1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Maple Tree implementation 4 * Copyright (c) 2018-2022 Oracle Corporation 5 * Authors: Liam R. Howlett <Liam.Howlett@oracle.com> 6 * Matthew Wilcox <willy@infradead.org> 7 * Copyright (c) 2023 ByteDance 8 * Author: Peng Zhang <zhangpeng.00@bytedance.com> 9 */ 10 11 /* 12 * DOC: Interesting implementation details of the Maple Tree 13 * 14 * Each node type has a number of slots for entries and a number of slots for 15 * pivots. In the case of dense nodes, the pivots are implied by the position 16 * and are simply the slot index + the minimum of the node. 17 * 18 * In regular B-Tree terms, pivots are called keys. The term pivot is used to 19 * indicate that the tree is specifying ranges. Pivots may appear in the 20 * subtree with an entry attached to the value whereas keys are unique to a 21 * specific position of a B-tree. Pivot values are inclusive of the slot with 22 * the same index. 23 * 24 * 25 * The following illustrates the layout of a range64 nodes slots and pivots. 26 * 27 * 28 * Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 | 29 * ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ 30 * │ │ │ │ │ │ │ │ └─ Implied maximum 31 * │ │ │ │ │ │ │ └─ Pivot 14 32 * │ │ │ │ │ │ └─ Pivot 13 33 * │ │ │ │ │ └─ Pivot 12 34 * │ │ │ │ └─ Pivot 11 35 * │ │ │ └─ Pivot 2 36 * │ │ └─ Pivot 1 37 * │ └─ Pivot 0 38 * └─ Implied minimum 39 * 40 * Slot contents: 41 * Internal (non-leaf) nodes contain pointers to other nodes. 42 * Leaf nodes contain entries. 43 * 44 * The location of interest is often referred to as an offset. All offsets have 45 * a slot, but the last offset has an implied pivot from the node above (or 46 * UINT_MAX for the root node. 47 * 48 * Ranges complicate certain write activities. When modifying any of 49 * the B-tree variants, it is known that one entry will either be added or 50 * deleted. When modifying the Maple Tree, one store operation may overwrite 51 * the entire data set, or one half of the tree, or the middle half of the tree. 52 * 53 */ 54 55 56 #include <linux/maple_tree.h> 57 #include <linux/xarray.h> 58 #include <linux/types.h> 59 #include <linux/export.h> 60 #include <linux/slab.h> 61 #include <linux/limits.h> 62 #include <asm/barrier.h> 63 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/maple_tree.h> 66 67 #define MA_ROOT_PARENT 1 68 69 /* 70 * Maple state flags 71 * * MA_STATE_BULK - Bulk insert mode 72 * * MA_STATE_REBALANCE - Indicate a rebalance during bulk insert 73 * * MA_STATE_PREALLOC - Preallocated nodes, WARN_ON allocation 74 */ 75 #define MA_STATE_BULK 1 76 #define MA_STATE_REBALANCE 2 77 #define MA_STATE_PREALLOC 4 78 79 #define ma_parent_ptr(x) ((struct maple_pnode *)(x)) 80 #define mas_tree_parent(x) ((unsigned long)(x->tree) | MA_ROOT_PARENT) 81 #define ma_mnode_ptr(x) ((struct maple_node *)(x)) 82 #define ma_enode_ptr(x) ((struct maple_enode *)(x)) 83 static struct kmem_cache *maple_node_cache; 84 85 #ifdef CONFIG_DEBUG_MAPLE_TREE 86 static const unsigned long mt_max[] = { 87 [maple_dense] = MAPLE_NODE_SLOTS, 88 [maple_leaf_64] = ULONG_MAX, 89 [maple_range_64] = ULONG_MAX, 90 [maple_arange_64] = ULONG_MAX, 91 }; 92 #define mt_node_max(x) mt_max[mte_node_type(x)] 93 #endif 94 95 static const unsigned char mt_slots[] = { 96 [maple_dense] = MAPLE_NODE_SLOTS, 97 [maple_leaf_64] = MAPLE_RANGE64_SLOTS, 98 [maple_range_64] = MAPLE_RANGE64_SLOTS, 99 [maple_arange_64] = MAPLE_ARANGE64_SLOTS, 100 }; 101 #define mt_slot_count(x) mt_slots[mte_node_type(x)] 102 103 static const unsigned char mt_pivots[] = { 104 [maple_dense] = 0, 105 [maple_leaf_64] = MAPLE_RANGE64_SLOTS - 1, 106 [maple_range_64] = MAPLE_RANGE64_SLOTS - 1, 107 [maple_arange_64] = MAPLE_ARANGE64_SLOTS - 1, 108 }; 109 #define mt_pivot_count(x) mt_pivots[mte_node_type(x)] 110 111 static const unsigned char mt_min_slots[] = { 112 [maple_dense] = MAPLE_NODE_SLOTS / 2, 113 [maple_leaf_64] = (MAPLE_RANGE64_SLOTS / 2) - 2, 114 [maple_range_64] = (MAPLE_RANGE64_SLOTS / 2) - 2, 115 [maple_arange_64] = (MAPLE_ARANGE64_SLOTS / 2) - 1, 116 }; 117 #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)] 118 119 #define MAPLE_BIG_NODE_SLOTS (MAPLE_RANGE64_SLOTS * 2 + 2) 120 #define MAPLE_BIG_NODE_GAPS (MAPLE_ARANGE64_SLOTS * 2 + 1) 121 122 struct maple_big_node { 123 struct maple_pnode *parent; 124 unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1]; 125 union { 126 struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS]; 127 struct { 128 unsigned long padding[MAPLE_BIG_NODE_GAPS]; 129 unsigned long gap[MAPLE_BIG_NODE_GAPS]; 130 }; 131 }; 132 unsigned char b_end; 133 enum maple_type type; 134 }; 135 136 /* 137 * The maple_subtree_state is used to build a tree to replace a segment of an 138 * existing tree in a more atomic way. Any walkers of the older tree will hit a 139 * dead node and restart on updates. 140 */ 141 struct maple_subtree_state { 142 struct ma_state *orig_l; /* Original left side of subtree */ 143 struct ma_state *orig_r; /* Original right side of subtree */ 144 struct ma_state *l; /* New left side of subtree */ 145 struct ma_state *m; /* New middle of subtree (rare) */ 146 struct ma_state *r; /* New right side of subtree */ 147 struct ma_topiary *free; /* nodes to be freed */ 148 struct ma_topiary *destroy; /* Nodes to be destroyed (walked and freed) */ 149 struct maple_big_node *bn; 150 }; 151 152 #ifdef CONFIG_KASAN_STACK 153 /* Prevent mas_wr_bnode() from exceeding the stack frame limit */ 154 #define noinline_for_kasan noinline_for_stack 155 #else 156 #define noinline_for_kasan inline 157 #endif 158 159 /* Functions */ 160 static inline struct maple_node *mt_alloc_one(gfp_t gfp) 161 { 162 return kmem_cache_alloc(maple_node_cache, gfp); 163 } 164 165 static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes) 166 { 167 return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes); 168 } 169 170 static inline void mt_free_one(struct maple_node *node) 171 { 172 kmem_cache_free(maple_node_cache, node); 173 } 174 175 static inline void mt_free_bulk(size_t size, void __rcu **nodes) 176 { 177 kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes); 178 } 179 180 static void mt_free_rcu(struct rcu_head *head) 181 { 182 struct maple_node *node = container_of(head, struct maple_node, rcu); 183 184 kmem_cache_free(maple_node_cache, node); 185 } 186 187 /* 188 * ma_free_rcu() - Use rcu callback to free a maple node 189 * @node: The node to free 190 * 191 * The maple tree uses the parent pointer to indicate this node is no longer in 192 * use and will be freed. 193 */ 194 static void ma_free_rcu(struct maple_node *node) 195 { 196 WARN_ON(node->parent != ma_parent_ptr(node)); 197 call_rcu(&node->rcu, mt_free_rcu); 198 } 199 200 static void mas_set_height(struct ma_state *mas) 201 { 202 unsigned int new_flags = mas->tree->ma_flags; 203 204 new_flags &= ~MT_FLAGS_HEIGHT_MASK; 205 MAS_BUG_ON(mas, mas->depth > MAPLE_HEIGHT_MAX); 206 new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET; 207 mas->tree->ma_flags = new_flags; 208 } 209 210 static unsigned int mas_mt_height(struct ma_state *mas) 211 { 212 return mt_height(mas->tree); 213 } 214 215 static inline unsigned int mt_attr(struct maple_tree *mt) 216 { 217 return mt->ma_flags & ~MT_FLAGS_HEIGHT_MASK; 218 } 219 220 static __always_inline enum maple_type mte_node_type( 221 const struct maple_enode *entry) 222 { 223 return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) & 224 MAPLE_NODE_TYPE_MASK; 225 } 226 227 static __always_inline bool ma_is_dense(const enum maple_type type) 228 { 229 return type < maple_leaf_64; 230 } 231 232 static __always_inline bool ma_is_leaf(const enum maple_type type) 233 { 234 return type < maple_range_64; 235 } 236 237 static __always_inline bool mte_is_leaf(const struct maple_enode *entry) 238 { 239 return ma_is_leaf(mte_node_type(entry)); 240 } 241 242 /* 243 * We also reserve values with the bottom two bits set to '10' which are 244 * below 4096 245 */ 246 static __always_inline bool mt_is_reserved(const void *entry) 247 { 248 return ((unsigned long)entry < MAPLE_RESERVED_RANGE) && 249 xa_is_internal(entry); 250 } 251 252 static __always_inline void mas_set_err(struct ma_state *mas, long err) 253 { 254 mas->node = MA_ERROR(err); 255 mas->status = ma_error; 256 } 257 258 static __always_inline bool mas_is_ptr(const struct ma_state *mas) 259 { 260 return mas->status == ma_root; 261 } 262 263 static __always_inline bool mas_is_start(const struct ma_state *mas) 264 { 265 return mas->status == ma_start; 266 } 267 268 static __always_inline bool mas_is_none(const struct ma_state *mas) 269 { 270 return mas->status == ma_none; 271 } 272 273 static __always_inline bool mas_is_paused(const struct ma_state *mas) 274 { 275 return mas->status == ma_pause; 276 } 277 278 static __always_inline bool mas_is_overflow(struct ma_state *mas) 279 { 280 return mas->status == ma_overflow; 281 } 282 283 static inline bool mas_is_underflow(struct ma_state *mas) 284 { 285 return mas->status == ma_underflow; 286 } 287 288 static __always_inline struct maple_node *mte_to_node( 289 const struct maple_enode *entry) 290 { 291 return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK); 292 } 293 294 /* 295 * mte_to_mat() - Convert a maple encoded node to a maple topiary node. 296 * @entry: The maple encoded node 297 * 298 * Return: a maple topiary pointer 299 */ 300 static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry) 301 { 302 return (struct maple_topiary *) 303 ((unsigned long)entry & ~MAPLE_NODE_MASK); 304 } 305 306 /* 307 * mas_mn() - Get the maple state node. 308 * @mas: The maple state 309 * 310 * Return: the maple node (not encoded - bare pointer). 311 */ 312 static inline struct maple_node *mas_mn(const struct ma_state *mas) 313 { 314 return mte_to_node(mas->node); 315 } 316 317 /* 318 * mte_set_node_dead() - Set a maple encoded node as dead. 319 * @mn: The maple encoded node. 320 */ 321 static inline void mte_set_node_dead(struct maple_enode *mn) 322 { 323 mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn)); 324 smp_wmb(); /* Needed for RCU */ 325 } 326 327 /* Bit 1 indicates the root is a node */ 328 #define MAPLE_ROOT_NODE 0x02 329 /* maple_type stored bit 3-6 */ 330 #define MAPLE_ENODE_TYPE_SHIFT 0x03 331 /* Bit 2 means a NULL somewhere below */ 332 #define MAPLE_ENODE_NULL 0x04 333 334 static inline struct maple_enode *mt_mk_node(const struct maple_node *node, 335 enum maple_type type) 336 { 337 return (void *)((unsigned long)node | 338 (type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL); 339 } 340 341 static inline void *mte_mk_root(const struct maple_enode *node) 342 { 343 return (void *)((unsigned long)node | MAPLE_ROOT_NODE); 344 } 345 346 static inline void *mte_safe_root(const struct maple_enode *node) 347 { 348 return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE); 349 } 350 351 static inline void *mte_set_full(const struct maple_enode *node) 352 { 353 return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL); 354 } 355 356 static inline void *mte_clear_full(const struct maple_enode *node) 357 { 358 return (void *)((unsigned long)node | MAPLE_ENODE_NULL); 359 } 360 361 static inline bool mte_has_null(const struct maple_enode *node) 362 { 363 return (unsigned long)node & MAPLE_ENODE_NULL; 364 } 365 366 static __always_inline bool ma_is_root(struct maple_node *node) 367 { 368 return ((unsigned long)node->parent & MA_ROOT_PARENT); 369 } 370 371 static __always_inline bool mte_is_root(const struct maple_enode *node) 372 { 373 return ma_is_root(mte_to_node(node)); 374 } 375 376 static inline bool mas_is_root_limits(const struct ma_state *mas) 377 { 378 return !mas->min && mas->max == ULONG_MAX; 379 } 380 381 static __always_inline bool mt_is_alloc(struct maple_tree *mt) 382 { 383 return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE); 384 } 385 386 /* 387 * The Parent Pointer 388 * Excluding root, the parent pointer is 256B aligned like all other tree nodes. 389 * When storing a 32 or 64 bit values, the offset can fit into 5 bits. The 16 390 * bit values need an extra bit to store the offset. This extra bit comes from 391 * a reuse of the last bit in the node type. This is possible by using bit 1 to 392 * indicate if bit 2 is part of the type or the slot. 393 * 394 * Note types: 395 * 0x??1 = Root 396 * 0x?00 = 16 bit nodes 397 * 0x010 = 32 bit nodes 398 * 0x110 = 64 bit nodes 399 * 400 * Slot size and alignment 401 * 0b??1 : Root 402 * 0b?00 : 16 bit values, type in 0-1, slot in 2-7 403 * 0b010 : 32 bit values, type in 0-2, slot in 3-7 404 * 0b110 : 64 bit values, type in 0-2, slot in 3-7 405 */ 406 407 #define MAPLE_PARENT_ROOT 0x01 408 409 #define MAPLE_PARENT_SLOT_SHIFT 0x03 410 #define MAPLE_PARENT_SLOT_MASK 0xF8 411 412 #define MAPLE_PARENT_16B_SLOT_SHIFT 0x02 413 #define MAPLE_PARENT_16B_SLOT_MASK 0xFC 414 415 #define MAPLE_PARENT_RANGE64 0x06 416 #define MAPLE_PARENT_RANGE32 0x04 417 #define MAPLE_PARENT_NOT_RANGE16 0x02 418 419 /* 420 * mte_parent_shift() - Get the parent shift for the slot storage. 421 * @parent: The parent pointer cast as an unsigned long 422 * Return: The shift into that pointer to the star to of the slot 423 */ 424 static inline unsigned long mte_parent_shift(unsigned long parent) 425 { 426 /* Note bit 1 == 0 means 16B */ 427 if (likely(parent & MAPLE_PARENT_NOT_RANGE16)) 428 return MAPLE_PARENT_SLOT_SHIFT; 429 430 return MAPLE_PARENT_16B_SLOT_SHIFT; 431 } 432 433 /* 434 * mte_parent_slot_mask() - Get the slot mask for the parent. 435 * @parent: The parent pointer cast as an unsigned long. 436 * Return: The slot mask for that parent. 437 */ 438 static inline unsigned long mte_parent_slot_mask(unsigned long parent) 439 { 440 /* Note bit 1 == 0 means 16B */ 441 if (likely(parent & MAPLE_PARENT_NOT_RANGE16)) 442 return MAPLE_PARENT_SLOT_MASK; 443 444 return MAPLE_PARENT_16B_SLOT_MASK; 445 } 446 447 /* 448 * mas_parent_type() - Return the maple_type of the parent from the stored 449 * parent type. 450 * @mas: The maple state 451 * @enode: The maple_enode to extract the parent's enum 452 * Return: The node->parent maple_type 453 */ 454 static inline 455 enum maple_type mas_parent_type(struct ma_state *mas, struct maple_enode *enode) 456 { 457 unsigned long p_type; 458 459 p_type = (unsigned long)mte_to_node(enode)->parent; 460 if (WARN_ON(p_type & MAPLE_PARENT_ROOT)) 461 return 0; 462 463 p_type &= MAPLE_NODE_MASK; 464 p_type &= ~mte_parent_slot_mask(p_type); 465 switch (p_type) { 466 case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */ 467 if (mt_is_alloc(mas->tree)) 468 return maple_arange_64; 469 return maple_range_64; 470 } 471 472 return 0; 473 } 474 475 /* 476 * mas_set_parent() - Set the parent node and encode the slot 477 * @enode: The encoded maple node. 478 * @parent: The encoded maple node that is the parent of @enode. 479 * @slot: The slot that @enode resides in @parent. 480 * 481 * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the 482 * parent type. 483 */ 484 static inline 485 void mas_set_parent(struct ma_state *mas, struct maple_enode *enode, 486 const struct maple_enode *parent, unsigned char slot) 487 { 488 unsigned long val = (unsigned long)parent; 489 unsigned long shift; 490 unsigned long type; 491 enum maple_type p_type = mte_node_type(parent); 492 493 MAS_BUG_ON(mas, p_type == maple_dense); 494 MAS_BUG_ON(mas, p_type == maple_leaf_64); 495 496 switch (p_type) { 497 case maple_range_64: 498 case maple_arange_64: 499 shift = MAPLE_PARENT_SLOT_SHIFT; 500 type = MAPLE_PARENT_RANGE64; 501 break; 502 default: 503 case maple_dense: 504 case maple_leaf_64: 505 shift = type = 0; 506 break; 507 } 508 509 val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */ 510 val |= (slot << shift) | type; 511 mte_to_node(enode)->parent = ma_parent_ptr(val); 512 } 513 514 /* 515 * mte_parent_slot() - get the parent slot of @enode. 516 * @enode: The encoded maple node. 517 * 518 * Return: The slot in the parent node where @enode resides. 519 */ 520 static __always_inline 521 unsigned int mte_parent_slot(const struct maple_enode *enode) 522 { 523 unsigned long val = (unsigned long)mte_to_node(enode)->parent; 524 525 if (unlikely(val & MA_ROOT_PARENT)) 526 return 0; 527 528 /* 529 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost 530 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT 531 */ 532 return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val); 533 } 534 535 /* 536 * mte_parent() - Get the parent of @node. 537 * @node: The encoded maple node. 538 * 539 * Return: The parent maple node. 540 */ 541 static __always_inline 542 struct maple_node *mte_parent(const struct maple_enode *enode) 543 { 544 return (void *)((unsigned long) 545 (mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK); 546 } 547 548 /* 549 * ma_dead_node() - check if the @enode is dead. 550 * @enode: The encoded maple node 551 * 552 * Return: true if dead, false otherwise. 553 */ 554 static __always_inline bool ma_dead_node(const struct maple_node *node) 555 { 556 struct maple_node *parent; 557 558 /* Do not reorder reads from the node prior to the parent check */ 559 smp_rmb(); 560 parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK); 561 return (parent == node); 562 } 563 564 /* 565 * mte_dead_node() - check if the @enode is dead. 566 * @enode: The encoded maple node 567 * 568 * Return: true if dead, false otherwise. 569 */ 570 static __always_inline bool mte_dead_node(const struct maple_enode *enode) 571 { 572 struct maple_node *parent, *node; 573 574 node = mte_to_node(enode); 575 /* Do not reorder reads from the node prior to the parent check */ 576 smp_rmb(); 577 parent = mte_parent(enode); 578 return (parent == node); 579 } 580 581 /* 582 * mas_allocated() - Get the number of nodes allocated in a maple state. 583 * @mas: The maple state 584 * 585 * The ma_state alloc member is overloaded to hold a pointer to the first 586 * allocated node or to the number of requested nodes to allocate. If bit 0 is 587 * set, then the alloc contains the number of requested nodes. If there is an 588 * allocated node, then the total allocated nodes is in that node. 589 * 590 * Return: The total number of nodes allocated 591 */ 592 static inline unsigned long mas_allocated(const struct ma_state *mas) 593 { 594 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) 595 return 0; 596 597 return mas->alloc->total; 598 } 599 600 /* 601 * mas_set_alloc_req() - Set the requested number of allocations. 602 * @mas: the maple state 603 * @count: the number of allocations. 604 * 605 * The requested number of allocations is either in the first allocated node, 606 * located in @mas->alloc->request_count, or directly in @mas->alloc if there is 607 * no allocated node. Set the request either in the node or do the necessary 608 * encoding to store in @mas->alloc directly. 609 */ 610 static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count) 611 { 612 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) { 613 if (!count) 614 mas->alloc = NULL; 615 else 616 mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U); 617 return; 618 } 619 620 mas->alloc->request_count = count; 621 } 622 623 /* 624 * mas_alloc_req() - get the requested number of allocations. 625 * @mas: The maple state 626 * 627 * The alloc count is either stored directly in @mas, or in 628 * @mas->alloc->request_count if there is at least one node allocated. Decode 629 * the request count if it's stored directly in @mas->alloc. 630 * 631 * Return: The allocation request count. 632 */ 633 static inline unsigned int mas_alloc_req(const struct ma_state *mas) 634 { 635 if ((unsigned long)mas->alloc & 0x1) 636 return (unsigned long)(mas->alloc) >> 1; 637 else if (mas->alloc) 638 return mas->alloc->request_count; 639 return 0; 640 } 641 642 /* 643 * ma_pivots() - Get a pointer to the maple node pivots. 644 * @node - the maple node 645 * @type - the node type 646 * 647 * In the event of a dead node, this array may be %NULL 648 * 649 * Return: A pointer to the maple node pivots 650 */ 651 static inline unsigned long *ma_pivots(struct maple_node *node, 652 enum maple_type type) 653 { 654 switch (type) { 655 case maple_arange_64: 656 return node->ma64.pivot; 657 case maple_range_64: 658 case maple_leaf_64: 659 return node->mr64.pivot; 660 case maple_dense: 661 return NULL; 662 } 663 return NULL; 664 } 665 666 /* 667 * ma_gaps() - Get a pointer to the maple node gaps. 668 * @node - the maple node 669 * @type - the node type 670 * 671 * Return: A pointer to the maple node gaps 672 */ 673 static inline unsigned long *ma_gaps(struct maple_node *node, 674 enum maple_type type) 675 { 676 switch (type) { 677 case maple_arange_64: 678 return node->ma64.gap; 679 case maple_range_64: 680 case maple_leaf_64: 681 case maple_dense: 682 return NULL; 683 } 684 return NULL; 685 } 686 687 /* 688 * mas_safe_pivot() - get the pivot at @piv or mas->max. 689 * @mas: The maple state 690 * @pivots: The pointer to the maple node pivots 691 * @piv: The pivot to fetch 692 * @type: The maple node type 693 * 694 * Return: The pivot at @piv within the limit of the @pivots array, @mas->max 695 * otherwise. 696 */ 697 static __always_inline unsigned long 698 mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots, 699 unsigned char piv, enum maple_type type) 700 { 701 if (piv >= mt_pivots[type]) 702 return mas->max; 703 704 return pivots[piv]; 705 } 706 707 /* 708 * mas_safe_min() - Return the minimum for a given offset. 709 * @mas: The maple state 710 * @pivots: The pointer to the maple node pivots 711 * @offset: The offset into the pivot array 712 * 713 * Return: The minimum range value that is contained in @offset. 714 */ 715 static inline unsigned long 716 mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset) 717 { 718 if (likely(offset)) 719 return pivots[offset - 1] + 1; 720 721 return mas->min; 722 } 723 724 /* 725 * mte_set_pivot() - Set a pivot to a value in an encoded maple node. 726 * @mn: The encoded maple node 727 * @piv: The pivot offset 728 * @val: The value of the pivot 729 */ 730 static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv, 731 unsigned long val) 732 { 733 struct maple_node *node = mte_to_node(mn); 734 enum maple_type type = mte_node_type(mn); 735 736 BUG_ON(piv >= mt_pivots[type]); 737 switch (type) { 738 case maple_range_64: 739 case maple_leaf_64: 740 node->mr64.pivot[piv] = val; 741 break; 742 case maple_arange_64: 743 node->ma64.pivot[piv] = val; 744 break; 745 case maple_dense: 746 break; 747 } 748 749 } 750 751 /* 752 * ma_slots() - Get a pointer to the maple node slots. 753 * @mn: The maple node 754 * @mt: The maple node type 755 * 756 * Return: A pointer to the maple node slots 757 */ 758 static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt) 759 { 760 switch (mt) { 761 case maple_arange_64: 762 return mn->ma64.slot; 763 case maple_range_64: 764 case maple_leaf_64: 765 return mn->mr64.slot; 766 case maple_dense: 767 return mn->slot; 768 } 769 770 return NULL; 771 } 772 773 static inline bool mt_write_locked(const struct maple_tree *mt) 774 { 775 return mt_external_lock(mt) ? mt_write_lock_is_held(mt) : 776 lockdep_is_held(&mt->ma_lock); 777 } 778 779 static __always_inline bool mt_locked(const struct maple_tree *mt) 780 { 781 return mt_external_lock(mt) ? mt_lock_is_held(mt) : 782 lockdep_is_held(&mt->ma_lock); 783 } 784 785 static __always_inline void *mt_slot(const struct maple_tree *mt, 786 void __rcu **slots, unsigned char offset) 787 { 788 return rcu_dereference_check(slots[offset], mt_locked(mt)); 789 } 790 791 static __always_inline void *mt_slot_locked(struct maple_tree *mt, 792 void __rcu **slots, unsigned char offset) 793 { 794 return rcu_dereference_protected(slots[offset], mt_write_locked(mt)); 795 } 796 /* 797 * mas_slot_locked() - Get the slot value when holding the maple tree lock. 798 * @mas: The maple state 799 * @slots: The pointer to the slots 800 * @offset: The offset into the slots array to fetch 801 * 802 * Return: The entry stored in @slots at the @offset. 803 */ 804 static __always_inline void *mas_slot_locked(struct ma_state *mas, 805 void __rcu **slots, unsigned char offset) 806 { 807 return mt_slot_locked(mas->tree, slots, offset); 808 } 809 810 /* 811 * mas_slot() - Get the slot value when not holding the maple tree lock. 812 * @mas: The maple state 813 * @slots: The pointer to the slots 814 * @offset: The offset into the slots array to fetch 815 * 816 * Return: The entry stored in @slots at the @offset 817 */ 818 static __always_inline void *mas_slot(struct ma_state *mas, void __rcu **slots, 819 unsigned char offset) 820 { 821 return mt_slot(mas->tree, slots, offset); 822 } 823 824 /* 825 * mas_root() - Get the maple tree root. 826 * @mas: The maple state. 827 * 828 * Return: The pointer to the root of the tree 829 */ 830 static __always_inline void *mas_root(struct ma_state *mas) 831 { 832 return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree)); 833 } 834 835 static inline void *mt_root_locked(struct maple_tree *mt) 836 { 837 return rcu_dereference_protected(mt->ma_root, mt_write_locked(mt)); 838 } 839 840 /* 841 * mas_root_locked() - Get the maple tree root when holding the maple tree lock. 842 * @mas: The maple state. 843 * 844 * Return: The pointer to the root of the tree 845 */ 846 static inline void *mas_root_locked(struct ma_state *mas) 847 { 848 return mt_root_locked(mas->tree); 849 } 850 851 static inline struct maple_metadata *ma_meta(struct maple_node *mn, 852 enum maple_type mt) 853 { 854 switch (mt) { 855 case maple_arange_64: 856 return &mn->ma64.meta; 857 default: 858 return &mn->mr64.meta; 859 } 860 } 861 862 /* 863 * ma_set_meta() - Set the metadata information of a node. 864 * @mn: The maple node 865 * @mt: The maple node type 866 * @offset: The offset of the highest sub-gap in this node. 867 * @end: The end of the data in this node. 868 */ 869 static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt, 870 unsigned char offset, unsigned char end) 871 { 872 struct maple_metadata *meta = ma_meta(mn, mt); 873 874 meta->gap = offset; 875 meta->end = end; 876 } 877 878 /* 879 * mt_clear_meta() - clear the metadata information of a node, if it exists 880 * @mt: The maple tree 881 * @mn: The maple node 882 * @type: The maple node type 883 * @offset: The offset of the highest sub-gap in this node. 884 * @end: The end of the data in this node. 885 */ 886 static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn, 887 enum maple_type type) 888 { 889 struct maple_metadata *meta; 890 unsigned long *pivots; 891 void __rcu **slots; 892 void *next; 893 894 switch (type) { 895 case maple_range_64: 896 pivots = mn->mr64.pivot; 897 if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) { 898 slots = mn->mr64.slot; 899 next = mt_slot_locked(mt, slots, 900 MAPLE_RANGE64_SLOTS - 1); 901 if (unlikely((mte_to_node(next) && 902 mte_node_type(next)))) 903 return; /* no metadata, could be node */ 904 } 905 fallthrough; 906 case maple_arange_64: 907 meta = ma_meta(mn, type); 908 break; 909 default: 910 return; 911 } 912 913 meta->gap = 0; 914 meta->end = 0; 915 } 916 917 /* 918 * ma_meta_end() - Get the data end of a node from the metadata 919 * @mn: The maple node 920 * @mt: The maple node type 921 */ 922 static inline unsigned char ma_meta_end(struct maple_node *mn, 923 enum maple_type mt) 924 { 925 struct maple_metadata *meta = ma_meta(mn, mt); 926 927 return meta->end; 928 } 929 930 /* 931 * ma_meta_gap() - Get the largest gap location of a node from the metadata 932 * @mn: The maple node 933 */ 934 static inline unsigned char ma_meta_gap(struct maple_node *mn) 935 { 936 return mn->ma64.meta.gap; 937 } 938 939 /* 940 * ma_set_meta_gap() - Set the largest gap location in a nodes metadata 941 * @mn: The maple node 942 * @mn: The maple node type 943 * @offset: The location of the largest gap. 944 */ 945 static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt, 946 unsigned char offset) 947 { 948 949 struct maple_metadata *meta = ma_meta(mn, mt); 950 951 meta->gap = offset; 952 } 953 954 /* 955 * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes. 956 * @mat - the ma_topiary, a linked list of dead nodes. 957 * @dead_enode - the node to be marked as dead and added to the tail of the list 958 * 959 * Add the @dead_enode to the linked list in @mat. 960 */ 961 static inline void mat_add(struct ma_topiary *mat, 962 struct maple_enode *dead_enode) 963 { 964 mte_set_node_dead(dead_enode); 965 mte_to_mat(dead_enode)->next = NULL; 966 if (!mat->tail) { 967 mat->tail = mat->head = dead_enode; 968 return; 969 } 970 971 mte_to_mat(mat->tail)->next = dead_enode; 972 mat->tail = dead_enode; 973 } 974 975 static void mt_free_walk(struct rcu_head *head); 976 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt, 977 bool free); 978 /* 979 * mas_mat_destroy() - Free all nodes and subtrees in a dead list. 980 * @mas - the maple state 981 * @mat - the ma_topiary linked list of dead nodes to free. 982 * 983 * Destroy walk a dead list. 984 */ 985 static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat) 986 { 987 struct maple_enode *next; 988 struct maple_node *node; 989 bool in_rcu = mt_in_rcu(mas->tree); 990 991 while (mat->head) { 992 next = mte_to_mat(mat->head)->next; 993 node = mte_to_node(mat->head); 994 mt_destroy_walk(mat->head, mas->tree, !in_rcu); 995 if (in_rcu) 996 call_rcu(&node->rcu, mt_free_walk); 997 mat->head = next; 998 } 999 } 1000 /* 1001 * mas_descend() - Descend into the slot stored in the ma_state. 1002 * @mas - the maple state. 1003 * 1004 * Note: Not RCU safe, only use in write side or debug code. 1005 */ 1006 static inline void mas_descend(struct ma_state *mas) 1007 { 1008 enum maple_type type; 1009 unsigned long *pivots; 1010 struct maple_node *node; 1011 void __rcu **slots; 1012 1013 node = mas_mn(mas); 1014 type = mte_node_type(mas->node); 1015 pivots = ma_pivots(node, type); 1016 slots = ma_slots(node, type); 1017 1018 if (mas->offset) 1019 mas->min = pivots[mas->offset - 1] + 1; 1020 mas->max = mas_safe_pivot(mas, pivots, mas->offset, type); 1021 mas->node = mas_slot(mas, slots, mas->offset); 1022 } 1023 1024 /* 1025 * mte_set_gap() - Set a maple node gap. 1026 * @mn: The encoded maple node 1027 * @gap: The offset of the gap to set 1028 * @val: The gap value 1029 */ 1030 static inline void mte_set_gap(const struct maple_enode *mn, 1031 unsigned char gap, unsigned long val) 1032 { 1033 switch (mte_node_type(mn)) { 1034 default: 1035 break; 1036 case maple_arange_64: 1037 mte_to_node(mn)->ma64.gap[gap] = val; 1038 break; 1039 } 1040 } 1041 1042 /* 1043 * mas_ascend() - Walk up a level of the tree. 1044 * @mas: The maple state 1045 * 1046 * Sets the @mas->max and @mas->min to the correct values when walking up. This 1047 * may cause several levels of walking up to find the correct min and max. 1048 * May find a dead node which will cause a premature return. 1049 * Return: 1 on dead node, 0 otherwise 1050 */ 1051 static int mas_ascend(struct ma_state *mas) 1052 { 1053 struct maple_enode *p_enode; /* parent enode. */ 1054 struct maple_enode *a_enode; /* ancestor enode. */ 1055 struct maple_node *a_node; /* ancestor node. */ 1056 struct maple_node *p_node; /* parent node. */ 1057 unsigned char a_slot; 1058 enum maple_type a_type; 1059 unsigned long min, max; 1060 unsigned long *pivots; 1061 bool set_max = false, set_min = false; 1062 1063 a_node = mas_mn(mas); 1064 if (ma_is_root(a_node)) { 1065 mas->offset = 0; 1066 return 0; 1067 } 1068 1069 p_node = mte_parent(mas->node); 1070 if (unlikely(a_node == p_node)) 1071 return 1; 1072 1073 a_type = mas_parent_type(mas, mas->node); 1074 mas->offset = mte_parent_slot(mas->node); 1075 a_enode = mt_mk_node(p_node, a_type); 1076 1077 /* Check to make sure all parent information is still accurate */ 1078 if (p_node != mte_parent(mas->node)) 1079 return 1; 1080 1081 mas->node = a_enode; 1082 1083 if (mte_is_root(a_enode)) { 1084 mas->max = ULONG_MAX; 1085 mas->min = 0; 1086 return 0; 1087 } 1088 1089 min = 0; 1090 max = ULONG_MAX; 1091 if (!mas->offset) { 1092 min = mas->min; 1093 set_min = true; 1094 } 1095 1096 if (mas->max == ULONG_MAX) 1097 set_max = true; 1098 1099 do { 1100 p_enode = a_enode; 1101 a_type = mas_parent_type(mas, p_enode); 1102 a_node = mte_parent(p_enode); 1103 a_slot = mte_parent_slot(p_enode); 1104 a_enode = mt_mk_node(a_node, a_type); 1105 pivots = ma_pivots(a_node, a_type); 1106 1107 if (unlikely(ma_dead_node(a_node))) 1108 return 1; 1109 1110 if (!set_min && a_slot) { 1111 set_min = true; 1112 min = pivots[a_slot - 1] + 1; 1113 } 1114 1115 if (!set_max && a_slot < mt_pivots[a_type]) { 1116 set_max = true; 1117 max = pivots[a_slot]; 1118 } 1119 1120 if (unlikely(ma_dead_node(a_node))) 1121 return 1; 1122 1123 if (unlikely(ma_is_root(a_node))) 1124 break; 1125 1126 } while (!set_min || !set_max); 1127 1128 mas->max = max; 1129 mas->min = min; 1130 return 0; 1131 } 1132 1133 /* 1134 * mas_pop_node() - Get a previously allocated maple node from the maple state. 1135 * @mas: The maple state 1136 * 1137 * Return: A pointer to a maple node. 1138 */ 1139 static inline struct maple_node *mas_pop_node(struct ma_state *mas) 1140 { 1141 struct maple_alloc *ret, *node = mas->alloc; 1142 unsigned long total = mas_allocated(mas); 1143 unsigned int req = mas_alloc_req(mas); 1144 1145 /* nothing or a request pending. */ 1146 if (WARN_ON(!total)) 1147 return NULL; 1148 1149 if (total == 1) { 1150 /* single allocation in this ma_state */ 1151 mas->alloc = NULL; 1152 ret = node; 1153 goto single_node; 1154 } 1155 1156 if (node->node_count == 1) { 1157 /* Single allocation in this node. */ 1158 mas->alloc = node->slot[0]; 1159 mas->alloc->total = node->total - 1; 1160 ret = node; 1161 goto new_head; 1162 } 1163 node->total--; 1164 ret = node->slot[--node->node_count]; 1165 node->slot[node->node_count] = NULL; 1166 1167 single_node: 1168 new_head: 1169 if (req) { 1170 req++; 1171 mas_set_alloc_req(mas, req); 1172 } 1173 1174 memset(ret, 0, sizeof(*ret)); 1175 return (struct maple_node *)ret; 1176 } 1177 1178 /* 1179 * mas_push_node() - Push a node back on the maple state allocation. 1180 * @mas: The maple state 1181 * @used: The used maple node 1182 * 1183 * Stores the maple node back into @mas->alloc for reuse. Updates allocated and 1184 * requested node count as necessary. 1185 */ 1186 static inline void mas_push_node(struct ma_state *mas, struct maple_node *used) 1187 { 1188 struct maple_alloc *reuse = (struct maple_alloc *)used; 1189 struct maple_alloc *head = mas->alloc; 1190 unsigned long count; 1191 unsigned int requested = mas_alloc_req(mas); 1192 1193 count = mas_allocated(mas); 1194 1195 reuse->request_count = 0; 1196 reuse->node_count = 0; 1197 if (count && (head->node_count < MAPLE_ALLOC_SLOTS)) { 1198 head->slot[head->node_count++] = reuse; 1199 head->total++; 1200 goto done; 1201 } 1202 1203 reuse->total = 1; 1204 if ((head) && !((unsigned long)head & 0x1)) { 1205 reuse->slot[0] = head; 1206 reuse->node_count = 1; 1207 reuse->total += head->total; 1208 } 1209 1210 mas->alloc = reuse; 1211 done: 1212 if (requested > 1) 1213 mas_set_alloc_req(mas, requested - 1); 1214 } 1215 1216 /* 1217 * mas_alloc_nodes() - Allocate nodes into a maple state 1218 * @mas: The maple state 1219 * @gfp: The GFP Flags 1220 */ 1221 static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp) 1222 { 1223 struct maple_alloc *node; 1224 unsigned long allocated = mas_allocated(mas); 1225 unsigned int requested = mas_alloc_req(mas); 1226 unsigned int count; 1227 void **slots = NULL; 1228 unsigned int max_req = 0; 1229 1230 if (!requested) 1231 return; 1232 1233 mas_set_alloc_req(mas, 0); 1234 if (mas->mas_flags & MA_STATE_PREALLOC) { 1235 if (allocated) 1236 return; 1237 BUG_ON(!allocated); 1238 WARN_ON(!allocated); 1239 } 1240 1241 if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) { 1242 node = (struct maple_alloc *)mt_alloc_one(gfp); 1243 if (!node) 1244 goto nomem_one; 1245 1246 if (allocated) { 1247 node->slot[0] = mas->alloc; 1248 node->node_count = 1; 1249 } else { 1250 node->node_count = 0; 1251 } 1252 1253 mas->alloc = node; 1254 node->total = ++allocated; 1255 requested--; 1256 } 1257 1258 node = mas->alloc; 1259 node->request_count = 0; 1260 while (requested) { 1261 max_req = MAPLE_ALLOC_SLOTS - node->node_count; 1262 slots = (void **)&node->slot[node->node_count]; 1263 max_req = min(requested, max_req); 1264 count = mt_alloc_bulk(gfp, max_req, slots); 1265 if (!count) 1266 goto nomem_bulk; 1267 1268 if (node->node_count == 0) { 1269 node->slot[0]->node_count = 0; 1270 node->slot[0]->request_count = 0; 1271 } 1272 1273 node->node_count += count; 1274 allocated += count; 1275 node = node->slot[0]; 1276 requested -= count; 1277 } 1278 mas->alloc->total = allocated; 1279 return; 1280 1281 nomem_bulk: 1282 /* Clean up potential freed allocations on bulk failure */ 1283 memset(slots, 0, max_req * sizeof(unsigned long)); 1284 nomem_one: 1285 mas_set_alloc_req(mas, requested); 1286 if (mas->alloc && !(((unsigned long)mas->alloc & 0x1))) 1287 mas->alloc->total = allocated; 1288 mas_set_err(mas, -ENOMEM); 1289 } 1290 1291 /* 1292 * mas_free() - Free an encoded maple node 1293 * @mas: The maple state 1294 * @used: The encoded maple node to free. 1295 * 1296 * Uses rcu free if necessary, pushes @used back on the maple state allocations 1297 * otherwise. 1298 */ 1299 static inline void mas_free(struct ma_state *mas, struct maple_enode *used) 1300 { 1301 struct maple_node *tmp = mte_to_node(used); 1302 1303 if (mt_in_rcu(mas->tree)) 1304 ma_free_rcu(tmp); 1305 else 1306 mas_push_node(mas, tmp); 1307 } 1308 1309 /* 1310 * mas_node_count_gfp() - Check if enough nodes are allocated and request more 1311 * if there is not enough nodes. 1312 * @mas: The maple state 1313 * @count: The number of nodes needed 1314 * @gfp: the gfp flags 1315 */ 1316 static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp) 1317 { 1318 unsigned long allocated = mas_allocated(mas); 1319 1320 if (allocated < count) { 1321 mas_set_alloc_req(mas, count - allocated); 1322 mas_alloc_nodes(mas, gfp); 1323 } 1324 } 1325 1326 /* 1327 * mas_node_count() - Check if enough nodes are allocated and request more if 1328 * there is not enough nodes. 1329 * @mas: The maple state 1330 * @count: The number of nodes needed 1331 * 1332 * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags. 1333 */ 1334 static void mas_node_count(struct ma_state *mas, int count) 1335 { 1336 return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN); 1337 } 1338 1339 /* 1340 * mas_start() - Sets up maple state for operations. 1341 * @mas: The maple state. 1342 * 1343 * If mas->status == mas_start, then set the min, max and depth to 1344 * defaults. 1345 * 1346 * Return: 1347 * - If mas->node is an error or not mas_start, return NULL. 1348 * - If it's an empty tree: NULL & mas->status == ma_none 1349 * - If it's a single entry: The entry & mas->status == mas_root 1350 * - If it's a tree: NULL & mas->status == safe root node. 1351 */ 1352 static inline struct maple_enode *mas_start(struct ma_state *mas) 1353 { 1354 if (likely(mas_is_start(mas))) { 1355 struct maple_enode *root; 1356 1357 mas->min = 0; 1358 mas->max = ULONG_MAX; 1359 1360 retry: 1361 mas->depth = 0; 1362 root = mas_root(mas); 1363 /* Tree with nodes */ 1364 if (likely(xa_is_node(root))) { 1365 mas->depth = 1; 1366 mas->status = ma_active; 1367 mas->node = mte_safe_root(root); 1368 mas->offset = 0; 1369 if (mte_dead_node(mas->node)) 1370 goto retry; 1371 1372 return NULL; 1373 } 1374 1375 /* empty tree */ 1376 if (unlikely(!root)) { 1377 mas->node = NULL; 1378 mas->status = ma_none; 1379 mas->offset = MAPLE_NODE_SLOTS; 1380 return NULL; 1381 } 1382 1383 /* Single entry tree */ 1384 mas->status = ma_root; 1385 mas->offset = MAPLE_NODE_SLOTS; 1386 1387 /* Single entry tree. */ 1388 if (mas->index > 0) 1389 return NULL; 1390 1391 return root; 1392 } 1393 1394 return NULL; 1395 } 1396 1397 /* 1398 * ma_data_end() - Find the end of the data in a node. 1399 * @node: The maple node 1400 * @type: The maple node type 1401 * @pivots: The array of pivots in the node 1402 * @max: The maximum value in the node 1403 * 1404 * Uses metadata to find the end of the data when possible. 1405 * Return: The zero indexed last slot with data (may be null). 1406 */ 1407 static __always_inline unsigned char ma_data_end(struct maple_node *node, 1408 enum maple_type type, unsigned long *pivots, unsigned long max) 1409 { 1410 unsigned char offset; 1411 1412 if (!pivots) 1413 return 0; 1414 1415 if (type == maple_arange_64) 1416 return ma_meta_end(node, type); 1417 1418 offset = mt_pivots[type] - 1; 1419 if (likely(!pivots[offset])) 1420 return ma_meta_end(node, type); 1421 1422 if (likely(pivots[offset] == max)) 1423 return offset; 1424 1425 return mt_pivots[type]; 1426 } 1427 1428 /* 1429 * mas_data_end() - Find the end of the data (slot). 1430 * @mas: the maple state 1431 * 1432 * This method is optimized to check the metadata of a node if the node type 1433 * supports data end metadata. 1434 * 1435 * Return: The zero indexed last slot with data (may be null). 1436 */ 1437 static inline unsigned char mas_data_end(struct ma_state *mas) 1438 { 1439 enum maple_type type; 1440 struct maple_node *node; 1441 unsigned char offset; 1442 unsigned long *pivots; 1443 1444 type = mte_node_type(mas->node); 1445 node = mas_mn(mas); 1446 if (type == maple_arange_64) 1447 return ma_meta_end(node, type); 1448 1449 pivots = ma_pivots(node, type); 1450 if (unlikely(ma_dead_node(node))) 1451 return 0; 1452 1453 offset = mt_pivots[type] - 1; 1454 if (likely(!pivots[offset])) 1455 return ma_meta_end(node, type); 1456 1457 if (likely(pivots[offset] == mas->max)) 1458 return offset; 1459 1460 return mt_pivots[type]; 1461 } 1462 1463 /* 1464 * mas_leaf_max_gap() - Returns the largest gap in a leaf node 1465 * @mas - the maple state 1466 * 1467 * Return: The maximum gap in the leaf. 1468 */ 1469 static unsigned long mas_leaf_max_gap(struct ma_state *mas) 1470 { 1471 enum maple_type mt; 1472 unsigned long pstart, gap, max_gap; 1473 struct maple_node *mn; 1474 unsigned long *pivots; 1475 void __rcu **slots; 1476 unsigned char i; 1477 unsigned char max_piv; 1478 1479 mt = mte_node_type(mas->node); 1480 mn = mas_mn(mas); 1481 slots = ma_slots(mn, mt); 1482 max_gap = 0; 1483 if (unlikely(ma_is_dense(mt))) { 1484 gap = 0; 1485 for (i = 0; i < mt_slots[mt]; i++) { 1486 if (slots[i]) { 1487 if (gap > max_gap) 1488 max_gap = gap; 1489 gap = 0; 1490 } else { 1491 gap++; 1492 } 1493 } 1494 if (gap > max_gap) 1495 max_gap = gap; 1496 return max_gap; 1497 } 1498 1499 /* 1500 * Check the first implied pivot optimizes the loop below and slot 1 may 1501 * be skipped if there is a gap in slot 0. 1502 */ 1503 pivots = ma_pivots(mn, mt); 1504 if (likely(!slots[0])) { 1505 max_gap = pivots[0] - mas->min + 1; 1506 i = 2; 1507 } else { 1508 i = 1; 1509 } 1510 1511 /* reduce max_piv as the special case is checked before the loop */ 1512 max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1; 1513 /* 1514 * Check end implied pivot which can only be a gap on the right most 1515 * node. 1516 */ 1517 if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) { 1518 gap = ULONG_MAX - pivots[max_piv]; 1519 if (gap > max_gap) 1520 max_gap = gap; 1521 1522 if (max_gap > pivots[max_piv] - mas->min) 1523 return max_gap; 1524 } 1525 1526 for (; i <= max_piv; i++) { 1527 /* data == no gap. */ 1528 if (likely(slots[i])) 1529 continue; 1530 1531 pstart = pivots[i - 1]; 1532 gap = pivots[i] - pstart; 1533 if (gap > max_gap) 1534 max_gap = gap; 1535 1536 /* There cannot be two gaps in a row. */ 1537 i++; 1538 } 1539 return max_gap; 1540 } 1541 1542 /* 1543 * ma_max_gap() - Get the maximum gap in a maple node (non-leaf) 1544 * @node: The maple node 1545 * @gaps: The pointer to the gaps 1546 * @mt: The maple node type 1547 * @*off: Pointer to store the offset location of the gap. 1548 * 1549 * Uses the metadata data end to scan backwards across set gaps. 1550 * 1551 * Return: The maximum gap value 1552 */ 1553 static inline unsigned long 1554 ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt, 1555 unsigned char *off) 1556 { 1557 unsigned char offset, i; 1558 unsigned long max_gap = 0; 1559 1560 i = offset = ma_meta_end(node, mt); 1561 do { 1562 if (gaps[i] > max_gap) { 1563 max_gap = gaps[i]; 1564 offset = i; 1565 } 1566 } while (i--); 1567 1568 *off = offset; 1569 return max_gap; 1570 } 1571 1572 /* 1573 * mas_max_gap() - find the largest gap in a non-leaf node and set the slot. 1574 * @mas: The maple state. 1575 * 1576 * Return: The gap value. 1577 */ 1578 static inline unsigned long mas_max_gap(struct ma_state *mas) 1579 { 1580 unsigned long *gaps; 1581 unsigned char offset; 1582 enum maple_type mt; 1583 struct maple_node *node; 1584 1585 mt = mte_node_type(mas->node); 1586 if (ma_is_leaf(mt)) 1587 return mas_leaf_max_gap(mas); 1588 1589 node = mas_mn(mas); 1590 MAS_BUG_ON(mas, mt != maple_arange_64); 1591 offset = ma_meta_gap(node); 1592 gaps = ma_gaps(node, mt); 1593 return gaps[offset]; 1594 } 1595 1596 /* 1597 * mas_parent_gap() - Set the parent gap and any gaps above, as needed 1598 * @mas: The maple state 1599 * @offset: The gap offset in the parent to set 1600 * @new: The new gap value. 1601 * 1602 * Set the parent gap then continue to set the gap upwards, using the metadata 1603 * of the parent to see if it is necessary to check the node above. 1604 */ 1605 static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset, 1606 unsigned long new) 1607 { 1608 unsigned long meta_gap = 0; 1609 struct maple_node *pnode; 1610 struct maple_enode *penode; 1611 unsigned long *pgaps; 1612 unsigned char meta_offset; 1613 enum maple_type pmt; 1614 1615 pnode = mte_parent(mas->node); 1616 pmt = mas_parent_type(mas, mas->node); 1617 penode = mt_mk_node(pnode, pmt); 1618 pgaps = ma_gaps(pnode, pmt); 1619 1620 ascend: 1621 MAS_BUG_ON(mas, pmt != maple_arange_64); 1622 meta_offset = ma_meta_gap(pnode); 1623 meta_gap = pgaps[meta_offset]; 1624 1625 pgaps[offset] = new; 1626 1627 if (meta_gap == new) 1628 return; 1629 1630 if (offset != meta_offset) { 1631 if (meta_gap > new) 1632 return; 1633 1634 ma_set_meta_gap(pnode, pmt, offset); 1635 } else if (new < meta_gap) { 1636 new = ma_max_gap(pnode, pgaps, pmt, &meta_offset); 1637 ma_set_meta_gap(pnode, pmt, meta_offset); 1638 } 1639 1640 if (ma_is_root(pnode)) 1641 return; 1642 1643 /* Go to the parent node. */ 1644 pnode = mte_parent(penode); 1645 pmt = mas_parent_type(mas, penode); 1646 pgaps = ma_gaps(pnode, pmt); 1647 offset = mte_parent_slot(penode); 1648 penode = mt_mk_node(pnode, pmt); 1649 goto ascend; 1650 } 1651 1652 /* 1653 * mas_update_gap() - Update a nodes gaps and propagate up if necessary. 1654 * @mas - the maple state. 1655 */ 1656 static inline void mas_update_gap(struct ma_state *mas) 1657 { 1658 unsigned char pslot; 1659 unsigned long p_gap; 1660 unsigned long max_gap; 1661 1662 if (!mt_is_alloc(mas->tree)) 1663 return; 1664 1665 if (mte_is_root(mas->node)) 1666 return; 1667 1668 max_gap = mas_max_gap(mas); 1669 1670 pslot = mte_parent_slot(mas->node); 1671 p_gap = ma_gaps(mte_parent(mas->node), 1672 mas_parent_type(mas, mas->node))[pslot]; 1673 1674 if (p_gap != max_gap) 1675 mas_parent_gap(mas, pslot, max_gap); 1676 } 1677 1678 /* 1679 * mas_adopt_children() - Set the parent pointer of all nodes in @parent to 1680 * @parent with the slot encoded. 1681 * @mas - the maple state (for the tree) 1682 * @parent - the maple encoded node containing the children. 1683 */ 1684 static inline void mas_adopt_children(struct ma_state *mas, 1685 struct maple_enode *parent) 1686 { 1687 enum maple_type type = mte_node_type(parent); 1688 struct maple_node *node = mte_to_node(parent); 1689 void __rcu **slots = ma_slots(node, type); 1690 unsigned long *pivots = ma_pivots(node, type); 1691 struct maple_enode *child; 1692 unsigned char offset; 1693 1694 offset = ma_data_end(node, type, pivots, mas->max); 1695 do { 1696 child = mas_slot_locked(mas, slots, offset); 1697 mas_set_parent(mas, child, parent, offset); 1698 } while (offset--); 1699 } 1700 1701 /* 1702 * mas_put_in_tree() - Put a new node in the tree, smp_wmb(), and mark the old 1703 * node as dead. 1704 * @mas - the maple state with the new node 1705 * @old_enode - The old maple encoded node to replace. 1706 */ 1707 static inline void mas_put_in_tree(struct ma_state *mas, 1708 struct maple_enode *old_enode) 1709 __must_hold(mas->tree->ma_lock) 1710 { 1711 unsigned char offset; 1712 void __rcu **slots; 1713 1714 if (mte_is_root(mas->node)) { 1715 mas_mn(mas)->parent = ma_parent_ptr(mas_tree_parent(mas)); 1716 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); 1717 mas_set_height(mas); 1718 } else { 1719 1720 offset = mte_parent_slot(mas->node); 1721 slots = ma_slots(mte_parent(mas->node), 1722 mas_parent_type(mas, mas->node)); 1723 rcu_assign_pointer(slots[offset], mas->node); 1724 } 1725 1726 mte_set_node_dead(old_enode); 1727 } 1728 1729 /* 1730 * mas_replace_node() - Replace a node by putting it in the tree, marking it 1731 * dead, and freeing it. 1732 * the parent encoding to locate the maple node in the tree. 1733 * @mas - the ma_state with @mas->node pointing to the new node. 1734 * @old_enode - The old maple encoded node. 1735 */ 1736 static inline void mas_replace_node(struct ma_state *mas, 1737 struct maple_enode *old_enode) 1738 __must_hold(mas->tree->ma_lock) 1739 { 1740 mas_put_in_tree(mas, old_enode); 1741 mas_free(mas, old_enode); 1742 } 1743 1744 /* 1745 * mas_find_child() - Find a child who has the parent @mas->node. 1746 * @mas: the maple state with the parent. 1747 * @child: the maple state to store the child. 1748 */ 1749 static inline bool mas_find_child(struct ma_state *mas, struct ma_state *child) 1750 __must_hold(mas->tree->ma_lock) 1751 { 1752 enum maple_type mt; 1753 unsigned char offset; 1754 unsigned char end; 1755 unsigned long *pivots; 1756 struct maple_enode *entry; 1757 struct maple_node *node; 1758 void __rcu **slots; 1759 1760 mt = mte_node_type(mas->node); 1761 node = mas_mn(mas); 1762 slots = ma_slots(node, mt); 1763 pivots = ma_pivots(node, mt); 1764 end = ma_data_end(node, mt, pivots, mas->max); 1765 for (offset = mas->offset; offset <= end; offset++) { 1766 entry = mas_slot_locked(mas, slots, offset); 1767 if (mte_parent(entry) == node) { 1768 *child = *mas; 1769 mas->offset = offset + 1; 1770 child->offset = offset; 1771 mas_descend(child); 1772 child->offset = 0; 1773 return true; 1774 } 1775 } 1776 return false; 1777 } 1778 1779 /* 1780 * mab_shift_right() - Shift the data in mab right. Note, does not clean out the 1781 * old data or set b_node->b_end. 1782 * @b_node: the maple_big_node 1783 * @shift: the shift count 1784 */ 1785 static inline void mab_shift_right(struct maple_big_node *b_node, 1786 unsigned char shift) 1787 { 1788 unsigned long size = b_node->b_end * sizeof(unsigned long); 1789 1790 memmove(b_node->pivot + shift, b_node->pivot, size); 1791 memmove(b_node->slot + shift, b_node->slot, size); 1792 if (b_node->type == maple_arange_64) 1793 memmove(b_node->gap + shift, b_node->gap, size); 1794 } 1795 1796 /* 1797 * mab_middle_node() - Check if a middle node is needed (unlikely) 1798 * @b_node: the maple_big_node that contains the data. 1799 * @size: the amount of data in the b_node 1800 * @split: the potential split location 1801 * @slot_count: the size that can be stored in a single node being considered. 1802 * 1803 * Return: true if a middle node is required. 1804 */ 1805 static inline bool mab_middle_node(struct maple_big_node *b_node, int split, 1806 unsigned char slot_count) 1807 { 1808 unsigned char size = b_node->b_end; 1809 1810 if (size >= 2 * slot_count) 1811 return true; 1812 1813 if (!b_node->slot[split] && (size >= 2 * slot_count - 1)) 1814 return true; 1815 1816 return false; 1817 } 1818 1819 /* 1820 * mab_no_null_split() - ensure the split doesn't fall on a NULL 1821 * @b_node: the maple_big_node with the data 1822 * @split: the suggested split location 1823 * @slot_count: the number of slots in the node being considered. 1824 * 1825 * Return: the split location. 1826 */ 1827 static inline int mab_no_null_split(struct maple_big_node *b_node, 1828 unsigned char split, unsigned char slot_count) 1829 { 1830 if (!b_node->slot[split]) { 1831 /* 1832 * If the split is less than the max slot && the right side will 1833 * still be sufficient, then increment the split on NULL. 1834 */ 1835 if ((split < slot_count - 1) && 1836 (b_node->b_end - split) > (mt_min_slots[b_node->type])) 1837 split++; 1838 else 1839 split--; 1840 } 1841 return split; 1842 } 1843 1844 /* 1845 * mab_calc_split() - Calculate the split location and if there needs to be two 1846 * splits. 1847 * @bn: The maple_big_node with the data 1848 * @mid_split: The second split, if required. 0 otherwise. 1849 * 1850 * Return: The first split location. The middle split is set in @mid_split. 1851 */ 1852 static inline int mab_calc_split(struct ma_state *mas, 1853 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min) 1854 { 1855 unsigned char b_end = bn->b_end; 1856 int split = b_end / 2; /* Assume equal split. */ 1857 unsigned char slot_min, slot_count = mt_slots[bn->type]; 1858 1859 /* 1860 * To support gap tracking, all NULL entries are kept together and a node cannot 1861 * end on a NULL entry, with the exception of the left-most leaf. The 1862 * limitation means that the split of a node must be checked for this condition 1863 * and be able to put more data in one direction or the other. 1864 */ 1865 if (unlikely((mas->mas_flags & MA_STATE_BULK))) { 1866 *mid_split = 0; 1867 split = b_end - mt_min_slots[bn->type]; 1868 1869 if (!ma_is_leaf(bn->type)) 1870 return split; 1871 1872 mas->mas_flags |= MA_STATE_REBALANCE; 1873 if (!bn->slot[split]) 1874 split--; 1875 return split; 1876 } 1877 1878 /* 1879 * Although extremely rare, it is possible to enter what is known as the 3-way 1880 * split scenario. The 3-way split comes about by means of a store of a range 1881 * that overwrites the end and beginning of two full nodes. The result is a set 1882 * of entries that cannot be stored in 2 nodes. Sometimes, these two nodes can 1883 * also be located in different parent nodes which are also full. This can 1884 * carry upwards all the way to the root in the worst case. 1885 */ 1886 if (unlikely(mab_middle_node(bn, split, slot_count))) { 1887 split = b_end / 3; 1888 *mid_split = split * 2; 1889 } else { 1890 slot_min = mt_min_slots[bn->type]; 1891 1892 *mid_split = 0; 1893 /* 1894 * Avoid having a range less than the slot count unless it 1895 * causes one node to be deficient. 1896 * NOTE: mt_min_slots is 1 based, b_end and split are zero. 1897 */ 1898 while ((split < slot_count - 1) && 1899 ((bn->pivot[split] - min) < slot_count - 1) && 1900 (b_end - split > slot_min)) 1901 split++; 1902 } 1903 1904 /* Avoid ending a node on a NULL entry */ 1905 split = mab_no_null_split(bn, split, slot_count); 1906 1907 if (unlikely(*mid_split)) 1908 *mid_split = mab_no_null_split(bn, *mid_split, slot_count); 1909 1910 return split; 1911 } 1912 1913 /* 1914 * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node 1915 * and set @b_node->b_end to the next free slot. 1916 * @mas: The maple state 1917 * @mas_start: The starting slot to copy 1918 * @mas_end: The end slot to copy (inclusively) 1919 * @b_node: The maple_big_node to place the data 1920 * @mab_start: The starting location in maple_big_node to store the data. 1921 */ 1922 static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start, 1923 unsigned char mas_end, struct maple_big_node *b_node, 1924 unsigned char mab_start) 1925 { 1926 enum maple_type mt; 1927 struct maple_node *node; 1928 void __rcu **slots; 1929 unsigned long *pivots, *gaps; 1930 int i = mas_start, j = mab_start; 1931 unsigned char piv_end; 1932 1933 node = mas_mn(mas); 1934 mt = mte_node_type(mas->node); 1935 pivots = ma_pivots(node, mt); 1936 if (!i) { 1937 b_node->pivot[j] = pivots[i++]; 1938 if (unlikely(i > mas_end)) 1939 goto complete; 1940 j++; 1941 } 1942 1943 piv_end = min(mas_end, mt_pivots[mt]); 1944 for (; i < piv_end; i++, j++) { 1945 b_node->pivot[j] = pivots[i]; 1946 if (unlikely(!b_node->pivot[j])) 1947 break; 1948 1949 if (unlikely(mas->max == b_node->pivot[j])) 1950 goto complete; 1951 } 1952 1953 if (likely(i <= mas_end)) 1954 b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt); 1955 1956 complete: 1957 b_node->b_end = ++j; 1958 j -= mab_start; 1959 slots = ma_slots(node, mt); 1960 memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j); 1961 if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) { 1962 gaps = ma_gaps(node, mt); 1963 memcpy(b_node->gap + mab_start, gaps + mas_start, 1964 sizeof(unsigned long) * j); 1965 } 1966 } 1967 1968 /* 1969 * mas_leaf_set_meta() - Set the metadata of a leaf if possible. 1970 * @node: The maple node 1971 * @mt: The maple type 1972 * @end: The node end 1973 */ 1974 static inline void mas_leaf_set_meta(struct maple_node *node, 1975 enum maple_type mt, unsigned char end) 1976 { 1977 if (end < mt_slots[mt] - 1) 1978 ma_set_meta(node, mt, 0, end); 1979 } 1980 1981 /* 1982 * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node. 1983 * @b_node: the maple_big_node that has the data 1984 * @mab_start: the start location in @b_node. 1985 * @mab_end: The end location in @b_node (inclusively) 1986 * @mas: The maple state with the maple encoded node. 1987 */ 1988 static inline void mab_mas_cp(struct maple_big_node *b_node, 1989 unsigned char mab_start, unsigned char mab_end, 1990 struct ma_state *mas, bool new_max) 1991 { 1992 int i, j = 0; 1993 enum maple_type mt = mte_node_type(mas->node); 1994 struct maple_node *node = mte_to_node(mas->node); 1995 void __rcu **slots = ma_slots(node, mt); 1996 unsigned long *pivots = ma_pivots(node, mt); 1997 unsigned long *gaps = NULL; 1998 unsigned char end; 1999 2000 if (mab_end - mab_start > mt_pivots[mt]) 2001 mab_end--; 2002 2003 if (!pivots[mt_pivots[mt] - 1]) 2004 slots[mt_pivots[mt]] = NULL; 2005 2006 i = mab_start; 2007 do { 2008 pivots[j++] = b_node->pivot[i++]; 2009 } while (i <= mab_end && likely(b_node->pivot[i])); 2010 2011 memcpy(slots, b_node->slot + mab_start, 2012 sizeof(void *) * (i - mab_start)); 2013 2014 if (new_max) 2015 mas->max = b_node->pivot[i - 1]; 2016 2017 end = j - 1; 2018 if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) { 2019 unsigned long max_gap = 0; 2020 unsigned char offset = 0; 2021 2022 gaps = ma_gaps(node, mt); 2023 do { 2024 gaps[--j] = b_node->gap[--i]; 2025 if (gaps[j] > max_gap) { 2026 offset = j; 2027 max_gap = gaps[j]; 2028 } 2029 } while (j); 2030 2031 ma_set_meta(node, mt, offset, end); 2032 } else { 2033 mas_leaf_set_meta(node, mt, end); 2034 } 2035 } 2036 2037 /* 2038 * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert. 2039 * @mas: The maple state 2040 * @end: The maple node end 2041 * @mt: The maple node type 2042 */ 2043 static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end, 2044 enum maple_type mt) 2045 { 2046 if (!(mas->mas_flags & MA_STATE_BULK)) 2047 return; 2048 2049 if (mte_is_root(mas->node)) 2050 return; 2051 2052 if (end > mt_min_slots[mt]) { 2053 mas->mas_flags &= ~MA_STATE_REBALANCE; 2054 return; 2055 } 2056 } 2057 2058 /* 2059 * mas_store_b_node() - Store an @entry into the b_node while also copying the 2060 * data from a maple encoded node. 2061 * @wr_mas: the maple write state 2062 * @b_node: the maple_big_node to fill with data 2063 * @offset_end: the offset to end copying 2064 * 2065 * Return: The actual end of the data stored in @b_node 2066 */ 2067 static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas, 2068 struct maple_big_node *b_node, unsigned char offset_end) 2069 { 2070 unsigned char slot; 2071 unsigned char b_end; 2072 /* Possible underflow of piv will wrap back to 0 before use. */ 2073 unsigned long piv; 2074 struct ma_state *mas = wr_mas->mas; 2075 2076 b_node->type = wr_mas->type; 2077 b_end = 0; 2078 slot = mas->offset; 2079 if (slot) { 2080 /* Copy start data up to insert. */ 2081 mas_mab_cp(mas, 0, slot - 1, b_node, 0); 2082 b_end = b_node->b_end; 2083 piv = b_node->pivot[b_end - 1]; 2084 } else 2085 piv = mas->min - 1; 2086 2087 if (piv + 1 < mas->index) { 2088 /* Handle range starting after old range */ 2089 b_node->slot[b_end] = wr_mas->content; 2090 if (!wr_mas->content) 2091 b_node->gap[b_end] = mas->index - 1 - piv; 2092 b_node->pivot[b_end++] = mas->index - 1; 2093 } 2094 2095 /* Store the new entry. */ 2096 mas->offset = b_end; 2097 b_node->slot[b_end] = wr_mas->entry; 2098 b_node->pivot[b_end] = mas->last; 2099 2100 /* Appended. */ 2101 if (mas->last >= mas->max) 2102 goto b_end; 2103 2104 /* Handle new range ending before old range ends */ 2105 piv = mas_safe_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type); 2106 if (piv > mas->last) { 2107 if (piv == ULONG_MAX) 2108 mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type); 2109 2110 if (offset_end != slot) 2111 wr_mas->content = mas_slot_locked(mas, wr_mas->slots, 2112 offset_end); 2113 2114 b_node->slot[++b_end] = wr_mas->content; 2115 if (!wr_mas->content) 2116 b_node->gap[b_end] = piv - mas->last + 1; 2117 b_node->pivot[b_end] = piv; 2118 } 2119 2120 slot = offset_end + 1; 2121 if (slot > mas->end) 2122 goto b_end; 2123 2124 /* Copy end data to the end of the node. */ 2125 mas_mab_cp(mas, slot, mas->end + 1, b_node, ++b_end); 2126 b_node->b_end--; 2127 return; 2128 2129 b_end: 2130 b_node->b_end = b_end; 2131 } 2132 2133 /* 2134 * mas_prev_sibling() - Find the previous node with the same parent. 2135 * @mas: the maple state 2136 * 2137 * Return: True if there is a previous sibling, false otherwise. 2138 */ 2139 static inline bool mas_prev_sibling(struct ma_state *mas) 2140 { 2141 unsigned int p_slot = mte_parent_slot(mas->node); 2142 2143 if (mte_is_root(mas->node)) 2144 return false; 2145 2146 if (!p_slot) 2147 return false; 2148 2149 mas_ascend(mas); 2150 mas->offset = p_slot - 1; 2151 mas_descend(mas); 2152 return true; 2153 } 2154 2155 /* 2156 * mas_next_sibling() - Find the next node with the same parent. 2157 * @mas: the maple state 2158 * 2159 * Return: true if there is a next sibling, false otherwise. 2160 */ 2161 static inline bool mas_next_sibling(struct ma_state *mas) 2162 { 2163 MA_STATE(parent, mas->tree, mas->index, mas->last); 2164 2165 if (mte_is_root(mas->node)) 2166 return false; 2167 2168 parent = *mas; 2169 mas_ascend(&parent); 2170 parent.offset = mte_parent_slot(mas->node) + 1; 2171 if (parent.offset > mas_data_end(&parent)) 2172 return false; 2173 2174 *mas = parent; 2175 mas_descend(mas); 2176 return true; 2177 } 2178 2179 /* 2180 * mte_node_or_none() - Set the enode and state. 2181 * @enode: The encoded maple node. 2182 * 2183 * Set the node to the enode and the status. 2184 */ 2185 static inline void mas_node_or_none(struct ma_state *mas, 2186 struct maple_enode *enode) 2187 { 2188 if (enode) { 2189 mas->node = enode; 2190 mas->status = ma_active; 2191 } else { 2192 mas->node = NULL; 2193 mas->status = ma_none; 2194 } 2195 } 2196 2197 /* 2198 * mas_wr_node_walk() - Find the correct offset for the index in the @mas. 2199 * @wr_mas: The maple write state 2200 * 2201 * Uses mas_slot_locked() and does not need to worry about dead nodes. 2202 */ 2203 static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas) 2204 { 2205 struct ma_state *mas = wr_mas->mas; 2206 unsigned char count, offset; 2207 2208 if (unlikely(ma_is_dense(wr_mas->type))) { 2209 wr_mas->r_max = wr_mas->r_min = mas->index; 2210 mas->offset = mas->index = mas->min; 2211 return; 2212 } 2213 2214 wr_mas->node = mas_mn(wr_mas->mas); 2215 wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type); 2216 count = mas->end = ma_data_end(wr_mas->node, wr_mas->type, 2217 wr_mas->pivots, mas->max); 2218 offset = mas->offset; 2219 2220 while (offset < count && mas->index > wr_mas->pivots[offset]) 2221 offset++; 2222 2223 wr_mas->r_max = offset < count ? wr_mas->pivots[offset] : mas->max; 2224 wr_mas->r_min = mas_safe_min(mas, wr_mas->pivots, offset); 2225 wr_mas->offset_end = mas->offset = offset; 2226 } 2227 2228 /* 2229 * mast_rebalance_next() - Rebalance against the next node 2230 * @mast: The maple subtree state 2231 * @old_r: The encoded maple node to the right (next node). 2232 */ 2233 static inline void mast_rebalance_next(struct maple_subtree_state *mast) 2234 { 2235 unsigned char b_end = mast->bn->b_end; 2236 2237 mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node), 2238 mast->bn, b_end); 2239 mast->orig_r->last = mast->orig_r->max; 2240 } 2241 2242 /* 2243 * mast_rebalance_prev() - Rebalance against the previous node 2244 * @mast: The maple subtree state 2245 * @old_l: The encoded maple node to the left (previous node) 2246 */ 2247 static inline void mast_rebalance_prev(struct maple_subtree_state *mast) 2248 { 2249 unsigned char end = mas_data_end(mast->orig_l) + 1; 2250 unsigned char b_end = mast->bn->b_end; 2251 2252 mab_shift_right(mast->bn, end); 2253 mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0); 2254 mast->l->min = mast->orig_l->min; 2255 mast->orig_l->index = mast->orig_l->min; 2256 mast->bn->b_end = end + b_end; 2257 mast->l->offset += end; 2258 } 2259 2260 /* 2261 * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring 2262 * the node to the right. Checking the nodes to the right then the left at each 2263 * level upwards until root is reached. 2264 * Data is copied into the @mast->bn. 2265 * @mast: The maple_subtree_state. 2266 */ 2267 static inline 2268 bool mast_spanning_rebalance(struct maple_subtree_state *mast) 2269 { 2270 struct ma_state r_tmp = *mast->orig_r; 2271 struct ma_state l_tmp = *mast->orig_l; 2272 unsigned char depth = 0; 2273 2274 do { 2275 mas_ascend(mast->orig_r); 2276 mas_ascend(mast->orig_l); 2277 depth++; 2278 if (mast->orig_r->offset < mas_data_end(mast->orig_r)) { 2279 mast->orig_r->offset++; 2280 do { 2281 mas_descend(mast->orig_r); 2282 mast->orig_r->offset = 0; 2283 } while (--depth); 2284 2285 mast_rebalance_next(mast); 2286 *mast->orig_l = l_tmp; 2287 return true; 2288 } else if (mast->orig_l->offset != 0) { 2289 mast->orig_l->offset--; 2290 do { 2291 mas_descend(mast->orig_l); 2292 mast->orig_l->offset = 2293 mas_data_end(mast->orig_l); 2294 } while (--depth); 2295 2296 mast_rebalance_prev(mast); 2297 *mast->orig_r = r_tmp; 2298 return true; 2299 } 2300 } while (!mte_is_root(mast->orig_r->node)); 2301 2302 *mast->orig_r = r_tmp; 2303 *mast->orig_l = l_tmp; 2304 return false; 2305 } 2306 2307 /* 2308 * mast_ascend() - Ascend the original left and right maple states. 2309 * @mast: the maple subtree state. 2310 * 2311 * Ascend the original left and right sides. Set the offsets to point to the 2312 * data already in the new tree (@mast->l and @mast->r). 2313 */ 2314 static inline void mast_ascend(struct maple_subtree_state *mast) 2315 { 2316 MA_WR_STATE(wr_mas, mast->orig_r, NULL); 2317 mas_ascend(mast->orig_l); 2318 mas_ascend(mast->orig_r); 2319 2320 mast->orig_r->offset = 0; 2321 mast->orig_r->index = mast->r->max; 2322 /* last should be larger than or equal to index */ 2323 if (mast->orig_r->last < mast->orig_r->index) 2324 mast->orig_r->last = mast->orig_r->index; 2325 2326 wr_mas.type = mte_node_type(mast->orig_r->node); 2327 mas_wr_node_walk(&wr_mas); 2328 /* Set up the left side of things */ 2329 mast->orig_l->offset = 0; 2330 mast->orig_l->index = mast->l->min; 2331 wr_mas.mas = mast->orig_l; 2332 wr_mas.type = mte_node_type(mast->orig_l->node); 2333 mas_wr_node_walk(&wr_mas); 2334 2335 mast->bn->type = wr_mas.type; 2336 } 2337 2338 /* 2339 * mas_new_ma_node() - Create and return a new maple node. Helper function. 2340 * @mas: the maple state with the allocations. 2341 * @b_node: the maple_big_node with the type encoding. 2342 * 2343 * Use the node type from the maple_big_node to allocate a new node from the 2344 * ma_state. This function exists mainly for code readability. 2345 * 2346 * Return: A new maple encoded node 2347 */ 2348 static inline struct maple_enode 2349 *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node) 2350 { 2351 return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type); 2352 } 2353 2354 /* 2355 * mas_mab_to_node() - Set up right and middle nodes 2356 * 2357 * @mas: the maple state that contains the allocations. 2358 * @b_node: the node which contains the data. 2359 * @left: The pointer which will have the left node 2360 * @right: The pointer which may have the right node 2361 * @middle: the pointer which may have the middle node (rare) 2362 * @mid_split: the split location for the middle node 2363 * 2364 * Return: the split of left. 2365 */ 2366 static inline unsigned char mas_mab_to_node(struct ma_state *mas, 2367 struct maple_big_node *b_node, struct maple_enode **left, 2368 struct maple_enode **right, struct maple_enode **middle, 2369 unsigned char *mid_split, unsigned long min) 2370 { 2371 unsigned char split = 0; 2372 unsigned char slot_count = mt_slots[b_node->type]; 2373 2374 *left = mas_new_ma_node(mas, b_node); 2375 *right = NULL; 2376 *middle = NULL; 2377 *mid_split = 0; 2378 2379 if (b_node->b_end < slot_count) { 2380 split = b_node->b_end; 2381 } else { 2382 split = mab_calc_split(mas, b_node, mid_split, min); 2383 *right = mas_new_ma_node(mas, b_node); 2384 } 2385 2386 if (*mid_split) 2387 *middle = mas_new_ma_node(mas, b_node); 2388 2389 return split; 2390 2391 } 2392 2393 /* 2394 * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end 2395 * pointer. 2396 * @b_node - the big node to add the entry 2397 * @mas - the maple state to get the pivot (mas->max) 2398 * @entry - the entry to add, if NULL nothing happens. 2399 */ 2400 static inline void mab_set_b_end(struct maple_big_node *b_node, 2401 struct ma_state *mas, 2402 void *entry) 2403 { 2404 if (!entry) 2405 return; 2406 2407 b_node->slot[b_node->b_end] = entry; 2408 if (mt_is_alloc(mas->tree)) 2409 b_node->gap[b_node->b_end] = mas_max_gap(mas); 2410 b_node->pivot[b_node->b_end++] = mas->max; 2411 } 2412 2413 /* 2414 * mas_set_split_parent() - combine_then_separate helper function. Sets the parent 2415 * of @mas->node to either @left or @right, depending on @slot and @split 2416 * 2417 * @mas - the maple state with the node that needs a parent 2418 * @left - possible parent 1 2419 * @right - possible parent 2 2420 * @slot - the slot the mas->node was placed 2421 * @split - the split location between @left and @right 2422 */ 2423 static inline void mas_set_split_parent(struct ma_state *mas, 2424 struct maple_enode *left, 2425 struct maple_enode *right, 2426 unsigned char *slot, unsigned char split) 2427 { 2428 if (mas_is_none(mas)) 2429 return; 2430 2431 if ((*slot) <= split) 2432 mas_set_parent(mas, mas->node, left, *slot); 2433 else if (right) 2434 mas_set_parent(mas, mas->node, right, (*slot) - split - 1); 2435 2436 (*slot)++; 2437 } 2438 2439 /* 2440 * mte_mid_split_check() - Check if the next node passes the mid-split 2441 * @**l: Pointer to left encoded maple node. 2442 * @**m: Pointer to middle encoded maple node. 2443 * @**r: Pointer to right encoded maple node. 2444 * @slot: The offset 2445 * @*split: The split location. 2446 * @mid_split: The middle split. 2447 */ 2448 static inline void mte_mid_split_check(struct maple_enode **l, 2449 struct maple_enode **r, 2450 struct maple_enode *right, 2451 unsigned char slot, 2452 unsigned char *split, 2453 unsigned char mid_split) 2454 { 2455 if (*r == right) 2456 return; 2457 2458 if (slot < mid_split) 2459 return; 2460 2461 *l = *r; 2462 *r = right; 2463 *split = mid_split; 2464 } 2465 2466 /* 2467 * mast_set_split_parents() - Helper function to set three nodes parents. Slot 2468 * is taken from @mast->l. 2469 * @mast - the maple subtree state 2470 * @left - the left node 2471 * @right - the right node 2472 * @split - the split location. 2473 */ 2474 static inline void mast_set_split_parents(struct maple_subtree_state *mast, 2475 struct maple_enode *left, 2476 struct maple_enode *middle, 2477 struct maple_enode *right, 2478 unsigned char split, 2479 unsigned char mid_split) 2480 { 2481 unsigned char slot; 2482 struct maple_enode *l = left; 2483 struct maple_enode *r = right; 2484 2485 if (mas_is_none(mast->l)) 2486 return; 2487 2488 if (middle) 2489 r = middle; 2490 2491 slot = mast->l->offset; 2492 2493 mte_mid_split_check(&l, &r, right, slot, &split, mid_split); 2494 mas_set_split_parent(mast->l, l, r, &slot, split); 2495 2496 mte_mid_split_check(&l, &r, right, slot, &split, mid_split); 2497 mas_set_split_parent(mast->m, l, r, &slot, split); 2498 2499 mte_mid_split_check(&l, &r, right, slot, &split, mid_split); 2500 mas_set_split_parent(mast->r, l, r, &slot, split); 2501 } 2502 2503 /* 2504 * mas_topiary_node() - Dispose of a single node 2505 * @mas: The maple state for pushing nodes 2506 * @enode: The encoded maple node 2507 * @in_rcu: If the tree is in rcu mode 2508 * 2509 * The node will either be RCU freed or pushed back on the maple state. 2510 */ 2511 static inline void mas_topiary_node(struct ma_state *mas, 2512 struct ma_state *tmp_mas, bool in_rcu) 2513 { 2514 struct maple_node *tmp; 2515 struct maple_enode *enode; 2516 2517 if (mas_is_none(tmp_mas)) 2518 return; 2519 2520 enode = tmp_mas->node; 2521 tmp = mte_to_node(enode); 2522 mte_set_node_dead(enode); 2523 if (in_rcu) 2524 ma_free_rcu(tmp); 2525 else 2526 mas_push_node(mas, tmp); 2527 } 2528 2529 /* 2530 * mas_topiary_replace() - Replace the data with new data, then repair the 2531 * parent links within the new tree. Iterate over the dead sub-tree and collect 2532 * the dead subtrees and topiary the nodes that are no longer of use. 2533 * 2534 * The new tree will have up to three children with the correct parent. Keep 2535 * track of the new entries as they need to be followed to find the next level 2536 * of new entries. 2537 * 2538 * The old tree will have up to three children with the old parent. Keep track 2539 * of the old entries as they may have more nodes below replaced. Nodes within 2540 * [index, last] are dead subtrees, others need to be freed and followed. 2541 * 2542 * @mas: The maple state pointing at the new data 2543 * @old_enode: The maple encoded node being replaced 2544 * 2545 */ 2546 static inline void mas_topiary_replace(struct ma_state *mas, 2547 struct maple_enode *old_enode) 2548 { 2549 struct ma_state tmp[3], tmp_next[3]; 2550 MA_TOPIARY(subtrees, mas->tree); 2551 bool in_rcu; 2552 int i, n; 2553 2554 /* Place data in tree & then mark node as old */ 2555 mas_put_in_tree(mas, old_enode); 2556 2557 /* Update the parent pointers in the tree */ 2558 tmp[0] = *mas; 2559 tmp[0].offset = 0; 2560 tmp[1].status = ma_none; 2561 tmp[2].status = ma_none; 2562 while (!mte_is_leaf(tmp[0].node)) { 2563 n = 0; 2564 for (i = 0; i < 3; i++) { 2565 if (mas_is_none(&tmp[i])) 2566 continue; 2567 2568 while (n < 3) { 2569 if (!mas_find_child(&tmp[i], &tmp_next[n])) 2570 break; 2571 n++; 2572 } 2573 2574 mas_adopt_children(&tmp[i], tmp[i].node); 2575 } 2576 2577 if (MAS_WARN_ON(mas, n == 0)) 2578 break; 2579 2580 while (n < 3) 2581 tmp_next[n++].status = ma_none; 2582 2583 for (i = 0; i < 3; i++) 2584 tmp[i] = tmp_next[i]; 2585 } 2586 2587 /* Collect the old nodes that need to be discarded */ 2588 if (mte_is_leaf(old_enode)) 2589 return mas_free(mas, old_enode); 2590 2591 tmp[0] = *mas; 2592 tmp[0].offset = 0; 2593 tmp[0].node = old_enode; 2594 tmp[1].status = ma_none; 2595 tmp[2].status = ma_none; 2596 in_rcu = mt_in_rcu(mas->tree); 2597 do { 2598 n = 0; 2599 for (i = 0; i < 3; i++) { 2600 if (mas_is_none(&tmp[i])) 2601 continue; 2602 2603 while (n < 3) { 2604 if (!mas_find_child(&tmp[i], &tmp_next[n])) 2605 break; 2606 2607 if ((tmp_next[n].min >= tmp_next->index) && 2608 (tmp_next[n].max <= tmp_next->last)) { 2609 mat_add(&subtrees, tmp_next[n].node); 2610 tmp_next[n].status = ma_none; 2611 } else { 2612 n++; 2613 } 2614 } 2615 } 2616 2617 if (MAS_WARN_ON(mas, n == 0)) 2618 break; 2619 2620 while (n < 3) 2621 tmp_next[n++].status = ma_none; 2622 2623 for (i = 0; i < 3; i++) { 2624 mas_topiary_node(mas, &tmp[i], in_rcu); 2625 tmp[i] = tmp_next[i]; 2626 } 2627 } while (!mte_is_leaf(tmp[0].node)); 2628 2629 for (i = 0; i < 3; i++) 2630 mas_topiary_node(mas, &tmp[i], in_rcu); 2631 2632 mas_mat_destroy(mas, &subtrees); 2633 } 2634 2635 /* 2636 * mas_wmb_replace() - Write memory barrier and replace 2637 * @mas: The maple state 2638 * @old: The old maple encoded node that is being replaced. 2639 * 2640 * Updates gap as necessary. 2641 */ 2642 static inline void mas_wmb_replace(struct ma_state *mas, 2643 struct maple_enode *old_enode) 2644 { 2645 /* Insert the new data in the tree */ 2646 mas_topiary_replace(mas, old_enode); 2647 2648 if (mte_is_leaf(mas->node)) 2649 return; 2650 2651 mas_update_gap(mas); 2652 } 2653 2654 /* 2655 * mast_cp_to_nodes() - Copy data out to nodes. 2656 * @mast: The maple subtree state 2657 * @left: The left encoded maple node 2658 * @middle: The middle encoded maple node 2659 * @right: The right encoded maple node 2660 * @split: The location to split between left and (middle ? middle : right) 2661 * @mid_split: The location to split between middle and right. 2662 */ 2663 static inline void mast_cp_to_nodes(struct maple_subtree_state *mast, 2664 struct maple_enode *left, struct maple_enode *middle, 2665 struct maple_enode *right, unsigned char split, unsigned char mid_split) 2666 { 2667 bool new_lmax = true; 2668 2669 mas_node_or_none(mast->l, left); 2670 mas_node_or_none(mast->m, middle); 2671 mas_node_or_none(mast->r, right); 2672 2673 mast->l->min = mast->orig_l->min; 2674 if (split == mast->bn->b_end) { 2675 mast->l->max = mast->orig_r->max; 2676 new_lmax = false; 2677 } 2678 2679 mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax); 2680 2681 if (middle) { 2682 mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true); 2683 mast->m->min = mast->bn->pivot[split] + 1; 2684 split = mid_split; 2685 } 2686 2687 mast->r->max = mast->orig_r->max; 2688 if (right) { 2689 mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false); 2690 mast->r->min = mast->bn->pivot[split] + 1; 2691 } 2692 } 2693 2694 /* 2695 * mast_combine_cp_left - Copy in the original left side of the tree into the 2696 * combined data set in the maple subtree state big node. 2697 * @mast: The maple subtree state 2698 */ 2699 static inline void mast_combine_cp_left(struct maple_subtree_state *mast) 2700 { 2701 unsigned char l_slot = mast->orig_l->offset; 2702 2703 if (!l_slot) 2704 return; 2705 2706 mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0); 2707 } 2708 2709 /* 2710 * mast_combine_cp_right: Copy in the original right side of the tree into the 2711 * combined data set in the maple subtree state big node. 2712 * @mast: The maple subtree state 2713 */ 2714 static inline void mast_combine_cp_right(struct maple_subtree_state *mast) 2715 { 2716 if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max) 2717 return; 2718 2719 mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1, 2720 mt_slot_count(mast->orig_r->node), mast->bn, 2721 mast->bn->b_end); 2722 mast->orig_r->last = mast->orig_r->max; 2723 } 2724 2725 /* 2726 * mast_sufficient: Check if the maple subtree state has enough data in the big 2727 * node to create at least one sufficient node 2728 * @mast: the maple subtree state 2729 */ 2730 static inline bool mast_sufficient(struct maple_subtree_state *mast) 2731 { 2732 if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node)) 2733 return true; 2734 2735 return false; 2736 } 2737 2738 /* 2739 * mast_overflow: Check if there is too much data in the subtree state for a 2740 * single node. 2741 * @mast: The maple subtree state 2742 */ 2743 static inline bool mast_overflow(struct maple_subtree_state *mast) 2744 { 2745 if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node)) 2746 return true; 2747 2748 return false; 2749 } 2750 2751 static inline void *mtree_range_walk(struct ma_state *mas) 2752 { 2753 unsigned long *pivots; 2754 unsigned char offset; 2755 struct maple_node *node; 2756 struct maple_enode *next, *last; 2757 enum maple_type type; 2758 void __rcu **slots; 2759 unsigned char end; 2760 unsigned long max, min; 2761 unsigned long prev_max, prev_min; 2762 2763 next = mas->node; 2764 min = mas->min; 2765 max = mas->max; 2766 do { 2767 last = next; 2768 node = mte_to_node(next); 2769 type = mte_node_type(next); 2770 pivots = ma_pivots(node, type); 2771 end = ma_data_end(node, type, pivots, max); 2772 prev_min = min; 2773 prev_max = max; 2774 if (pivots[0] >= mas->index) { 2775 offset = 0; 2776 max = pivots[0]; 2777 goto next; 2778 } 2779 2780 offset = 1; 2781 while (offset < end) { 2782 if (pivots[offset] >= mas->index) { 2783 max = pivots[offset]; 2784 break; 2785 } 2786 offset++; 2787 } 2788 2789 min = pivots[offset - 1] + 1; 2790 next: 2791 slots = ma_slots(node, type); 2792 next = mt_slot(mas->tree, slots, offset); 2793 if (unlikely(ma_dead_node(node))) 2794 goto dead_node; 2795 } while (!ma_is_leaf(type)); 2796 2797 mas->end = end; 2798 mas->offset = offset; 2799 mas->index = min; 2800 mas->last = max; 2801 mas->min = prev_min; 2802 mas->max = prev_max; 2803 mas->node = last; 2804 return (void *)next; 2805 2806 dead_node: 2807 mas_reset(mas); 2808 return NULL; 2809 } 2810 2811 /* 2812 * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers. 2813 * @mas: The starting maple state 2814 * @mast: The maple_subtree_state, keeps track of 4 maple states. 2815 * @count: The estimated count of iterations needed. 2816 * 2817 * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root 2818 * is hit. First @b_node is split into two entries which are inserted into the 2819 * next iteration of the loop. @b_node is returned populated with the final 2820 * iteration. @mas is used to obtain allocations. orig_l_mas keeps track of the 2821 * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last 2822 * to account of what has been copied into the new sub-tree. The update of 2823 * orig_l_mas->last is used in mas_consume to find the slots that will need to 2824 * be either freed or destroyed. orig_l_mas->depth keeps track of the height of 2825 * the new sub-tree in case the sub-tree becomes the full tree. 2826 * 2827 * Return: the number of elements in b_node during the last loop. 2828 */ 2829 static int mas_spanning_rebalance(struct ma_state *mas, 2830 struct maple_subtree_state *mast, unsigned char count) 2831 { 2832 unsigned char split, mid_split; 2833 unsigned char slot = 0; 2834 struct maple_enode *left = NULL, *middle = NULL, *right = NULL; 2835 struct maple_enode *old_enode; 2836 2837 MA_STATE(l_mas, mas->tree, mas->index, mas->index); 2838 MA_STATE(r_mas, mas->tree, mas->index, mas->last); 2839 MA_STATE(m_mas, mas->tree, mas->index, mas->index); 2840 2841 /* 2842 * The tree needs to be rebalanced and leaves need to be kept at the same level. 2843 * Rebalancing is done by use of the ``struct maple_topiary``. 2844 */ 2845 mast->l = &l_mas; 2846 mast->m = &m_mas; 2847 mast->r = &r_mas; 2848 l_mas.status = r_mas.status = m_mas.status = ma_none; 2849 2850 /* Check if this is not root and has sufficient data. */ 2851 if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) && 2852 unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type])) 2853 mast_spanning_rebalance(mast); 2854 2855 l_mas.depth = 0; 2856 2857 /* 2858 * Each level of the tree is examined and balanced, pushing data to the left or 2859 * right, or rebalancing against left or right nodes is employed to avoid 2860 * rippling up the tree to limit the amount of churn. Once a new sub-section of 2861 * the tree is created, there may be a mix of new and old nodes. The old nodes 2862 * will have the incorrect parent pointers and currently be in two trees: the 2863 * original tree and the partially new tree. To remedy the parent pointers in 2864 * the old tree, the new data is swapped into the active tree and a walk down 2865 * the tree is performed and the parent pointers are updated. 2866 * See mas_topiary_replace() for more information. 2867 */ 2868 while (count--) { 2869 mast->bn->b_end--; 2870 mast->bn->type = mte_node_type(mast->orig_l->node); 2871 split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle, 2872 &mid_split, mast->orig_l->min); 2873 mast_set_split_parents(mast, left, middle, right, split, 2874 mid_split); 2875 mast_cp_to_nodes(mast, left, middle, right, split, mid_split); 2876 2877 /* 2878 * Copy data from next level in the tree to mast->bn from next 2879 * iteration 2880 */ 2881 memset(mast->bn, 0, sizeof(struct maple_big_node)); 2882 mast->bn->type = mte_node_type(left); 2883 l_mas.depth++; 2884 2885 /* Root already stored in l->node. */ 2886 if (mas_is_root_limits(mast->l)) 2887 goto new_root; 2888 2889 mast_ascend(mast); 2890 mast_combine_cp_left(mast); 2891 l_mas.offset = mast->bn->b_end; 2892 mab_set_b_end(mast->bn, &l_mas, left); 2893 mab_set_b_end(mast->bn, &m_mas, middle); 2894 mab_set_b_end(mast->bn, &r_mas, right); 2895 2896 /* Copy anything necessary out of the right node. */ 2897 mast_combine_cp_right(mast); 2898 mast->orig_l->last = mast->orig_l->max; 2899 2900 if (mast_sufficient(mast)) 2901 continue; 2902 2903 if (mast_overflow(mast)) 2904 continue; 2905 2906 /* May be a new root stored in mast->bn */ 2907 if (mas_is_root_limits(mast->orig_l)) 2908 break; 2909 2910 mast_spanning_rebalance(mast); 2911 2912 /* rebalancing from other nodes may require another loop. */ 2913 if (!count) 2914 count++; 2915 } 2916 2917 l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), 2918 mte_node_type(mast->orig_l->node)); 2919 l_mas.depth++; 2920 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true); 2921 mas_set_parent(mas, left, l_mas.node, slot); 2922 if (middle) 2923 mas_set_parent(mas, middle, l_mas.node, ++slot); 2924 2925 if (right) 2926 mas_set_parent(mas, right, l_mas.node, ++slot); 2927 2928 if (mas_is_root_limits(mast->l)) { 2929 new_root: 2930 mas_mn(mast->l)->parent = ma_parent_ptr(mas_tree_parent(mas)); 2931 while (!mte_is_root(mast->orig_l->node)) 2932 mast_ascend(mast); 2933 } else { 2934 mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent; 2935 } 2936 2937 old_enode = mast->orig_l->node; 2938 mas->depth = l_mas.depth; 2939 mas->node = l_mas.node; 2940 mas->min = l_mas.min; 2941 mas->max = l_mas.max; 2942 mas->offset = l_mas.offset; 2943 mas_wmb_replace(mas, old_enode); 2944 mtree_range_walk(mas); 2945 return mast->bn->b_end; 2946 } 2947 2948 /* 2949 * mas_rebalance() - Rebalance a given node. 2950 * @mas: The maple state 2951 * @b_node: The big maple node. 2952 * 2953 * Rebalance two nodes into a single node or two new nodes that are sufficient. 2954 * Continue upwards until tree is sufficient. 2955 * 2956 * Return: the number of elements in b_node during the last loop. 2957 */ 2958 static inline int mas_rebalance(struct ma_state *mas, 2959 struct maple_big_node *b_node) 2960 { 2961 char empty_count = mas_mt_height(mas); 2962 struct maple_subtree_state mast; 2963 unsigned char shift, b_end = ++b_node->b_end; 2964 2965 MA_STATE(l_mas, mas->tree, mas->index, mas->last); 2966 MA_STATE(r_mas, mas->tree, mas->index, mas->last); 2967 2968 trace_ma_op(__func__, mas); 2969 2970 /* 2971 * Rebalancing occurs if a node is insufficient. Data is rebalanced 2972 * against the node to the right if it exists, otherwise the node to the 2973 * left of this node is rebalanced against this node. If rebalancing 2974 * causes just one node to be produced instead of two, then the parent 2975 * is also examined and rebalanced if it is insufficient. Every level 2976 * tries to combine the data in the same way. If one node contains the 2977 * entire range of the tree, then that node is used as a new root node. 2978 */ 2979 mas_node_count(mas, empty_count * 2 - 1); 2980 if (mas_is_err(mas)) 2981 return 0; 2982 2983 mast.orig_l = &l_mas; 2984 mast.orig_r = &r_mas; 2985 mast.bn = b_node; 2986 mast.bn->type = mte_node_type(mas->node); 2987 2988 l_mas = r_mas = *mas; 2989 2990 if (mas_next_sibling(&r_mas)) { 2991 mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end); 2992 r_mas.last = r_mas.index = r_mas.max; 2993 } else { 2994 mas_prev_sibling(&l_mas); 2995 shift = mas_data_end(&l_mas) + 1; 2996 mab_shift_right(b_node, shift); 2997 mas->offset += shift; 2998 mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0); 2999 b_node->b_end = shift + b_end; 3000 l_mas.index = l_mas.last = l_mas.min; 3001 } 3002 3003 return mas_spanning_rebalance(mas, &mast, empty_count); 3004 } 3005 3006 /* 3007 * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple 3008 * state. 3009 * @mas: The maple state 3010 * @end: The end of the left-most node. 3011 * 3012 * During a mass-insert event (such as forking), it may be necessary to 3013 * rebalance the left-most node when it is not sufficient. 3014 */ 3015 static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end) 3016 { 3017 enum maple_type mt = mte_node_type(mas->node); 3018 struct maple_node reuse, *newnode, *parent, *new_left, *left, *node; 3019 struct maple_enode *eparent, *old_eparent; 3020 unsigned char offset, tmp, split = mt_slots[mt] / 2; 3021 void __rcu **l_slots, **slots; 3022 unsigned long *l_pivs, *pivs, gap; 3023 bool in_rcu = mt_in_rcu(mas->tree); 3024 3025 MA_STATE(l_mas, mas->tree, mas->index, mas->last); 3026 3027 l_mas = *mas; 3028 mas_prev_sibling(&l_mas); 3029 3030 /* set up node. */ 3031 if (in_rcu) { 3032 /* Allocate for both left and right as well as parent. */ 3033 mas_node_count(mas, 3); 3034 if (mas_is_err(mas)) 3035 return; 3036 3037 newnode = mas_pop_node(mas); 3038 } else { 3039 newnode = &reuse; 3040 } 3041 3042 node = mas_mn(mas); 3043 newnode->parent = node->parent; 3044 slots = ma_slots(newnode, mt); 3045 pivs = ma_pivots(newnode, mt); 3046 left = mas_mn(&l_mas); 3047 l_slots = ma_slots(left, mt); 3048 l_pivs = ma_pivots(left, mt); 3049 if (!l_slots[split]) 3050 split++; 3051 tmp = mas_data_end(&l_mas) - split; 3052 3053 memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp); 3054 memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp); 3055 pivs[tmp] = l_mas.max; 3056 memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end); 3057 memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end); 3058 3059 l_mas.max = l_pivs[split]; 3060 mas->min = l_mas.max + 1; 3061 old_eparent = mt_mk_node(mte_parent(l_mas.node), 3062 mas_parent_type(&l_mas, l_mas.node)); 3063 tmp += end; 3064 if (!in_rcu) { 3065 unsigned char max_p = mt_pivots[mt]; 3066 unsigned char max_s = mt_slots[mt]; 3067 3068 if (tmp < max_p) 3069 memset(pivs + tmp, 0, 3070 sizeof(unsigned long) * (max_p - tmp)); 3071 3072 if (tmp < mt_slots[mt]) 3073 memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp)); 3074 3075 memcpy(node, newnode, sizeof(struct maple_node)); 3076 ma_set_meta(node, mt, 0, tmp - 1); 3077 mte_set_pivot(old_eparent, mte_parent_slot(l_mas.node), 3078 l_pivs[split]); 3079 3080 /* Remove data from l_pivs. */ 3081 tmp = split + 1; 3082 memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp)); 3083 memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp)); 3084 ma_set_meta(left, mt, 0, split); 3085 eparent = old_eparent; 3086 3087 goto done; 3088 } 3089 3090 /* RCU requires replacing both l_mas, mas, and parent. */ 3091 mas->node = mt_mk_node(newnode, mt); 3092 ma_set_meta(newnode, mt, 0, tmp); 3093 3094 new_left = mas_pop_node(mas); 3095 new_left->parent = left->parent; 3096 mt = mte_node_type(l_mas.node); 3097 slots = ma_slots(new_left, mt); 3098 pivs = ma_pivots(new_left, mt); 3099 memcpy(slots, l_slots, sizeof(void *) * split); 3100 memcpy(pivs, l_pivs, sizeof(unsigned long) * split); 3101 ma_set_meta(new_left, mt, 0, split); 3102 l_mas.node = mt_mk_node(new_left, mt); 3103 3104 /* replace parent. */ 3105 offset = mte_parent_slot(mas->node); 3106 mt = mas_parent_type(&l_mas, l_mas.node); 3107 parent = mas_pop_node(mas); 3108 slots = ma_slots(parent, mt); 3109 pivs = ma_pivots(parent, mt); 3110 memcpy(parent, mte_to_node(old_eparent), sizeof(struct maple_node)); 3111 rcu_assign_pointer(slots[offset], mas->node); 3112 rcu_assign_pointer(slots[offset - 1], l_mas.node); 3113 pivs[offset - 1] = l_mas.max; 3114 eparent = mt_mk_node(parent, mt); 3115 done: 3116 gap = mas_leaf_max_gap(mas); 3117 mte_set_gap(eparent, mte_parent_slot(mas->node), gap); 3118 gap = mas_leaf_max_gap(&l_mas); 3119 mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap); 3120 mas_ascend(mas); 3121 3122 if (in_rcu) { 3123 mas_replace_node(mas, old_eparent); 3124 mas_adopt_children(mas, mas->node); 3125 } 3126 3127 mas_update_gap(mas); 3128 } 3129 3130 /* 3131 * mas_split_final_node() - Split the final node in a subtree operation. 3132 * @mast: the maple subtree state 3133 * @mas: The maple state 3134 * @height: The height of the tree in case it's a new root. 3135 */ 3136 static inline void mas_split_final_node(struct maple_subtree_state *mast, 3137 struct ma_state *mas, int height) 3138 { 3139 struct maple_enode *ancestor; 3140 3141 if (mte_is_root(mas->node)) { 3142 if (mt_is_alloc(mas->tree)) 3143 mast->bn->type = maple_arange_64; 3144 else 3145 mast->bn->type = maple_range_64; 3146 mas->depth = height; 3147 } 3148 /* 3149 * Only a single node is used here, could be root. 3150 * The Big_node data should just fit in a single node. 3151 */ 3152 ancestor = mas_new_ma_node(mas, mast->bn); 3153 mas_set_parent(mas, mast->l->node, ancestor, mast->l->offset); 3154 mas_set_parent(mas, mast->r->node, ancestor, mast->r->offset); 3155 mte_to_node(ancestor)->parent = mas_mn(mas)->parent; 3156 3157 mast->l->node = ancestor; 3158 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true); 3159 mas->offset = mast->bn->b_end - 1; 3160 } 3161 3162 /* 3163 * mast_fill_bnode() - Copy data into the big node in the subtree state 3164 * @mast: The maple subtree state 3165 * @mas: the maple state 3166 * @skip: The number of entries to skip for new nodes insertion. 3167 */ 3168 static inline void mast_fill_bnode(struct maple_subtree_state *mast, 3169 struct ma_state *mas, 3170 unsigned char skip) 3171 { 3172 bool cp = true; 3173 unsigned char split; 3174 3175 memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap)); 3176 memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot)); 3177 memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot)); 3178 mast->bn->b_end = 0; 3179 3180 if (mte_is_root(mas->node)) { 3181 cp = false; 3182 } else { 3183 mas_ascend(mas); 3184 mas->offset = mte_parent_slot(mas->node); 3185 } 3186 3187 if (cp && mast->l->offset) 3188 mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0); 3189 3190 split = mast->bn->b_end; 3191 mab_set_b_end(mast->bn, mast->l, mast->l->node); 3192 mast->r->offset = mast->bn->b_end; 3193 mab_set_b_end(mast->bn, mast->r, mast->r->node); 3194 if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max) 3195 cp = false; 3196 3197 if (cp) 3198 mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1, 3199 mast->bn, mast->bn->b_end); 3200 3201 mast->bn->b_end--; 3202 mast->bn->type = mte_node_type(mas->node); 3203 } 3204 3205 /* 3206 * mast_split_data() - Split the data in the subtree state big node into regular 3207 * nodes. 3208 * @mast: The maple subtree state 3209 * @mas: The maple state 3210 * @split: The location to split the big node 3211 */ 3212 static inline void mast_split_data(struct maple_subtree_state *mast, 3213 struct ma_state *mas, unsigned char split) 3214 { 3215 unsigned char p_slot; 3216 3217 mab_mas_cp(mast->bn, 0, split, mast->l, true); 3218 mte_set_pivot(mast->r->node, 0, mast->r->max); 3219 mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false); 3220 mast->l->offset = mte_parent_slot(mas->node); 3221 mast->l->max = mast->bn->pivot[split]; 3222 mast->r->min = mast->l->max + 1; 3223 if (mte_is_leaf(mas->node)) 3224 return; 3225 3226 p_slot = mast->orig_l->offset; 3227 mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node, 3228 &p_slot, split); 3229 mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node, 3230 &p_slot, split); 3231 } 3232 3233 /* 3234 * mas_push_data() - Instead of splitting a node, it is beneficial to push the 3235 * data to the right or left node if there is room. 3236 * @mas: The maple state 3237 * @height: The current height of the maple state 3238 * @mast: The maple subtree state 3239 * @left: Push left or not. 3240 * 3241 * Keeping the height of the tree low means faster lookups. 3242 * 3243 * Return: True if pushed, false otherwise. 3244 */ 3245 static inline bool mas_push_data(struct ma_state *mas, int height, 3246 struct maple_subtree_state *mast, bool left) 3247 { 3248 unsigned char slot_total = mast->bn->b_end; 3249 unsigned char end, space, split; 3250 3251 MA_STATE(tmp_mas, mas->tree, mas->index, mas->last); 3252 tmp_mas = *mas; 3253 tmp_mas.depth = mast->l->depth; 3254 3255 if (left && !mas_prev_sibling(&tmp_mas)) 3256 return false; 3257 else if (!left && !mas_next_sibling(&tmp_mas)) 3258 return false; 3259 3260 end = mas_data_end(&tmp_mas); 3261 slot_total += end; 3262 space = 2 * mt_slot_count(mas->node) - 2; 3263 /* -2 instead of -1 to ensure there isn't a triple split */ 3264 if (ma_is_leaf(mast->bn->type)) 3265 space--; 3266 3267 if (mas->max == ULONG_MAX) 3268 space--; 3269 3270 if (slot_total >= space) 3271 return false; 3272 3273 /* Get the data; Fill mast->bn */ 3274 mast->bn->b_end++; 3275 if (left) { 3276 mab_shift_right(mast->bn, end + 1); 3277 mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0); 3278 mast->bn->b_end = slot_total + 1; 3279 } else { 3280 mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end); 3281 } 3282 3283 /* Configure mast for splitting of mast->bn */ 3284 split = mt_slots[mast->bn->type] - 2; 3285 if (left) { 3286 /* Switch mas to prev node */ 3287 *mas = tmp_mas; 3288 /* Start using mast->l for the left side. */ 3289 tmp_mas.node = mast->l->node; 3290 *mast->l = tmp_mas; 3291 } else { 3292 tmp_mas.node = mast->r->node; 3293 *mast->r = tmp_mas; 3294 split = slot_total - split; 3295 } 3296 split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]); 3297 /* Update parent slot for split calculation. */ 3298 if (left) 3299 mast->orig_l->offset += end + 1; 3300 3301 mast_split_data(mast, mas, split); 3302 mast_fill_bnode(mast, mas, 2); 3303 mas_split_final_node(mast, mas, height + 1); 3304 return true; 3305 } 3306 3307 /* 3308 * mas_split() - Split data that is too big for one node into two. 3309 * @mas: The maple state 3310 * @b_node: The maple big node 3311 * Return: 1 on success, 0 on failure. 3312 */ 3313 static int mas_split(struct ma_state *mas, struct maple_big_node *b_node) 3314 { 3315 struct maple_subtree_state mast; 3316 int height = 0; 3317 unsigned char mid_split, split = 0; 3318 struct maple_enode *old; 3319 3320 /* 3321 * Splitting is handled differently from any other B-tree; the Maple 3322 * Tree splits upwards. Splitting up means that the split operation 3323 * occurs when the walk of the tree hits the leaves and not on the way 3324 * down. The reason for splitting up is that it is impossible to know 3325 * how much space will be needed until the leaf is (or leaves are) 3326 * reached. Since overwriting data is allowed and a range could 3327 * overwrite more than one range or result in changing one entry into 3 3328 * entries, it is impossible to know if a split is required until the 3329 * data is examined. 3330 * 3331 * Splitting is a balancing act between keeping allocations to a minimum 3332 * and avoiding a 'jitter' event where a tree is expanded to make room 3333 * for an entry followed by a contraction when the entry is removed. To 3334 * accomplish the balance, there are empty slots remaining in both left 3335 * and right nodes after a split. 3336 */ 3337 MA_STATE(l_mas, mas->tree, mas->index, mas->last); 3338 MA_STATE(r_mas, mas->tree, mas->index, mas->last); 3339 MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last); 3340 MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last); 3341 3342 trace_ma_op(__func__, mas); 3343 mas->depth = mas_mt_height(mas); 3344 /* Allocation failures will happen early. */ 3345 mas_node_count(mas, 1 + mas->depth * 2); 3346 if (mas_is_err(mas)) 3347 return 0; 3348 3349 mast.l = &l_mas; 3350 mast.r = &r_mas; 3351 mast.orig_l = &prev_l_mas; 3352 mast.orig_r = &prev_r_mas; 3353 mast.bn = b_node; 3354 3355 while (height++ <= mas->depth) { 3356 if (mt_slots[b_node->type] > b_node->b_end) { 3357 mas_split_final_node(&mast, mas, height); 3358 break; 3359 } 3360 3361 l_mas = r_mas = *mas; 3362 l_mas.node = mas_new_ma_node(mas, b_node); 3363 r_mas.node = mas_new_ma_node(mas, b_node); 3364 /* 3365 * Another way that 'jitter' is avoided is to terminate a split up early if the 3366 * left or right node has space to spare. This is referred to as "pushing left" 3367 * or "pushing right" and is similar to the B* tree, except the nodes left or 3368 * right can rarely be reused due to RCU, but the ripple upwards is halted which 3369 * is a significant savings. 3370 */ 3371 /* Try to push left. */ 3372 if (mas_push_data(mas, height, &mast, true)) 3373 break; 3374 /* Try to push right. */ 3375 if (mas_push_data(mas, height, &mast, false)) 3376 break; 3377 3378 split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min); 3379 mast_split_data(&mast, mas, split); 3380 /* 3381 * Usually correct, mab_mas_cp in the above call overwrites 3382 * r->max. 3383 */ 3384 mast.r->max = mas->max; 3385 mast_fill_bnode(&mast, mas, 1); 3386 prev_l_mas = *mast.l; 3387 prev_r_mas = *mast.r; 3388 } 3389 3390 /* Set the original node as dead */ 3391 old = mas->node; 3392 mas->node = l_mas.node; 3393 mas_wmb_replace(mas, old); 3394 mtree_range_walk(mas); 3395 return 1; 3396 } 3397 3398 /* 3399 * mas_reuse_node() - Reuse the node to store the data. 3400 * @wr_mas: The maple write state 3401 * @bn: The maple big node 3402 * @end: The end of the data. 3403 * 3404 * Will always return false in RCU mode. 3405 * 3406 * Return: True if node was reused, false otherwise. 3407 */ 3408 static inline bool mas_reuse_node(struct ma_wr_state *wr_mas, 3409 struct maple_big_node *bn, unsigned char end) 3410 { 3411 /* Need to be rcu safe. */ 3412 if (mt_in_rcu(wr_mas->mas->tree)) 3413 return false; 3414 3415 if (end > bn->b_end) { 3416 int clear = mt_slots[wr_mas->type] - bn->b_end; 3417 3418 memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--); 3419 memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear); 3420 } 3421 mab_mas_cp(bn, 0, bn->b_end, wr_mas->mas, false); 3422 return true; 3423 } 3424 3425 /* 3426 * mas_commit_b_node() - Commit the big node into the tree. 3427 * @wr_mas: The maple write state 3428 * @b_node: The maple big node 3429 * @end: The end of the data. 3430 */ 3431 static noinline_for_kasan int mas_commit_b_node(struct ma_wr_state *wr_mas, 3432 struct maple_big_node *b_node, unsigned char end) 3433 { 3434 struct maple_node *node; 3435 struct maple_enode *old_enode; 3436 unsigned char b_end = b_node->b_end; 3437 enum maple_type b_type = b_node->type; 3438 3439 old_enode = wr_mas->mas->node; 3440 if ((b_end < mt_min_slots[b_type]) && 3441 (!mte_is_root(old_enode)) && 3442 (mas_mt_height(wr_mas->mas) > 1)) 3443 return mas_rebalance(wr_mas->mas, b_node); 3444 3445 if (b_end >= mt_slots[b_type]) 3446 return mas_split(wr_mas->mas, b_node); 3447 3448 if (mas_reuse_node(wr_mas, b_node, end)) 3449 goto reuse_node; 3450 3451 mas_node_count(wr_mas->mas, 1); 3452 if (mas_is_err(wr_mas->mas)) 3453 return 0; 3454 3455 node = mas_pop_node(wr_mas->mas); 3456 node->parent = mas_mn(wr_mas->mas)->parent; 3457 wr_mas->mas->node = mt_mk_node(node, b_type); 3458 mab_mas_cp(b_node, 0, b_end, wr_mas->mas, false); 3459 mas_replace_node(wr_mas->mas, old_enode); 3460 reuse_node: 3461 mas_update_gap(wr_mas->mas); 3462 wr_mas->mas->end = b_end; 3463 return 1; 3464 } 3465 3466 /* 3467 * mas_root_expand() - Expand a root to a node 3468 * @mas: The maple state 3469 * @entry: The entry to store into the tree 3470 */ 3471 static inline int mas_root_expand(struct ma_state *mas, void *entry) 3472 { 3473 void *contents = mas_root_locked(mas); 3474 enum maple_type type = maple_leaf_64; 3475 struct maple_node *node; 3476 void __rcu **slots; 3477 unsigned long *pivots; 3478 int slot = 0; 3479 3480 mas_node_count(mas, 1); 3481 if (unlikely(mas_is_err(mas))) 3482 return 0; 3483 3484 node = mas_pop_node(mas); 3485 pivots = ma_pivots(node, type); 3486 slots = ma_slots(node, type); 3487 node->parent = ma_parent_ptr(mas_tree_parent(mas)); 3488 mas->node = mt_mk_node(node, type); 3489 mas->status = ma_active; 3490 3491 if (mas->index) { 3492 if (contents) { 3493 rcu_assign_pointer(slots[slot], contents); 3494 if (likely(mas->index > 1)) 3495 slot++; 3496 } 3497 pivots[slot++] = mas->index - 1; 3498 } 3499 3500 rcu_assign_pointer(slots[slot], entry); 3501 mas->offset = slot; 3502 pivots[slot] = mas->last; 3503 if (mas->last != ULONG_MAX) 3504 pivots[++slot] = ULONG_MAX; 3505 3506 mas->depth = 1; 3507 mas_set_height(mas); 3508 ma_set_meta(node, maple_leaf_64, 0, slot); 3509 /* swap the new root into the tree */ 3510 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); 3511 return slot; 3512 } 3513 3514 static inline void mas_store_root(struct ma_state *mas, void *entry) 3515 { 3516 if (likely((mas->last != 0) || (mas->index != 0))) 3517 mas_root_expand(mas, entry); 3518 else if (((unsigned long) (entry) & 3) == 2) 3519 mas_root_expand(mas, entry); 3520 else { 3521 rcu_assign_pointer(mas->tree->ma_root, entry); 3522 mas->status = ma_start; 3523 } 3524 } 3525 3526 /* 3527 * mas_is_span_wr() - Check if the write needs to be treated as a write that 3528 * spans the node. 3529 * @mas: The maple state 3530 * @piv: The pivot value being written 3531 * @type: The maple node type 3532 * @entry: The data to write 3533 * 3534 * Spanning writes are writes that start in one node and end in another OR if 3535 * the write of a %NULL will cause the node to end with a %NULL. 3536 * 3537 * Return: True if this is a spanning write, false otherwise. 3538 */ 3539 static bool mas_is_span_wr(struct ma_wr_state *wr_mas) 3540 { 3541 unsigned long max = wr_mas->r_max; 3542 unsigned long last = wr_mas->mas->last; 3543 enum maple_type type = wr_mas->type; 3544 void *entry = wr_mas->entry; 3545 3546 /* Contained in this pivot, fast path */ 3547 if (last < max) 3548 return false; 3549 3550 if (ma_is_leaf(type)) { 3551 max = wr_mas->mas->max; 3552 if (last < max) 3553 return false; 3554 } 3555 3556 if (last == max) { 3557 /* 3558 * The last entry of leaf node cannot be NULL unless it is the 3559 * rightmost node (writing ULONG_MAX), otherwise it spans slots. 3560 */ 3561 if (entry || last == ULONG_MAX) 3562 return false; 3563 } 3564 3565 trace_ma_write(__func__, wr_mas->mas, wr_mas->r_max, entry); 3566 return true; 3567 } 3568 3569 static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas) 3570 { 3571 wr_mas->type = mte_node_type(wr_mas->mas->node); 3572 mas_wr_node_walk(wr_mas); 3573 wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type); 3574 } 3575 3576 static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas) 3577 { 3578 wr_mas->mas->max = wr_mas->r_max; 3579 wr_mas->mas->min = wr_mas->r_min; 3580 wr_mas->mas->node = wr_mas->content; 3581 wr_mas->mas->offset = 0; 3582 wr_mas->mas->depth++; 3583 } 3584 /* 3585 * mas_wr_walk() - Walk the tree for a write. 3586 * @wr_mas: The maple write state 3587 * 3588 * Uses mas_slot_locked() and does not need to worry about dead nodes. 3589 * 3590 * Return: True if it's contained in a node, false on spanning write. 3591 */ 3592 static bool mas_wr_walk(struct ma_wr_state *wr_mas) 3593 { 3594 struct ma_state *mas = wr_mas->mas; 3595 3596 while (true) { 3597 mas_wr_walk_descend(wr_mas); 3598 if (unlikely(mas_is_span_wr(wr_mas))) 3599 return false; 3600 3601 wr_mas->content = mas_slot_locked(mas, wr_mas->slots, 3602 mas->offset); 3603 if (ma_is_leaf(wr_mas->type)) 3604 return true; 3605 3606 mas_wr_walk_traverse(wr_mas); 3607 } 3608 3609 return true; 3610 } 3611 3612 static bool mas_wr_walk_index(struct ma_wr_state *wr_mas) 3613 { 3614 struct ma_state *mas = wr_mas->mas; 3615 3616 while (true) { 3617 mas_wr_walk_descend(wr_mas); 3618 wr_mas->content = mas_slot_locked(mas, wr_mas->slots, 3619 mas->offset); 3620 if (ma_is_leaf(wr_mas->type)) 3621 return true; 3622 mas_wr_walk_traverse(wr_mas); 3623 3624 } 3625 return true; 3626 } 3627 /* 3628 * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs. 3629 * @l_wr_mas: The left maple write state 3630 * @r_wr_mas: The right maple write state 3631 */ 3632 static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas, 3633 struct ma_wr_state *r_wr_mas) 3634 { 3635 struct ma_state *r_mas = r_wr_mas->mas; 3636 struct ma_state *l_mas = l_wr_mas->mas; 3637 unsigned char l_slot; 3638 3639 l_slot = l_mas->offset; 3640 if (!l_wr_mas->content) 3641 l_mas->index = l_wr_mas->r_min; 3642 3643 if ((l_mas->index == l_wr_mas->r_min) && 3644 (l_slot && 3645 !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) { 3646 if (l_slot > 1) 3647 l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1; 3648 else 3649 l_mas->index = l_mas->min; 3650 3651 l_mas->offset = l_slot - 1; 3652 } 3653 3654 if (!r_wr_mas->content) { 3655 if (r_mas->last < r_wr_mas->r_max) 3656 r_mas->last = r_wr_mas->r_max; 3657 r_mas->offset++; 3658 } else if ((r_mas->last == r_wr_mas->r_max) && 3659 (r_mas->last < r_mas->max) && 3660 !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) { 3661 r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots, 3662 r_wr_mas->type, r_mas->offset + 1); 3663 r_mas->offset++; 3664 } 3665 } 3666 3667 static inline void *mas_state_walk(struct ma_state *mas) 3668 { 3669 void *entry; 3670 3671 entry = mas_start(mas); 3672 if (mas_is_none(mas)) 3673 return NULL; 3674 3675 if (mas_is_ptr(mas)) 3676 return entry; 3677 3678 return mtree_range_walk(mas); 3679 } 3680 3681 /* 3682 * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up 3683 * to date. 3684 * 3685 * @mas: The maple state. 3686 * 3687 * Note: Leaves mas in undesirable state. 3688 * Return: The entry for @mas->index or %NULL on dead node. 3689 */ 3690 static inline void *mtree_lookup_walk(struct ma_state *mas) 3691 { 3692 unsigned long *pivots; 3693 unsigned char offset; 3694 struct maple_node *node; 3695 struct maple_enode *next; 3696 enum maple_type type; 3697 void __rcu **slots; 3698 unsigned char end; 3699 3700 next = mas->node; 3701 do { 3702 node = mte_to_node(next); 3703 type = mte_node_type(next); 3704 pivots = ma_pivots(node, type); 3705 end = mt_pivots[type]; 3706 offset = 0; 3707 do { 3708 if (pivots[offset] >= mas->index) 3709 break; 3710 } while (++offset < end); 3711 3712 slots = ma_slots(node, type); 3713 next = mt_slot(mas->tree, slots, offset); 3714 if (unlikely(ma_dead_node(node))) 3715 goto dead_node; 3716 } while (!ma_is_leaf(type)); 3717 3718 return (void *)next; 3719 3720 dead_node: 3721 mas_reset(mas); 3722 return NULL; 3723 } 3724 3725 static void mte_destroy_walk(struct maple_enode *, struct maple_tree *); 3726 /* 3727 * mas_new_root() - Create a new root node that only contains the entry passed 3728 * in. 3729 * @mas: The maple state 3730 * @entry: The entry to store. 3731 * 3732 * Only valid when the index == 0 and the last == ULONG_MAX 3733 * 3734 * Return 0 on error, 1 on success. 3735 */ 3736 static inline int mas_new_root(struct ma_state *mas, void *entry) 3737 { 3738 struct maple_enode *root = mas_root_locked(mas); 3739 enum maple_type type = maple_leaf_64; 3740 struct maple_node *node; 3741 void __rcu **slots; 3742 unsigned long *pivots; 3743 3744 if (!entry && !mas->index && mas->last == ULONG_MAX) { 3745 mas->depth = 0; 3746 mas_set_height(mas); 3747 rcu_assign_pointer(mas->tree->ma_root, entry); 3748 mas->status = ma_start; 3749 goto done; 3750 } 3751 3752 mas_node_count(mas, 1); 3753 if (mas_is_err(mas)) 3754 return 0; 3755 3756 node = mas_pop_node(mas); 3757 pivots = ma_pivots(node, type); 3758 slots = ma_slots(node, type); 3759 node->parent = ma_parent_ptr(mas_tree_parent(mas)); 3760 mas->node = mt_mk_node(node, type); 3761 mas->status = ma_active; 3762 rcu_assign_pointer(slots[0], entry); 3763 pivots[0] = mas->last; 3764 mas->depth = 1; 3765 mas_set_height(mas); 3766 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); 3767 3768 done: 3769 if (xa_is_node(root)) 3770 mte_destroy_walk(root, mas->tree); 3771 3772 return 1; 3773 } 3774 /* 3775 * mas_wr_spanning_store() - Create a subtree with the store operation completed 3776 * and new nodes where necessary, then place the sub-tree in the actual tree. 3777 * Note that mas is expected to point to the node which caused the store to 3778 * span. 3779 * @wr_mas: The maple write state 3780 * 3781 * Return: 0 on error, positive on success. 3782 */ 3783 static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas) 3784 { 3785 struct maple_subtree_state mast; 3786 struct maple_big_node b_node; 3787 struct ma_state *mas; 3788 unsigned char height; 3789 3790 /* Left and Right side of spanning store */ 3791 MA_STATE(l_mas, NULL, 0, 0); 3792 MA_STATE(r_mas, NULL, 0, 0); 3793 MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry); 3794 MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry); 3795 3796 /* 3797 * A store operation that spans multiple nodes is called a spanning 3798 * store and is handled early in the store call stack by the function 3799 * mas_is_span_wr(). When a spanning store is identified, the maple 3800 * state is duplicated. The first maple state walks the left tree path 3801 * to ``index``, the duplicate walks the right tree path to ``last``. 3802 * The data in the two nodes are combined into a single node, two nodes, 3803 * or possibly three nodes (see the 3-way split above). A ``NULL`` 3804 * written to the last entry of a node is considered a spanning store as 3805 * a rebalance is required for the operation to complete and an overflow 3806 * of data may happen. 3807 */ 3808 mas = wr_mas->mas; 3809 trace_ma_op(__func__, mas); 3810 3811 if (unlikely(!mas->index && mas->last == ULONG_MAX)) 3812 return mas_new_root(mas, wr_mas->entry); 3813 /* 3814 * Node rebalancing may occur due to this store, so there may be three new 3815 * entries per level plus a new root. 3816 */ 3817 height = mas_mt_height(mas); 3818 mas_node_count(mas, 1 + height * 3); 3819 if (mas_is_err(mas)) 3820 return 0; 3821 3822 /* 3823 * Set up right side. Need to get to the next offset after the spanning 3824 * store to ensure it's not NULL and to combine both the next node and 3825 * the node with the start together. 3826 */ 3827 r_mas = *mas; 3828 /* Avoid overflow, walk to next slot in the tree. */ 3829 if (r_mas.last + 1) 3830 r_mas.last++; 3831 3832 r_mas.index = r_mas.last; 3833 mas_wr_walk_index(&r_wr_mas); 3834 r_mas.last = r_mas.index = mas->last; 3835 3836 /* Set up left side. */ 3837 l_mas = *mas; 3838 mas_wr_walk_index(&l_wr_mas); 3839 3840 if (!wr_mas->entry) { 3841 mas_extend_spanning_null(&l_wr_mas, &r_wr_mas); 3842 mas->offset = l_mas.offset; 3843 mas->index = l_mas.index; 3844 mas->last = l_mas.last = r_mas.last; 3845 } 3846 3847 /* expanding NULLs may make this cover the entire range */ 3848 if (!l_mas.index && r_mas.last == ULONG_MAX) { 3849 mas_set_range(mas, 0, ULONG_MAX); 3850 return mas_new_root(mas, wr_mas->entry); 3851 } 3852 3853 memset(&b_node, 0, sizeof(struct maple_big_node)); 3854 /* Copy l_mas and store the value in b_node. */ 3855 mas_store_b_node(&l_wr_mas, &b_node, l_mas.end); 3856 /* Copy r_mas into b_node. */ 3857 if (r_mas.offset <= r_mas.end) 3858 mas_mab_cp(&r_mas, r_mas.offset, r_mas.end, 3859 &b_node, b_node.b_end + 1); 3860 else 3861 b_node.b_end++; 3862 3863 /* Stop spanning searches by searching for just index. */ 3864 l_mas.index = l_mas.last = mas->index; 3865 3866 mast.bn = &b_node; 3867 mast.orig_l = &l_mas; 3868 mast.orig_r = &r_mas; 3869 /* Combine l_mas and r_mas and split them up evenly again. */ 3870 return mas_spanning_rebalance(mas, &mast, height + 1); 3871 } 3872 3873 /* 3874 * mas_wr_node_store() - Attempt to store the value in a node 3875 * @wr_mas: The maple write state 3876 * 3877 * Attempts to reuse the node, but may allocate. 3878 * 3879 * Return: True if stored, false otherwise 3880 */ 3881 static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas, 3882 unsigned char new_end) 3883 { 3884 struct ma_state *mas = wr_mas->mas; 3885 void __rcu **dst_slots; 3886 unsigned long *dst_pivots; 3887 unsigned char dst_offset, offset_end = wr_mas->offset_end; 3888 struct maple_node reuse, *newnode; 3889 unsigned char copy_size, node_pivots = mt_pivots[wr_mas->type]; 3890 bool in_rcu = mt_in_rcu(mas->tree); 3891 3892 /* Check if there is enough data. The room is enough. */ 3893 if (!mte_is_root(mas->node) && (new_end <= mt_min_slots[wr_mas->type]) && 3894 !(mas->mas_flags & MA_STATE_BULK)) 3895 return false; 3896 3897 if (mas->last == wr_mas->end_piv) 3898 offset_end++; /* don't copy this offset */ 3899 else if (unlikely(wr_mas->r_max == ULONG_MAX)) 3900 mas_bulk_rebalance(mas, mas->end, wr_mas->type); 3901 3902 /* set up node. */ 3903 if (in_rcu) { 3904 mas_node_count(mas, 1); 3905 if (mas_is_err(mas)) 3906 return false; 3907 3908 newnode = mas_pop_node(mas); 3909 } else { 3910 memset(&reuse, 0, sizeof(struct maple_node)); 3911 newnode = &reuse; 3912 } 3913 3914 newnode->parent = mas_mn(mas)->parent; 3915 dst_pivots = ma_pivots(newnode, wr_mas->type); 3916 dst_slots = ma_slots(newnode, wr_mas->type); 3917 /* Copy from start to insert point */ 3918 memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * mas->offset); 3919 memcpy(dst_slots, wr_mas->slots, sizeof(void *) * mas->offset); 3920 3921 /* Handle insert of new range starting after old range */ 3922 if (wr_mas->r_min < mas->index) { 3923 rcu_assign_pointer(dst_slots[mas->offset], wr_mas->content); 3924 dst_pivots[mas->offset++] = mas->index - 1; 3925 } 3926 3927 /* Store the new entry and range end. */ 3928 if (mas->offset < node_pivots) 3929 dst_pivots[mas->offset] = mas->last; 3930 rcu_assign_pointer(dst_slots[mas->offset], wr_mas->entry); 3931 3932 /* 3933 * this range wrote to the end of the node or it overwrote the rest of 3934 * the data 3935 */ 3936 if (offset_end > mas->end) 3937 goto done; 3938 3939 dst_offset = mas->offset + 1; 3940 /* Copy to the end of node if necessary. */ 3941 copy_size = mas->end - offset_end + 1; 3942 memcpy(dst_slots + dst_offset, wr_mas->slots + offset_end, 3943 sizeof(void *) * copy_size); 3944 memcpy(dst_pivots + dst_offset, wr_mas->pivots + offset_end, 3945 sizeof(unsigned long) * (copy_size - 1)); 3946 3947 if (new_end < node_pivots) 3948 dst_pivots[new_end] = mas->max; 3949 3950 done: 3951 mas_leaf_set_meta(newnode, maple_leaf_64, new_end); 3952 if (in_rcu) { 3953 struct maple_enode *old_enode = mas->node; 3954 3955 mas->node = mt_mk_node(newnode, wr_mas->type); 3956 mas_replace_node(mas, old_enode); 3957 } else { 3958 memcpy(wr_mas->node, newnode, sizeof(struct maple_node)); 3959 } 3960 trace_ma_write(__func__, mas, 0, wr_mas->entry); 3961 mas_update_gap(mas); 3962 mas->end = new_end; 3963 return true; 3964 } 3965 3966 /* 3967 * mas_wr_slot_store: Attempt to store a value in a slot. 3968 * @wr_mas: the maple write state 3969 * 3970 * Return: True if stored, false otherwise 3971 */ 3972 static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas) 3973 { 3974 struct ma_state *mas = wr_mas->mas; 3975 unsigned char offset = mas->offset; 3976 void __rcu **slots = wr_mas->slots; 3977 bool gap = false; 3978 3979 gap |= !mt_slot_locked(mas->tree, slots, offset); 3980 gap |= !mt_slot_locked(mas->tree, slots, offset + 1); 3981 3982 if (wr_mas->offset_end - offset == 1) { 3983 if (mas->index == wr_mas->r_min) { 3984 /* Overwriting the range and a part of the next one */ 3985 rcu_assign_pointer(slots[offset], wr_mas->entry); 3986 wr_mas->pivots[offset] = mas->last; 3987 } else { 3988 /* Overwriting a part of the range and the next one */ 3989 rcu_assign_pointer(slots[offset + 1], wr_mas->entry); 3990 wr_mas->pivots[offset] = mas->index - 1; 3991 mas->offset++; /* Keep mas accurate. */ 3992 } 3993 } else if (!mt_in_rcu(mas->tree)) { 3994 /* 3995 * Expand the range, only partially overwriting the previous and 3996 * next ranges 3997 */ 3998 gap |= !mt_slot_locked(mas->tree, slots, offset + 2); 3999 rcu_assign_pointer(slots[offset + 1], wr_mas->entry); 4000 wr_mas->pivots[offset] = mas->index - 1; 4001 wr_mas->pivots[offset + 1] = mas->last; 4002 mas->offset++; /* Keep mas accurate. */ 4003 } else { 4004 return false; 4005 } 4006 4007 trace_ma_write(__func__, mas, 0, wr_mas->entry); 4008 /* 4009 * Only update gap when the new entry is empty or there is an empty 4010 * entry in the original two ranges. 4011 */ 4012 if (!wr_mas->entry || gap) 4013 mas_update_gap(mas); 4014 4015 return true; 4016 } 4017 4018 static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas) 4019 { 4020 struct ma_state *mas = wr_mas->mas; 4021 4022 if (!wr_mas->slots[wr_mas->offset_end]) { 4023 /* If this one is null, the next and prev are not */ 4024 mas->last = wr_mas->end_piv; 4025 } else { 4026 /* Check next slot(s) if we are overwriting the end */ 4027 if ((mas->last == wr_mas->end_piv) && 4028 (mas->end != wr_mas->offset_end) && 4029 !wr_mas->slots[wr_mas->offset_end + 1]) { 4030 wr_mas->offset_end++; 4031 if (wr_mas->offset_end == mas->end) 4032 mas->last = mas->max; 4033 else 4034 mas->last = wr_mas->pivots[wr_mas->offset_end]; 4035 wr_mas->end_piv = mas->last; 4036 } 4037 } 4038 4039 if (!wr_mas->content) { 4040 /* If this one is null, the next and prev are not */ 4041 mas->index = wr_mas->r_min; 4042 } else { 4043 /* Check prev slot if we are overwriting the start */ 4044 if (mas->index == wr_mas->r_min && mas->offset && 4045 !wr_mas->slots[mas->offset - 1]) { 4046 mas->offset--; 4047 wr_mas->r_min = mas->index = 4048 mas_safe_min(mas, wr_mas->pivots, mas->offset); 4049 wr_mas->r_max = wr_mas->pivots[mas->offset]; 4050 } 4051 } 4052 } 4053 4054 static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas) 4055 { 4056 while ((wr_mas->offset_end < wr_mas->mas->end) && 4057 (wr_mas->mas->last > wr_mas->pivots[wr_mas->offset_end])) 4058 wr_mas->offset_end++; 4059 4060 if (wr_mas->offset_end < wr_mas->mas->end) 4061 wr_mas->end_piv = wr_mas->pivots[wr_mas->offset_end]; 4062 else 4063 wr_mas->end_piv = wr_mas->mas->max; 4064 4065 if (!wr_mas->entry) 4066 mas_wr_extend_null(wr_mas); 4067 } 4068 4069 static inline unsigned char mas_wr_new_end(struct ma_wr_state *wr_mas) 4070 { 4071 struct ma_state *mas = wr_mas->mas; 4072 unsigned char new_end = mas->end + 2; 4073 4074 new_end -= wr_mas->offset_end - mas->offset; 4075 if (wr_mas->r_min == mas->index) 4076 new_end--; 4077 4078 if (wr_mas->end_piv == mas->last) 4079 new_end--; 4080 4081 return new_end; 4082 } 4083 4084 /* 4085 * mas_wr_append: Attempt to append 4086 * @wr_mas: the maple write state 4087 * @new_end: The end of the node after the modification 4088 * 4089 * This is currently unsafe in rcu mode since the end of the node may be cached 4090 * by readers while the node contents may be updated which could result in 4091 * inaccurate information. 4092 * 4093 * Return: True if appended, false otherwise 4094 */ 4095 static inline bool mas_wr_append(struct ma_wr_state *wr_mas, 4096 unsigned char new_end) 4097 { 4098 struct ma_state *mas; 4099 void __rcu **slots; 4100 unsigned char end; 4101 4102 mas = wr_mas->mas; 4103 if (mt_in_rcu(mas->tree)) 4104 return false; 4105 4106 end = mas->end; 4107 if (mas->offset != end) 4108 return false; 4109 4110 if (new_end < mt_pivots[wr_mas->type]) { 4111 wr_mas->pivots[new_end] = wr_mas->pivots[end]; 4112 ma_set_meta(wr_mas->node, wr_mas->type, 0, new_end); 4113 } 4114 4115 slots = wr_mas->slots; 4116 if (new_end == end + 1) { 4117 if (mas->last == wr_mas->r_max) { 4118 /* Append to end of range */ 4119 rcu_assign_pointer(slots[new_end], wr_mas->entry); 4120 wr_mas->pivots[end] = mas->index - 1; 4121 mas->offset = new_end; 4122 } else { 4123 /* Append to start of range */ 4124 rcu_assign_pointer(slots[new_end], wr_mas->content); 4125 wr_mas->pivots[end] = mas->last; 4126 rcu_assign_pointer(slots[end], wr_mas->entry); 4127 } 4128 } else { 4129 /* Append to the range without touching any boundaries. */ 4130 rcu_assign_pointer(slots[new_end], wr_mas->content); 4131 wr_mas->pivots[end + 1] = mas->last; 4132 rcu_assign_pointer(slots[end + 1], wr_mas->entry); 4133 wr_mas->pivots[end] = mas->index - 1; 4134 mas->offset = end + 1; 4135 } 4136 4137 if (!wr_mas->content || !wr_mas->entry) 4138 mas_update_gap(mas); 4139 4140 mas->end = new_end; 4141 trace_ma_write(__func__, mas, new_end, wr_mas->entry); 4142 return true; 4143 } 4144 4145 /* 4146 * mas_wr_bnode() - Slow path for a modification. 4147 * @wr_mas: The write maple state 4148 * 4149 * This is where split, rebalance end up. 4150 */ 4151 static void mas_wr_bnode(struct ma_wr_state *wr_mas) 4152 { 4153 struct maple_big_node b_node; 4154 4155 trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry); 4156 memset(&b_node, 0, sizeof(struct maple_big_node)); 4157 mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end); 4158 mas_commit_b_node(wr_mas, &b_node, wr_mas->mas->end); 4159 } 4160 4161 static inline void mas_wr_modify(struct ma_wr_state *wr_mas) 4162 { 4163 struct ma_state *mas = wr_mas->mas; 4164 unsigned char new_end; 4165 4166 /* Direct replacement */ 4167 if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) { 4168 rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry); 4169 if (!!wr_mas->entry ^ !!wr_mas->content) 4170 mas_update_gap(mas); 4171 return; 4172 } 4173 4174 /* 4175 * new_end exceeds the size of the maple node and cannot enter the fast 4176 * path. 4177 */ 4178 new_end = mas_wr_new_end(wr_mas); 4179 if (new_end >= mt_slots[wr_mas->type]) 4180 goto slow_path; 4181 4182 /* Attempt to append */ 4183 if (mas_wr_append(wr_mas, new_end)) 4184 return; 4185 4186 if (new_end == mas->end && mas_wr_slot_store(wr_mas)) 4187 return; 4188 4189 if (mas_wr_node_store(wr_mas, new_end)) 4190 return; 4191 4192 if (mas_is_err(mas)) 4193 return; 4194 4195 slow_path: 4196 mas_wr_bnode(wr_mas); 4197 } 4198 4199 /* 4200 * mas_wr_store_entry() - Internal call to store a value 4201 * @mas: The maple state 4202 * @entry: The entry to store. 4203 * 4204 * Return: The contents that was stored at the index. 4205 */ 4206 static inline void *mas_wr_store_entry(struct ma_wr_state *wr_mas) 4207 { 4208 struct ma_state *mas = wr_mas->mas; 4209 4210 wr_mas->content = mas_start(mas); 4211 if (mas_is_none(mas) || mas_is_ptr(mas)) { 4212 mas_store_root(mas, wr_mas->entry); 4213 return wr_mas->content; 4214 } 4215 4216 if (unlikely(!mas_wr_walk(wr_mas))) { 4217 mas_wr_spanning_store(wr_mas); 4218 return wr_mas->content; 4219 } 4220 4221 /* At this point, we are at the leaf node that needs to be altered. */ 4222 mas_wr_end_piv(wr_mas); 4223 /* New root for a single pointer */ 4224 if (unlikely(!mas->index && mas->last == ULONG_MAX)) { 4225 mas_new_root(mas, wr_mas->entry); 4226 return wr_mas->content; 4227 } 4228 4229 mas_wr_modify(wr_mas); 4230 return wr_mas->content; 4231 } 4232 4233 /** 4234 * mas_insert() - Internal call to insert a value 4235 * @mas: The maple state 4236 * @entry: The entry to store 4237 * 4238 * Return: %NULL or the contents that already exists at the requested index 4239 * otherwise. The maple state needs to be checked for error conditions. 4240 */ 4241 static inline void *mas_insert(struct ma_state *mas, void *entry) 4242 { 4243 MA_WR_STATE(wr_mas, mas, entry); 4244 4245 /* 4246 * Inserting a new range inserts either 0, 1, or 2 pivots within the 4247 * tree. If the insert fits exactly into an existing gap with a value 4248 * of NULL, then the slot only needs to be written with the new value. 4249 * If the range being inserted is adjacent to another range, then only a 4250 * single pivot needs to be inserted (as well as writing the entry). If 4251 * the new range is within a gap but does not touch any other ranges, 4252 * then two pivots need to be inserted: the start - 1, and the end. As 4253 * usual, the entry must be written. Most operations require a new node 4254 * to be allocated and replace an existing node to ensure RCU safety, 4255 * when in RCU mode. The exception to requiring a newly allocated node 4256 * is when inserting at the end of a node (appending). When done 4257 * carefully, appending can reuse the node in place. 4258 */ 4259 wr_mas.content = mas_start(mas); 4260 if (wr_mas.content) 4261 goto exists; 4262 4263 if (mas_is_none(mas) || mas_is_ptr(mas)) { 4264 mas_store_root(mas, entry); 4265 return NULL; 4266 } 4267 4268 /* spanning writes always overwrite something */ 4269 if (!mas_wr_walk(&wr_mas)) 4270 goto exists; 4271 4272 /* At this point, we are at the leaf node that needs to be altered. */ 4273 wr_mas.offset_end = mas->offset; 4274 wr_mas.end_piv = wr_mas.r_max; 4275 4276 if (wr_mas.content || (mas->last > wr_mas.r_max)) 4277 goto exists; 4278 4279 if (!entry) 4280 return NULL; 4281 4282 mas_wr_modify(&wr_mas); 4283 return wr_mas.content; 4284 4285 exists: 4286 mas_set_err(mas, -EEXIST); 4287 return wr_mas.content; 4288 4289 } 4290 4291 /** 4292 * mas_alloc_cyclic() - Internal call to find somewhere to store an entry 4293 * @mas: The maple state. 4294 * @startp: Pointer to ID. 4295 * @range_lo: Lower bound of range to search. 4296 * @range_hi: Upper bound of range to search. 4297 * @entry: The entry to store. 4298 * @next: Pointer to next ID to allocate. 4299 * @gfp: The GFP_FLAGS to use for allocations. 4300 * 4301 * Return: 0 if the allocation succeeded without wrapping, 1 if the 4302 * allocation succeeded after wrapping, or -EBUSY if there are no 4303 * free entries. 4304 */ 4305 int mas_alloc_cyclic(struct ma_state *mas, unsigned long *startp, 4306 void *entry, unsigned long range_lo, unsigned long range_hi, 4307 unsigned long *next, gfp_t gfp) 4308 { 4309 unsigned long min = range_lo; 4310 int ret = 0; 4311 4312 range_lo = max(min, *next); 4313 ret = mas_empty_area(mas, range_lo, range_hi, 1); 4314 if ((mas->tree->ma_flags & MT_FLAGS_ALLOC_WRAPPED) && ret == 0) { 4315 mas->tree->ma_flags &= ~MT_FLAGS_ALLOC_WRAPPED; 4316 ret = 1; 4317 } 4318 if (ret < 0 && range_lo > min) { 4319 ret = mas_empty_area(mas, min, range_hi, 1); 4320 if (ret == 0) 4321 ret = 1; 4322 } 4323 if (ret < 0) 4324 return ret; 4325 4326 do { 4327 mas_insert(mas, entry); 4328 } while (mas_nomem(mas, gfp)); 4329 if (mas_is_err(mas)) 4330 return xa_err(mas->node); 4331 4332 *startp = mas->index; 4333 *next = *startp + 1; 4334 if (*next == 0) 4335 mas->tree->ma_flags |= MT_FLAGS_ALLOC_WRAPPED; 4336 4337 return ret; 4338 } 4339 EXPORT_SYMBOL(mas_alloc_cyclic); 4340 4341 static __always_inline void mas_rewalk(struct ma_state *mas, unsigned long index) 4342 { 4343 retry: 4344 mas_set(mas, index); 4345 mas_state_walk(mas); 4346 if (mas_is_start(mas)) 4347 goto retry; 4348 } 4349 4350 static __always_inline bool mas_rewalk_if_dead(struct ma_state *mas, 4351 struct maple_node *node, const unsigned long index) 4352 { 4353 if (unlikely(ma_dead_node(node))) { 4354 mas_rewalk(mas, index); 4355 return true; 4356 } 4357 return false; 4358 } 4359 4360 /* 4361 * mas_prev_node() - Find the prev non-null entry at the same level in the 4362 * tree. The prev value will be mas->node[mas->offset] or the status will be 4363 * ma_none. 4364 * @mas: The maple state 4365 * @min: The lower limit to search 4366 * 4367 * The prev node value will be mas->node[mas->offset] or the status will be 4368 * ma_none. 4369 * Return: 1 if the node is dead, 0 otherwise. 4370 */ 4371 static int mas_prev_node(struct ma_state *mas, unsigned long min) 4372 { 4373 enum maple_type mt; 4374 int offset, level; 4375 void __rcu **slots; 4376 struct maple_node *node; 4377 unsigned long *pivots; 4378 unsigned long max; 4379 4380 node = mas_mn(mas); 4381 if (!mas->min) 4382 goto no_entry; 4383 4384 max = mas->min - 1; 4385 if (max < min) 4386 goto no_entry; 4387 4388 level = 0; 4389 do { 4390 if (ma_is_root(node)) 4391 goto no_entry; 4392 4393 /* Walk up. */ 4394 if (unlikely(mas_ascend(mas))) 4395 return 1; 4396 offset = mas->offset; 4397 level++; 4398 node = mas_mn(mas); 4399 } while (!offset); 4400 4401 offset--; 4402 mt = mte_node_type(mas->node); 4403 while (level > 1) { 4404 level--; 4405 slots = ma_slots(node, mt); 4406 mas->node = mas_slot(mas, slots, offset); 4407 if (unlikely(ma_dead_node(node))) 4408 return 1; 4409 4410 mt = mte_node_type(mas->node); 4411 node = mas_mn(mas); 4412 pivots = ma_pivots(node, mt); 4413 offset = ma_data_end(node, mt, pivots, max); 4414 if (unlikely(ma_dead_node(node))) 4415 return 1; 4416 } 4417 4418 slots = ma_slots(node, mt); 4419 mas->node = mas_slot(mas, slots, offset); 4420 pivots = ma_pivots(node, mt); 4421 if (unlikely(ma_dead_node(node))) 4422 return 1; 4423 4424 if (likely(offset)) 4425 mas->min = pivots[offset - 1] + 1; 4426 mas->max = max; 4427 mas->offset = mas_data_end(mas); 4428 if (unlikely(mte_dead_node(mas->node))) 4429 return 1; 4430 4431 mas->end = mas->offset; 4432 return 0; 4433 4434 no_entry: 4435 if (unlikely(ma_dead_node(node))) 4436 return 1; 4437 4438 mas->status = ma_underflow; 4439 return 0; 4440 } 4441 4442 /* 4443 * mas_prev_slot() - Get the entry in the previous slot 4444 * 4445 * @mas: The maple state 4446 * @max: The minimum starting range 4447 * @empty: Can be empty 4448 * @set_underflow: Set the @mas->node to underflow state on limit. 4449 * 4450 * Return: The entry in the previous slot which is possibly NULL 4451 */ 4452 static void *mas_prev_slot(struct ma_state *mas, unsigned long min, bool empty) 4453 { 4454 void *entry; 4455 void __rcu **slots; 4456 unsigned long pivot; 4457 enum maple_type type; 4458 unsigned long *pivots; 4459 struct maple_node *node; 4460 unsigned long save_point = mas->index; 4461 4462 retry: 4463 node = mas_mn(mas); 4464 type = mte_node_type(mas->node); 4465 pivots = ma_pivots(node, type); 4466 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4467 goto retry; 4468 4469 if (mas->min <= min) { 4470 pivot = mas_safe_min(mas, pivots, mas->offset); 4471 4472 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4473 goto retry; 4474 4475 if (pivot <= min) 4476 goto underflow; 4477 } 4478 4479 again: 4480 if (likely(mas->offset)) { 4481 mas->offset--; 4482 mas->last = mas->index - 1; 4483 mas->index = mas_safe_min(mas, pivots, mas->offset); 4484 } else { 4485 if (mas->index <= min) 4486 goto underflow; 4487 4488 if (mas_prev_node(mas, min)) { 4489 mas_rewalk(mas, save_point); 4490 goto retry; 4491 } 4492 4493 if (WARN_ON_ONCE(mas_is_underflow(mas))) 4494 return NULL; 4495 4496 mas->last = mas->max; 4497 node = mas_mn(mas); 4498 type = mte_node_type(mas->node); 4499 pivots = ma_pivots(node, type); 4500 mas->index = pivots[mas->offset - 1] + 1; 4501 } 4502 4503 slots = ma_slots(node, type); 4504 entry = mas_slot(mas, slots, mas->offset); 4505 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4506 goto retry; 4507 4508 4509 if (likely(entry)) 4510 return entry; 4511 4512 if (!empty) { 4513 if (mas->index <= min) { 4514 mas->status = ma_underflow; 4515 return NULL; 4516 } 4517 4518 goto again; 4519 } 4520 4521 return entry; 4522 4523 underflow: 4524 mas->status = ma_underflow; 4525 return NULL; 4526 } 4527 4528 /* 4529 * mas_next_node() - Get the next node at the same level in the tree. 4530 * @mas: The maple state 4531 * @max: The maximum pivot value to check. 4532 * 4533 * The next value will be mas->node[mas->offset] or the status will have 4534 * overflowed. 4535 * Return: 1 on dead node, 0 otherwise. 4536 */ 4537 static int mas_next_node(struct ma_state *mas, struct maple_node *node, 4538 unsigned long max) 4539 { 4540 unsigned long min; 4541 unsigned long *pivots; 4542 struct maple_enode *enode; 4543 struct maple_node *tmp; 4544 int level = 0; 4545 unsigned char node_end; 4546 enum maple_type mt; 4547 void __rcu **slots; 4548 4549 if (mas->max >= max) 4550 goto overflow; 4551 4552 min = mas->max + 1; 4553 level = 0; 4554 do { 4555 if (ma_is_root(node)) 4556 goto overflow; 4557 4558 /* Walk up. */ 4559 if (unlikely(mas_ascend(mas))) 4560 return 1; 4561 4562 level++; 4563 node = mas_mn(mas); 4564 mt = mte_node_type(mas->node); 4565 pivots = ma_pivots(node, mt); 4566 node_end = ma_data_end(node, mt, pivots, mas->max); 4567 if (unlikely(ma_dead_node(node))) 4568 return 1; 4569 4570 } while (unlikely(mas->offset == node_end)); 4571 4572 slots = ma_slots(node, mt); 4573 mas->offset++; 4574 enode = mas_slot(mas, slots, mas->offset); 4575 if (unlikely(ma_dead_node(node))) 4576 return 1; 4577 4578 if (level > 1) 4579 mas->offset = 0; 4580 4581 while (unlikely(level > 1)) { 4582 level--; 4583 mas->node = enode; 4584 node = mas_mn(mas); 4585 mt = mte_node_type(mas->node); 4586 slots = ma_slots(node, mt); 4587 enode = mas_slot(mas, slots, 0); 4588 if (unlikely(ma_dead_node(node))) 4589 return 1; 4590 } 4591 4592 if (!mas->offset) 4593 pivots = ma_pivots(node, mt); 4594 4595 mas->max = mas_safe_pivot(mas, pivots, mas->offset, mt); 4596 tmp = mte_to_node(enode); 4597 mt = mte_node_type(enode); 4598 pivots = ma_pivots(tmp, mt); 4599 mas->end = ma_data_end(tmp, mt, pivots, mas->max); 4600 if (unlikely(ma_dead_node(node))) 4601 return 1; 4602 4603 mas->node = enode; 4604 mas->min = min; 4605 return 0; 4606 4607 overflow: 4608 if (unlikely(ma_dead_node(node))) 4609 return 1; 4610 4611 mas->status = ma_overflow; 4612 return 0; 4613 } 4614 4615 /* 4616 * mas_next_slot() - Get the entry in the next slot 4617 * 4618 * @mas: The maple state 4619 * @max: The maximum starting range 4620 * @empty: Can be empty 4621 * @set_overflow: Should @mas->node be set to overflow when the limit is 4622 * reached. 4623 * 4624 * Return: The entry in the next slot which is possibly NULL 4625 */ 4626 static void *mas_next_slot(struct ma_state *mas, unsigned long max, bool empty) 4627 { 4628 void __rcu **slots; 4629 unsigned long *pivots; 4630 unsigned long pivot; 4631 enum maple_type type; 4632 struct maple_node *node; 4633 unsigned long save_point = mas->last; 4634 void *entry; 4635 4636 retry: 4637 node = mas_mn(mas); 4638 type = mte_node_type(mas->node); 4639 pivots = ma_pivots(node, type); 4640 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4641 goto retry; 4642 4643 if (mas->max >= max) { 4644 if (likely(mas->offset < mas->end)) 4645 pivot = pivots[mas->offset]; 4646 else 4647 pivot = mas->max; 4648 4649 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4650 goto retry; 4651 4652 if (pivot >= max) { /* Was at the limit, next will extend beyond */ 4653 mas->status = ma_overflow; 4654 return NULL; 4655 } 4656 } 4657 4658 if (likely(mas->offset < mas->end)) { 4659 mas->index = pivots[mas->offset] + 1; 4660 again: 4661 mas->offset++; 4662 if (likely(mas->offset < mas->end)) 4663 mas->last = pivots[mas->offset]; 4664 else 4665 mas->last = mas->max; 4666 } else { 4667 if (mas->last >= max) { 4668 mas->status = ma_overflow; 4669 return NULL; 4670 } 4671 4672 if (mas_next_node(mas, node, max)) { 4673 mas_rewalk(mas, save_point); 4674 goto retry; 4675 } 4676 4677 if (WARN_ON_ONCE(mas_is_overflow(mas))) 4678 return NULL; 4679 4680 mas->offset = 0; 4681 mas->index = mas->min; 4682 node = mas_mn(mas); 4683 type = mte_node_type(mas->node); 4684 pivots = ma_pivots(node, type); 4685 mas->last = pivots[0]; 4686 } 4687 4688 slots = ma_slots(node, type); 4689 entry = mt_slot(mas->tree, slots, mas->offset); 4690 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4691 goto retry; 4692 4693 if (entry) 4694 return entry; 4695 4696 4697 if (!empty) { 4698 if (mas->last >= max) { 4699 mas->status = ma_overflow; 4700 return NULL; 4701 } 4702 4703 mas->index = mas->last + 1; 4704 goto again; 4705 } 4706 4707 return entry; 4708 } 4709 4710 /* 4711 * mas_next_entry() - Internal function to get the next entry. 4712 * @mas: The maple state 4713 * @limit: The maximum range start. 4714 * 4715 * Set the @mas->node to the next entry and the range_start to 4716 * the beginning value for the entry. Does not check beyond @limit. 4717 * Sets @mas->index and @mas->last to the range, Does not update @mas->index and 4718 * @mas->last on overflow. 4719 * Restarts on dead nodes. 4720 * 4721 * Return: the next entry or %NULL. 4722 */ 4723 static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit) 4724 { 4725 if (mas->last >= limit) { 4726 mas->status = ma_overflow; 4727 return NULL; 4728 } 4729 4730 return mas_next_slot(mas, limit, false); 4731 } 4732 4733 /* 4734 * mas_rev_awalk() - Internal function. Reverse allocation walk. Find the 4735 * highest gap address of a given size in a given node and descend. 4736 * @mas: The maple state 4737 * @size: The needed size. 4738 * 4739 * Return: True if found in a leaf, false otherwise. 4740 * 4741 */ 4742 static bool mas_rev_awalk(struct ma_state *mas, unsigned long size, 4743 unsigned long *gap_min, unsigned long *gap_max) 4744 { 4745 enum maple_type type = mte_node_type(mas->node); 4746 struct maple_node *node = mas_mn(mas); 4747 unsigned long *pivots, *gaps; 4748 void __rcu **slots; 4749 unsigned long gap = 0; 4750 unsigned long max, min; 4751 unsigned char offset; 4752 4753 if (unlikely(mas_is_err(mas))) 4754 return true; 4755 4756 if (ma_is_dense(type)) { 4757 /* dense nodes. */ 4758 mas->offset = (unsigned char)(mas->index - mas->min); 4759 return true; 4760 } 4761 4762 pivots = ma_pivots(node, type); 4763 slots = ma_slots(node, type); 4764 gaps = ma_gaps(node, type); 4765 offset = mas->offset; 4766 min = mas_safe_min(mas, pivots, offset); 4767 /* Skip out of bounds. */ 4768 while (mas->last < min) 4769 min = mas_safe_min(mas, pivots, --offset); 4770 4771 max = mas_safe_pivot(mas, pivots, offset, type); 4772 while (mas->index <= max) { 4773 gap = 0; 4774 if (gaps) 4775 gap = gaps[offset]; 4776 else if (!mas_slot(mas, slots, offset)) 4777 gap = max - min + 1; 4778 4779 if (gap) { 4780 if ((size <= gap) && (size <= mas->last - min + 1)) 4781 break; 4782 4783 if (!gaps) { 4784 /* Skip the next slot, it cannot be a gap. */ 4785 if (offset < 2) 4786 goto ascend; 4787 4788 offset -= 2; 4789 max = pivots[offset]; 4790 min = mas_safe_min(mas, pivots, offset); 4791 continue; 4792 } 4793 } 4794 4795 if (!offset) 4796 goto ascend; 4797 4798 offset--; 4799 max = min - 1; 4800 min = mas_safe_min(mas, pivots, offset); 4801 } 4802 4803 if (unlikely((mas->index > max) || (size - 1 > max - mas->index))) 4804 goto no_space; 4805 4806 if (unlikely(ma_is_leaf(type))) { 4807 mas->offset = offset; 4808 *gap_min = min; 4809 *gap_max = min + gap - 1; 4810 return true; 4811 } 4812 4813 /* descend, only happens under lock. */ 4814 mas->node = mas_slot(mas, slots, offset); 4815 mas->min = min; 4816 mas->max = max; 4817 mas->offset = mas_data_end(mas); 4818 return false; 4819 4820 ascend: 4821 if (!mte_is_root(mas->node)) 4822 return false; 4823 4824 no_space: 4825 mas_set_err(mas, -EBUSY); 4826 return false; 4827 } 4828 4829 static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size) 4830 { 4831 enum maple_type type = mte_node_type(mas->node); 4832 unsigned long pivot, min, gap = 0; 4833 unsigned char offset, data_end; 4834 unsigned long *gaps, *pivots; 4835 void __rcu **slots; 4836 struct maple_node *node; 4837 bool found = false; 4838 4839 if (ma_is_dense(type)) { 4840 mas->offset = (unsigned char)(mas->index - mas->min); 4841 return true; 4842 } 4843 4844 node = mas_mn(mas); 4845 pivots = ma_pivots(node, type); 4846 slots = ma_slots(node, type); 4847 gaps = ma_gaps(node, type); 4848 offset = mas->offset; 4849 min = mas_safe_min(mas, pivots, offset); 4850 data_end = ma_data_end(node, type, pivots, mas->max); 4851 for (; offset <= data_end; offset++) { 4852 pivot = mas_safe_pivot(mas, pivots, offset, type); 4853 4854 /* Not within lower bounds */ 4855 if (mas->index > pivot) 4856 goto next_slot; 4857 4858 if (gaps) 4859 gap = gaps[offset]; 4860 else if (!mas_slot(mas, slots, offset)) 4861 gap = min(pivot, mas->last) - max(mas->index, min) + 1; 4862 else 4863 goto next_slot; 4864 4865 if (gap >= size) { 4866 if (ma_is_leaf(type)) { 4867 found = true; 4868 goto done; 4869 } 4870 if (mas->index <= pivot) { 4871 mas->node = mas_slot(mas, slots, offset); 4872 mas->min = min; 4873 mas->max = pivot; 4874 offset = 0; 4875 break; 4876 } 4877 } 4878 next_slot: 4879 min = pivot + 1; 4880 if (mas->last <= pivot) { 4881 mas_set_err(mas, -EBUSY); 4882 return true; 4883 } 4884 } 4885 4886 if (mte_is_root(mas->node)) 4887 found = true; 4888 done: 4889 mas->offset = offset; 4890 return found; 4891 } 4892 4893 /** 4894 * mas_walk() - Search for @mas->index in the tree. 4895 * @mas: The maple state. 4896 * 4897 * mas->index and mas->last will be set to the range if there is a value. If 4898 * mas->status is ma_none, reset to ma_start 4899 * 4900 * Return: the entry at the location or %NULL. 4901 */ 4902 void *mas_walk(struct ma_state *mas) 4903 { 4904 void *entry; 4905 4906 if (!mas_is_active(mas) || !mas_is_start(mas)) 4907 mas->status = ma_start; 4908 retry: 4909 entry = mas_state_walk(mas); 4910 if (mas_is_start(mas)) { 4911 goto retry; 4912 } else if (mas_is_none(mas)) { 4913 mas->index = 0; 4914 mas->last = ULONG_MAX; 4915 } else if (mas_is_ptr(mas)) { 4916 if (!mas->index) { 4917 mas->last = 0; 4918 return entry; 4919 } 4920 4921 mas->index = 1; 4922 mas->last = ULONG_MAX; 4923 mas->status = ma_none; 4924 return NULL; 4925 } 4926 4927 return entry; 4928 } 4929 EXPORT_SYMBOL_GPL(mas_walk); 4930 4931 static inline bool mas_rewind_node(struct ma_state *mas) 4932 { 4933 unsigned char slot; 4934 4935 do { 4936 if (mte_is_root(mas->node)) { 4937 slot = mas->offset; 4938 if (!slot) 4939 return false; 4940 } else { 4941 mas_ascend(mas); 4942 slot = mas->offset; 4943 } 4944 } while (!slot); 4945 4946 mas->offset = --slot; 4947 return true; 4948 } 4949 4950 /* 4951 * mas_skip_node() - Internal function. Skip over a node. 4952 * @mas: The maple state. 4953 * 4954 * Return: true if there is another node, false otherwise. 4955 */ 4956 static inline bool mas_skip_node(struct ma_state *mas) 4957 { 4958 if (mas_is_err(mas)) 4959 return false; 4960 4961 do { 4962 if (mte_is_root(mas->node)) { 4963 if (mas->offset >= mas_data_end(mas)) { 4964 mas_set_err(mas, -EBUSY); 4965 return false; 4966 } 4967 } else { 4968 mas_ascend(mas); 4969 } 4970 } while (mas->offset >= mas_data_end(mas)); 4971 4972 mas->offset++; 4973 return true; 4974 } 4975 4976 /* 4977 * mas_awalk() - Allocation walk. Search from low address to high, for a gap of 4978 * @size 4979 * @mas: The maple state 4980 * @size: The size of the gap required 4981 * 4982 * Search between @mas->index and @mas->last for a gap of @size. 4983 */ 4984 static inline void mas_awalk(struct ma_state *mas, unsigned long size) 4985 { 4986 struct maple_enode *last = NULL; 4987 4988 /* 4989 * There are 4 options: 4990 * go to child (descend) 4991 * go back to parent (ascend) 4992 * no gap found. (return, slot == MAPLE_NODE_SLOTS) 4993 * found the gap. (return, slot != MAPLE_NODE_SLOTS) 4994 */ 4995 while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) { 4996 if (last == mas->node) 4997 mas_skip_node(mas); 4998 else 4999 last = mas->node; 5000 } 5001 } 5002 5003 /* 5004 * mas_sparse_area() - Internal function. Return upper or lower limit when 5005 * searching for a gap in an empty tree. 5006 * @mas: The maple state 5007 * @min: the minimum range 5008 * @max: The maximum range 5009 * @size: The size of the gap 5010 * @fwd: Searching forward or back 5011 */ 5012 static inline int mas_sparse_area(struct ma_state *mas, unsigned long min, 5013 unsigned long max, unsigned long size, bool fwd) 5014 { 5015 if (!unlikely(mas_is_none(mas)) && min == 0) { 5016 min++; 5017 /* 5018 * At this time, min is increased, we need to recheck whether 5019 * the size is satisfied. 5020 */ 5021 if (min > max || max - min + 1 < size) 5022 return -EBUSY; 5023 } 5024 /* mas_is_ptr */ 5025 5026 if (fwd) { 5027 mas->index = min; 5028 mas->last = min + size - 1; 5029 } else { 5030 mas->last = max; 5031 mas->index = max - size + 1; 5032 } 5033 return 0; 5034 } 5035 5036 /* 5037 * mas_empty_area() - Get the lowest address within the range that is 5038 * sufficient for the size requested. 5039 * @mas: The maple state 5040 * @min: The lowest value of the range 5041 * @max: The highest value of the range 5042 * @size: The size needed 5043 */ 5044 int mas_empty_area(struct ma_state *mas, unsigned long min, 5045 unsigned long max, unsigned long size) 5046 { 5047 unsigned char offset; 5048 unsigned long *pivots; 5049 enum maple_type mt; 5050 struct maple_node *node; 5051 5052 if (min > max) 5053 return -EINVAL; 5054 5055 if (size == 0 || max - min < size - 1) 5056 return -EINVAL; 5057 5058 if (mas_is_start(mas)) 5059 mas_start(mas); 5060 else if (mas->offset >= 2) 5061 mas->offset -= 2; 5062 else if (!mas_skip_node(mas)) 5063 return -EBUSY; 5064 5065 /* Empty set */ 5066 if (mas_is_none(mas) || mas_is_ptr(mas)) 5067 return mas_sparse_area(mas, min, max, size, true); 5068 5069 /* The start of the window can only be within these values */ 5070 mas->index = min; 5071 mas->last = max; 5072 mas_awalk(mas, size); 5073 5074 if (unlikely(mas_is_err(mas))) 5075 return xa_err(mas->node); 5076 5077 offset = mas->offset; 5078 if (unlikely(offset == MAPLE_NODE_SLOTS)) 5079 return -EBUSY; 5080 5081 node = mas_mn(mas); 5082 mt = mte_node_type(mas->node); 5083 pivots = ma_pivots(node, mt); 5084 min = mas_safe_min(mas, pivots, offset); 5085 if (mas->index < min) 5086 mas->index = min; 5087 mas->last = mas->index + size - 1; 5088 mas->end = ma_data_end(node, mt, pivots, mas->max); 5089 return 0; 5090 } 5091 EXPORT_SYMBOL_GPL(mas_empty_area); 5092 5093 /* 5094 * mas_empty_area_rev() - Get the highest address within the range that is 5095 * sufficient for the size requested. 5096 * @mas: The maple state 5097 * @min: The lowest value of the range 5098 * @max: The highest value of the range 5099 * @size: The size needed 5100 */ 5101 int mas_empty_area_rev(struct ma_state *mas, unsigned long min, 5102 unsigned long max, unsigned long size) 5103 { 5104 struct maple_enode *last = mas->node; 5105 5106 if (min > max) 5107 return -EINVAL; 5108 5109 if (size == 0 || max - min < size - 1) 5110 return -EINVAL; 5111 5112 if (mas_is_start(mas)) { 5113 mas_start(mas); 5114 mas->offset = mas_data_end(mas); 5115 } else if (mas->offset >= 2) { 5116 mas->offset -= 2; 5117 } else if (!mas_rewind_node(mas)) { 5118 return -EBUSY; 5119 } 5120 5121 /* Empty set. */ 5122 if (mas_is_none(mas) || mas_is_ptr(mas)) 5123 return mas_sparse_area(mas, min, max, size, false); 5124 5125 /* The start of the window can only be within these values. */ 5126 mas->index = min; 5127 mas->last = max; 5128 5129 while (!mas_rev_awalk(mas, size, &min, &max)) { 5130 if (last == mas->node) { 5131 if (!mas_rewind_node(mas)) 5132 return -EBUSY; 5133 } else { 5134 last = mas->node; 5135 } 5136 } 5137 5138 if (mas_is_err(mas)) 5139 return xa_err(mas->node); 5140 5141 if (unlikely(mas->offset == MAPLE_NODE_SLOTS)) 5142 return -EBUSY; 5143 5144 /* Trim the upper limit to the max. */ 5145 if (max < mas->last) 5146 mas->last = max; 5147 5148 mas->index = mas->last - size + 1; 5149 mas->end = mas_data_end(mas); 5150 return 0; 5151 } 5152 EXPORT_SYMBOL_GPL(mas_empty_area_rev); 5153 5154 /* 5155 * mte_dead_leaves() - Mark all leaves of a node as dead. 5156 * @mas: The maple state 5157 * @slots: Pointer to the slot array 5158 * @type: The maple node type 5159 * 5160 * Must hold the write lock. 5161 * 5162 * Return: The number of leaves marked as dead. 5163 */ 5164 static inline 5165 unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt, 5166 void __rcu **slots) 5167 { 5168 struct maple_node *node; 5169 enum maple_type type; 5170 void *entry; 5171 int offset; 5172 5173 for (offset = 0; offset < mt_slot_count(enode); offset++) { 5174 entry = mt_slot(mt, slots, offset); 5175 type = mte_node_type(entry); 5176 node = mte_to_node(entry); 5177 /* Use both node and type to catch LE & BE metadata */ 5178 if (!node || !type) 5179 break; 5180 5181 mte_set_node_dead(entry); 5182 node->type = type; 5183 rcu_assign_pointer(slots[offset], node); 5184 } 5185 5186 return offset; 5187 } 5188 5189 /** 5190 * mte_dead_walk() - Walk down a dead tree to just before the leaves 5191 * @enode: The maple encoded node 5192 * @offset: The starting offset 5193 * 5194 * Note: This can only be used from the RCU callback context. 5195 */ 5196 static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset) 5197 { 5198 struct maple_node *node, *next; 5199 void __rcu **slots = NULL; 5200 5201 next = mte_to_node(*enode); 5202 do { 5203 *enode = ma_enode_ptr(next); 5204 node = mte_to_node(*enode); 5205 slots = ma_slots(node, node->type); 5206 next = rcu_dereference_protected(slots[offset], 5207 lock_is_held(&rcu_callback_map)); 5208 offset = 0; 5209 } while (!ma_is_leaf(next->type)); 5210 5211 return slots; 5212 } 5213 5214 /** 5215 * mt_free_walk() - Walk & free a tree in the RCU callback context 5216 * @head: The RCU head that's within the node. 5217 * 5218 * Note: This can only be used from the RCU callback context. 5219 */ 5220 static void mt_free_walk(struct rcu_head *head) 5221 { 5222 void __rcu **slots; 5223 struct maple_node *node, *start; 5224 struct maple_enode *enode; 5225 unsigned char offset; 5226 enum maple_type type; 5227 5228 node = container_of(head, struct maple_node, rcu); 5229 5230 if (ma_is_leaf(node->type)) 5231 goto free_leaf; 5232 5233 start = node; 5234 enode = mt_mk_node(node, node->type); 5235 slots = mte_dead_walk(&enode, 0); 5236 node = mte_to_node(enode); 5237 do { 5238 mt_free_bulk(node->slot_len, slots); 5239 offset = node->parent_slot + 1; 5240 enode = node->piv_parent; 5241 if (mte_to_node(enode) == node) 5242 goto free_leaf; 5243 5244 type = mte_node_type(enode); 5245 slots = ma_slots(mte_to_node(enode), type); 5246 if ((offset < mt_slots[type]) && 5247 rcu_dereference_protected(slots[offset], 5248 lock_is_held(&rcu_callback_map))) 5249 slots = mte_dead_walk(&enode, offset); 5250 node = mte_to_node(enode); 5251 } while ((node != start) || (node->slot_len < offset)); 5252 5253 slots = ma_slots(node, node->type); 5254 mt_free_bulk(node->slot_len, slots); 5255 5256 free_leaf: 5257 mt_free_rcu(&node->rcu); 5258 } 5259 5260 static inline void __rcu **mte_destroy_descend(struct maple_enode **enode, 5261 struct maple_tree *mt, struct maple_enode *prev, unsigned char offset) 5262 { 5263 struct maple_node *node; 5264 struct maple_enode *next = *enode; 5265 void __rcu **slots = NULL; 5266 enum maple_type type; 5267 unsigned char next_offset = 0; 5268 5269 do { 5270 *enode = next; 5271 node = mte_to_node(*enode); 5272 type = mte_node_type(*enode); 5273 slots = ma_slots(node, type); 5274 next = mt_slot_locked(mt, slots, next_offset); 5275 if ((mte_dead_node(next))) 5276 next = mt_slot_locked(mt, slots, ++next_offset); 5277 5278 mte_set_node_dead(*enode); 5279 node->type = type; 5280 node->piv_parent = prev; 5281 node->parent_slot = offset; 5282 offset = next_offset; 5283 next_offset = 0; 5284 prev = *enode; 5285 } while (!mte_is_leaf(next)); 5286 5287 return slots; 5288 } 5289 5290 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt, 5291 bool free) 5292 { 5293 void __rcu **slots; 5294 struct maple_node *node = mte_to_node(enode); 5295 struct maple_enode *start; 5296 5297 if (mte_is_leaf(enode)) { 5298 node->type = mte_node_type(enode); 5299 goto free_leaf; 5300 } 5301 5302 start = enode; 5303 slots = mte_destroy_descend(&enode, mt, start, 0); 5304 node = mte_to_node(enode); // Updated in the above call. 5305 do { 5306 enum maple_type type; 5307 unsigned char offset; 5308 struct maple_enode *parent, *tmp; 5309 5310 node->slot_len = mte_dead_leaves(enode, mt, slots); 5311 if (free) 5312 mt_free_bulk(node->slot_len, slots); 5313 offset = node->parent_slot + 1; 5314 enode = node->piv_parent; 5315 if (mte_to_node(enode) == node) 5316 goto free_leaf; 5317 5318 type = mte_node_type(enode); 5319 slots = ma_slots(mte_to_node(enode), type); 5320 if (offset >= mt_slots[type]) 5321 goto next; 5322 5323 tmp = mt_slot_locked(mt, slots, offset); 5324 if (mte_node_type(tmp) && mte_to_node(tmp)) { 5325 parent = enode; 5326 enode = tmp; 5327 slots = mte_destroy_descend(&enode, mt, parent, offset); 5328 } 5329 next: 5330 node = mte_to_node(enode); 5331 } while (start != enode); 5332 5333 node = mte_to_node(enode); 5334 node->slot_len = mte_dead_leaves(enode, mt, slots); 5335 if (free) 5336 mt_free_bulk(node->slot_len, slots); 5337 5338 free_leaf: 5339 if (free) 5340 mt_free_rcu(&node->rcu); 5341 else 5342 mt_clear_meta(mt, node, node->type); 5343 } 5344 5345 /* 5346 * mte_destroy_walk() - Free a tree or sub-tree. 5347 * @enode: the encoded maple node (maple_enode) to start 5348 * @mt: the tree to free - needed for node types. 5349 * 5350 * Must hold the write lock. 5351 */ 5352 static inline void mte_destroy_walk(struct maple_enode *enode, 5353 struct maple_tree *mt) 5354 { 5355 struct maple_node *node = mte_to_node(enode); 5356 5357 if (mt_in_rcu(mt)) { 5358 mt_destroy_walk(enode, mt, false); 5359 call_rcu(&node->rcu, mt_free_walk); 5360 } else { 5361 mt_destroy_walk(enode, mt, true); 5362 } 5363 } 5364 5365 static void mas_wr_store_setup(struct ma_wr_state *wr_mas) 5366 { 5367 if (!mas_is_active(wr_mas->mas)) { 5368 if (mas_is_start(wr_mas->mas)) 5369 return; 5370 5371 if (unlikely(mas_is_paused(wr_mas->mas))) 5372 goto reset; 5373 5374 if (unlikely(mas_is_none(wr_mas->mas))) 5375 goto reset; 5376 5377 if (unlikely(mas_is_overflow(wr_mas->mas))) 5378 goto reset; 5379 5380 if (unlikely(mas_is_underflow(wr_mas->mas))) 5381 goto reset; 5382 } 5383 5384 /* 5385 * A less strict version of mas_is_span_wr() where we allow spanning 5386 * writes within this node. This is to stop partial walks in 5387 * mas_prealloc() from being reset. 5388 */ 5389 if (wr_mas->mas->last > wr_mas->mas->max) 5390 goto reset; 5391 5392 if (wr_mas->entry) 5393 return; 5394 5395 if (mte_is_leaf(wr_mas->mas->node) && 5396 wr_mas->mas->last == wr_mas->mas->max) 5397 goto reset; 5398 5399 return; 5400 5401 reset: 5402 mas_reset(wr_mas->mas); 5403 } 5404 5405 /* Interface */ 5406 5407 /** 5408 * mas_store() - Store an @entry. 5409 * @mas: The maple state. 5410 * @entry: The entry to store. 5411 * 5412 * The @mas->index and @mas->last is used to set the range for the @entry. 5413 * Note: The @mas should have pre-allocated entries to ensure there is memory to 5414 * store the entry. Please see mas_expected_entries()/mas_destroy() for more details. 5415 * 5416 * Return: the first entry between mas->index and mas->last or %NULL. 5417 */ 5418 void *mas_store(struct ma_state *mas, void *entry) 5419 { 5420 MA_WR_STATE(wr_mas, mas, entry); 5421 5422 trace_ma_write(__func__, mas, 0, entry); 5423 #ifdef CONFIG_DEBUG_MAPLE_TREE 5424 if (MAS_WARN_ON(mas, mas->index > mas->last)) 5425 pr_err("Error %lX > %lX %p\n", mas->index, mas->last, entry); 5426 5427 if (mas->index > mas->last) { 5428 mas_set_err(mas, -EINVAL); 5429 return NULL; 5430 } 5431 5432 #endif 5433 5434 /* 5435 * Storing is the same operation as insert with the added caveat that it 5436 * can overwrite entries. Although this seems simple enough, one may 5437 * want to examine what happens if a single store operation was to 5438 * overwrite multiple entries within a self-balancing B-Tree. 5439 */ 5440 mas_wr_store_setup(&wr_mas); 5441 mas_wr_store_entry(&wr_mas); 5442 return wr_mas.content; 5443 } 5444 EXPORT_SYMBOL_GPL(mas_store); 5445 5446 /** 5447 * mas_store_gfp() - Store a value into the tree. 5448 * @mas: The maple state 5449 * @entry: The entry to store 5450 * @gfp: The GFP_FLAGS to use for allocations if necessary. 5451 * 5452 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not 5453 * be allocated. 5454 */ 5455 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp) 5456 { 5457 MA_WR_STATE(wr_mas, mas, entry); 5458 5459 mas_wr_store_setup(&wr_mas); 5460 trace_ma_write(__func__, mas, 0, entry); 5461 retry: 5462 mas_wr_store_entry(&wr_mas); 5463 if (unlikely(mas_nomem(mas, gfp))) 5464 goto retry; 5465 5466 if (unlikely(mas_is_err(mas))) 5467 return xa_err(mas->node); 5468 5469 return 0; 5470 } 5471 EXPORT_SYMBOL_GPL(mas_store_gfp); 5472 5473 /** 5474 * mas_store_prealloc() - Store a value into the tree using memory 5475 * preallocated in the maple state. 5476 * @mas: The maple state 5477 * @entry: The entry to store. 5478 */ 5479 void mas_store_prealloc(struct ma_state *mas, void *entry) 5480 { 5481 MA_WR_STATE(wr_mas, mas, entry); 5482 5483 mas_wr_store_setup(&wr_mas); 5484 trace_ma_write(__func__, mas, 0, entry); 5485 mas_wr_store_entry(&wr_mas); 5486 MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas)); 5487 mas_destroy(mas); 5488 } 5489 EXPORT_SYMBOL_GPL(mas_store_prealloc); 5490 5491 /** 5492 * mas_preallocate() - Preallocate enough nodes for a store operation 5493 * @mas: The maple state 5494 * @entry: The entry that will be stored 5495 * @gfp: The GFP_FLAGS to use for allocations. 5496 * 5497 * Return: 0 on success, -ENOMEM if memory could not be allocated. 5498 */ 5499 int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp) 5500 { 5501 MA_WR_STATE(wr_mas, mas, entry); 5502 unsigned char node_size; 5503 int request = 1; 5504 int ret; 5505 5506 5507 if (unlikely(!mas->index && mas->last == ULONG_MAX)) 5508 goto ask_now; 5509 5510 mas_wr_store_setup(&wr_mas); 5511 wr_mas.content = mas_start(mas); 5512 /* Root expand */ 5513 if (unlikely(mas_is_none(mas) || mas_is_ptr(mas))) 5514 goto ask_now; 5515 5516 if (unlikely(!mas_wr_walk(&wr_mas))) { 5517 /* Spanning store, use worst case for now */ 5518 request = 1 + mas_mt_height(mas) * 3; 5519 goto ask_now; 5520 } 5521 5522 /* At this point, we are at the leaf node that needs to be altered. */ 5523 /* Exact fit, no nodes needed. */ 5524 if (wr_mas.r_min == mas->index && wr_mas.r_max == mas->last) 5525 return 0; 5526 5527 mas_wr_end_piv(&wr_mas); 5528 node_size = mas_wr_new_end(&wr_mas); 5529 5530 /* Slot store, does not require additional nodes */ 5531 if (node_size == mas->end) { 5532 /* reuse node */ 5533 if (!mt_in_rcu(mas->tree)) 5534 return 0; 5535 /* shifting boundary */ 5536 if (wr_mas.offset_end - mas->offset == 1) 5537 return 0; 5538 } 5539 5540 if (node_size >= mt_slots[wr_mas.type]) { 5541 /* Split, worst case for now. */ 5542 request = 1 + mas_mt_height(mas) * 2; 5543 goto ask_now; 5544 } 5545 5546 /* New root needs a single node */ 5547 if (unlikely(mte_is_root(mas->node))) 5548 goto ask_now; 5549 5550 /* Potential spanning rebalance collapsing a node, use worst-case */ 5551 if (node_size - 1 <= mt_min_slots[wr_mas.type]) 5552 request = mas_mt_height(mas) * 2 - 1; 5553 5554 /* node store, slot store needs one node */ 5555 ask_now: 5556 mas_node_count_gfp(mas, request, gfp); 5557 mas->mas_flags |= MA_STATE_PREALLOC; 5558 if (likely(!mas_is_err(mas))) 5559 return 0; 5560 5561 mas_set_alloc_req(mas, 0); 5562 ret = xa_err(mas->node); 5563 mas_reset(mas); 5564 mas_destroy(mas); 5565 mas_reset(mas); 5566 return ret; 5567 } 5568 EXPORT_SYMBOL_GPL(mas_preallocate); 5569 5570 /* 5571 * mas_destroy() - destroy a maple state. 5572 * @mas: The maple state 5573 * 5574 * Upon completion, check the left-most node and rebalance against the node to 5575 * the right if necessary. Frees any allocated nodes associated with this maple 5576 * state. 5577 */ 5578 void mas_destroy(struct ma_state *mas) 5579 { 5580 struct maple_alloc *node; 5581 unsigned long total; 5582 5583 /* 5584 * When using mas_for_each() to insert an expected number of elements, 5585 * it is possible that the number inserted is less than the expected 5586 * number. To fix an invalid final node, a check is performed here to 5587 * rebalance the previous node with the final node. 5588 */ 5589 if (mas->mas_flags & MA_STATE_REBALANCE) { 5590 unsigned char end; 5591 5592 mas_start(mas); 5593 mtree_range_walk(mas); 5594 end = mas->end + 1; 5595 if (end < mt_min_slot_count(mas->node) - 1) 5596 mas_destroy_rebalance(mas, end); 5597 5598 mas->mas_flags &= ~MA_STATE_REBALANCE; 5599 } 5600 mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC); 5601 5602 total = mas_allocated(mas); 5603 while (total) { 5604 node = mas->alloc; 5605 mas->alloc = node->slot[0]; 5606 if (node->node_count > 1) { 5607 size_t count = node->node_count - 1; 5608 5609 mt_free_bulk(count, (void __rcu **)&node->slot[1]); 5610 total -= count; 5611 } 5612 mt_free_one(ma_mnode_ptr(node)); 5613 total--; 5614 } 5615 5616 mas->alloc = NULL; 5617 } 5618 EXPORT_SYMBOL_GPL(mas_destroy); 5619 5620 /* 5621 * mas_expected_entries() - Set the expected number of entries that will be inserted. 5622 * @mas: The maple state 5623 * @nr_entries: The number of expected entries. 5624 * 5625 * This will attempt to pre-allocate enough nodes to store the expected number 5626 * of entries. The allocations will occur using the bulk allocator interface 5627 * for speed. Please call mas_destroy() on the @mas after inserting the entries 5628 * to ensure any unused nodes are freed. 5629 * 5630 * Return: 0 on success, -ENOMEM if memory could not be allocated. 5631 */ 5632 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries) 5633 { 5634 int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2; 5635 struct maple_enode *enode = mas->node; 5636 int nr_nodes; 5637 int ret; 5638 5639 /* 5640 * Sometimes it is necessary to duplicate a tree to a new tree, such as 5641 * forking a process and duplicating the VMAs from one tree to a new 5642 * tree. When such a situation arises, it is known that the new tree is 5643 * not going to be used until the entire tree is populated. For 5644 * performance reasons, it is best to use a bulk load with RCU disabled. 5645 * This allows for optimistic splitting that favours the left and reuse 5646 * of nodes during the operation. 5647 */ 5648 5649 /* Optimize splitting for bulk insert in-order */ 5650 mas->mas_flags |= MA_STATE_BULK; 5651 5652 /* 5653 * Avoid overflow, assume a gap between each entry and a trailing null. 5654 * If this is wrong, it just means allocation can happen during 5655 * insertion of entries. 5656 */ 5657 nr_nodes = max(nr_entries, nr_entries * 2 + 1); 5658 if (!mt_is_alloc(mas->tree)) 5659 nonleaf_cap = MAPLE_RANGE64_SLOTS - 2; 5660 5661 /* Leaves; reduce slots to keep space for expansion */ 5662 nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2); 5663 /* Internal nodes */ 5664 nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap); 5665 /* Add working room for split (2 nodes) + new parents */ 5666 mas_node_count_gfp(mas, nr_nodes + 3, GFP_KERNEL); 5667 5668 /* Detect if allocations run out */ 5669 mas->mas_flags |= MA_STATE_PREALLOC; 5670 5671 if (!mas_is_err(mas)) 5672 return 0; 5673 5674 ret = xa_err(mas->node); 5675 mas->node = enode; 5676 mas_destroy(mas); 5677 return ret; 5678 5679 } 5680 EXPORT_SYMBOL_GPL(mas_expected_entries); 5681 5682 static bool mas_next_setup(struct ma_state *mas, unsigned long max, 5683 void **entry) 5684 { 5685 bool was_none = mas_is_none(mas); 5686 5687 if (unlikely(mas->last >= max)) { 5688 mas->status = ma_overflow; 5689 return true; 5690 } 5691 5692 switch (mas->status) { 5693 case ma_active: 5694 return false; 5695 case ma_none: 5696 fallthrough; 5697 case ma_pause: 5698 mas->status = ma_start; 5699 fallthrough; 5700 case ma_start: 5701 mas_walk(mas); /* Retries on dead nodes handled by mas_walk */ 5702 break; 5703 case ma_overflow: 5704 /* Overflowed before, but the max changed */ 5705 mas->status = ma_active; 5706 break; 5707 case ma_underflow: 5708 /* The user expects the mas to be one before where it is */ 5709 mas->status = ma_active; 5710 *entry = mas_walk(mas); 5711 if (*entry) 5712 return true; 5713 break; 5714 case ma_root: 5715 break; 5716 case ma_error: 5717 return true; 5718 } 5719 5720 if (likely(mas_is_active(mas))) /* Fast path */ 5721 return false; 5722 5723 if (mas_is_ptr(mas)) { 5724 *entry = NULL; 5725 if (was_none && mas->index == 0) { 5726 mas->index = mas->last = 0; 5727 return true; 5728 } 5729 mas->index = 1; 5730 mas->last = ULONG_MAX; 5731 mas->status = ma_none; 5732 return true; 5733 } 5734 5735 if (mas_is_none(mas)) 5736 return true; 5737 5738 return false; 5739 } 5740 5741 /** 5742 * mas_next() - Get the next entry. 5743 * @mas: The maple state 5744 * @max: The maximum index to check. 5745 * 5746 * Returns the next entry after @mas->index. 5747 * Must hold rcu_read_lock or the write lock. 5748 * Can return the zero entry. 5749 * 5750 * Return: The next entry or %NULL 5751 */ 5752 void *mas_next(struct ma_state *mas, unsigned long max) 5753 { 5754 void *entry = NULL; 5755 5756 if (mas_next_setup(mas, max, &entry)) 5757 return entry; 5758 5759 /* Retries on dead nodes handled by mas_next_slot */ 5760 return mas_next_slot(mas, max, false); 5761 } 5762 EXPORT_SYMBOL_GPL(mas_next); 5763 5764 /** 5765 * mas_next_range() - Advance the maple state to the next range 5766 * @mas: The maple state 5767 * @max: The maximum index to check. 5768 * 5769 * Sets @mas->index and @mas->last to the range. 5770 * Must hold rcu_read_lock or the write lock. 5771 * Can return the zero entry. 5772 * 5773 * Return: The next entry or %NULL 5774 */ 5775 void *mas_next_range(struct ma_state *mas, unsigned long max) 5776 { 5777 void *entry = NULL; 5778 5779 if (mas_next_setup(mas, max, &entry)) 5780 return entry; 5781 5782 /* Retries on dead nodes handled by mas_next_slot */ 5783 return mas_next_slot(mas, max, true); 5784 } 5785 EXPORT_SYMBOL_GPL(mas_next_range); 5786 5787 /** 5788 * mt_next() - get the next value in the maple tree 5789 * @mt: The maple tree 5790 * @index: The start index 5791 * @max: The maximum index to check 5792 * 5793 * Takes RCU read lock internally to protect the search, which does not 5794 * protect the returned pointer after dropping RCU read lock. 5795 * See also: Documentation/core-api/maple_tree.rst 5796 * 5797 * Return: The entry higher than @index or %NULL if nothing is found. 5798 */ 5799 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max) 5800 { 5801 void *entry = NULL; 5802 MA_STATE(mas, mt, index, index); 5803 5804 rcu_read_lock(); 5805 entry = mas_next(&mas, max); 5806 rcu_read_unlock(); 5807 return entry; 5808 } 5809 EXPORT_SYMBOL_GPL(mt_next); 5810 5811 static bool mas_prev_setup(struct ma_state *mas, unsigned long min, void **entry) 5812 { 5813 if (unlikely(mas->index <= min)) { 5814 mas->status = ma_underflow; 5815 return true; 5816 } 5817 5818 switch (mas->status) { 5819 case ma_active: 5820 return false; 5821 case ma_start: 5822 break; 5823 case ma_none: 5824 fallthrough; 5825 case ma_pause: 5826 mas->status = ma_start; 5827 break; 5828 case ma_underflow: 5829 /* underflowed before but the min changed */ 5830 mas->status = ma_active; 5831 break; 5832 case ma_overflow: 5833 /* User expects mas to be one after where it is */ 5834 mas->status = ma_active; 5835 *entry = mas_walk(mas); 5836 if (*entry) 5837 return true; 5838 break; 5839 case ma_root: 5840 break; 5841 case ma_error: 5842 return true; 5843 } 5844 5845 if (mas_is_start(mas)) 5846 mas_walk(mas); 5847 5848 if (unlikely(mas_is_ptr(mas))) { 5849 if (!mas->index) { 5850 mas->status = ma_none; 5851 return true; 5852 } 5853 mas->index = mas->last = 0; 5854 *entry = mas_root(mas); 5855 return true; 5856 } 5857 5858 if (mas_is_none(mas)) { 5859 if (mas->index) { 5860 /* Walked to out-of-range pointer? */ 5861 mas->index = mas->last = 0; 5862 mas->status = ma_root; 5863 *entry = mas_root(mas); 5864 return true; 5865 } 5866 return true; 5867 } 5868 5869 return false; 5870 } 5871 5872 /** 5873 * mas_prev() - Get the previous entry 5874 * @mas: The maple state 5875 * @min: The minimum value to check. 5876 * 5877 * Must hold rcu_read_lock or the write lock. 5878 * Will reset mas to ma_start if the status is ma_none. Will stop on not 5879 * searchable nodes. 5880 * 5881 * Return: the previous value or %NULL. 5882 */ 5883 void *mas_prev(struct ma_state *mas, unsigned long min) 5884 { 5885 void *entry = NULL; 5886 5887 if (mas_prev_setup(mas, min, &entry)) 5888 return entry; 5889 5890 return mas_prev_slot(mas, min, false); 5891 } 5892 EXPORT_SYMBOL_GPL(mas_prev); 5893 5894 /** 5895 * mas_prev_range() - Advance to the previous range 5896 * @mas: The maple state 5897 * @min: The minimum value to check. 5898 * 5899 * Sets @mas->index and @mas->last to the range. 5900 * Must hold rcu_read_lock or the write lock. 5901 * Will reset mas to ma_start if the node is ma_none. Will stop on not 5902 * searchable nodes. 5903 * 5904 * Return: the previous value or %NULL. 5905 */ 5906 void *mas_prev_range(struct ma_state *mas, unsigned long min) 5907 { 5908 void *entry = NULL; 5909 5910 if (mas_prev_setup(mas, min, &entry)) 5911 return entry; 5912 5913 return mas_prev_slot(mas, min, true); 5914 } 5915 EXPORT_SYMBOL_GPL(mas_prev_range); 5916 5917 /** 5918 * mt_prev() - get the previous value in the maple tree 5919 * @mt: The maple tree 5920 * @index: The start index 5921 * @min: The minimum index to check 5922 * 5923 * Takes RCU read lock internally to protect the search, which does not 5924 * protect the returned pointer after dropping RCU read lock. 5925 * See also: Documentation/core-api/maple_tree.rst 5926 * 5927 * Return: The entry before @index or %NULL if nothing is found. 5928 */ 5929 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min) 5930 { 5931 void *entry = NULL; 5932 MA_STATE(mas, mt, index, index); 5933 5934 rcu_read_lock(); 5935 entry = mas_prev(&mas, min); 5936 rcu_read_unlock(); 5937 return entry; 5938 } 5939 EXPORT_SYMBOL_GPL(mt_prev); 5940 5941 /** 5942 * mas_pause() - Pause a mas_find/mas_for_each to drop the lock. 5943 * @mas: The maple state to pause 5944 * 5945 * Some users need to pause a walk and drop the lock they're holding in 5946 * order to yield to a higher priority thread or carry out an operation 5947 * on an entry. Those users should call this function before they drop 5948 * the lock. It resets the @mas to be suitable for the next iteration 5949 * of the loop after the user has reacquired the lock. If most entries 5950 * found during a walk require you to call mas_pause(), the mt_for_each() 5951 * iterator may be more appropriate. 5952 * 5953 */ 5954 void mas_pause(struct ma_state *mas) 5955 { 5956 mas->status = ma_pause; 5957 mas->node = NULL; 5958 } 5959 EXPORT_SYMBOL_GPL(mas_pause); 5960 5961 /** 5962 * mas_find_setup() - Internal function to set up mas_find*(). 5963 * @mas: The maple state 5964 * @max: The maximum index 5965 * @entry: Pointer to the entry 5966 * 5967 * Returns: True if entry is the answer, false otherwise. 5968 */ 5969 static __always_inline bool mas_find_setup(struct ma_state *mas, unsigned long max, void **entry) 5970 { 5971 switch (mas->status) { 5972 case ma_active: 5973 if (mas->last < max) 5974 return false; 5975 return true; 5976 case ma_start: 5977 break; 5978 case ma_pause: 5979 if (unlikely(mas->last >= max)) 5980 return true; 5981 5982 mas->index = ++mas->last; 5983 mas->status = ma_start; 5984 break; 5985 case ma_none: 5986 if (unlikely(mas->last >= max)) 5987 return true; 5988 5989 mas->index = mas->last; 5990 mas->status = ma_start; 5991 break; 5992 case ma_underflow: 5993 /* mas is pointing at entry before unable to go lower */ 5994 if (unlikely(mas->index >= max)) { 5995 mas->status = ma_overflow; 5996 return true; 5997 } 5998 5999 mas->status = ma_active; 6000 *entry = mas_walk(mas); 6001 if (*entry) 6002 return true; 6003 break; 6004 case ma_overflow: 6005 if (unlikely(mas->last >= max)) 6006 return true; 6007 6008 mas->status = ma_active; 6009 *entry = mas_walk(mas); 6010 if (*entry) 6011 return true; 6012 break; 6013 case ma_root: 6014 break; 6015 case ma_error: 6016 return true; 6017 } 6018 6019 if (mas_is_start(mas)) { 6020 /* First run or continue */ 6021 if (mas->index > max) 6022 return true; 6023 6024 *entry = mas_walk(mas); 6025 if (*entry) 6026 return true; 6027 6028 } 6029 6030 if (unlikely(mas_is_ptr(mas))) 6031 goto ptr_out_of_range; 6032 6033 if (unlikely(mas_is_none(mas))) 6034 return true; 6035 6036 if (mas->index == max) 6037 return true; 6038 6039 return false; 6040 6041 ptr_out_of_range: 6042 mas->status = ma_none; 6043 mas->index = 1; 6044 mas->last = ULONG_MAX; 6045 return true; 6046 } 6047 6048 /** 6049 * mas_find() - On the first call, find the entry at or after mas->index up to 6050 * %max. Otherwise, find the entry after mas->index. 6051 * @mas: The maple state 6052 * @max: The maximum value to check. 6053 * 6054 * Must hold rcu_read_lock or the write lock. 6055 * If an entry exists, last and index are updated accordingly. 6056 * May set @mas->status to ma_overflow. 6057 * 6058 * Return: The entry or %NULL. 6059 */ 6060 void *mas_find(struct ma_state *mas, unsigned long max) 6061 { 6062 void *entry = NULL; 6063 6064 if (mas_find_setup(mas, max, &entry)) 6065 return entry; 6066 6067 /* Retries on dead nodes handled by mas_next_slot */ 6068 entry = mas_next_slot(mas, max, false); 6069 /* Ignore overflow */ 6070 mas->status = ma_active; 6071 return entry; 6072 } 6073 EXPORT_SYMBOL_GPL(mas_find); 6074 6075 /** 6076 * mas_find_range() - On the first call, find the entry at or after 6077 * mas->index up to %max. Otherwise, advance to the next slot mas->index. 6078 * @mas: The maple state 6079 * @max: The maximum value to check. 6080 * 6081 * Must hold rcu_read_lock or the write lock. 6082 * If an entry exists, last and index are updated accordingly. 6083 * May set @mas->status to ma_overflow. 6084 * 6085 * Return: The entry or %NULL. 6086 */ 6087 void *mas_find_range(struct ma_state *mas, unsigned long max) 6088 { 6089 void *entry = NULL; 6090 6091 if (mas_find_setup(mas, max, &entry)) 6092 return entry; 6093 6094 /* Retries on dead nodes handled by mas_next_slot */ 6095 return mas_next_slot(mas, max, true); 6096 } 6097 EXPORT_SYMBOL_GPL(mas_find_range); 6098 6099 /** 6100 * mas_find_rev_setup() - Internal function to set up mas_find_*_rev() 6101 * @mas: The maple state 6102 * @min: The minimum index 6103 * @entry: Pointer to the entry 6104 * 6105 * Returns: True if entry is the answer, false otherwise. 6106 */ 6107 static bool mas_find_rev_setup(struct ma_state *mas, unsigned long min, 6108 void **entry) 6109 { 6110 6111 switch (mas->status) { 6112 case ma_active: 6113 goto active; 6114 case ma_start: 6115 break; 6116 case ma_pause: 6117 if (unlikely(mas->index <= min)) { 6118 mas->status = ma_underflow; 6119 return true; 6120 } 6121 mas->last = --mas->index; 6122 mas->status = ma_start; 6123 break; 6124 case ma_none: 6125 if (mas->index <= min) 6126 goto none; 6127 6128 mas->last = mas->index; 6129 mas->status = ma_start; 6130 break; 6131 case ma_overflow: /* user expects the mas to be one after where it is */ 6132 if (unlikely(mas->index <= min)) { 6133 mas->status = ma_underflow; 6134 return true; 6135 } 6136 6137 mas->status = ma_active; 6138 break; 6139 case ma_underflow: /* user expects the mas to be one before where it is */ 6140 if (unlikely(mas->index <= min)) 6141 return true; 6142 6143 mas->status = ma_active; 6144 break; 6145 case ma_root: 6146 break; 6147 case ma_error: 6148 return true; 6149 } 6150 6151 if (mas_is_start(mas)) { 6152 /* First run or continue */ 6153 if (mas->index < min) 6154 return true; 6155 6156 *entry = mas_walk(mas); 6157 if (*entry) 6158 return true; 6159 } 6160 6161 if (unlikely(mas_is_ptr(mas))) 6162 goto none; 6163 6164 if (unlikely(mas_is_none(mas))) { 6165 /* 6166 * Walked to the location, and there was nothing so the previous 6167 * location is 0. 6168 */ 6169 mas->last = mas->index = 0; 6170 mas->status = ma_root; 6171 *entry = mas_root(mas); 6172 return true; 6173 } 6174 6175 active: 6176 if (mas->index < min) 6177 return true; 6178 6179 return false; 6180 6181 none: 6182 mas->status = ma_none; 6183 return true; 6184 } 6185 6186 /** 6187 * mas_find_rev: On the first call, find the first non-null entry at or below 6188 * mas->index down to %min. Otherwise find the first non-null entry below 6189 * mas->index down to %min. 6190 * @mas: The maple state 6191 * @min: The minimum value to check. 6192 * 6193 * Must hold rcu_read_lock or the write lock. 6194 * If an entry exists, last and index are updated accordingly. 6195 * May set @mas->status to ma_underflow. 6196 * 6197 * Return: The entry or %NULL. 6198 */ 6199 void *mas_find_rev(struct ma_state *mas, unsigned long min) 6200 { 6201 void *entry = NULL; 6202 6203 if (mas_find_rev_setup(mas, min, &entry)) 6204 return entry; 6205 6206 /* Retries on dead nodes handled by mas_prev_slot */ 6207 return mas_prev_slot(mas, min, false); 6208 6209 } 6210 EXPORT_SYMBOL_GPL(mas_find_rev); 6211 6212 /** 6213 * mas_find_range_rev: On the first call, find the first non-null entry at or 6214 * below mas->index down to %min. Otherwise advance to the previous slot after 6215 * mas->index down to %min. 6216 * @mas: The maple state 6217 * @min: The minimum value to check. 6218 * 6219 * Must hold rcu_read_lock or the write lock. 6220 * If an entry exists, last and index are updated accordingly. 6221 * May set @mas->status to ma_underflow. 6222 * 6223 * Return: The entry or %NULL. 6224 */ 6225 void *mas_find_range_rev(struct ma_state *mas, unsigned long min) 6226 { 6227 void *entry = NULL; 6228 6229 if (mas_find_rev_setup(mas, min, &entry)) 6230 return entry; 6231 6232 /* Retries on dead nodes handled by mas_prev_slot */ 6233 return mas_prev_slot(mas, min, true); 6234 } 6235 EXPORT_SYMBOL_GPL(mas_find_range_rev); 6236 6237 /** 6238 * mas_erase() - Find the range in which index resides and erase the entire 6239 * range. 6240 * @mas: The maple state 6241 * 6242 * Must hold the write lock. 6243 * Searches for @mas->index, sets @mas->index and @mas->last to the range and 6244 * erases that range. 6245 * 6246 * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated. 6247 */ 6248 void *mas_erase(struct ma_state *mas) 6249 { 6250 void *entry; 6251 MA_WR_STATE(wr_mas, mas, NULL); 6252 6253 if (!mas_is_active(mas) || !mas_is_start(mas)) 6254 mas->status = ma_start; 6255 6256 /* Retry unnecessary when holding the write lock. */ 6257 entry = mas_state_walk(mas); 6258 if (!entry) 6259 return NULL; 6260 6261 write_retry: 6262 /* Must reset to ensure spanning writes of last slot are detected */ 6263 mas_reset(mas); 6264 mas_wr_store_setup(&wr_mas); 6265 mas_wr_store_entry(&wr_mas); 6266 if (mas_nomem(mas, GFP_KERNEL)) 6267 goto write_retry; 6268 6269 return entry; 6270 } 6271 EXPORT_SYMBOL_GPL(mas_erase); 6272 6273 /** 6274 * mas_nomem() - Check if there was an error allocating and do the allocation 6275 * if necessary If there are allocations, then free them. 6276 * @mas: The maple state 6277 * @gfp: The GFP_FLAGS to use for allocations 6278 * Return: true on allocation, false otherwise. 6279 */ 6280 bool mas_nomem(struct ma_state *mas, gfp_t gfp) 6281 __must_hold(mas->tree->ma_lock) 6282 { 6283 if (likely(mas->node != MA_ERROR(-ENOMEM))) { 6284 mas_destroy(mas); 6285 return false; 6286 } 6287 6288 if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) { 6289 mtree_unlock(mas->tree); 6290 mas_alloc_nodes(mas, gfp); 6291 mtree_lock(mas->tree); 6292 } else { 6293 mas_alloc_nodes(mas, gfp); 6294 } 6295 6296 if (!mas_allocated(mas)) 6297 return false; 6298 6299 mas->status = ma_start; 6300 return true; 6301 } 6302 6303 void __init maple_tree_init(void) 6304 { 6305 maple_node_cache = kmem_cache_create("maple_node", 6306 sizeof(struct maple_node), sizeof(struct maple_node), 6307 SLAB_PANIC, NULL); 6308 } 6309 6310 /** 6311 * mtree_load() - Load a value stored in a maple tree 6312 * @mt: The maple tree 6313 * @index: The index to load 6314 * 6315 * Return: the entry or %NULL 6316 */ 6317 void *mtree_load(struct maple_tree *mt, unsigned long index) 6318 { 6319 MA_STATE(mas, mt, index, index); 6320 void *entry; 6321 6322 trace_ma_read(__func__, &mas); 6323 rcu_read_lock(); 6324 retry: 6325 entry = mas_start(&mas); 6326 if (unlikely(mas_is_none(&mas))) 6327 goto unlock; 6328 6329 if (unlikely(mas_is_ptr(&mas))) { 6330 if (index) 6331 entry = NULL; 6332 6333 goto unlock; 6334 } 6335 6336 entry = mtree_lookup_walk(&mas); 6337 if (!entry && unlikely(mas_is_start(&mas))) 6338 goto retry; 6339 unlock: 6340 rcu_read_unlock(); 6341 if (xa_is_zero(entry)) 6342 return NULL; 6343 6344 return entry; 6345 } 6346 EXPORT_SYMBOL(mtree_load); 6347 6348 /** 6349 * mtree_store_range() - Store an entry at a given range. 6350 * @mt: The maple tree 6351 * @index: The start of the range 6352 * @last: The end of the range 6353 * @entry: The entry to store 6354 * @gfp: The GFP_FLAGS to use for allocations 6355 * 6356 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not 6357 * be allocated. 6358 */ 6359 int mtree_store_range(struct maple_tree *mt, unsigned long index, 6360 unsigned long last, void *entry, gfp_t gfp) 6361 { 6362 MA_STATE(mas, mt, index, last); 6363 MA_WR_STATE(wr_mas, &mas, entry); 6364 6365 trace_ma_write(__func__, &mas, 0, entry); 6366 if (WARN_ON_ONCE(xa_is_advanced(entry))) 6367 return -EINVAL; 6368 6369 if (index > last) 6370 return -EINVAL; 6371 6372 mtree_lock(mt); 6373 retry: 6374 mas_wr_store_entry(&wr_mas); 6375 if (mas_nomem(&mas, gfp)) 6376 goto retry; 6377 6378 mtree_unlock(mt); 6379 if (mas_is_err(&mas)) 6380 return xa_err(mas.node); 6381 6382 return 0; 6383 } 6384 EXPORT_SYMBOL(mtree_store_range); 6385 6386 /** 6387 * mtree_store() - Store an entry at a given index. 6388 * @mt: The maple tree 6389 * @index: The index to store the value 6390 * @entry: The entry to store 6391 * @gfp: The GFP_FLAGS to use for allocations 6392 * 6393 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not 6394 * be allocated. 6395 */ 6396 int mtree_store(struct maple_tree *mt, unsigned long index, void *entry, 6397 gfp_t gfp) 6398 { 6399 return mtree_store_range(mt, index, index, entry, gfp); 6400 } 6401 EXPORT_SYMBOL(mtree_store); 6402 6403 /** 6404 * mtree_insert_range() - Insert an entry at a given range if there is no value. 6405 * @mt: The maple tree 6406 * @first: The start of the range 6407 * @last: The end of the range 6408 * @entry: The entry to store 6409 * @gfp: The GFP_FLAGS to use for allocations. 6410 * 6411 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid 6412 * request, -ENOMEM if memory could not be allocated. 6413 */ 6414 int mtree_insert_range(struct maple_tree *mt, unsigned long first, 6415 unsigned long last, void *entry, gfp_t gfp) 6416 { 6417 MA_STATE(ms, mt, first, last); 6418 6419 if (WARN_ON_ONCE(xa_is_advanced(entry))) 6420 return -EINVAL; 6421 6422 if (first > last) 6423 return -EINVAL; 6424 6425 mtree_lock(mt); 6426 retry: 6427 mas_insert(&ms, entry); 6428 if (mas_nomem(&ms, gfp)) 6429 goto retry; 6430 6431 mtree_unlock(mt); 6432 if (mas_is_err(&ms)) 6433 return xa_err(ms.node); 6434 6435 return 0; 6436 } 6437 EXPORT_SYMBOL(mtree_insert_range); 6438 6439 /** 6440 * mtree_insert() - Insert an entry at a given index if there is no value. 6441 * @mt: The maple tree 6442 * @index : The index to store the value 6443 * @entry: The entry to store 6444 * @gfp: The GFP_FLAGS to use for allocations. 6445 * 6446 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid 6447 * request, -ENOMEM if memory could not be allocated. 6448 */ 6449 int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry, 6450 gfp_t gfp) 6451 { 6452 return mtree_insert_range(mt, index, index, entry, gfp); 6453 } 6454 EXPORT_SYMBOL(mtree_insert); 6455 6456 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp, 6457 void *entry, unsigned long size, unsigned long min, 6458 unsigned long max, gfp_t gfp) 6459 { 6460 int ret = 0; 6461 6462 MA_STATE(mas, mt, 0, 0); 6463 if (!mt_is_alloc(mt)) 6464 return -EINVAL; 6465 6466 if (WARN_ON_ONCE(mt_is_reserved(entry))) 6467 return -EINVAL; 6468 6469 mtree_lock(mt); 6470 retry: 6471 ret = mas_empty_area(&mas, min, max, size); 6472 if (ret) 6473 goto unlock; 6474 6475 mas_insert(&mas, entry); 6476 /* 6477 * mas_nomem() may release the lock, causing the allocated area 6478 * to be unavailable, so try to allocate a free area again. 6479 */ 6480 if (mas_nomem(&mas, gfp)) 6481 goto retry; 6482 6483 if (mas_is_err(&mas)) 6484 ret = xa_err(mas.node); 6485 else 6486 *startp = mas.index; 6487 6488 unlock: 6489 mtree_unlock(mt); 6490 return ret; 6491 } 6492 EXPORT_SYMBOL(mtree_alloc_range); 6493 6494 /** 6495 * mtree_alloc_cyclic() - Find somewhere to store this entry in the tree. 6496 * @mt: The maple tree. 6497 * @startp: Pointer to ID. 6498 * @range_lo: Lower bound of range to search. 6499 * @range_hi: Upper bound of range to search. 6500 * @entry: The entry to store. 6501 * @next: Pointer to next ID to allocate. 6502 * @gfp: The GFP_FLAGS to use for allocations. 6503 * 6504 * Finds an empty entry in @mt after @next, stores the new index into 6505 * the @id pointer, stores the entry at that index, then updates @next. 6506 * 6507 * @mt must be initialized with the MT_FLAGS_ALLOC_RANGE flag. 6508 * 6509 * Context: Any context. Takes and releases the mt.lock. May sleep if 6510 * the @gfp flags permit. 6511 * 6512 * Return: 0 if the allocation succeeded without wrapping, 1 if the 6513 * allocation succeeded after wrapping, -ENOMEM if memory could not be 6514 * allocated, -EINVAL if @mt cannot be used, or -EBUSY if there are no 6515 * free entries. 6516 */ 6517 int mtree_alloc_cyclic(struct maple_tree *mt, unsigned long *startp, 6518 void *entry, unsigned long range_lo, unsigned long range_hi, 6519 unsigned long *next, gfp_t gfp) 6520 { 6521 int ret; 6522 6523 MA_STATE(mas, mt, 0, 0); 6524 6525 if (!mt_is_alloc(mt)) 6526 return -EINVAL; 6527 if (WARN_ON_ONCE(mt_is_reserved(entry))) 6528 return -EINVAL; 6529 mtree_lock(mt); 6530 ret = mas_alloc_cyclic(&mas, startp, entry, range_lo, range_hi, 6531 next, gfp); 6532 mtree_unlock(mt); 6533 return ret; 6534 } 6535 EXPORT_SYMBOL(mtree_alloc_cyclic); 6536 6537 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp, 6538 void *entry, unsigned long size, unsigned long min, 6539 unsigned long max, gfp_t gfp) 6540 { 6541 int ret = 0; 6542 6543 MA_STATE(mas, mt, 0, 0); 6544 if (!mt_is_alloc(mt)) 6545 return -EINVAL; 6546 6547 if (WARN_ON_ONCE(mt_is_reserved(entry))) 6548 return -EINVAL; 6549 6550 mtree_lock(mt); 6551 retry: 6552 ret = mas_empty_area_rev(&mas, min, max, size); 6553 if (ret) 6554 goto unlock; 6555 6556 mas_insert(&mas, entry); 6557 /* 6558 * mas_nomem() may release the lock, causing the allocated area 6559 * to be unavailable, so try to allocate a free area again. 6560 */ 6561 if (mas_nomem(&mas, gfp)) 6562 goto retry; 6563 6564 if (mas_is_err(&mas)) 6565 ret = xa_err(mas.node); 6566 else 6567 *startp = mas.index; 6568 6569 unlock: 6570 mtree_unlock(mt); 6571 return ret; 6572 } 6573 EXPORT_SYMBOL(mtree_alloc_rrange); 6574 6575 /** 6576 * mtree_erase() - Find an index and erase the entire range. 6577 * @mt: The maple tree 6578 * @index: The index to erase 6579 * 6580 * Erasing is the same as a walk to an entry then a store of a NULL to that 6581 * ENTIRE range. In fact, it is implemented as such using the advanced API. 6582 * 6583 * Return: The entry stored at the @index or %NULL 6584 */ 6585 void *mtree_erase(struct maple_tree *mt, unsigned long index) 6586 { 6587 void *entry = NULL; 6588 6589 MA_STATE(mas, mt, index, index); 6590 trace_ma_op(__func__, &mas); 6591 6592 mtree_lock(mt); 6593 entry = mas_erase(&mas); 6594 mtree_unlock(mt); 6595 6596 return entry; 6597 } 6598 EXPORT_SYMBOL(mtree_erase); 6599 6600 /* 6601 * mas_dup_free() - Free an incomplete duplication of a tree. 6602 * @mas: The maple state of a incomplete tree. 6603 * 6604 * The parameter @mas->node passed in indicates that the allocation failed on 6605 * this node. This function frees all nodes starting from @mas->node in the 6606 * reverse order of mas_dup_build(). There is no need to hold the source tree 6607 * lock at this time. 6608 */ 6609 static void mas_dup_free(struct ma_state *mas) 6610 { 6611 struct maple_node *node; 6612 enum maple_type type; 6613 void __rcu **slots; 6614 unsigned char count, i; 6615 6616 /* Maybe the first node allocation failed. */ 6617 if (mas_is_none(mas)) 6618 return; 6619 6620 while (!mte_is_root(mas->node)) { 6621 mas_ascend(mas); 6622 if (mas->offset) { 6623 mas->offset--; 6624 do { 6625 mas_descend(mas); 6626 mas->offset = mas_data_end(mas); 6627 } while (!mte_is_leaf(mas->node)); 6628 6629 mas_ascend(mas); 6630 } 6631 6632 node = mte_to_node(mas->node); 6633 type = mte_node_type(mas->node); 6634 slots = ma_slots(node, type); 6635 count = mas_data_end(mas) + 1; 6636 for (i = 0; i < count; i++) 6637 ((unsigned long *)slots)[i] &= ~MAPLE_NODE_MASK; 6638 mt_free_bulk(count, slots); 6639 } 6640 6641 node = mte_to_node(mas->node); 6642 mt_free_one(node); 6643 } 6644 6645 /* 6646 * mas_copy_node() - Copy a maple node and replace the parent. 6647 * @mas: The maple state of source tree. 6648 * @new_mas: The maple state of new tree. 6649 * @parent: The parent of the new node. 6650 * 6651 * Copy @mas->node to @new_mas->node, set @parent to be the parent of 6652 * @new_mas->node. If memory allocation fails, @mas is set to -ENOMEM. 6653 */ 6654 static inline void mas_copy_node(struct ma_state *mas, struct ma_state *new_mas, 6655 struct maple_pnode *parent) 6656 { 6657 struct maple_node *node = mte_to_node(mas->node); 6658 struct maple_node *new_node = mte_to_node(new_mas->node); 6659 unsigned long val; 6660 6661 /* Copy the node completely. */ 6662 memcpy(new_node, node, sizeof(struct maple_node)); 6663 /* Update the parent node pointer. */ 6664 val = (unsigned long)node->parent & MAPLE_NODE_MASK; 6665 new_node->parent = ma_parent_ptr(val | (unsigned long)parent); 6666 } 6667 6668 /* 6669 * mas_dup_alloc() - Allocate child nodes for a maple node. 6670 * @mas: The maple state of source tree. 6671 * @new_mas: The maple state of new tree. 6672 * @gfp: The GFP_FLAGS to use for allocations. 6673 * 6674 * This function allocates child nodes for @new_mas->node during the duplication 6675 * process. If memory allocation fails, @mas is set to -ENOMEM. 6676 */ 6677 static inline void mas_dup_alloc(struct ma_state *mas, struct ma_state *new_mas, 6678 gfp_t gfp) 6679 { 6680 struct maple_node *node = mte_to_node(mas->node); 6681 struct maple_node *new_node = mte_to_node(new_mas->node); 6682 enum maple_type type; 6683 unsigned char request, count, i; 6684 void __rcu **slots; 6685 void __rcu **new_slots; 6686 unsigned long val; 6687 6688 /* Allocate memory for child nodes. */ 6689 type = mte_node_type(mas->node); 6690 new_slots = ma_slots(new_node, type); 6691 request = mas_data_end(mas) + 1; 6692 count = mt_alloc_bulk(gfp, request, (void **)new_slots); 6693 if (unlikely(count < request)) { 6694 memset(new_slots, 0, request * sizeof(void *)); 6695 mas_set_err(mas, -ENOMEM); 6696 return; 6697 } 6698 6699 /* Restore node type information in slots. */ 6700 slots = ma_slots(node, type); 6701 for (i = 0; i < count; i++) { 6702 val = (unsigned long)mt_slot_locked(mas->tree, slots, i); 6703 val &= MAPLE_NODE_MASK; 6704 ((unsigned long *)new_slots)[i] |= val; 6705 } 6706 } 6707 6708 /* 6709 * mas_dup_build() - Build a new maple tree from a source tree 6710 * @mas: The maple state of source tree, need to be in MAS_START state. 6711 * @new_mas: The maple state of new tree, need to be in MAS_START state. 6712 * @gfp: The GFP_FLAGS to use for allocations. 6713 * 6714 * This function builds a new tree in DFS preorder. If the memory allocation 6715 * fails, the error code -ENOMEM will be set in @mas, and @new_mas points to the 6716 * last node. mas_dup_free() will free the incomplete duplication of a tree. 6717 * 6718 * Note that the attributes of the two trees need to be exactly the same, and the 6719 * new tree needs to be empty, otherwise -EINVAL will be set in @mas. 6720 */ 6721 static inline void mas_dup_build(struct ma_state *mas, struct ma_state *new_mas, 6722 gfp_t gfp) 6723 { 6724 struct maple_node *node; 6725 struct maple_pnode *parent = NULL; 6726 struct maple_enode *root; 6727 enum maple_type type; 6728 6729 if (unlikely(mt_attr(mas->tree) != mt_attr(new_mas->tree)) || 6730 unlikely(!mtree_empty(new_mas->tree))) { 6731 mas_set_err(mas, -EINVAL); 6732 return; 6733 } 6734 6735 root = mas_start(mas); 6736 if (mas_is_ptr(mas) || mas_is_none(mas)) 6737 goto set_new_tree; 6738 6739 node = mt_alloc_one(gfp); 6740 if (!node) { 6741 new_mas->status = ma_none; 6742 mas_set_err(mas, -ENOMEM); 6743 return; 6744 } 6745 6746 type = mte_node_type(mas->node); 6747 root = mt_mk_node(node, type); 6748 new_mas->node = root; 6749 new_mas->min = 0; 6750 new_mas->max = ULONG_MAX; 6751 root = mte_mk_root(root); 6752 while (1) { 6753 mas_copy_node(mas, new_mas, parent); 6754 if (!mte_is_leaf(mas->node)) { 6755 /* Only allocate child nodes for non-leaf nodes. */ 6756 mas_dup_alloc(mas, new_mas, gfp); 6757 if (unlikely(mas_is_err(mas))) 6758 return; 6759 } else { 6760 /* 6761 * This is the last leaf node and duplication is 6762 * completed. 6763 */ 6764 if (mas->max == ULONG_MAX) 6765 goto done; 6766 6767 /* This is not the last leaf node and needs to go up. */ 6768 do { 6769 mas_ascend(mas); 6770 mas_ascend(new_mas); 6771 } while (mas->offset == mas_data_end(mas)); 6772 6773 /* Move to the next subtree. */ 6774 mas->offset++; 6775 new_mas->offset++; 6776 } 6777 6778 mas_descend(mas); 6779 parent = ma_parent_ptr(mte_to_node(new_mas->node)); 6780 mas_descend(new_mas); 6781 mas->offset = 0; 6782 new_mas->offset = 0; 6783 } 6784 done: 6785 /* Specially handle the parent of the root node. */ 6786 mte_to_node(root)->parent = ma_parent_ptr(mas_tree_parent(new_mas)); 6787 set_new_tree: 6788 /* Make them the same height */ 6789 new_mas->tree->ma_flags = mas->tree->ma_flags; 6790 rcu_assign_pointer(new_mas->tree->ma_root, root); 6791 } 6792 6793 /** 6794 * __mt_dup(): Duplicate an entire maple tree 6795 * @mt: The source maple tree 6796 * @new: The new maple tree 6797 * @gfp: The GFP_FLAGS to use for allocations 6798 * 6799 * This function duplicates a maple tree in Depth-First Search (DFS) pre-order 6800 * traversal. It uses memcpy() to copy nodes in the source tree and allocate 6801 * new child nodes in non-leaf nodes. The new node is exactly the same as the 6802 * source node except for all the addresses stored in it. It will be faster than 6803 * traversing all elements in the source tree and inserting them one by one into 6804 * the new tree. 6805 * The user needs to ensure that the attributes of the source tree and the new 6806 * tree are the same, and the new tree needs to be an empty tree, otherwise 6807 * -EINVAL will be returned. 6808 * Note that the user needs to manually lock the source tree and the new tree. 6809 * 6810 * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If 6811 * the attributes of the two trees are different or the new tree is not an empty 6812 * tree. 6813 */ 6814 int __mt_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp) 6815 { 6816 int ret = 0; 6817 MA_STATE(mas, mt, 0, 0); 6818 MA_STATE(new_mas, new, 0, 0); 6819 6820 mas_dup_build(&mas, &new_mas, gfp); 6821 if (unlikely(mas_is_err(&mas))) { 6822 ret = xa_err(mas.node); 6823 if (ret == -ENOMEM) 6824 mas_dup_free(&new_mas); 6825 } 6826 6827 return ret; 6828 } 6829 EXPORT_SYMBOL(__mt_dup); 6830 6831 /** 6832 * mtree_dup(): Duplicate an entire maple tree 6833 * @mt: The source maple tree 6834 * @new: The new maple tree 6835 * @gfp: The GFP_FLAGS to use for allocations 6836 * 6837 * This function duplicates a maple tree in Depth-First Search (DFS) pre-order 6838 * traversal. It uses memcpy() to copy nodes in the source tree and allocate 6839 * new child nodes in non-leaf nodes. The new node is exactly the same as the 6840 * source node except for all the addresses stored in it. It will be faster than 6841 * traversing all elements in the source tree and inserting them one by one into 6842 * the new tree. 6843 * The user needs to ensure that the attributes of the source tree and the new 6844 * tree are the same, and the new tree needs to be an empty tree, otherwise 6845 * -EINVAL will be returned. 6846 * 6847 * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If 6848 * the attributes of the two trees are different or the new tree is not an empty 6849 * tree. 6850 */ 6851 int mtree_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp) 6852 { 6853 int ret = 0; 6854 MA_STATE(mas, mt, 0, 0); 6855 MA_STATE(new_mas, new, 0, 0); 6856 6857 mas_lock(&new_mas); 6858 mas_lock_nested(&mas, SINGLE_DEPTH_NESTING); 6859 mas_dup_build(&mas, &new_mas, gfp); 6860 mas_unlock(&mas); 6861 if (unlikely(mas_is_err(&mas))) { 6862 ret = xa_err(mas.node); 6863 if (ret == -ENOMEM) 6864 mas_dup_free(&new_mas); 6865 } 6866 6867 mas_unlock(&new_mas); 6868 return ret; 6869 } 6870 EXPORT_SYMBOL(mtree_dup); 6871 6872 /** 6873 * __mt_destroy() - Walk and free all nodes of a locked maple tree. 6874 * @mt: The maple tree 6875 * 6876 * Note: Does not handle locking. 6877 */ 6878 void __mt_destroy(struct maple_tree *mt) 6879 { 6880 void *root = mt_root_locked(mt); 6881 6882 rcu_assign_pointer(mt->ma_root, NULL); 6883 if (xa_is_node(root)) 6884 mte_destroy_walk(root, mt); 6885 6886 mt->ma_flags = mt_attr(mt); 6887 } 6888 EXPORT_SYMBOL_GPL(__mt_destroy); 6889 6890 /** 6891 * mtree_destroy() - Destroy a maple tree 6892 * @mt: The maple tree 6893 * 6894 * Frees all resources used by the tree. Handles locking. 6895 */ 6896 void mtree_destroy(struct maple_tree *mt) 6897 { 6898 mtree_lock(mt); 6899 __mt_destroy(mt); 6900 mtree_unlock(mt); 6901 } 6902 EXPORT_SYMBOL(mtree_destroy); 6903 6904 /** 6905 * mt_find() - Search from the start up until an entry is found. 6906 * @mt: The maple tree 6907 * @index: Pointer which contains the start location of the search 6908 * @max: The maximum value of the search range 6909 * 6910 * Takes RCU read lock internally to protect the search, which does not 6911 * protect the returned pointer after dropping RCU read lock. 6912 * See also: Documentation/core-api/maple_tree.rst 6913 * 6914 * In case that an entry is found @index is updated to point to the next 6915 * possible entry independent whether the found entry is occupying a 6916 * single index or a range if indices. 6917 * 6918 * Return: The entry at or after the @index or %NULL 6919 */ 6920 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max) 6921 { 6922 MA_STATE(mas, mt, *index, *index); 6923 void *entry; 6924 #ifdef CONFIG_DEBUG_MAPLE_TREE 6925 unsigned long copy = *index; 6926 #endif 6927 6928 trace_ma_read(__func__, &mas); 6929 6930 if ((*index) > max) 6931 return NULL; 6932 6933 rcu_read_lock(); 6934 retry: 6935 entry = mas_state_walk(&mas); 6936 if (mas_is_start(&mas)) 6937 goto retry; 6938 6939 if (unlikely(xa_is_zero(entry))) 6940 entry = NULL; 6941 6942 if (entry) 6943 goto unlock; 6944 6945 while (mas_is_active(&mas) && (mas.last < max)) { 6946 entry = mas_next_entry(&mas, max); 6947 if (likely(entry && !xa_is_zero(entry))) 6948 break; 6949 } 6950 6951 if (unlikely(xa_is_zero(entry))) 6952 entry = NULL; 6953 unlock: 6954 rcu_read_unlock(); 6955 if (likely(entry)) { 6956 *index = mas.last + 1; 6957 #ifdef CONFIG_DEBUG_MAPLE_TREE 6958 if (MT_WARN_ON(mt, (*index) && ((*index) <= copy))) 6959 pr_err("index not increased! %lx <= %lx\n", 6960 *index, copy); 6961 #endif 6962 } 6963 6964 return entry; 6965 } 6966 EXPORT_SYMBOL(mt_find); 6967 6968 /** 6969 * mt_find_after() - Search from the start up until an entry is found. 6970 * @mt: The maple tree 6971 * @index: Pointer which contains the start location of the search 6972 * @max: The maximum value to check 6973 * 6974 * Same as mt_find() except that it checks @index for 0 before 6975 * searching. If @index == 0, the search is aborted. This covers a wrap 6976 * around of @index to 0 in an iterator loop. 6977 * 6978 * Return: The entry at or after the @index or %NULL 6979 */ 6980 void *mt_find_after(struct maple_tree *mt, unsigned long *index, 6981 unsigned long max) 6982 { 6983 if (!(*index)) 6984 return NULL; 6985 6986 return mt_find(mt, index, max); 6987 } 6988 EXPORT_SYMBOL(mt_find_after); 6989 6990 #ifdef CONFIG_DEBUG_MAPLE_TREE 6991 atomic_t maple_tree_tests_run; 6992 EXPORT_SYMBOL_GPL(maple_tree_tests_run); 6993 atomic_t maple_tree_tests_passed; 6994 EXPORT_SYMBOL_GPL(maple_tree_tests_passed); 6995 6996 #ifndef __KERNEL__ 6997 extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int); 6998 void mt_set_non_kernel(unsigned int val) 6999 { 7000 kmem_cache_set_non_kernel(maple_node_cache, val); 7001 } 7002 7003 extern unsigned long kmem_cache_get_alloc(struct kmem_cache *); 7004 unsigned long mt_get_alloc_size(void) 7005 { 7006 return kmem_cache_get_alloc(maple_node_cache); 7007 } 7008 7009 extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *); 7010 void mt_zero_nr_tallocated(void) 7011 { 7012 kmem_cache_zero_nr_tallocated(maple_node_cache); 7013 } 7014 7015 extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *); 7016 unsigned int mt_nr_tallocated(void) 7017 { 7018 return kmem_cache_nr_tallocated(maple_node_cache); 7019 } 7020 7021 extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *); 7022 unsigned int mt_nr_allocated(void) 7023 { 7024 return kmem_cache_nr_allocated(maple_node_cache); 7025 } 7026 7027 void mt_cache_shrink(void) 7028 { 7029 } 7030 #else 7031 /* 7032 * mt_cache_shrink() - For testing, don't use this. 7033 * 7034 * Certain testcases can trigger an OOM when combined with other memory 7035 * debugging configuration options. This function is used to reduce the 7036 * possibility of an out of memory even due to kmem_cache objects remaining 7037 * around for longer than usual. 7038 */ 7039 void mt_cache_shrink(void) 7040 { 7041 kmem_cache_shrink(maple_node_cache); 7042 7043 } 7044 EXPORT_SYMBOL_GPL(mt_cache_shrink); 7045 7046 #endif /* not defined __KERNEL__ */ 7047 /* 7048 * mas_get_slot() - Get the entry in the maple state node stored at @offset. 7049 * @mas: The maple state 7050 * @offset: The offset into the slot array to fetch. 7051 * 7052 * Return: The entry stored at @offset. 7053 */ 7054 static inline struct maple_enode *mas_get_slot(struct ma_state *mas, 7055 unsigned char offset) 7056 { 7057 return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)), 7058 offset); 7059 } 7060 7061 /* Depth first search, post-order */ 7062 static void mas_dfs_postorder(struct ma_state *mas, unsigned long max) 7063 { 7064 7065 struct maple_enode *p, *mn = mas->node; 7066 unsigned long p_min, p_max; 7067 7068 mas_next_node(mas, mas_mn(mas), max); 7069 if (!mas_is_overflow(mas)) 7070 return; 7071 7072 if (mte_is_root(mn)) 7073 return; 7074 7075 mas->node = mn; 7076 mas_ascend(mas); 7077 do { 7078 p = mas->node; 7079 p_min = mas->min; 7080 p_max = mas->max; 7081 mas_prev_node(mas, 0); 7082 } while (!mas_is_underflow(mas)); 7083 7084 mas->node = p; 7085 mas->max = p_max; 7086 mas->min = p_min; 7087 } 7088 7089 /* Tree validations */ 7090 static void mt_dump_node(const struct maple_tree *mt, void *entry, 7091 unsigned long min, unsigned long max, unsigned int depth, 7092 enum mt_dump_format format); 7093 static void mt_dump_range(unsigned long min, unsigned long max, 7094 unsigned int depth, enum mt_dump_format format) 7095 { 7096 static const char spaces[] = " "; 7097 7098 switch(format) { 7099 case mt_dump_hex: 7100 if (min == max) 7101 pr_info("%.*s%lx: ", depth * 2, spaces, min); 7102 else 7103 pr_info("%.*s%lx-%lx: ", depth * 2, spaces, min, max); 7104 break; 7105 case mt_dump_dec: 7106 if (min == max) 7107 pr_info("%.*s%lu: ", depth * 2, spaces, min); 7108 else 7109 pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max); 7110 } 7111 } 7112 7113 static void mt_dump_entry(void *entry, unsigned long min, unsigned long max, 7114 unsigned int depth, enum mt_dump_format format) 7115 { 7116 mt_dump_range(min, max, depth, format); 7117 7118 if (xa_is_value(entry)) 7119 pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry), 7120 xa_to_value(entry), entry); 7121 else if (xa_is_zero(entry)) 7122 pr_cont("zero (%ld)\n", xa_to_internal(entry)); 7123 else if (mt_is_reserved(entry)) 7124 pr_cont("UNKNOWN ENTRY (%p)\n", entry); 7125 else 7126 pr_cont("%p\n", entry); 7127 } 7128 7129 static void mt_dump_range64(const struct maple_tree *mt, void *entry, 7130 unsigned long min, unsigned long max, unsigned int depth, 7131 enum mt_dump_format format) 7132 { 7133 struct maple_range_64 *node = &mte_to_node(entry)->mr64; 7134 bool leaf = mte_is_leaf(entry); 7135 unsigned long first = min; 7136 int i; 7137 7138 pr_cont(" contents: "); 7139 for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++) { 7140 switch(format) { 7141 case mt_dump_hex: 7142 pr_cont("%p %lX ", node->slot[i], node->pivot[i]); 7143 break; 7144 case mt_dump_dec: 7145 pr_cont("%p %lu ", node->slot[i], node->pivot[i]); 7146 } 7147 } 7148 pr_cont("%p\n", node->slot[i]); 7149 for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) { 7150 unsigned long last = max; 7151 7152 if (i < (MAPLE_RANGE64_SLOTS - 1)) 7153 last = node->pivot[i]; 7154 else if (!node->slot[i] && max != mt_node_max(entry)) 7155 break; 7156 if (last == 0 && i > 0) 7157 break; 7158 if (leaf) 7159 mt_dump_entry(mt_slot(mt, node->slot, i), 7160 first, last, depth + 1, format); 7161 else if (node->slot[i]) 7162 mt_dump_node(mt, mt_slot(mt, node->slot, i), 7163 first, last, depth + 1, format); 7164 7165 if (last == max) 7166 break; 7167 if (last > max) { 7168 switch(format) { 7169 case mt_dump_hex: 7170 pr_err("node %p last (%lx) > max (%lx) at pivot %d!\n", 7171 node, last, max, i); 7172 break; 7173 case mt_dump_dec: 7174 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n", 7175 node, last, max, i); 7176 } 7177 } 7178 first = last + 1; 7179 } 7180 } 7181 7182 static void mt_dump_arange64(const struct maple_tree *mt, void *entry, 7183 unsigned long min, unsigned long max, unsigned int depth, 7184 enum mt_dump_format format) 7185 { 7186 struct maple_arange_64 *node = &mte_to_node(entry)->ma64; 7187 bool leaf = mte_is_leaf(entry); 7188 unsigned long first = min; 7189 int i; 7190 7191 pr_cont(" contents: "); 7192 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) { 7193 switch (format) { 7194 case mt_dump_hex: 7195 pr_cont("%lx ", node->gap[i]); 7196 break; 7197 case mt_dump_dec: 7198 pr_cont("%lu ", node->gap[i]); 7199 } 7200 } 7201 pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap); 7202 for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++) { 7203 switch (format) { 7204 case mt_dump_hex: 7205 pr_cont("%p %lX ", node->slot[i], node->pivot[i]); 7206 break; 7207 case mt_dump_dec: 7208 pr_cont("%p %lu ", node->slot[i], node->pivot[i]); 7209 } 7210 } 7211 pr_cont("%p\n", node->slot[i]); 7212 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) { 7213 unsigned long last = max; 7214 7215 if (i < (MAPLE_ARANGE64_SLOTS - 1)) 7216 last = node->pivot[i]; 7217 else if (!node->slot[i]) 7218 break; 7219 if (last == 0 && i > 0) 7220 break; 7221 if (leaf) 7222 mt_dump_entry(mt_slot(mt, node->slot, i), 7223 first, last, depth + 1, format); 7224 else if (node->slot[i]) 7225 mt_dump_node(mt, mt_slot(mt, node->slot, i), 7226 first, last, depth + 1, format); 7227 7228 if (last == max) 7229 break; 7230 if (last > max) { 7231 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n", 7232 node, last, max, i); 7233 break; 7234 } 7235 first = last + 1; 7236 } 7237 } 7238 7239 static void mt_dump_node(const struct maple_tree *mt, void *entry, 7240 unsigned long min, unsigned long max, unsigned int depth, 7241 enum mt_dump_format format) 7242 { 7243 struct maple_node *node = mte_to_node(entry); 7244 unsigned int type = mte_node_type(entry); 7245 unsigned int i; 7246 7247 mt_dump_range(min, max, depth, format); 7248 7249 pr_cont("node %p depth %d type %d parent %p", node, depth, type, 7250 node ? node->parent : NULL); 7251 switch (type) { 7252 case maple_dense: 7253 pr_cont("\n"); 7254 for (i = 0; i < MAPLE_NODE_SLOTS; i++) { 7255 if (min + i > max) 7256 pr_cont("OUT OF RANGE: "); 7257 mt_dump_entry(mt_slot(mt, node->slot, i), 7258 min + i, min + i, depth, format); 7259 } 7260 break; 7261 case maple_leaf_64: 7262 case maple_range_64: 7263 mt_dump_range64(mt, entry, min, max, depth, format); 7264 break; 7265 case maple_arange_64: 7266 mt_dump_arange64(mt, entry, min, max, depth, format); 7267 break; 7268 7269 default: 7270 pr_cont(" UNKNOWN TYPE\n"); 7271 } 7272 } 7273 7274 void mt_dump(const struct maple_tree *mt, enum mt_dump_format format) 7275 { 7276 void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt)); 7277 7278 pr_info("maple_tree(%p) flags %X, height %u root %p\n", 7279 mt, mt->ma_flags, mt_height(mt), entry); 7280 if (!xa_is_node(entry)) 7281 mt_dump_entry(entry, 0, 0, 0, format); 7282 else if (entry) 7283 mt_dump_node(mt, entry, 0, mt_node_max(entry), 0, format); 7284 } 7285 EXPORT_SYMBOL_GPL(mt_dump); 7286 7287 /* 7288 * Calculate the maximum gap in a node and check if that's what is reported in 7289 * the parent (unless root). 7290 */ 7291 static void mas_validate_gaps(struct ma_state *mas) 7292 { 7293 struct maple_enode *mte = mas->node; 7294 struct maple_node *p_mn, *node = mte_to_node(mte); 7295 enum maple_type mt = mte_node_type(mas->node); 7296 unsigned long gap = 0, max_gap = 0; 7297 unsigned long p_end, p_start = mas->min; 7298 unsigned char p_slot, offset; 7299 unsigned long *gaps = NULL; 7300 unsigned long *pivots = ma_pivots(node, mt); 7301 unsigned int i; 7302 7303 if (ma_is_dense(mt)) { 7304 for (i = 0; i < mt_slot_count(mte); i++) { 7305 if (mas_get_slot(mas, i)) { 7306 if (gap > max_gap) 7307 max_gap = gap; 7308 gap = 0; 7309 continue; 7310 } 7311 gap++; 7312 } 7313 goto counted; 7314 } 7315 7316 gaps = ma_gaps(node, mt); 7317 for (i = 0; i < mt_slot_count(mte); i++) { 7318 p_end = mas_safe_pivot(mas, pivots, i, mt); 7319 7320 if (!gaps) { 7321 if (!mas_get_slot(mas, i)) 7322 gap = p_end - p_start + 1; 7323 } else { 7324 void *entry = mas_get_slot(mas, i); 7325 7326 gap = gaps[i]; 7327 MT_BUG_ON(mas->tree, !entry); 7328 7329 if (gap > p_end - p_start + 1) { 7330 pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n", 7331 mas_mn(mas), i, gap, p_end, p_start, 7332 p_end - p_start + 1); 7333 MT_BUG_ON(mas->tree, gap > p_end - p_start + 1); 7334 } 7335 } 7336 7337 if (gap > max_gap) 7338 max_gap = gap; 7339 7340 p_start = p_end + 1; 7341 if (p_end >= mas->max) 7342 break; 7343 } 7344 7345 counted: 7346 if (mt == maple_arange_64) { 7347 MT_BUG_ON(mas->tree, !gaps); 7348 offset = ma_meta_gap(node); 7349 if (offset > i) { 7350 pr_err("gap offset %p[%u] is invalid\n", node, offset); 7351 MT_BUG_ON(mas->tree, 1); 7352 } 7353 7354 if (gaps[offset] != max_gap) { 7355 pr_err("gap %p[%u] is not the largest gap %lu\n", 7356 node, offset, max_gap); 7357 MT_BUG_ON(mas->tree, 1); 7358 } 7359 7360 for (i++ ; i < mt_slot_count(mte); i++) { 7361 if (gaps[i] != 0) { 7362 pr_err("gap %p[%u] beyond node limit != 0\n", 7363 node, i); 7364 MT_BUG_ON(mas->tree, 1); 7365 } 7366 } 7367 } 7368 7369 if (mte_is_root(mte)) 7370 return; 7371 7372 p_slot = mte_parent_slot(mas->node); 7373 p_mn = mte_parent(mte); 7374 MT_BUG_ON(mas->tree, max_gap > mas->max); 7375 if (ma_gaps(p_mn, mas_parent_type(mas, mte))[p_slot] != max_gap) { 7376 pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap); 7377 mt_dump(mas->tree, mt_dump_hex); 7378 MT_BUG_ON(mas->tree, 1); 7379 } 7380 } 7381 7382 static void mas_validate_parent_slot(struct ma_state *mas) 7383 { 7384 struct maple_node *parent; 7385 struct maple_enode *node; 7386 enum maple_type p_type; 7387 unsigned char p_slot; 7388 void __rcu **slots; 7389 int i; 7390 7391 if (mte_is_root(mas->node)) 7392 return; 7393 7394 p_slot = mte_parent_slot(mas->node); 7395 p_type = mas_parent_type(mas, mas->node); 7396 parent = mte_parent(mas->node); 7397 slots = ma_slots(parent, p_type); 7398 MT_BUG_ON(mas->tree, mas_mn(mas) == parent); 7399 7400 /* Check prev/next parent slot for duplicate node entry */ 7401 7402 for (i = 0; i < mt_slots[p_type]; i++) { 7403 node = mas_slot(mas, slots, i); 7404 if (i == p_slot) { 7405 if (node != mas->node) 7406 pr_err("parent %p[%u] does not have %p\n", 7407 parent, i, mas_mn(mas)); 7408 MT_BUG_ON(mas->tree, node != mas->node); 7409 } else if (node == mas->node) { 7410 pr_err("Invalid child %p at parent %p[%u] p_slot %u\n", 7411 mas_mn(mas), parent, i, p_slot); 7412 MT_BUG_ON(mas->tree, node == mas->node); 7413 } 7414 } 7415 } 7416 7417 static void mas_validate_child_slot(struct ma_state *mas) 7418 { 7419 enum maple_type type = mte_node_type(mas->node); 7420 void __rcu **slots = ma_slots(mte_to_node(mas->node), type); 7421 unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type); 7422 struct maple_enode *child; 7423 unsigned char i; 7424 7425 if (mte_is_leaf(mas->node)) 7426 return; 7427 7428 for (i = 0; i < mt_slots[type]; i++) { 7429 child = mas_slot(mas, slots, i); 7430 7431 if (!child) { 7432 pr_err("Non-leaf node lacks child at %p[%u]\n", 7433 mas_mn(mas), i); 7434 MT_BUG_ON(mas->tree, 1); 7435 } 7436 7437 if (mte_parent_slot(child) != i) { 7438 pr_err("Slot error at %p[%u]: child %p has pslot %u\n", 7439 mas_mn(mas), i, mte_to_node(child), 7440 mte_parent_slot(child)); 7441 MT_BUG_ON(mas->tree, 1); 7442 } 7443 7444 if (mte_parent(child) != mte_to_node(mas->node)) { 7445 pr_err("child %p has parent %p not %p\n", 7446 mte_to_node(child), mte_parent(child), 7447 mte_to_node(mas->node)); 7448 MT_BUG_ON(mas->tree, 1); 7449 } 7450 7451 if (i < mt_pivots[type] && pivots[i] == mas->max) 7452 break; 7453 } 7454 } 7455 7456 /* 7457 * Validate all pivots are within mas->min and mas->max, check metadata ends 7458 * where the maximum ends and ensure there is no slots or pivots set outside of 7459 * the end of the data. 7460 */ 7461 static void mas_validate_limits(struct ma_state *mas) 7462 { 7463 int i; 7464 unsigned long prev_piv = 0; 7465 enum maple_type type = mte_node_type(mas->node); 7466 void __rcu **slots = ma_slots(mte_to_node(mas->node), type); 7467 unsigned long *pivots = ma_pivots(mas_mn(mas), type); 7468 7469 for (i = 0; i < mt_slots[type]; i++) { 7470 unsigned long piv; 7471 7472 piv = mas_safe_pivot(mas, pivots, i, type); 7473 7474 if (!piv && (i != 0)) { 7475 pr_err("Missing node limit pivot at %p[%u]", 7476 mas_mn(mas), i); 7477 MAS_WARN_ON(mas, 1); 7478 } 7479 7480 if (prev_piv > piv) { 7481 pr_err("%p[%u] piv %lu < prev_piv %lu\n", 7482 mas_mn(mas), i, piv, prev_piv); 7483 MAS_WARN_ON(mas, piv < prev_piv); 7484 } 7485 7486 if (piv < mas->min) { 7487 pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i, 7488 piv, mas->min); 7489 MAS_WARN_ON(mas, piv < mas->min); 7490 } 7491 if (piv > mas->max) { 7492 pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i, 7493 piv, mas->max); 7494 MAS_WARN_ON(mas, piv > mas->max); 7495 } 7496 prev_piv = piv; 7497 if (piv == mas->max) 7498 break; 7499 } 7500 7501 if (mas_data_end(mas) != i) { 7502 pr_err("node%p: data_end %u != the last slot offset %u\n", 7503 mas_mn(mas), mas_data_end(mas), i); 7504 MT_BUG_ON(mas->tree, 1); 7505 } 7506 7507 for (i += 1; i < mt_slots[type]; i++) { 7508 void *entry = mas_slot(mas, slots, i); 7509 7510 if (entry && (i != mt_slots[type] - 1)) { 7511 pr_err("%p[%u] should not have entry %p\n", mas_mn(mas), 7512 i, entry); 7513 MT_BUG_ON(mas->tree, entry != NULL); 7514 } 7515 7516 if (i < mt_pivots[type]) { 7517 unsigned long piv = pivots[i]; 7518 7519 if (!piv) 7520 continue; 7521 7522 pr_err("%p[%u] should not have piv %lu\n", 7523 mas_mn(mas), i, piv); 7524 MAS_WARN_ON(mas, i < mt_pivots[type] - 1); 7525 } 7526 } 7527 } 7528 7529 static void mt_validate_nulls(struct maple_tree *mt) 7530 { 7531 void *entry, *last = (void *)1; 7532 unsigned char offset = 0; 7533 void __rcu **slots; 7534 MA_STATE(mas, mt, 0, 0); 7535 7536 mas_start(&mas); 7537 if (mas_is_none(&mas) || (mas_is_ptr(&mas))) 7538 return; 7539 7540 while (!mte_is_leaf(mas.node)) 7541 mas_descend(&mas); 7542 7543 slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node)); 7544 do { 7545 entry = mas_slot(&mas, slots, offset); 7546 if (!last && !entry) { 7547 pr_err("Sequential nulls end at %p[%u]\n", 7548 mas_mn(&mas), offset); 7549 } 7550 MT_BUG_ON(mt, !last && !entry); 7551 last = entry; 7552 if (offset == mas_data_end(&mas)) { 7553 mas_next_node(&mas, mas_mn(&mas), ULONG_MAX); 7554 if (mas_is_overflow(&mas)) 7555 return; 7556 offset = 0; 7557 slots = ma_slots(mte_to_node(mas.node), 7558 mte_node_type(mas.node)); 7559 } else { 7560 offset++; 7561 } 7562 7563 } while (!mas_is_overflow(&mas)); 7564 } 7565 7566 /* 7567 * validate a maple tree by checking: 7568 * 1. The limits (pivots are within mas->min to mas->max) 7569 * 2. The gap is correctly set in the parents 7570 */ 7571 void mt_validate(struct maple_tree *mt) 7572 { 7573 unsigned char end; 7574 7575 MA_STATE(mas, mt, 0, 0); 7576 rcu_read_lock(); 7577 mas_start(&mas); 7578 if (!mas_is_active(&mas)) 7579 goto done; 7580 7581 while (!mte_is_leaf(mas.node)) 7582 mas_descend(&mas); 7583 7584 while (!mas_is_overflow(&mas)) { 7585 MAS_WARN_ON(&mas, mte_dead_node(mas.node)); 7586 end = mas_data_end(&mas); 7587 if (MAS_WARN_ON(&mas, (end < mt_min_slot_count(mas.node)) && 7588 (mas.max != ULONG_MAX))) { 7589 pr_err("Invalid size %u of %p\n", end, mas_mn(&mas)); 7590 } 7591 7592 mas_validate_parent_slot(&mas); 7593 mas_validate_limits(&mas); 7594 mas_validate_child_slot(&mas); 7595 if (mt_is_alloc(mt)) 7596 mas_validate_gaps(&mas); 7597 mas_dfs_postorder(&mas, ULONG_MAX); 7598 } 7599 mt_validate_nulls(mt); 7600 done: 7601 rcu_read_unlock(); 7602 7603 } 7604 EXPORT_SYMBOL_GPL(mt_validate); 7605 7606 void mas_dump(const struct ma_state *mas) 7607 { 7608 pr_err("MAS: tree=%p enode=%p ", mas->tree, mas->node); 7609 switch (mas->status) { 7610 case ma_active: 7611 pr_err("(ma_active)"); 7612 break; 7613 case ma_none: 7614 pr_err("(ma_none)"); 7615 break; 7616 case ma_root: 7617 pr_err("(ma_root)"); 7618 break; 7619 case ma_start: 7620 pr_err("(ma_start) "); 7621 break; 7622 case ma_pause: 7623 pr_err("(ma_pause) "); 7624 break; 7625 case ma_overflow: 7626 pr_err("(ma_overflow) "); 7627 break; 7628 case ma_underflow: 7629 pr_err("(ma_underflow) "); 7630 break; 7631 case ma_error: 7632 pr_err("(ma_error) "); 7633 break; 7634 } 7635 7636 pr_err("[%u/%u] index=%lx last=%lx\n", mas->offset, mas->end, 7637 mas->index, mas->last); 7638 pr_err(" min=%lx max=%lx alloc=%p, depth=%u, flags=%x\n", 7639 mas->min, mas->max, mas->alloc, mas->depth, mas->mas_flags); 7640 if (mas->index > mas->last) 7641 pr_err("Check index & last\n"); 7642 } 7643 EXPORT_SYMBOL_GPL(mas_dump); 7644 7645 void mas_wr_dump(const struct ma_wr_state *wr_mas) 7646 { 7647 pr_err("WR_MAS: node=%p r_min=%lx r_max=%lx\n", 7648 wr_mas->node, wr_mas->r_min, wr_mas->r_max); 7649 pr_err(" type=%u off_end=%u, node_end=%u, end_piv=%lx\n", 7650 wr_mas->type, wr_mas->offset_end, wr_mas->mas->end, 7651 wr_mas->end_piv); 7652 } 7653 EXPORT_SYMBOL_GPL(mas_wr_dump); 7654 7655 #endif /* CONFIG_DEBUG_MAPLE_TREE */ 7656