range_hi,
6519 		unsigned long *next, gfp_t gfp)
6520 {
6521 	int ret;
6522 
6523 	MA_STATE(mas, mt, 0, 0);
6524 
6525 	if (!mt_is_alloc(mt))
6526 		return -EINVAL;
6527 	if (WARN_ON_ONCE(mt_is_reserved(entry)))
6528 		return -EINVAL;
6529 	mtree_lock(mt);
6530 	ret = mas_alloc_cyclic(&mas, startp, entry, range_lo, range_hi,
6531 			       next, gfp);
6532 	mtree_unlock(mt);
6533 	return ret;
6534 }
6535 EXPORT_SYMBOL(mtree_alloc_cyclic);
6536 
6537 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
6538 		void *entry, unsigned long size, unsigned long min,
6539 		unsigned long max, gfp_t gfp)
6540 {
6541 	int ret = 0;
6542 
6543 	MA_STATE(mas, mt, 0, 0);
6544 	if (!mt_is_alloc(mt))
6545 		return -EINVAL;
6546 
6547 	if (WARN_ON_ONCE(mt_is_reserved(entry)))
6548 		return -EINVAL;
6549 
6550 	mtree_lock(mt);
6551 retry:
6552 	ret = mas_empty_area_rev(&mas, min, max, size);
6553 	if (ret)
6554 		goto unlock;
6555 
6556 	mas_insert(&mas, entry);
6557 	/*
6558 	 * mas_nomem() may release the lock, causing the allocated area
6559 	 * to be unavailable, so try to allocate a free area again.
6560 	 */
6561 	if (mas_nomem(&mas, gfp))
6562 		goto retry;
6563 
6564 	if (mas_is_err(&mas))
6565 		ret = xa_err(mas.node);
6566 	else
6567 		*startp = mas.index;
6568 
6569 unlock:
6570 	mtree_unlock(mt);
6571 	return ret;
6572 }
6573 EXPORT_SYMBOL(mtree_alloc_rrange);
6574 
6575 /**
6576  * mtree_erase() - Find an index and erase the entire range.
6577  * @mt: The maple tree
6578  * @index: The index to erase
6579  *
6580  * Erasing is the same as a walk to an entry then a store of a NULL to that
6581  * ENTIRE range.  In fact, it is implemented as such using the advanced API.
6582  *
6583  * Return: The entry stored at the @index or %NULL
6584  */
6585 void *mtree_erase(struct maple_tree *mt, unsigned long index)
6586 {
6587 	void *entry = NULL;
6588 
6589 	MA_STATE(mas, mt, index, index);
6590 	trace_ma_op(__func__, &mas);
6591 
6592 	mtree_lock(mt);
6593 	entry = mas_erase(&mas);
6594 	mtree_unlock(mt);
6595 
6596 	return entry;
6597 }
6598 EXPORT_SYMBOL(mtree_erase);
6599 
6600 /*
6601  * mas_dup_free() - Free an incomplete duplication of a tree.
6602  * @mas: The maple state of a incomplete tree.
6603  *
6604  * The parameter @mas->node passed in indicates that the allocation failed on
6605  * this node. This function frees all nodes starting from @mas->node in the
6606  * reverse order of mas_dup_build(). There is no need to hold the source tree
6607  * lock at this time.
6608  */
6609 static void mas_dup_free(struct ma_state *mas)
6610 {
6611 	struct maple_node *node;
6612 	enum maple_type type;
6613 	void __rcu **slots;
6614 	unsigned char count, i;
6615 
6616 	/* Maybe the first node allocation failed. */
6617 	if (mas_is_none(mas))
6618 		return;
6619 
6620 	while (!mte_is_root(mas->node)) {
6621 		mas_ascend(mas);
6622 		if (mas->offset) {
6623 			mas->offset--;
6624 			do {
6625 				mas_descend(mas);
6626 				mas->offset = mas_data_end(mas);
6627 			} while (!mte_is_leaf(mas->node));
6628 
6629 			mas_ascend(mas);
6630 		}
6631 
6632 		node = mte_to_node(mas->node);
6633 		type = mte_node_type(mas->node);
6634 		slots = ma_slots(node, type);
6635 		count = mas_data_end(mas) + 1;
6636 		for (i = 0; i < count; i++)
6637 			((unsigned long *)slots)[i] &= ~MAPLE_NODE_MASK;
6638 		mt_free_bulk(count, slots);
6639 	}
6640 
6641 	node = mte_to_node(mas->node);
6642 	mt_free_one(node);
6643 }
6644 
6645 /*
6646  * mas_copy_node() - Copy a maple node and replace the parent.
6647  * @mas: The maple state of source tree.
6648  * @new_mas: The maple state of new tree.
6649  * @parent: The parent of the new node.
6650  *
6651  * Copy @mas->node to @new_mas->node, set @parent to be the parent of
6652  * @new_mas->node. If memory allocation fails, @mas is set to -ENOMEM.
6653  */
6654 static inline void mas_copy_node(struct ma_state *mas, struct ma_state *new_mas,
6655 		struct maple_pnode *parent)
6656 {
6657 	struct maple_node *node = mte_to_node(mas->node);
6658 	struct maple_node *new_node = mte_to_node(new_mas->node);
6659 	unsigned long val;
6660 
6661 	/* Copy the node completely. */
6662 	memcpy(new_node, node, sizeof(struct maple_node));
6663 	/* Update the parent node pointer. */
6664 	val = (unsigned long)node->parent & MAPLE_NODE_MASK;
6665 	new_node->parent = ma_parent_ptr(val | (unsigned long)parent);
6666 }
6667 
6668 /*
6669  * mas_dup_alloc() - Allocate child nodes for a maple node.
6670  * @mas: The maple state of source tree.
6671  * @new_mas: The maple state of new tree.
6672  * @gfp: The GFP_FLAGS to use for allocations.
6673  *
6674  * This function allocates child nodes for @new_mas->node during the duplication
6675  * process. If memory allocation fails, @mas is set to -ENOMEM.
6676  */
6677 static inline void mas_dup_alloc(struct ma_state *mas, struct ma_state *new_mas,
6678 		gfp_t gfp)
6679 {
6680 	struct maple_node *node = mte_to_node(mas->node);
6681 	struct maple_node *new_node = mte_to_node(new_mas->node);
6682 	enum maple_type type;
6683 	unsigned char request, count, i;
6684 	void __rcu **slots;
6685 	void __rcu **new_slots;
6686 	unsigned long val;
6687 
6688 	/* Allocate memory for child nodes. */
6689 	type = mte_node_type(mas->node);
6690 	new_slots = ma_slots(new_node, type);
6691 	request = mas_data_end(mas) + 1;
6692 	count = mt_alloc_bulk(gfp, request, (void **)new_slots);
6693 	if (unlikely(count < request)) {
6694 		memset(new_slots, 0, request * sizeof(void *));
6695 		mas_set_err(mas, -ENOMEM);
6696 		return;
6697 	}
6698 
6699 	/* Restore node type information in slots. */
6700 	slots = ma_slots(node, type);
6701 	for (i = 0; i < count; i++) {
6702 		val = (unsigned long)mt_slot_locked(mas->tree, slots, i);
6703 		val &= MAPLE_NODE_MASK;
6704 		((unsigned long *)new_slots)[i] |= val;
6705 	}
6706 }
6707 
6708 /*
6709  * mas_dup_build() - Build a new maple tree from a source tree
6710  * @mas: The maple state of source tree, need to be in MAS_START state.
6711  * @new_mas: The maple state of new tree, need to be in MAS_START state.
6712  * @gfp: The GFP_FLAGS to use for allocations.
6713  *
6714  * This function builds a new tree in DFS preorder. If the memory allocation
6715  * fails, the error code -ENOMEM will be set in @mas, and @new_mas points to the
6716  * last node. mas_dup_free() will free the incomplete duplication of a tree.
6717  *
6718  * Note that the attributes of the two trees need to be exactly the same, and the
6719  * new tree needs to be empty, otherwise -EINVAL will be set in @mas.
6720  */
6721 static inline void mas_dup_build(struct ma_state *mas, struct ma_state *new_mas,
6722 		gfp_t gfp)
6723 {
6724 	struct maple_node *node;
6725 	struct maple_pnode *parent = NULL;
6726 	struct maple_enode *root;
6727 	enum maple_type type;
6728 
6729 	if (unlikely(mt_attr(mas->tree) != mt_attr(new_mas->tree)) ||
6730 	    unlikely(!mtree_empty(new_mas->tree))) {
6731 		mas_set_err(mas, -EINVAL);
6732 		return;
6733 	}
6734 
6735 	root = mas_start(mas);
6736 	if (mas_is_ptr(mas) || mas_is_none(mas))
6737 		goto set_new_tree;
6738 
6739 	node = mt_alloc_one(gfp);
6740 	if (!node) {
6741 		new_mas->status = ma_none;
6742 		mas_set_err(mas, -ENOMEM);
6743 		return;
6744 	}
6745 
6746 	type = mte_node_type(mas->node);
6747 	root = mt_mk_node(node, type);
6748 	new_mas->node = root;
6749 	new_mas->min = 0;
6750 	new_mas->max = ULONG_MAX;
6751 	root = mte_mk_root(root);
6752 	while (1) {
6753 		mas_copy_node(mas, new_mas, parent);
6754 		if (!mte_is_leaf(mas->node)) {
6755 			/* Only allocate child nodes for non-leaf nodes. */
6756 			mas_dup_alloc(mas, new_mas, gfp);
6757 			if (unlikely(mas_is_err(mas)))
6758 				return;
6759 		} else {
6760 			/*
6761 			 * This is the last leaf node and duplication is
6762 			 * completed.
6763 			 */
6764 			if (mas->max == ULONG_MAX)
6765 				goto done;
6766 
6767 			/* This is not the last leaf node and needs to go up. */
6768 			do {
6769 				mas_ascend(mas);
6770 				mas_ascend(new_mas);
6771 			} while (mas->offset == mas_data_end(mas));
6772 
6773 			/* Move to the next subtree. */
6774 			mas->offset++;
6775 			new_mas->offset++;
6776 		}
6777 
6778 		mas_descend(mas);
6779 		parent = ma_parent_ptr(mte_to_node(new_mas->node));
6780 		mas_descend(new_mas);
6781 		mas->offset = 0;
6782 		new_mas->offset = 0;
6783 	}
6784 done:
6785 	/* Specially handle the parent of the root node. */
6786 	mte_to_node(root)->parent = ma_parent_ptr(mas_tree_parent(new_mas));
6787 set_new_tree:
6788 	/* Make them the same height */
6789 	new_mas->tree->ma_flags = mas->tree->ma_flags;
6790 	rcu_assign_pointer(new_mas->tree->ma_root, root);
6791 }
6792 
6793 /**
6794  * __mt_dup(): Duplicate an entire maple tree
6795  * @mt: The source maple tree
6796  * @new: The new maple tree
6797  * @gfp: The GFP_FLAGS to use for allocations
6798  *
6799  * This function duplicates a maple tree in Depth-First Search (DFS) pre-order
6800  * traversal. It uses memcpy() to copy nodes in the source tree and allocate
6801  * new child nodes in non-leaf nodes. The new node is exactly the same as the
6802  * source node except for all the addresses stored in it. It will be faster than
6803  * traversing all elements in the source tree and inserting them one by one into
6804  * the new tree.
6805  * The user needs to ensure that the attributes of the source tree and the new
6806  * tree are the same, and the new tree needs to be an empty tree, otherwise
6807  * -EINVAL will be returned.
6808  * Note that the user needs to manually lock the source tree and the new tree.
6809  *
6810  * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If
6811  * the attributes of the two trees are different or the new tree is not an empty
6812  * tree.
6813  */
6814 int __mt_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp)
6815 {
6816 	int ret = 0;
6817 	MA_STATE(mas, mt, 0, 0);
6818 	MA_STATE(new_mas, new, 0, 0);
6819 
6820 	mas_dup_build(&mas, &new_mas, gfp);
6821 	if (unlikely(mas_is_err(&mas))) {
6822 		ret = xa_err(mas.node);
6823 		if (ret == -ENOMEM)
6824 			mas_dup_free(&new_mas);
6825 	}
6826 
6827 	return ret;
6828 }
6829 EXPORT_SYMBOL(__mt_dup);
6830 
6831 /**
6832  * mtree_dup(): Duplicate an entire maple tree
6833  * @mt: The source maple tree
6834  * @new: The new maple tree
6835  * @gfp: The GFP_FLAGS to use for allocations
6836  *
6837  * This function duplicates a maple tree in Depth-First Search (DFS) pre-order
6838  * traversal. It uses memcpy() to copy nodes in the source tree and allocate
6839  * new child nodes in non-leaf nodes. The new node is exactly the same as the
6840  * source node except for all the addresses stored in it. It will be faster than
6841  * traversing all elements in the source tree and inserting them one by one into
6842  * the new tree.
6843  * The user needs to ensure that the attributes of the source tree and the new
6844  * tree are the same, and the new tree needs to be an empty tree, otherwise
6845  * -EINVAL will be returned.
6846  *
6847  * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If
6848  * the attributes of the two trees are different or the new tree is not an empty
6849  * tree.
6850  */
6851 int mtree_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp)
6852 {
6853 	int ret = 0;
6854 	MA_STATE(mas, mt, 0, 0);
6855 	MA_STATE(new_mas, new, 0, 0);
6856 
6857 	mas_lock(&new_mas);
6858 	mas_lock_nested(&mas, SINGLE_DEPTH_NESTING);
6859 	mas_dup_build(&mas, &new_mas, gfp);
6860 	mas_unlock(&mas);
6861 	if (unlikely(mas_is_err(&mas))) {
6862 		ret = xa_err(mas.node);
6863 		if (ret == -ENOMEM)
6864 			mas_dup_free(&new_mas);
6865 	}
6866 
6867 	mas_unlock(&new_mas);
6868 	return ret;
6869 }
6870 EXPORT_SYMBOL(mtree_dup);
6871 
6872 /**
6873  * __mt_destroy() - Walk and free all nodes of a locked maple tree.
6874  * @mt: The maple tree
6875  *
6876  * Note: Does not handle locking.
6877  */
6878 void __mt_destroy(struct maple_tree *mt)
6879 {
6880 	void *root = mt_root_locked(mt);
6881 
6882 	rcu_assign_pointer(mt->ma_root, NULL);
6883 	if (xa_is_node(root))
6884 		mte_destroy_walk(root, mt);
6885 
6886 	mt->ma_flags = mt_attr(mt);
6887 }
6888 EXPORT_SYMBOL_GPL(__mt_destroy);
6889 
6890 /**
6891  * mtree_destroy() - Destroy a maple tree
6892  * @mt: The maple tree
6893  *
6894  * Frees all resources used by the tree.  Handles locking.
6895  */
6896 void mtree_destroy(struct maple_tree *mt)
6897 {
6898 	mtree_lock(mt);
6899 	__mt_destroy(mt);
6900 	mtree_unlock(mt);
6901 }
6902 EXPORT_SYMBOL(mtree_destroy);
6903 
6904 /**
6905  * mt_find() - Search from the start up until an entry is found.
6906  * @mt: The maple tree
6907  * @index: Pointer which contains the start location of the search
6908  * @max: The maximum value of the search range
6909  *
6910  * Takes RCU read lock internally to protect the search, which does not
6911  * protect the returned pointer after dropping RCU read lock.
6912  * See also: Documentation/core-api/maple_tree.rst
6913  *
6914  * In case that an entry is found @index is updated to point to the next
6915  * possible entry independent whether the found entry is occupying a
6916  * single index or a range if indices.
6917  *
6918  * Return: The entry at or after the @index or %NULL
6919  */
6920 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
6921 {
6922 	MA_STATE(mas, mt, *index, *index);
6923 	void *entry;
6924 #ifdef CONFIG_DEBUG_MAPLE_TREE
6925 	unsigned long copy = *index;
6926 #endif
6927 
6928 	trace_ma_read(__func__, &mas);
6929 
6930 	if ((*index) > max)
6931 		return NULL;
6932 
6933 	rcu_read_lock();
6934 retry:
6935 	entry = mas_state_walk(&mas);
6936 	if (mas_is_start(&mas))
6937 		goto retry;
6938 
6939 	if (unlikely(xa_is_zero(entry)))
6940 		entry = NULL;
6941 
6942 	if (entry)
6943 		goto unlock;
6944 
6945 	while (mas_is_active(&mas) && (mas.last < max)) {
6946 		entry = mas_next_entry(&mas, max);
6947 		if (likely(entry && !xa_is_zero(entry)))
6948 			break;
6949 	}
6950 
6951 	if (unlikely(xa_is_zero(entry)))
6952 		entry = NULL;
6953 unlock:
6954 	rcu_read_unlock();
6955 	if (likely(entry)) {
6956 		*index = mas.last + 1;
6957 #ifdef CONFIG_DEBUG_MAPLE_TREE
6958 		if (MT_WARN_ON(mt, (*index) && ((*index) <= copy)))
6959 			pr_err("index not increased! %lx <= %lx\n",
6960 			       *index, copy);
6961 #endif
6962 	}
6963 
6964 	return entry;
6965 }
6966 EXPORT_SYMBOL(mt_find);
6967 
6968 /**
6969  * mt_find_after() - Search from the start up until an entry is found.
6970  * @mt: The maple tree
6971  * @index: Pointer which contains the start location of the search
6972  * @max: The maximum value to check
6973  *
6974  * Same as mt_find() except that it checks @index for 0 before
6975  * searching. If @index == 0, the search is aborted. This covers a wrap
6976  * around of @index to 0 in an iterator loop.
6977  *
6978  * Return: The entry at or after the @index or %NULL
6979  */
6980 void *mt_find_after(struct maple_tree *mt, unsigned long *index,
6981 		    unsigned long max)
6982 {
6983 	if (!(*index))
6984 		return NULL;
6985 
6986 	return mt_find(mt, index, max);
6987 }
6988 EXPORT_SYMBOL(mt_find_after);
6989 
6990 #ifdef CONFIG_DEBUG_MAPLE_TREE
6991 atomic_t maple_tree_tests_run;
6992 EXPORT_SYMBOL_GPL(maple_tree_tests_run);
6993 atomic_t maple_tree_tests_passed;
6994 EXPORT_SYMBOL_GPL(maple_tree_tests_passed);
6995 
6996 #ifndef __KERNEL__
6997 extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
6998 void mt_set_non_kernel(unsigned int val)
6999 {
7000 	kmem_cache_set_non_kernel(maple_node_cache, val);
7001 }
7002 
7003 extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
7004 unsigned long mt_get_alloc_size(void)
7005 {
7006 	return kmem_cache_get_alloc(maple_node_cache);
7007 }
7008 
7009 extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
7010 void mt_zero_nr_tallocated(void)
7011 {
7012 	kmem_cache_zero_nr_tallocated(maple_node_cache);
7013 }
7014 
7015 extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
7016 unsigned int mt_nr_tallocated(void)
7017 {
7018 	return kmem_cache_nr_tallocated(maple_node_cache);
7019 }
7020 
7021 extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
7022 unsigned int mt_nr_allocated(void)
7023 {
7024 	return kmem_cache_nr_allocated(maple_node_cache);
7025 }
7026 
7027 void mt_cache_shrink(void)
7028 {
7029 }
7030 #else
7031 /*
7032  * mt_cache_shrink() - For testing, don't use this.
7033  *
7034  * Certain testcases can trigger an OOM when combined with other memory
7035  * debugging configuration options.  This function is used to reduce the
7036  * possibility of an out of memory even due to kmem_cache objects remaining
7037  * around for longer than usual.
7038  */
7039 void mt_cache_shrink(void)
7040 {
7041 	kmem_cache_shrink(maple_node_cache);
7042 
7043 }
7044 EXPORT_SYMBOL_GPL(mt_cache_shrink);
7045 
7046 #endif /* not defined __KERNEL__ */
7047 /*
7048  * mas_get_slot() - Get the entry in the maple state node stored at @offset.
7049  * @mas: The maple state
7050  * @offset: The offset into the slot array to fetch.
7051  *
7052  * Return: The entry stored at @offset.
7053  */
7054 static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
7055 		unsigned char offset)
7056 {
7057 	return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)),
7058 			offset);
7059 }
7060 
7061 /* Depth first search, post-order */
7062 static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
7063 {
7064 
7065 	struct maple_enode *p, *mn = mas->node;
7066 	unsigned long p_min, p_max;
7067 
7068 	mas_next_node(mas, mas_mn(mas), max);
7069 	if (!mas_is_overflow(mas))
7070 		return;
7071 
7072 	if (mte_is_root(mn))
7073 		return;
7074 
7075 	mas->node = mn;
7076 	mas_ascend(mas);
7077 	do {
7078 		p = mas->node;
7079 		p_min = mas->min;
7080 		p_max = mas->max;
7081 		mas_prev_node(mas, 0);
7082 	} while (!mas_is_underflow(mas));
7083 
7084 	mas->node = p;
7085 	mas->max = p_max;
7086 	mas->min = p_min;
7087 }
7088 
7089 /* Tree validations */
7090 static void mt_dump_node(const struct maple_tree *mt, void *entry,
7091 		unsigned long min, unsigned long max, unsigned int depth,
7092 		enum mt_dump_format format);
7093 static void mt_dump_range(unsigned long min, unsigned long max,
7094 			  unsigned int depth, enum mt_dump_format format)
7095 {
7096 	static const char spaces[] = "                                ";
7097 
7098 	switch(format) {
7099 	case mt_dump_hex:
7100 		if (min == max)
7101 			pr_info("%.*s%lx: ", depth * 2, spaces, min);
7102 		else
7103 			pr_info("%.*s%lx-%lx: ", depth * 2, spaces, min, max);
7104 		break;
7105 	case mt_dump_dec:
7106 		if (min == max)
7107 			pr_info("%.*s%lu: ", depth * 2, spaces, min);
7108 		else
7109 			pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max);
7110 	}
7111 }
7112 
7113 static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
7114 			  unsigned int depth, enum mt_dump_format format)
7115 {
7116 	mt_dump_range(min, max, depth, format);
7117 
7118 	if (xa_is_value(entry))
7119 		pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry),
7120 				xa_to_value(entry), entry);
7121 	else if (xa_is_zero(entry))
7122 		pr_cont("zero (%ld)\n", xa_to_internal(entry));
7123 	else if (mt_is_reserved(entry))
7124 		pr_cont("UNKNOWN ENTRY (%p)\n", entry);
7125 	else
7126 		pr_cont("%p\n", entry);
7127 }
7128 
7129 static void mt_dump_range64(const struct maple_tree *mt, void *entry,
7130 		unsigned long min, unsigned long max, unsigned int depth,
7131 		enum mt_dump_format format)
7132 {
7133 	struct maple_range_64 *node = &mte_to_node(entry)->mr64;
7134 	bool leaf = mte_is_leaf(entry);
7135 	unsigned long first = min;
7136 	int i;
7137 
7138 	pr_cont(" contents: ");
7139 	for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++) {
7140 		switch(format) {
7141 		case mt_dump_hex:
7142 			pr_cont("%p %lX ", node->slot[i], node->pivot[i]);
7143 			break;
7144 		case mt_dump_dec:
7145 			pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
7146 		}
7147 	}
7148 	pr_cont("%p\n", node->slot[i]);
7149 	for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) {
7150 		unsigned long last = max;
7151 
7152 		if (i < (MAPLE_RANGE64_SLOTS - 1))
7153 			last = node->pivot[i];
7154 		else if (!node->slot[i] && max != mt_node_max(entry))
7155 			break;
7156 		if (last == 0 && i > 0)
7157 			break;
7158 		if (leaf)
7159 			mt_dump_entry(mt_slot(mt, node->slot, i),
7160 					first, last, depth + 1, format);
7161 		else if (node->slot[i])
7162 			mt_dump_node(mt, mt_slot(mt, node->slot, i),
7163 					first, last, depth + 1, format);
7164 
7165 		if (last == max)
7166 			break;
7167 		if (last > max) {
7168 			switch(format) {
7169 			case mt_dump_hex:
7170 				pr_err("node %p last (%lx) > max (%lx) at pivot %d!\n",
7171 					node, last, max, i);
7172 				break;
7173 			case mt_dump_dec:
7174 				pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
7175 					node, last, max, i);
7176 			}
7177 		}
7178 		first = last + 1;
7179 	}
7180 }
7181 
7182 static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
7183 	unsigned long min, unsigned long max, unsigned int depth,
7184 	enum mt_dump_format format)
7185 {
7186 	struct maple_arange_64 *node = &mte_to_node(entry)->ma64;
7187 	bool leaf = mte_is_leaf(entry);
7188 	unsigned long first = min;
7189 	int i;
7190 
7191 	pr_cont(" contents: ");
7192 	for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
7193 		switch (format) {
7194 		case mt_dump_hex:
7195 			pr_cont("%lx ", node->gap[i]);
7196 			break;
7197 		case mt_dump_dec:
7198 			pr_cont("%lu ", node->gap[i]);
7199 		}
7200 	}
7201 	pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap);
7202 	for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++) {
7203 		switch (format) {
7204 		case mt_dump_hex:
7205 			pr_cont("%p %lX ", node->slot[i], node->pivot[i]);
7206 			break;
7207 		case mt_dump_dec:
7208 			pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
7209 		}
7210 	}
7211 	pr_cont("%p\n", node->slot[i]);
7212 	for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
7213 		unsigned long last = max;
7214 
7215 		if (i < (MAPLE_ARANGE64_SLOTS - 1))
7216 			last = node->pivot[i];
7217 		else if (!node->slot[i])
7218 			break;
7219 		if (last == 0 && i > 0)
7220 			break;
7221 		if (leaf)
7222 			mt_dump_entry(mt_slot(mt, node->slot, i),
7223 					first, last, depth + 1, format);
7224 		else if (node->slot[i])
7225 			mt_dump_node(mt, mt_slot(mt, node->slot, i),
7226 					first, last, depth + 1, format);
7227 
7228 		if (last == max)
7229 			break;
7230 		if (last > max) {
7231 			pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
7232 					node, last, max, i);
7233 			break;
7234 		}
7235 		first = last + 1;
7236 	}
7237 }
7238 
7239 static void mt_dump_node(const struct maple_tree *mt, void *entry,
7240 		unsigned long min, unsigned long max, unsigned int depth,
7241 		enum mt_dump_format format)
7242 {
7243 	struct maple_node *node = mte_to_node(entry);
7244 	unsigned int type = mte_node_type(entry);
7245 	unsigned int i;
7246 
7247 	mt_dump_range(min, max, depth, format);
7248 
7249 	pr_cont("node %p depth %d type %d parent %p", node, depth, type,
7250 			node ? node->parent : NULL);
7251 	switch (type) {
7252 	case maple_dense:
7253 		pr_cont("\n");
7254 		for (i = 0; i < MAPLE_NODE_SLOTS; i++) {
7255 			if (min + i > max)
7256 				pr_cont("OUT OF RANGE: ");
7257 			mt_dump_entry(mt_slot(mt, node->slot, i),
7258 					min + i, min + i, depth, format);
7259 		}
7260 		break;
7261 	case maple_leaf_64:
7262 	case maple_range_64:
7263 		mt_dump_range64(mt, entry, min, max, depth, format);
7264 		break;
7265 	case maple_arange_64:
7266 		mt_dump_arange64(mt, entry, min, max, depth, format);
7267 		break;
7268 
7269 	default:
7270 		pr_cont(" UNKNOWN TYPE\n");
7271 	}
7272 }
7273 
7274 void mt_dump(const struct maple_tree *mt, enum mt_dump_format format)
7275 {
7276 	void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt));
7277 
7278 	pr_info("maple_tree(%p) flags %X, height %u root %p\n",
7279 		 mt, mt->ma_flags, mt_height(mt), entry);
7280 	if (!xa_is_node(entry))
7281 		mt_dump_entry(entry, 0, 0, 0, format);
7282 	else if (entry)
7283 		mt_dump_node(mt, entry, 0, mt_node_max(entry), 0, format);
7284 }
7285 EXPORT_SYMBOL_GPL(mt_dump);
7286 
7287 /*
7288  * Calculate the maximum gap in a node and check if that's what is reported in
7289  * the parent (unless root).
7290  */
7291 static void mas_validate_gaps(struct ma_state *mas)
7292 {
7293 	struct maple_enode *mte = mas->node;
7294 	struct maple_node *p_mn, *node = mte_to_node(mte);
7295 	enum maple_type mt = mte_node_type(mas->node);
7296 	unsigned long gap = 0, max_gap = 0;
7297 	unsigned long p_end, p_start = mas->min;
7298 	unsigned char p_slot, offset;
7299 	unsigned long *gaps = NULL;
7300 	unsigned long *pivots = ma_pivots(node, mt);
7301 	unsigned int i;
7302 
7303 	if (ma_is_dense(mt)) {
7304 		for (i = 0; i < mt_slot_count(mte); i++) {
7305 			if (mas_get_slot(mas, i)) {
7306 				if (gap > max_gap)
7307 					max_gap = gap;
7308 				gap = 0;
7309 				continue;
7310 			}
7311 			gap++;
7312 		}
7313 		goto counted;
7314 	}
7315 
7316 	gaps = ma_gaps(node, mt);
7317 	for (i = 0; i < mt_slot_count(mte); i++) {
7318 		p_end = mas_safe_pivot(mas, pivots, i, mt);
7319 
7320 		if (!gaps) {
7321 			if (!mas_get_slot(mas, i))
7322 				gap = p_end - p_start + 1;
7323 		} else {
7324 			void *entry = mas_get_slot(mas, i);
7325 
7326 			gap = gaps[i];
7327 			MT_BUG_ON(mas->tree, !entry);
7328 
7329 			if (gap > p_end - p_start + 1) {
7330 				pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n",
7331 				       mas_mn(mas), i, gap, p_end, p_start,
7332 				       p_end - p_start + 1);
7333 				MT_BUG_ON(mas->tree, gap > p_end - p_start + 1);
7334 			}
7335 		}
7336 
7337 		if (gap > max_gap)
7338 			max_gap = gap;
7339 
7340 		p_start = p_end + 1;
7341 		if (p_end >= mas->max)
7342 			break;
7343 	}
7344 
7345 counted:
7346 	if (mt == maple_arange_64) {
7347 		MT_BUG_ON(mas->tree, !gaps);
7348 		offset = ma_meta_gap(node);
7349 		if (offset > i) {
7350 			pr_err("gap offset %p[%u] is invalid\n", node, offset);
7351 			MT_BUG_ON(mas->tree, 1);
7352 		}
7353 
7354 		if (gaps[offset] != max_gap) {
7355 			pr_err("gap %p[%u] is not the largest gap %lu\n",
7356 			       node, offset, max_gap);
7357 			MT_BUG_ON(mas->tree, 1);
7358 		}
7359 
7360 		for (i++ ; i < mt_slot_count(mte); i++) {
7361 			if (gaps[i] != 0) {
7362 				pr_err("gap %p[%u] beyond node limit != 0\n",
7363 				       node, i);
7364 				MT_BUG_ON(mas->tree, 1);
7365 			}
7366 		}
7367 	}
7368 
7369 	if (mte_is_root(mte))
7370 		return;
7371 
7372 	p_slot = mte_parent_slot(mas->node);
7373 	p_mn = mte_parent(mte);
7374 	MT_BUG_ON(mas->tree, max_gap > mas->max);
7375 	if (ma_gaps(p_mn, mas_parent_type(mas, mte))[p_slot] != max_gap) {
7376 		pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap);
7377 		mt_dump(mas->tree, mt_dump_hex);
7378 		MT_BUG_ON(mas->tree, 1);
7379 	}
7380 }
7381 
7382 static void mas_validate_parent_slot(struct ma_state *mas)
7383 {
7384 	struct maple_node *parent;
7385 	struct maple_enode *node;
7386 	enum maple_type p_type;
7387 	unsigned char p_slot;
7388 	void __rcu **slots;
7389 	int i;
7390 
7391 	if (mte_is_root(mas->node))
7392 		return;
7393 
7394 	p_slot = mte_parent_slot(mas->node);
7395 	p_type = mas_parent_type(mas, mas->node);
7396 	parent = mte_parent(mas->node);
7397 	slots = ma_slots(parent, p_type);
7398 	MT_BUG_ON(mas->tree, mas_mn(mas) == parent);
7399 
7400 	/* Check prev/next parent slot for duplicate node entry */
7401 
7402 	for (i = 0; i < mt_slots[p_type]; i++) {
7403 		node = mas_slot(mas, slots, i);
7404 		if (i == p_slot) {
7405 			if (node != mas->node)
7406 				pr_err("parent %p[%u] does not have %p\n",
7407 					parent, i, mas_mn(mas));
7408 			MT_BUG_ON(mas->tree, node != mas->node);
7409 		} else if (node == mas->node) {
7410 			pr_err("Invalid child %p at parent %p[%u] p_slot %u\n",
7411 			       mas_mn(mas), parent, i, p_slot);
7412 			MT_BUG_ON(mas->tree, node == mas->node);
7413 		}
7414 	}
7415 }
7416 
7417 static void mas_validate_child_slot(struct ma_state *mas)
7418 {
7419 	enum maple_type type = mte_node_type(mas->node);
7420 	void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7421 	unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type);
7422 	struct maple_enode *child;
7423 	unsigned char i;
7424 
7425 	if (mte_is_leaf(mas->node))
7426 		return;
7427 
7428 	for (i = 0; i < mt_slots[type]; i++) {
7429 		child = mas_slot(mas, slots, i);
7430 
7431 		if (!child) {
7432 			pr_err("Non-leaf node lacks child at %p[%u]\n",
7433 			       mas_mn(mas), i);
7434 			MT_BUG_ON(mas->tree, 1);
7435 		}
7436 
7437 		if (mte_parent_slot(child) != i) {
7438 			pr_err("Slot error at %p[%u]: child %p has pslot %u\n",
7439 			       mas_mn(mas), i, mte_to_node(child),
7440 			       mte_parent_slot(child));
7441 			MT_BUG_ON(mas->tree, 1);
7442 		}
7443 
7444 		if (mte_parent(child) != mte_to_node(mas->node)) {
7445 			pr_err("child %p has parent %p not %p\n",
7446 			       mte_to_node(child), mte_parent(child),
7447 			       mte_to_node(mas->node));
7448 			MT_BUG_ON(mas->tree, 1);
7449 		}
7450 
7451 		if (i < mt_pivots[type] && pivots[i] == mas->max)
7452 			break;
7453 	}
7454 }
7455 
7456 /*
7457  * Validate all pivots are within mas->min and mas->max, check metadata ends
7458  * where the maximum ends and ensure there is no slots or pivots set outside of
7459  * the end of the data.
7460  */
7461 static void mas_validate_limits(struct ma_state *mas)
7462 {
7463 	int i;
7464 	unsigned long prev_piv = 0;
7465 	enum maple_type type = mte_node_type(mas->node);
7466 	void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7467 	unsigned long *pivots = ma_pivots(mas_mn(mas), type);
7468 
7469 	for (i = 0; i < mt_slots[type]; i++) {
7470 		unsigned long piv;
7471 
7472 		piv = mas_safe_pivot(mas, pivots, i, type);
7473 
7474 		if (!piv && (i != 0)) {
7475 			pr_err("Missing node limit pivot at %p[%u]",
7476 			       mas_mn(mas), i);
7477 			MAS_WARN_ON(mas, 1);
7478 		}
7479 
7480 		if (prev_piv > piv) {
7481 			pr_err("%p[%u] piv %lu < prev_piv %lu\n",
7482 				mas_mn(mas), i, piv, prev_piv);
7483 			MAS_WARN_ON(mas, piv < prev_piv);
7484 		}
7485 
7486 		if (piv < mas->min) {
7487 			pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i,
7488 				piv, mas->min);
7489 			MAS_WARN_ON(mas, piv < mas->min);
7490 		}
7491 		if (piv > mas->max) {
7492 			pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i,
7493 				piv, mas->max);
7494 			MAS_WARN_ON(mas, piv > mas->max);
7495 		}
7496 		prev_piv = piv;
7497 		if (piv == mas->max)
7498 			break;
7499 	}
7500 
7501 	if (mas_data_end(mas) != i) {
7502 		pr_err("node%p: data_end %u != the last slot offset %u\n",
7503 		       mas_mn(mas), mas_data_end(mas), i);
7504 		MT_BUG_ON(mas->tree, 1);
7505 	}
7506 
7507 	for (i += 1; i < mt_slots[type]; i++) {
7508 		void *entry = mas_slot(mas, slots, i);
7509 
7510 		if (entry && (i != mt_slots[type] - 1)) {
7511 			pr_err("%p[%u] should not have entry %p\n", mas_mn(mas),
7512 			       i, entry);
7513 			MT_BUG_ON(mas->tree, entry != NULL);
7514 		}
7515 
7516 		if (i < mt_pivots[type]) {
7517 			unsigned long piv = pivots[i];
7518 
7519 			if (!piv)
7520 				continue;
7521 
7522 			pr_err("%p[%u] should not have piv %lu\n",
7523 			       mas_mn(mas), i, piv);
7524 			MAS_WARN_ON(mas, i < mt_pivots[type] - 1);
7525 		}
7526 	}
7527 }
7528 
7529 static void mt_validate_nulls(struct maple_tree *mt)
7530 {
7531 	void *entry, *last = (void *)1;
7532 	unsigned char offset = 0;
7533 	void __rcu **slots;
7534 	MA_STATE(mas, mt, 0, 0);
7535 
7536 	mas_start(&mas);
7537 	if (mas_is_none(&mas) || (mas_is_ptr(&mas)))
7538 		return;
7539 
7540 	while (!mte_is_leaf(mas.node))
7541 		mas_descend(&mas);
7542 
7543 	slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node));
7544 	do {
7545 		entry = mas_slot(&mas, slots, offset);
7546 		if (!last && !entry) {
7547 			pr_err("Sequential nulls end at %p[%u]\n",
7548 				mas_mn(&mas), offset);
7549 		}
7550 		MT_BUG_ON(mt, !last && !entry);
7551 		last = entry;
7552 		if (offset == mas_data_end(&mas)) {
7553 			mas_next_node(&mas, mas_mn(&mas), ULONG_MAX);
7554 			if (mas_is_overflow(&mas))
7555 				return;
7556 			offset = 0;
7557 			slots = ma_slots(mte_to_node(mas.node),
7558 					 mte_node_type(mas.node));
7559 		} else {
7560 			offset++;
7561 		}
7562 
7563 	} while (!mas_is_overflow(&mas));
7564 }
7565 
7566 /*
7567  * validate a maple tree by checking:
7568  * 1. The limits (pivots are within mas->min to mas->max)
7569  * 2. The gap is correctly set in the parents
7570  */
7571 void mt_validate(struct maple_tree *mt)
7572 {
7573 	unsigned char end;
7574 
7575 	MA_STATE(mas, mt, 0, 0);
7576 	rcu_read_lock();
7577 	mas_start(&mas);
7578 	if (!mas_is_active(&mas))
7579 		goto done;
7580 
7581 	while (!mte_is_leaf(mas.node))
7582 		mas_descend(&mas);
7583 
7584 	while (!mas_is_overflow(&mas)) {
7585 		MAS_WARN_ON(&mas, mte_dead_node(mas.node));
7586 		end = mas_data_end(&mas);
7587 		if (MAS_WARN_ON(&mas, (end < mt_min_slot_count(mas.node)) &&
7588 				(mas.max != ULONG_MAX))) {
7589 			pr_err("Invalid size %u of %p\n", end, mas_mn(&mas));
7590 		}
7591 
7592 		mas_validate_parent_slot(&mas);
7593 		mas_validate_limits(&mas);
7594 		mas_validate_child_slot(&mas);
7595 		if (mt_is_alloc(mt))
7596 			mas_validate_gaps(&mas);
7597 		mas_dfs_postorder(&mas, ULONG_MAX);
7598 	}
7599 	mt_validate_nulls(mt);
7600 done:
7601 	rcu_read_unlock();
7602 
7603 }
7604 EXPORT_SYMBOL_GPL(mt_validate);
7605 
7606 void mas_dump(const struct ma_state *mas)
7607 {
7608 	pr_err("MAS: tree=%p enode=%p ", mas->tree, mas->node);
7609 	switch (mas->status) {
7610 	case ma_active:
7611 		pr_err("(ma_active)");
7612 		break;
7613 	case ma_none:
7614 		pr_err("(ma_none)");
7615 		break;
7616 	case ma_root:
7617 		pr_err("(ma_root)");
7618 		break;
7619 	case ma_start:
7620 		pr_err("(ma_start) ");
7621 		break;
7622 	case ma_pause:
7623 		pr_err("(ma_pause) ");
7624 		break;
7625 	case ma_overflow:
7626 		pr_err("(ma_overflow) ");
7627 		break;
7628 	case ma_underflow:
7629 		pr_err("(ma_underflow) ");
7630 		break;
7631 	case ma_error:
7632 		pr_err("(ma_error) ");
7633 		break;
7634 	}
7635 
7636 	pr_err("[%u/%u] index=%lx last=%lx\n", mas->offset, mas->end,
7637 	       mas->index, mas->last);
7638 	pr_err("     min=%lx max=%lx alloc=%p, depth=%u, flags=%x\n",
7639 	       mas->min, mas->max, mas->alloc, mas->depth, mas->mas_flags);
7640 	if (mas->index > mas->last)
7641 		pr_err("Check index & last\n");
7642 }
7643 EXPORT_SYMBOL_GPL(mas_dump);
7644 
7645 void mas_wr_dump(const struct ma_wr_state *wr_mas)
7646 {
7647 	pr_err("WR_MAS: node=%p r_min=%lx r_max=%lx\n",
7648 	       wr_mas->node, wr_mas->r_min, wr_mas->r_max);
7649 	pr_err("        type=%u off_end=%u, node_end=%u, end_piv=%lx\n",
7650 	       wr_mas->type, wr_mas->offset_end, wr_mas->mas->end,
7651 	       wr_mas->end_piv);
7652 }
7653 EXPORT_SYMBOL_GPL(mas_wr_dump);
7654 
7655 #endif /* CONFIG_DEBUG_MAPLE_TREE */
7656