xref: /linux/lib/maple_tree.c (revision 0c3beacf681ec897e0b36685a9b49d01f5cb2dfb)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Maple Tree implementation
4  * Copyright (c) 2018-2022 Oracle Corporation
5  * Authors: Liam R. Howlett <Liam.Howlett@oracle.com>
6  *	    Matthew Wilcox <willy@infradead.org>
7  * Copyright (c) 2023 ByteDance
8  * Author: Peng Zhang <zhangpeng.00@bytedance.com>
9  */
10 
11 /*
12  * DOC: Interesting implementation details of the Maple Tree
13  *
14  * Each node type has a number of slots for entries and a number of slots for
15  * pivots.  In the case of dense nodes, the pivots are implied by the position
16  * and are simply the slot index + the minimum of the node.
17  *
18  * In regular B-Tree terms, pivots are called keys.  The term pivot is used to
19  * indicate that the tree is specifying ranges.  Pivots may appear in the
20  * subtree with an entry attached to the value whereas keys are unique to a
21  * specific position of a B-tree.  Pivot values are inclusive of the slot with
22  * the same index.
23  *
24  *
25  * The following illustrates the layout of a range64 nodes slots and pivots.
26  *
27  *
28  *  Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
29  *           ┬   ┬   ┬   ┬     ┬    ┬    ┬    ┬    ┬
30  *           │   │   │   │     │    │    │    │    └─ Implied maximum
31  *           │   │   │   │     │    │    │    └─ Pivot 14
32  *           │   │   │   │     │    │    └─ Pivot 13
33  *           │   │   │   │     │    └─ Pivot 12
34  *           │   │   │   │     └─ Pivot 11
35  *           │   │   │   └─ Pivot 2
36  *           │   │   └─ Pivot 1
37  *           │   └─ Pivot 0
38  *           └─  Implied minimum
39  *
40  * Slot contents:
41  *  Internal (non-leaf) nodes contain pointers to other nodes.
42  *  Leaf nodes contain entries.
43  *
44  * The location of interest is often referred to as an offset.  All offsets have
45  * a slot, but the last offset has an implied pivot from the node above (or
46  * UINT_MAX for the root node.
47  *
48  * Ranges complicate certain write activities.  When modifying any of
49  * the B-tree variants, it is known that one entry will either be added or
50  * deleted.  When modifying the Maple Tree, one store operation may overwrite
51  * the entire data set, or one half of the tree, or the middle half of the tree.
52  *
53  */
54 
55 
56 #include <linux/maple_tree.h>
57 #include <linux/xarray.h>
58 #include <linux/types.h>
59 #include <linux/export.h>
60 #include <linux/slab.h>
61 #include <linux/limits.h>
62 #include <asm/barrier.h>
63 
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/maple_tree.h>
66 
67 /*
68  * Kernel pointer hashing renders much of the maple tree dump useless as tagged
69  * pointers get hashed to arbitrary values.
70  *
71  * If CONFIG_DEBUG_VM_MAPLE_TREE is set we are in a debug mode where it is
72  * permissible to bypass this. Otherwise remain cautious and retain the hashing.
73  *
74  * Userland doesn't know about %px so also use %p there.
75  */
76 #if defined(__KERNEL__) && defined(CONFIG_DEBUG_VM_MAPLE_TREE)
77 #define PTR_FMT "%px"
78 #else
79 #define PTR_FMT "%p"
80 #endif
81 
82 #define MA_ROOT_PARENT 1
83 
84 /*
85  * Maple state flags
86  * * MA_STATE_BULK		- Bulk insert mode
87  * * MA_STATE_REBALANCE		- Indicate a rebalance during bulk insert
88  * * MA_STATE_PREALLOC		- Preallocated nodes, WARN_ON allocation
89  */
90 #define MA_STATE_BULK		1
91 #define MA_STATE_REBALANCE	2
92 #define MA_STATE_PREALLOC	4
93 
94 #define ma_parent_ptr(x) ((struct maple_pnode *)(x))
95 #define mas_tree_parent(x) ((unsigned long)(x->tree) | MA_ROOT_PARENT)
96 #define ma_mnode_ptr(x) ((struct maple_node *)(x))
97 #define ma_enode_ptr(x) ((struct maple_enode *)(x))
98 static struct kmem_cache *maple_node_cache;
99 
100 #ifdef CONFIG_DEBUG_MAPLE_TREE
101 static const unsigned long mt_max[] = {
102 	[maple_dense]		= MAPLE_NODE_SLOTS,
103 	[maple_leaf_64]		= ULONG_MAX,
104 	[maple_range_64]	= ULONG_MAX,
105 	[maple_arange_64]	= ULONG_MAX,
106 };
107 #define mt_node_max(x) mt_max[mte_node_type(x)]
108 #endif
109 
110 static const unsigned char mt_slots[] = {
111 	[maple_dense]		= MAPLE_NODE_SLOTS,
112 	[maple_leaf_64]		= MAPLE_RANGE64_SLOTS,
113 	[maple_range_64]	= MAPLE_RANGE64_SLOTS,
114 	[maple_arange_64]	= MAPLE_ARANGE64_SLOTS,
115 };
116 #define mt_slot_count(x) mt_slots[mte_node_type(x)]
117 
118 static const unsigned char mt_pivots[] = {
119 	[maple_dense]		= 0,
120 	[maple_leaf_64]		= MAPLE_RANGE64_SLOTS - 1,
121 	[maple_range_64]	= MAPLE_RANGE64_SLOTS - 1,
122 	[maple_arange_64]	= MAPLE_ARANGE64_SLOTS - 1,
123 };
124 #define mt_pivot_count(x) mt_pivots[mte_node_type(x)]
125 
126 static const unsigned char mt_min_slots[] = {
127 	[maple_dense]		= MAPLE_NODE_SLOTS / 2,
128 	[maple_leaf_64]		= (MAPLE_RANGE64_SLOTS / 2) - 2,
129 	[maple_range_64]	= (MAPLE_RANGE64_SLOTS / 2) - 2,
130 	[maple_arange_64]	= (MAPLE_ARANGE64_SLOTS / 2) - 1,
131 };
132 #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)]
133 
134 #define MAPLE_BIG_NODE_SLOTS	(MAPLE_RANGE64_SLOTS * 2 + 2)
135 #define MAPLE_BIG_NODE_GAPS	(MAPLE_ARANGE64_SLOTS * 2 + 1)
136 
137 struct maple_big_node {
138 	unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1];
139 	union {
140 		struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS];
141 		struct {
142 			unsigned long padding[MAPLE_BIG_NODE_GAPS];
143 			unsigned long gap[MAPLE_BIG_NODE_GAPS];
144 		};
145 	};
146 	unsigned char b_end;
147 	enum maple_type type;
148 };
149 
150 /*
151  * The maple_subtree_state is used to build a tree to replace a segment of an
152  * existing tree in a more atomic way.  Any walkers of the older tree will hit a
153  * dead node and restart on updates.
154  */
155 struct maple_subtree_state {
156 	struct ma_state *orig_l;	/* Original left side of subtree */
157 	struct ma_state *orig_r;	/* Original right side of subtree */
158 	struct ma_state *l;		/* New left side of subtree */
159 	struct ma_state *m;		/* New middle of subtree (rare) */
160 	struct ma_state *r;		/* New right side of subtree */
161 	struct ma_topiary *free;	/* nodes to be freed */
162 	struct ma_topiary *destroy;	/* Nodes to be destroyed (walked and freed) */
163 	struct maple_big_node *bn;
164 };
165 
166 #ifdef CONFIG_KASAN_STACK
167 /* Prevent mas_wr_bnode() from exceeding the stack frame limit */
168 #define noinline_for_kasan noinline_for_stack
169 #else
170 #define noinline_for_kasan inline
171 #endif
172 
173 /* Functions */
174 static inline struct maple_node *mt_alloc_one(gfp_t gfp)
175 {
176 	return kmem_cache_alloc(maple_node_cache, gfp);
177 }
178 
179 static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes)
180 {
181 	return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes);
182 }
183 
184 static inline void mt_free_one(struct maple_node *node)
185 {
186 	kmem_cache_free(maple_node_cache, node);
187 }
188 
189 static inline void mt_free_bulk(size_t size, void __rcu **nodes)
190 {
191 	kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes);
192 }
193 
194 static void mt_free_rcu(struct rcu_head *head)
195 {
196 	struct maple_node *node = container_of(head, struct maple_node, rcu);
197 
198 	kmem_cache_free(maple_node_cache, node);
199 }
200 
201 /*
202  * ma_free_rcu() - Use rcu callback to free a maple node
203  * @node: The node to free
204  *
205  * The maple tree uses the parent pointer to indicate this node is no longer in
206  * use and will be freed.
207  */
208 static void ma_free_rcu(struct maple_node *node)
209 {
210 	WARN_ON(node->parent != ma_parent_ptr(node));
211 	call_rcu(&node->rcu, mt_free_rcu);
212 }
213 
214 static void mas_set_height(struct ma_state *mas)
215 {
216 	unsigned int new_flags = mas->tree->ma_flags;
217 
218 	new_flags &= ~MT_FLAGS_HEIGHT_MASK;
219 	MAS_BUG_ON(mas, mas->depth > MAPLE_HEIGHT_MAX);
220 	new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET;
221 	mas->tree->ma_flags = new_flags;
222 }
223 
224 static unsigned int mas_mt_height(struct ma_state *mas)
225 {
226 	return mt_height(mas->tree);
227 }
228 
229 static inline unsigned int mt_attr(struct maple_tree *mt)
230 {
231 	return mt->ma_flags & ~MT_FLAGS_HEIGHT_MASK;
232 }
233 
234 static __always_inline enum maple_type mte_node_type(
235 		const struct maple_enode *entry)
236 {
237 	return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) &
238 		MAPLE_NODE_TYPE_MASK;
239 }
240 
241 static __always_inline bool ma_is_dense(const enum maple_type type)
242 {
243 	return type < maple_leaf_64;
244 }
245 
246 static __always_inline bool ma_is_leaf(const enum maple_type type)
247 {
248 	return type < maple_range_64;
249 }
250 
251 static __always_inline bool mte_is_leaf(const struct maple_enode *entry)
252 {
253 	return ma_is_leaf(mte_node_type(entry));
254 }
255 
256 /*
257  * We also reserve values with the bottom two bits set to '10' which are
258  * below 4096
259  */
260 static __always_inline bool mt_is_reserved(const void *entry)
261 {
262 	return ((unsigned long)entry < MAPLE_RESERVED_RANGE) &&
263 		xa_is_internal(entry);
264 }
265 
266 static __always_inline void mas_set_err(struct ma_state *mas, long err)
267 {
268 	mas->node = MA_ERROR(err);
269 	mas->status = ma_error;
270 }
271 
272 static __always_inline bool mas_is_ptr(const struct ma_state *mas)
273 {
274 	return mas->status == ma_root;
275 }
276 
277 static __always_inline bool mas_is_start(const struct ma_state *mas)
278 {
279 	return mas->status == ma_start;
280 }
281 
282 static __always_inline bool mas_is_none(const struct ma_state *mas)
283 {
284 	return mas->status == ma_none;
285 }
286 
287 static __always_inline bool mas_is_paused(const struct ma_state *mas)
288 {
289 	return mas->status == ma_pause;
290 }
291 
292 static __always_inline bool mas_is_overflow(struct ma_state *mas)
293 {
294 	return mas->status == ma_overflow;
295 }
296 
297 static inline bool mas_is_underflow(struct ma_state *mas)
298 {
299 	return mas->status == ma_underflow;
300 }
301 
302 static __always_inline struct maple_node *mte_to_node(
303 		const struct maple_enode *entry)
304 {
305 	return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK);
306 }
307 
308 /*
309  * mte_to_mat() - Convert a maple encoded node to a maple topiary node.
310  * @entry: The maple encoded node
311  *
312  * Return: a maple topiary pointer
313  */
314 static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
315 {
316 	return (struct maple_topiary *)
317 		((unsigned long)entry & ~MAPLE_NODE_MASK);
318 }
319 
320 /*
321  * mas_mn() - Get the maple state node.
322  * @mas: The maple state
323  *
324  * Return: the maple node (not encoded - bare pointer).
325  */
326 static inline struct maple_node *mas_mn(const struct ma_state *mas)
327 {
328 	return mte_to_node(mas->node);
329 }
330 
331 /*
332  * mte_set_node_dead() - Set a maple encoded node as dead.
333  * @mn: The maple encoded node.
334  */
335 static inline void mte_set_node_dead(struct maple_enode *mn)
336 {
337 	mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn));
338 	smp_wmb(); /* Needed for RCU */
339 }
340 
341 /* Bit 1 indicates the root is a node */
342 #define MAPLE_ROOT_NODE			0x02
343 /* maple_type stored bit 3-6 */
344 #define MAPLE_ENODE_TYPE_SHIFT		0x03
345 /* Bit 2 means a NULL somewhere below */
346 #define MAPLE_ENODE_NULL		0x04
347 
348 static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
349 					     enum maple_type type)
350 {
351 	return (void *)((unsigned long)node |
352 			(type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL);
353 }
354 
355 static inline void *mte_mk_root(const struct maple_enode *node)
356 {
357 	return (void *)((unsigned long)node | MAPLE_ROOT_NODE);
358 }
359 
360 static inline void *mte_safe_root(const struct maple_enode *node)
361 {
362 	return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE);
363 }
364 
365 static inline void __maybe_unused *mte_set_full(const struct maple_enode *node)
366 {
367 	return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL);
368 }
369 
370 static inline void __maybe_unused *mte_clear_full(const struct maple_enode *node)
371 {
372 	return (void *)((unsigned long)node | MAPLE_ENODE_NULL);
373 }
374 
375 static inline bool __maybe_unused mte_has_null(const struct maple_enode *node)
376 {
377 	return (unsigned long)node & MAPLE_ENODE_NULL;
378 }
379 
380 static __always_inline bool ma_is_root(struct maple_node *node)
381 {
382 	return ((unsigned long)node->parent & MA_ROOT_PARENT);
383 }
384 
385 static __always_inline bool mte_is_root(const struct maple_enode *node)
386 {
387 	return ma_is_root(mte_to_node(node));
388 }
389 
390 static inline bool mas_is_root_limits(const struct ma_state *mas)
391 {
392 	return !mas->min && mas->max == ULONG_MAX;
393 }
394 
395 static __always_inline bool mt_is_alloc(struct maple_tree *mt)
396 {
397 	return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE);
398 }
399 
400 /*
401  * The Parent Pointer
402  * Excluding root, the parent pointer is 256B aligned like all other tree nodes.
403  * When storing a 32 or 64 bit values, the offset can fit into 5 bits.  The 16
404  * bit values need an extra bit to store the offset.  This extra bit comes from
405  * a reuse of the last bit in the node type.  This is possible by using bit 1 to
406  * indicate if bit 2 is part of the type or the slot.
407  *
408  * Note types:
409  *  0x??1 = Root
410  *  0x?00 = 16 bit nodes
411  *  0x010 = 32 bit nodes
412  *  0x110 = 64 bit nodes
413  *
414  * Slot size and alignment
415  *  0b??1 : Root
416  *  0b?00 : 16 bit values, type in 0-1, slot in 2-7
417  *  0b010 : 32 bit values, type in 0-2, slot in 3-7
418  *  0b110 : 64 bit values, type in 0-2, slot in 3-7
419  */
420 
421 #define MAPLE_PARENT_ROOT		0x01
422 
423 #define MAPLE_PARENT_SLOT_SHIFT		0x03
424 #define MAPLE_PARENT_SLOT_MASK		0xF8
425 
426 #define MAPLE_PARENT_16B_SLOT_SHIFT	0x02
427 #define MAPLE_PARENT_16B_SLOT_MASK	0xFC
428 
429 #define MAPLE_PARENT_RANGE64		0x06
430 #define MAPLE_PARENT_RANGE32		0x04
431 #define MAPLE_PARENT_NOT_RANGE16	0x02
432 
433 /*
434  * mte_parent_shift() - Get the parent shift for the slot storage.
435  * @parent: The parent pointer cast as an unsigned long
436  * Return: The shift into that pointer to the star to of the slot
437  */
438 static inline unsigned long mte_parent_shift(unsigned long parent)
439 {
440 	/* Note bit 1 == 0 means 16B */
441 	if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
442 		return MAPLE_PARENT_SLOT_SHIFT;
443 
444 	return MAPLE_PARENT_16B_SLOT_SHIFT;
445 }
446 
447 /*
448  * mte_parent_slot_mask() - Get the slot mask for the parent.
449  * @parent: The parent pointer cast as an unsigned long.
450  * Return: The slot mask for that parent.
451  */
452 static inline unsigned long mte_parent_slot_mask(unsigned long parent)
453 {
454 	/* Note bit 1 == 0 means 16B */
455 	if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
456 		return MAPLE_PARENT_SLOT_MASK;
457 
458 	return MAPLE_PARENT_16B_SLOT_MASK;
459 }
460 
461 /*
462  * mas_parent_type() - Return the maple_type of the parent from the stored
463  * parent type.
464  * @mas: The maple state
465  * @enode: The maple_enode to extract the parent's enum
466  * Return: The node->parent maple_type
467  */
468 static inline
469 enum maple_type mas_parent_type(struct ma_state *mas, struct maple_enode *enode)
470 {
471 	unsigned long p_type;
472 
473 	p_type = (unsigned long)mte_to_node(enode)->parent;
474 	if (WARN_ON(p_type & MAPLE_PARENT_ROOT))
475 		return 0;
476 
477 	p_type &= MAPLE_NODE_MASK;
478 	p_type &= ~mte_parent_slot_mask(p_type);
479 	switch (p_type) {
480 	case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */
481 		if (mt_is_alloc(mas->tree))
482 			return maple_arange_64;
483 		return maple_range_64;
484 	}
485 
486 	return 0;
487 }
488 
489 /*
490  * mas_set_parent() - Set the parent node and encode the slot
491  * @mas: The maple state
492  * @enode: The encoded maple node.
493  * @parent: The encoded maple node that is the parent of @enode.
494  * @slot: The slot that @enode resides in @parent.
495  *
496  * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
497  * parent type.
498  */
499 static inline
500 void mas_set_parent(struct ma_state *mas, struct maple_enode *enode,
501 		    const struct maple_enode *parent, unsigned char slot)
502 {
503 	unsigned long val = (unsigned long)parent;
504 	unsigned long shift;
505 	unsigned long type;
506 	enum maple_type p_type = mte_node_type(parent);
507 
508 	MAS_BUG_ON(mas, p_type == maple_dense);
509 	MAS_BUG_ON(mas, p_type == maple_leaf_64);
510 
511 	switch (p_type) {
512 	case maple_range_64:
513 	case maple_arange_64:
514 		shift = MAPLE_PARENT_SLOT_SHIFT;
515 		type = MAPLE_PARENT_RANGE64;
516 		break;
517 	default:
518 	case maple_dense:
519 	case maple_leaf_64:
520 		shift = type = 0;
521 		break;
522 	}
523 
524 	val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */
525 	val |= (slot << shift) | type;
526 	mte_to_node(enode)->parent = ma_parent_ptr(val);
527 }
528 
529 /*
530  * mte_parent_slot() - get the parent slot of @enode.
531  * @enode: The encoded maple node.
532  *
533  * Return: The slot in the parent node where @enode resides.
534  */
535 static __always_inline
536 unsigned int mte_parent_slot(const struct maple_enode *enode)
537 {
538 	unsigned long val = (unsigned long)mte_to_node(enode)->parent;
539 
540 	if (unlikely(val & MA_ROOT_PARENT))
541 		return 0;
542 
543 	/*
544 	 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost
545 	 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT
546 	 */
547 	return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val);
548 }
549 
550 /*
551  * mte_parent() - Get the parent of @node.
552  * @enode: The encoded maple node.
553  *
554  * Return: The parent maple node.
555  */
556 static __always_inline
557 struct maple_node *mte_parent(const struct maple_enode *enode)
558 {
559 	return (void *)((unsigned long)
560 			(mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK);
561 }
562 
563 /*
564  * ma_dead_node() - check if the @enode is dead.
565  * @enode: The encoded maple node
566  *
567  * Return: true if dead, false otherwise.
568  */
569 static __always_inline bool ma_dead_node(const struct maple_node *node)
570 {
571 	struct maple_node *parent;
572 
573 	/* Do not reorder reads from the node prior to the parent check */
574 	smp_rmb();
575 	parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK);
576 	return (parent == node);
577 }
578 
579 /*
580  * mte_dead_node() - check if the @enode is dead.
581  * @enode: The encoded maple node
582  *
583  * Return: true if dead, false otherwise.
584  */
585 static __always_inline bool mte_dead_node(const struct maple_enode *enode)
586 {
587 	struct maple_node *parent, *node;
588 
589 	node = mte_to_node(enode);
590 	/* Do not reorder reads from the node prior to the parent check */
591 	smp_rmb();
592 	parent = mte_parent(enode);
593 	return (parent == node);
594 }
595 
596 /*
597  * mas_allocated() - Get the number of nodes allocated in a maple state.
598  * @mas: The maple state
599  *
600  * The ma_state alloc member is overloaded to hold a pointer to the first
601  * allocated node or to the number of requested nodes to allocate.  If bit 0 is
602  * set, then the alloc contains the number of requested nodes.  If there is an
603  * allocated node, then the total allocated nodes is in that node.
604  *
605  * Return: The total number of nodes allocated
606  */
607 static inline unsigned long mas_allocated(const struct ma_state *mas)
608 {
609 	if (!mas->alloc || ((unsigned long)mas->alloc & 0x1))
610 		return 0;
611 
612 	return mas->alloc->total;
613 }
614 
615 /*
616  * mas_set_alloc_req() - Set the requested number of allocations.
617  * @mas: the maple state
618  * @count: the number of allocations.
619  *
620  * The requested number of allocations is either in the first allocated node,
621  * located in @mas->alloc->request_count, or directly in @mas->alloc if there is
622  * no allocated node.  Set the request either in the node or do the necessary
623  * encoding to store in @mas->alloc directly.
624  */
625 static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count)
626 {
627 	if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) {
628 		if (!count)
629 			mas->alloc = NULL;
630 		else
631 			mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U);
632 		return;
633 	}
634 
635 	mas->alloc->request_count = count;
636 }
637 
638 /*
639  * mas_alloc_req() - get the requested number of allocations.
640  * @mas: The maple state
641  *
642  * The alloc count is either stored directly in @mas, or in
643  * @mas->alloc->request_count if there is at least one node allocated.  Decode
644  * the request count if it's stored directly in @mas->alloc.
645  *
646  * Return: The allocation request count.
647  */
648 static inline unsigned int mas_alloc_req(const struct ma_state *mas)
649 {
650 	if ((unsigned long)mas->alloc & 0x1)
651 		return (unsigned long)(mas->alloc) >> 1;
652 	else if (mas->alloc)
653 		return mas->alloc->request_count;
654 	return 0;
655 }
656 
657 /*
658  * ma_pivots() - Get a pointer to the maple node pivots.
659  * @node: the maple node
660  * @type: the node type
661  *
662  * In the event of a dead node, this array may be %NULL
663  *
664  * Return: A pointer to the maple node pivots
665  */
666 static inline unsigned long *ma_pivots(struct maple_node *node,
667 					   enum maple_type type)
668 {
669 	switch (type) {
670 	case maple_arange_64:
671 		return node->ma64.pivot;
672 	case maple_range_64:
673 	case maple_leaf_64:
674 		return node->mr64.pivot;
675 	case maple_dense:
676 		return NULL;
677 	}
678 	return NULL;
679 }
680 
681 /*
682  * ma_gaps() - Get a pointer to the maple node gaps.
683  * @node: the maple node
684  * @type: the node type
685  *
686  * Return: A pointer to the maple node gaps
687  */
688 static inline unsigned long *ma_gaps(struct maple_node *node,
689 				     enum maple_type type)
690 {
691 	switch (type) {
692 	case maple_arange_64:
693 		return node->ma64.gap;
694 	case maple_range_64:
695 	case maple_leaf_64:
696 	case maple_dense:
697 		return NULL;
698 	}
699 	return NULL;
700 }
701 
702 /*
703  * mas_safe_pivot() - get the pivot at @piv or mas->max.
704  * @mas: The maple state
705  * @pivots: The pointer to the maple node pivots
706  * @piv: The pivot to fetch
707  * @type: The maple node type
708  *
709  * Return: The pivot at @piv within the limit of the @pivots array, @mas->max
710  * otherwise.
711  */
712 static __always_inline unsigned long
713 mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
714 	       unsigned char piv, enum maple_type type)
715 {
716 	if (piv >= mt_pivots[type])
717 		return mas->max;
718 
719 	return pivots[piv];
720 }
721 
722 /*
723  * mas_safe_min() - Return the minimum for a given offset.
724  * @mas: The maple state
725  * @pivots: The pointer to the maple node pivots
726  * @offset: The offset into the pivot array
727  *
728  * Return: The minimum range value that is contained in @offset.
729  */
730 static inline unsigned long
731 mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
732 {
733 	if (likely(offset))
734 		return pivots[offset - 1] + 1;
735 
736 	return mas->min;
737 }
738 
739 /*
740  * mte_set_pivot() - Set a pivot to a value in an encoded maple node.
741  * @mn: The encoded maple node
742  * @piv: The pivot offset
743  * @val: The value of the pivot
744  */
745 static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
746 				unsigned long val)
747 {
748 	struct maple_node *node = mte_to_node(mn);
749 	enum maple_type type = mte_node_type(mn);
750 
751 	BUG_ON(piv >= mt_pivots[type]);
752 	switch (type) {
753 	case maple_range_64:
754 	case maple_leaf_64:
755 		node->mr64.pivot[piv] = val;
756 		break;
757 	case maple_arange_64:
758 		node->ma64.pivot[piv] = val;
759 		break;
760 	case maple_dense:
761 		break;
762 	}
763 
764 }
765 
766 /*
767  * ma_slots() - Get a pointer to the maple node slots.
768  * @mn: The maple node
769  * @mt: The maple node type
770  *
771  * Return: A pointer to the maple node slots
772  */
773 static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
774 {
775 	switch (mt) {
776 	case maple_arange_64:
777 		return mn->ma64.slot;
778 	case maple_range_64:
779 	case maple_leaf_64:
780 		return mn->mr64.slot;
781 	case maple_dense:
782 		return mn->slot;
783 	}
784 
785 	return NULL;
786 }
787 
788 static inline bool mt_write_locked(const struct maple_tree *mt)
789 {
790 	return mt_external_lock(mt) ? mt_write_lock_is_held(mt) :
791 		lockdep_is_held(&mt->ma_lock);
792 }
793 
794 static __always_inline bool mt_locked(const struct maple_tree *mt)
795 {
796 	return mt_external_lock(mt) ? mt_lock_is_held(mt) :
797 		lockdep_is_held(&mt->ma_lock);
798 }
799 
800 static __always_inline void *mt_slot(const struct maple_tree *mt,
801 		void __rcu **slots, unsigned char offset)
802 {
803 	return rcu_dereference_check(slots[offset], mt_locked(mt));
804 }
805 
806 static __always_inline void *mt_slot_locked(struct maple_tree *mt,
807 		void __rcu **slots, unsigned char offset)
808 {
809 	return rcu_dereference_protected(slots[offset], mt_write_locked(mt));
810 }
811 /*
812  * mas_slot_locked() - Get the slot value when holding the maple tree lock.
813  * @mas: The maple state
814  * @slots: The pointer to the slots
815  * @offset: The offset into the slots array to fetch
816  *
817  * Return: The entry stored in @slots at the @offset.
818  */
819 static __always_inline void *mas_slot_locked(struct ma_state *mas,
820 		void __rcu **slots, unsigned char offset)
821 {
822 	return mt_slot_locked(mas->tree, slots, offset);
823 }
824 
825 /*
826  * mas_slot() - Get the slot value when not holding the maple tree lock.
827  * @mas: The maple state
828  * @slots: The pointer to the slots
829  * @offset: The offset into the slots array to fetch
830  *
831  * Return: The entry stored in @slots at the @offset
832  */
833 static __always_inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
834 		unsigned char offset)
835 {
836 	return mt_slot(mas->tree, slots, offset);
837 }
838 
839 /*
840  * mas_root() - Get the maple tree root.
841  * @mas: The maple state.
842  *
843  * Return: The pointer to the root of the tree
844  */
845 static __always_inline void *mas_root(struct ma_state *mas)
846 {
847 	return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree));
848 }
849 
850 static inline void *mt_root_locked(struct maple_tree *mt)
851 {
852 	return rcu_dereference_protected(mt->ma_root, mt_write_locked(mt));
853 }
854 
855 /*
856  * mas_root_locked() - Get the maple tree root when holding the maple tree lock.
857  * @mas: The maple state.
858  *
859  * Return: The pointer to the root of the tree
860  */
861 static inline void *mas_root_locked(struct ma_state *mas)
862 {
863 	return mt_root_locked(mas->tree);
864 }
865 
866 static inline struct maple_metadata *ma_meta(struct maple_node *mn,
867 					     enum maple_type mt)
868 {
869 	switch (mt) {
870 	case maple_arange_64:
871 		return &mn->ma64.meta;
872 	default:
873 		return &mn->mr64.meta;
874 	}
875 }
876 
877 /*
878  * ma_set_meta() - Set the metadata information of a node.
879  * @mn: The maple node
880  * @mt: The maple node type
881  * @offset: The offset of the highest sub-gap in this node.
882  * @end: The end of the data in this node.
883  */
884 static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
885 			       unsigned char offset, unsigned char end)
886 {
887 	struct maple_metadata *meta = ma_meta(mn, mt);
888 
889 	meta->gap = offset;
890 	meta->end = end;
891 }
892 
893 /*
894  * mt_clear_meta() - clear the metadata information of a node, if it exists
895  * @mt: The maple tree
896  * @mn: The maple node
897  * @type: The maple node type
898  */
899 static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn,
900 				  enum maple_type type)
901 {
902 	struct maple_metadata *meta;
903 	unsigned long *pivots;
904 	void __rcu **slots;
905 	void *next;
906 
907 	switch (type) {
908 	case maple_range_64:
909 		pivots = mn->mr64.pivot;
910 		if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) {
911 			slots = mn->mr64.slot;
912 			next = mt_slot_locked(mt, slots,
913 					      MAPLE_RANGE64_SLOTS - 1);
914 			if (unlikely((mte_to_node(next) &&
915 				      mte_node_type(next))))
916 				return; /* no metadata, could be node */
917 		}
918 		fallthrough;
919 	case maple_arange_64:
920 		meta = ma_meta(mn, type);
921 		break;
922 	default:
923 		return;
924 	}
925 
926 	meta->gap = 0;
927 	meta->end = 0;
928 }
929 
930 /*
931  * ma_meta_end() - Get the data end of a node from the metadata
932  * @mn: The maple node
933  * @mt: The maple node type
934  */
935 static inline unsigned char ma_meta_end(struct maple_node *mn,
936 					enum maple_type mt)
937 {
938 	struct maple_metadata *meta = ma_meta(mn, mt);
939 
940 	return meta->end;
941 }
942 
943 /*
944  * ma_meta_gap() - Get the largest gap location of a node from the metadata
945  * @mn: The maple node
946  */
947 static inline unsigned char ma_meta_gap(struct maple_node *mn)
948 {
949 	return mn->ma64.meta.gap;
950 }
951 
952 /*
953  * ma_set_meta_gap() - Set the largest gap location in a nodes metadata
954  * @mn: The maple node
955  * @mt: The maple node type
956  * @offset: The location of the largest gap.
957  */
958 static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
959 				   unsigned char offset)
960 {
961 
962 	struct maple_metadata *meta = ma_meta(mn, mt);
963 
964 	meta->gap = offset;
965 }
966 
967 /*
968  * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
969  * @mat: the ma_topiary, a linked list of dead nodes.
970  * @dead_enode: the node to be marked as dead and added to the tail of the list
971  *
972  * Add the @dead_enode to the linked list in @mat.
973  */
974 static inline void mat_add(struct ma_topiary *mat,
975 			   struct maple_enode *dead_enode)
976 {
977 	mte_set_node_dead(dead_enode);
978 	mte_to_mat(dead_enode)->next = NULL;
979 	if (!mat->tail) {
980 		mat->tail = mat->head = dead_enode;
981 		return;
982 	}
983 
984 	mte_to_mat(mat->tail)->next = dead_enode;
985 	mat->tail = dead_enode;
986 }
987 
988 static void mt_free_walk(struct rcu_head *head);
989 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
990 			    bool free);
991 /*
992  * mas_mat_destroy() - Free all nodes and subtrees in a dead list.
993  * @mas: the maple state
994  * @mat: the ma_topiary linked list of dead nodes to free.
995  *
996  * Destroy walk a dead list.
997  */
998 static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
999 {
1000 	struct maple_enode *next;
1001 	struct maple_node *node;
1002 	bool in_rcu = mt_in_rcu(mas->tree);
1003 
1004 	while (mat->head) {
1005 		next = mte_to_mat(mat->head)->next;
1006 		node = mte_to_node(mat->head);
1007 		mt_destroy_walk(mat->head, mas->tree, !in_rcu);
1008 		if (in_rcu)
1009 			call_rcu(&node->rcu, mt_free_walk);
1010 		mat->head = next;
1011 	}
1012 }
1013 /*
1014  * mas_descend() - Descend into the slot stored in the ma_state.
1015  * @mas: the maple state.
1016  *
1017  * Note: Not RCU safe, only use in write side or debug code.
1018  */
1019 static inline void mas_descend(struct ma_state *mas)
1020 {
1021 	enum maple_type type;
1022 	unsigned long *pivots;
1023 	struct maple_node *node;
1024 	void __rcu **slots;
1025 
1026 	node = mas_mn(mas);
1027 	type = mte_node_type(mas->node);
1028 	pivots = ma_pivots(node, type);
1029 	slots = ma_slots(node, type);
1030 
1031 	if (mas->offset)
1032 		mas->min = pivots[mas->offset - 1] + 1;
1033 	mas->max = mas_safe_pivot(mas, pivots, mas->offset, type);
1034 	mas->node = mas_slot(mas, slots, mas->offset);
1035 }
1036 
1037 /*
1038  * mte_set_gap() - Set a maple node gap.
1039  * @mn: The encoded maple node
1040  * @gap: The offset of the gap to set
1041  * @val: The gap value
1042  */
1043 static inline void mte_set_gap(const struct maple_enode *mn,
1044 				 unsigned char gap, unsigned long val)
1045 {
1046 	switch (mte_node_type(mn)) {
1047 	default:
1048 		break;
1049 	case maple_arange_64:
1050 		mte_to_node(mn)->ma64.gap[gap] = val;
1051 		break;
1052 	}
1053 }
1054 
1055 /*
1056  * mas_ascend() - Walk up a level of the tree.
1057  * @mas: The maple state
1058  *
1059  * Sets the @mas->max and @mas->min to the correct values when walking up.  This
1060  * may cause several levels of walking up to find the correct min and max.
1061  * May find a dead node which will cause a premature return.
1062  * Return: 1 on dead node, 0 otherwise
1063  */
1064 static int mas_ascend(struct ma_state *mas)
1065 {
1066 	struct maple_enode *p_enode; /* parent enode. */
1067 	struct maple_enode *a_enode; /* ancestor enode. */
1068 	struct maple_node *a_node; /* ancestor node. */
1069 	struct maple_node *p_node; /* parent node. */
1070 	unsigned char a_slot;
1071 	enum maple_type a_type;
1072 	unsigned long min, max;
1073 	unsigned long *pivots;
1074 	bool set_max = false, set_min = false;
1075 
1076 	a_node = mas_mn(mas);
1077 	if (ma_is_root(a_node)) {
1078 		mas->offset = 0;
1079 		return 0;
1080 	}
1081 
1082 	p_node = mte_parent(mas->node);
1083 	if (unlikely(a_node == p_node))
1084 		return 1;
1085 
1086 	a_type = mas_parent_type(mas, mas->node);
1087 	mas->offset = mte_parent_slot(mas->node);
1088 	a_enode = mt_mk_node(p_node, a_type);
1089 
1090 	/* Check to make sure all parent information is still accurate */
1091 	if (p_node != mte_parent(mas->node))
1092 		return 1;
1093 
1094 	mas->node = a_enode;
1095 
1096 	if (mte_is_root(a_enode)) {
1097 		mas->max = ULONG_MAX;
1098 		mas->min = 0;
1099 		return 0;
1100 	}
1101 
1102 	min = 0;
1103 	max = ULONG_MAX;
1104 	if (!mas->offset) {
1105 		min = mas->min;
1106 		set_min = true;
1107 	}
1108 
1109 	if (mas->max == ULONG_MAX)
1110 		set_max = true;
1111 
1112 	do {
1113 		p_enode = a_enode;
1114 		a_type = mas_parent_type(mas, p_enode);
1115 		a_node = mte_parent(p_enode);
1116 		a_slot = mte_parent_slot(p_enode);
1117 		a_enode = mt_mk_node(a_node, a_type);
1118 		pivots = ma_pivots(a_node, a_type);
1119 
1120 		if (unlikely(ma_dead_node(a_node)))
1121 			return 1;
1122 
1123 		if (!set_min && a_slot) {
1124 			set_min = true;
1125 			min = pivots[a_slot - 1] + 1;
1126 		}
1127 
1128 		if (!set_max && a_slot < mt_pivots[a_type]) {
1129 			set_max = true;
1130 			max = pivots[a_slot];
1131 		}
1132 
1133 		if (unlikely(ma_dead_node(a_node)))
1134 			return 1;
1135 
1136 		if (unlikely(ma_is_root(a_node)))
1137 			break;
1138 
1139 	} while (!set_min || !set_max);
1140 
1141 	mas->max = max;
1142 	mas->min = min;
1143 	return 0;
1144 }
1145 
1146 /*
1147  * mas_pop_node() - Get a previously allocated maple node from the maple state.
1148  * @mas: The maple state
1149  *
1150  * Return: A pointer to a maple node.
1151  */
1152 static inline struct maple_node *mas_pop_node(struct ma_state *mas)
1153 {
1154 	struct maple_alloc *ret, *node = mas->alloc;
1155 	unsigned long total = mas_allocated(mas);
1156 	unsigned int req = mas_alloc_req(mas);
1157 
1158 	/* nothing or a request pending. */
1159 	if (WARN_ON(!total))
1160 		return NULL;
1161 
1162 	if (total == 1) {
1163 		/* single allocation in this ma_state */
1164 		mas->alloc = NULL;
1165 		ret = node;
1166 		goto single_node;
1167 	}
1168 
1169 	if (node->node_count == 1) {
1170 		/* Single allocation in this node. */
1171 		mas->alloc = node->slot[0];
1172 		mas->alloc->total = node->total - 1;
1173 		ret = node;
1174 		goto new_head;
1175 	}
1176 	node->total--;
1177 	ret = node->slot[--node->node_count];
1178 	node->slot[node->node_count] = NULL;
1179 
1180 single_node:
1181 new_head:
1182 	if (req) {
1183 		req++;
1184 		mas_set_alloc_req(mas, req);
1185 	}
1186 
1187 	memset(ret, 0, sizeof(*ret));
1188 	return (struct maple_node *)ret;
1189 }
1190 
1191 /*
1192  * mas_push_node() - Push a node back on the maple state allocation.
1193  * @mas: The maple state
1194  * @used: The used maple node
1195  *
1196  * Stores the maple node back into @mas->alloc for reuse.  Updates allocated and
1197  * requested node count as necessary.
1198  */
1199 static inline void mas_push_node(struct ma_state *mas, struct maple_node *used)
1200 {
1201 	struct maple_alloc *reuse = (struct maple_alloc *)used;
1202 	struct maple_alloc *head = mas->alloc;
1203 	unsigned long count;
1204 	unsigned int requested = mas_alloc_req(mas);
1205 
1206 	count = mas_allocated(mas);
1207 
1208 	reuse->request_count = 0;
1209 	reuse->node_count = 0;
1210 	if (count) {
1211 		if (head->node_count < MAPLE_ALLOC_SLOTS) {
1212 			head->slot[head->node_count++] = reuse;
1213 			head->total++;
1214 			goto done;
1215 		}
1216 		reuse->slot[0] = head;
1217 		reuse->node_count = 1;
1218 	}
1219 
1220 	reuse->total = count + 1;
1221 	mas->alloc = reuse;
1222 done:
1223 	if (requested > 1)
1224 		mas_set_alloc_req(mas, requested - 1);
1225 }
1226 
1227 /*
1228  * mas_alloc_nodes() - Allocate nodes into a maple state
1229  * @mas: The maple state
1230  * @gfp: The GFP Flags
1231  */
1232 static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
1233 {
1234 	struct maple_alloc *node;
1235 	unsigned long allocated = mas_allocated(mas);
1236 	unsigned int requested = mas_alloc_req(mas);
1237 	unsigned int count;
1238 	void **slots = NULL;
1239 	unsigned int max_req = 0;
1240 
1241 	if (!requested)
1242 		return;
1243 
1244 	mas_set_alloc_req(mas, 0);
1245 	if (mas->mas_flags & MA_STATE_PREALLOC) {
1246 		if (allocated)
1247 			return;
1248 		BUG_ON(!allocated);
1249 		WARN_ON(!allocated);
1250 	}
1251 
1252 	if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) {
1253 		node = (struct maple_alloc *)mt_alloc_one(gfp);
1254 		if (!node)
1255 			goto nomem_one;
1256 
1257 		if (allocated) {
1258 			node->slot[0] = mas->alloc;
1259 			node->node_count = 1;
1260 		} else {
1261 			node->node_count = 0;
1262 		}
1263 
1264 		mas->alloc = node;
1265 		node->total = ++allocated;
1266 		node->request_count = 0;
1267 		requested--;
1268 	}
1269 
1270 	node = mas->alloc;
1271 	while (requested) {
1272 		max_req = MAPLE_ALLOC_SLOTS - node->node_count;
1273 		slots = (void **)&node->slot[node->node_count];
1274 		max_req = min(requested, max_req);
1275 		count = mt_alloc_bulk(gfp, max_req, slots);
1276 		if (!count)
1277 			goto nomem_bulk;
1278 
1279 		if (node->node_count == 0) {
1280 			node->slot[0]->node_count = 0;
1281 			node->slot[0]->request_count = 0;
1282 		}
1283 
1284 		node->node_count += count;
1285 		allocated += count;
1286 		/* find a non-full node*/
1287 		do {
1288 			node = node->slot[0];
1289 		} while (unlikely(node->node_count == MAPLE_ALLOC_SLOTS));
1290 		requested -= count;
1291 	}
1292 	mas->alloc->total = allocated;
1293 	return;
1294 
1295 nomem_bulk:
1296 	/* Clean up potential freed allocations on bulk failure */
1297 	memset(slots, 0, max_req * sizeof(unsigned long));
1298 	mas->alloc->total = allocated;
1299 nomem_one:
1300 	mas_set_alloc_req(mas, requested);
1301 	mas_set_err(mas, -ENOMEM);
1302 }
1303 
1304 /*
1305  * mas_free() - Free an encoded maple node
1306  * @mas: The maple state
1307  * @used: The encoded maple node to free.
1308  *
1309  * Uses rcu free if necessary, pushes @used back on the maple state allocations
1310  * otherwise.
1311  */
1312 static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
1313 {
1314 	struct maple_node *tmp = mte_to_node(used);
1315 
1316 	if (mt_in_rcu(mas->tree))
1317 		ma_free_rcu(tmp);
1318 	else
1319 		mas_push_node(mas, tmp);
1320 }
1321 
1322 /*
1323  * mas_node_count_gfp() - Check if enough nodes are allocated and request more
1324  * if there is not enough nodes.
1325  * @mas: The maple state
1326  * @count: The number of nodes needed
1327  * @gfp: the gfp flags
1328  */
1329 static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp)
1330 {
1331 	unsigned long allocated = mas_allocated(mas);
1332 
1333 	if (allocated < count) {
1334 		mas_set_alloc_req(mas, count - allocated);
1335 		mas_alloc_nodes(mas, gfp);
1336 	}
1337 }
1338 
1339 /*
1340  * mas_node_count() - Check if enough nodes are allocated and request more if
1341  * there is not enough nodes.
1342  * @mas: The maple state
1343  * @count: The number of nodes needed
1344  *
1345  * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags.
1346  */
1347 static void mas_node_count(struct ma_state *mas, int count)
1348 {
1349 	return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN);
1350 }
1351 
1352 /*
1353  * mas_start() - Sets up maple state for operations.
1354  * @mas: The maple state.
1355  *
1356  * If mas->status == mas_start, then set the min, max and depth to
1357  * defaults.
1358  *
1359  * Return:
1360  * - If mas->node is an error or not mas_start, return NULL.
1361  * - If it's an empty tree:     NULL & mas->status == ma_none
1362  * - If it's a single entry:    The entry & mas->status == ma_root
1363  * - If it's a tree:            NULL & mas->status == ma_active
1364  */
1365 static inline struct maple_enode *mas_start(struct ma_state *mas)
1366 {
1367 	if (likely(mas_is_start(mas))) {
1368 		struct maple_enode *root;
1369 
1370 		mas->min = 0;
1371 		mas->max = ULONG_MAX;
1372 
1373 retry:
1374 		mas->depth = 0;
1375 		root = mas_root(mas);
1376 		/* Tree with nodes */
1377 		if (likely(xa_is_node(root))) {
1378 			mas->depth = 1;
1379 			mas->status = ma_active;
1380 			mas->node = mte_safe_root(root);
1381 			mas->offset = 0;
1382 			if (mte_dead_node(mas->node))
1383 				goto retry;
1384 
1385 			return NULL;
1386 		}
1387 
1388 		mas->node = NULL;
1389 		/* empty tree */
1390 		if (unlikely(!root)) {
1391 			mas->status = ma_none;
1392 			mas->offset = MAPLE_NODE_SLOTS;
1393 			return NULL;
1394 		}
1395 
1396 		/* Single entry tree */
1397 		mas->status = ma_root;
1398 		mas->offset = MAPLE_NODE_SLOTS;
1399 
1400 		/* Single entry tree. */
1401 		if (mas->index > 0)
1402 			return NULL;
1403 
1404 		return root;
1405 	}
1406 
1407 	return NULL;
1408 }
1409 
1410 /*
1411  * ma_data_end() - Find the end of the data in a node.
1412  * @node: The maple node
1413  * @type: The maple node type
1414  * @pivots: The array of pivots in the node
1415  * @max: The maximum value in the node
1416  *
1417  * Uses metadata to find the end of the data when possible.
1418  * Return: The zero indexed last slot with data (may be null).
1419  */
1420 static __always_inline unsigned char ma_data_end(struct maple_node *node,
1421 		enum maple_type type, unsigned long *pivots, unsigned long max)
1422 {
1423 	unsigned char offset;
1424 
1425 	if (!pivots)
1426 		return 0;
1427 
1428 	if (type == maple_arange_64)
1429 		return ma_meta_end(node, type);
1430 
1431 	offset = mt_pivots[type] - 1;
1432 	if (likely(!pivots[offset]))
1433 		return ma_meta_end(node, type);
1434 
1435 	if (likely(pivots[offset] == max))
1436 		return offset;
1437 
1438 	return mt_pivots[type];
1439 }
1440 
1441 /*
1442  * mas_data_end() - Find the end of the data (slot).
1443  * @mas: the maple state
1444  *
1445  * This method is optimized to check the metadata of a node if the node type
1446  * supports data end metadata.
1447  *
1448  * Return: The zero indexed last slot with data (may be null).
1449  */
1450 static inline unsigned char mas_data_end(struct ma_state *mas)
1451 {
1452 	enum maple_type type;
1453 	struct maple_node *node;
1454 	unsigned char offset;
1455 	unsigned long *pivots;
1456 
1457 	type = mte_node_type(mas->node);
1458 	node = mas_mn(mas);
1459 	if (type == maple_arange_64)
1460 		return ma_meta_end(node, type);
1461 
1462 	pivots = ma_pivots(node, type);
1463 	if (unlikely(ma_dead_node(node)))
1464 		return 0;
1465 
1466 	offset = mt_pivots[type] - 1;
1467 	if (likely(!pivots[offset]))
1468 		return ma_meta_end(node, type);
1469 
1470 	if (likely(pivots[offset] == mas->max))
1471 		return offset;
1472 
1473 	return mt_pivots[type];
1474 }
1475 
1476 /*
1477  * mas_leaf_max_gap() - Returns the largest gap in a leaf node
1478  * @mas: the maple state
1479  *
1480  * Return: The maximum gap in the leaf.
1481  */
1482 static unsigned long mas_leaf_max_gap(struct ma_state *mas)
1483 {
1484 	enum maple_type mt;
1485 	unsigned long pstart, gap, max_gap;
1486 	struct maple_node *mn;
1487 	unsigned long *pivots;
1488 	void __rcu **slots;
1489 	unsigned char i;
1490 	unsigned char max_piv;
1491 
1492 	mt = mte_node_type(mas->node);
1493 	mn = mas_mn(mas);
1494 	slots = ma_slots(mn, mt);
1495 	max_gap = 0;
1496 	if (unlikely(ma_is_dense(mt))) {
1497 		gap = 0;
1498 		for (i = 0; i < mt_slots[mt]; i++) {
1499 			if (slots[i]) {
1500 				if (gap > max_gap)
1501 					max_gap = gap;
1502 				gap = 0;
1503 			} else {
1504 				gap++;
1505 			}
1506 		}
1507 		if (gap > max_gap)
1508 			max_gap = gap;
1509 		return max_gap;
1510 	}
1511 
1512 	/*
1513 	 * Check the first implied pivot optimizes the loop below and slot 1 may
1514 	 * be skipped if there is a gap in slot 0.
1515 	 */
1516 	pivots = ma_pivots(mn, mt);
1517 	if (likely(!slots[0])) {
1518 		max_gap = pivots[0] - mas->min + 1;
1519 		i = 2;
1520 	} else {
1521 		i = 1;
1522 	}
1523 
1524 	/* reduce max_piv as the special case is checked before the loop */
1525 	max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1;
1526 	/*
1527 	 * Check end implied pivot which can only be a gap on the right most
1528 	 * node.
1529 	 */
1530 	if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) {
1531 		gap = ULONG_MAX - pivots[max_piv];
1532 		if (gap > max_gap)
1533 			max_gap = gap;
1534 
1535 		if (max_gap > pivots[max_piv] - mas->min)
1536 			return max_gap;
1537 	}
1538 
1539 	for (; i <= max_piv; i++) {
1540 		/* data == no gap. */
1541 		if (likely(slots[i]))
1542 			continue;
1543 
1544 		pstart = pivots[i - 1];
1545 		gap = pivots[i] - pstart;
1546 		if (gap > max_gap)
1547 			max_gap = gap;
1548 
1549 		/* There cannot be two gaps in a row. */
1550 		i++;
1551 	}
1552 	return max_gap;
1553 }
1554 
1555 /*
1556  * ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
1557  * @node: The maple node
1558  * @gaps: The pointer to the gaps
1559  * @mt: The maple node type
1560  * @off: Pointer to store the offset location of the gap.
1561  *
1562  * Uses the metadata data end to scan backwards across set gaps.
1563  *
1564  * Return: The maximum gap value
1565  */
1566 static inline unsigned long
1567 ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
1568 	    unsigned char *off)
1569 {
1570 	unsigned char offset, i;
1571 	unsigned long max_gap = 0;
1572 
1573 	i = offset = ma_meta_end(node, mt);
1574 	do {
1575 		if (gaps[i] > max_gap) {
1576 			max_gap = gaps[i];
1577 			offset = i;
1578 		}
1579 	} while (i--);
1580 
1581 	*off = offset;
1582 	return max_gap;
1583 }
1584 
1585 /*
1586  * mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
1587  * @mas: The maple state.
1588  *
1589  * Return: The gap value.
1590  */
1591 static inline unsigned long mas_max_gap(struct ma_state *mas)
1592 {
1593 	unsigned long *gaps;
1594 	unsigned char offset;
1595 	enum maple_type mt;
1596 	struct maple_node *node;
1597 
1598 	mt = mte_node_type(mas->node);
1599 	if (ma_is_leaf(mt))
1600 		return mas_leaf_max_gap(mas);
1601 
1602 	node = mas_mn(mas);
1603 	MAS_BUG_ON(mas, mt != maple_arange_64);
1604 	offset = ma_meta_gap(node);
1605 	gaps = ma_gaps(node, mt);
1606 	return gaps[offset];
1607 }
1608 
1609 /*
1610  * mas_parent_gap() - Set the parent gap and any gaps above, as needed
1611  * @mas: The maple state
1612  * @offset: The gap offset in the parent to set
1613  * @new: The new gap value.
1614  *
1615  * Set the parent gap then continue to set the gap upwards, using the metadata
1616  * of the parent to see if it is necessary to check the node above.
1617  */
1618 static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
1619 		unsigned long new)
1620 {
1621 	unsigned long meta_gap = 0;
1622 	struct maple_node *pnode;
1623 	struct maple_enode *penode;
1624 	unsigned long *pgaps;
1625 	unsigned char meta_offset;
1626 	enum maple_type pmt;
1627 
1628 	pnode = mte_parent(mas->node);
1629 	pmt = mas_parent_type(mas, mas->node);
1630 	penode = mt_mk_node(pnode, pmt);
1631 	pgaps = ma_gaps(pnode, pmt);
1632 
1633 ascend:
1634 	MAS_BUG_ON(mas, pmt != maple_arange_64);
1635 	meta_offset = ma_meta_gap(pnode);
1636 	meta_gap = pgaps[meta_offset];
1637 
1638 	pgaps[offset] = new;
1639 
1640 	if (meta_gap == new)
1641 		return;
1642 
1643 	if (offset != meta_offset) {
1644 		if (meta_gap > new)
1645 			return;
1646 
1647 		ma_set_meta_gap(pnode, pmt, offset);
1648 	} else if (new < meta_gap) {
1649 		new = ma_max_gap(pnode, pgaps, pmt, &meta_offset);
1650 		ma_set_meta_gap(pnode, pmt, meta_offset);
1651 	}
1652 
1653 	if (ma_is_root(pnode))
1654 		return;
1655 
1656 	/* Go to the parent node. */
1657 	pnode = mte_parent(penode);
1658 	pmt = mas_parent_type(mas, penode);
1659 	pgaps = ma_gaps(pnode, pmt);
1660 	offset = mte_parent_slot(penode);
1661 	penode = mt_mk_node(pnode, pmt);
1662 	goto ascend;
1663 }
1664 
1665 /*
1666  * mas_update_gap() - Update a nodes gaps and propagate up if necessary.
1667  * @mas: the maple state.
1668  */
1669 static inline void mas_update_gap(struct ma_state *mas)
1670 {
1671 	unsigned char pslot;
1672 	unsigned long p_gap;
1673 	unsigned long max_gap;
1674 
1675 	if (!mt_is_alloc(mas->tree))
1676 		return;
1677 
1678 	if (mte_is_root(mas->node))
1679 		return;
1680 
1681 	max_gap = mas_max_gap(mas);
1682 
1683 	pslot = mte_parent_slot(mas->node);
1684 	p_gap = ma_gaps(mte_parent(mas->node),
1685 			mas_parent_type(mas, mas->node))[pslot];
1686 
1687 	if (p_gap != max_gap)
1688 		mas_parent_gap(mas, pslot, max_gap);
1689 }
1690 
1691 /*
1692  * mas_adopt_children() - Set the parent pointer of all nodes in @parent to
1693  * @parent with the slot encoded.
1694  * @mas: the maple state (for the tree)
1695  * @parent: the maple encoded node containing the children.
1696  */
1697 static inline void mas_adopt_children(struct ma_state *mas,
1698 		struct maple_enode *parent)
1699 {
1700 	enum maple_type type = mte_node_type(parent);
1701 	struct maple_node *node = mte_to_node(parent);
1702 	void __rcu **slots = ma_slots(node, type);
1703 	unsigned long *pivots = ma_pivots(node, type);
1704 	struct maple_enode *child;
1705 	unsigned char offset;
1706 
1707 	offset = ma_data_end(node, type, pivots, mas->max);
1708 	do {
1709 		child = mas_slot_locked(mas, slots, offset);
1710 		mas_set_parent(mas, child, parent, offset);
1711 	} while (offset--);
1712 }
1713 
1714 /*
1715  * mas_put_in_tree() - Put a new node in the tree, smp_wmb(), and mark the old
1716  * node as dead.
1717  * @mas: the maple state with the new node
1718  * @old_enode: The old maple encoded node to replace.
1719  */
1720 static inline void mas_put_in_tree(struct ma_state *mas,
1721 		struct maple_enode *old_enode)
1722 	__must_hold(mas->tree->ma_lock)
1723 {
1724 	unsigned char offset;
1725 	void __rcu **slots;
1726 
1727 	if (mte_is_root(mas->node)) {
1728 		mas_mn(mas)->parent = ma_parent_ptr(mas_tree_parent(mas));
1729 		rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
1730 		mas_set_height(mas);
1731 	} else {
1732 
1733 		offset = mte_parent_slot(mas->node);
1734 		slots = ma_slots(mte_parent(mas->node),
1735 				 mas_parent_type(mas, mas->node));
1736 		rcu_assign_pointer(slots[offset], mas->node);
1737 	}
1738 
1739 	mte_set_node_dead(old_enode);
1740 }
1741 
1742 /*
1743  * mas_replace_node() - Replace a node by putting it in the tree, marking it
1744  * dead, and freeing it.
1745  * the parent encoding to locate the maple node in the tree.
1746  * @mas: the ma_state with @mas->node pointing to the new node.
1747  * @old_enode: The old maple encoded node.
1748  */
1749 static inline void mas_replace_node(struct ma_state *mas,
1750 		struct maple_enode *old_enode)
1751 	__must_hold(mas->tree->ma_lock)
1752 {
1753 	mas_put_in_tree(mas, old_enode);
1754 	mas_free(mas, old_enode);
1755 }
1756 
1757 /*
1758  * mas_find_child() - Find a child who has the parent @mas->node.
1759  * @mas: the maple state with the parent.
1760  * @child: the maple state to store the child.
1761  */
1762 static inline bool mas_find_child(struct ma_state *mas, struct ma_state *child)
1763 	__must_hold(mas->tree->ma_lock)
1764 {
1765 	enum maple_type mt;
1766 	unsigned char offset;
1767 	unsigned char end;
1768 	unsigned long *pivots;
1769 	struct maple_enode *entry;
1770 	struct maple_node *node;
1771 	void __rcu **slots;
1772 
1773 	mt = mte_node_type(mas->node);
1774 	node = mas_mn(mas);
1775 	slots = ma_slots(node, mt);
1776 	pivots = ma_pivots(node, mt);
1777 	end = ma_data_end(node, mt, pivots, mas->max);
1778 	for (offset = mas->offset; offset <= end; offset++) {
1779 		entry = mas_slot_locked(mas, slots, offset);
1780 		if (mte_parent(entry) == node) {
1781 			*child = *mas;
1782 			mas->offset = offset + 1;
1783 			child->offset = offset;
1784 			mas_descend(child);
1785 			child->offset = 0;
1786 			return true;
1787 		}
1788 	}
1789 	return false;
1790 }
1791 
1792 /*
1793  * mab_shift_right() - Shift the data in mab right. Note, does not clean out the
1794  * old data or set b_node->b_end.
1795  * @b_node: the maple_big_node
1796  * @shift: the shift count
1797  */
1798 static inline void mab_shift_right(struct maple_big_node *b_node,
1799 				 unsigned char shift)
1800 {
1801 	unsigned long size = b_node->b_end * sizeof(unsigned long);
1802 
1803 	memmove(b_node->pivot + shift, b_node->pivot, size);
1804 	memmove(b_node->slot + shift, b_node->slot, size);
1805 	if (b_node->type == maple_arange_64)
1806 		memmove(b_node->gap + shift, b_node->gap, size);
1807 }
1808 
1809 /*
1810  * mab_middle_node() - Check if a middle node is needed (unlikely)
1811  * @b_node: the maple_big_node that contains the data.
1812  * @split: the potential split location
1813  * @slot_count: the size that can be stored in a single node being considered.
1814  *
1815  * Return: true if a middle node is required.
1816  */
1817 static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
1818 				   unsigned char slot_count)
1819 {
1820 	unsigned char size = b_node->b_end;
1821 
1822 	if (size >= 2 * slot_count)
1823 		return true;
1824 
1825 	if (!b_node->slot[split] && (size >= 2 * slot_count - 1))
1826 		return true;
1827 
1828 	return false;
1829 }
1830 
1831 /*
1832  * mab_no_null_split() - ensure the split doesn't fall on a NULL
1833  * @b_node: the maple_big_node with the data
1834  * @split: the suggested split location
1835  * @slot_count: the number of slots in the node being considered.
1836  *
1837  * Return: the split location.
1838  */
1839 static inline int mab_no_null_split(struct maple_big_node *b_node,
1840 				    unsigned char split, unsigned char slot_count)
1841 {
1842 	if (!b_node->slot[split]) {
1843 		/*
1844 		 * If the split is less than the max slot && the right side will
1845 		 * still be sufficient, then increment the split on NULL.
1846 		 */
1847 		if ((split < slot_count - 1) &&
1848 		    (b_node->b_end - split) > (mt_min_slots[b_node->type]))
1849 			split++;
1850 		else
1851 			split--;
1852 	}
1853 	return split;
1854 }
1855 
1856 /*
1857  * mab_calc_split() - Calculate the split location and if there needs to be two
1858  * splits.
1859  * @mas: The maple state
1860  * @bn: The maple_big_node with the data
1861  * @mid_split: The second split, if required.  0 otherwise.
1862  *
1863  * Return: The first split location.  The middle split is set in @mid_split.
1864  */
1865 static inline int mab_calc_split(struct ma_state *mas,
1866 	 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min)
1867 {
1868 	unsigned char b_end = bn->b_end;
1869 	int split = b_end / 2; /* Assume equal split. */
1870 	unsigned char slot_min, slot_count = mt_slots[bn->type];
1871 
1872 	/*
1873 	 * To support gap tracking, all NULL entries are kept together and a node cannot
1874 	 * end on a NULL entry, with the exception of the left-most leaf.  The
1875 	 * limitation means that the split of a node must be checked for this condition
1876 	 * and be able to put more data in one direction or the other.
1877 	 */
1878 	if (unlikely((mas->mas_flags & MA_STATE_BULK))) {
1879 		*mid_split = 0;
1880 		split = b_end - mt_min_slots[bn->type];
1881 
1882 		if (!ma_is_leaf(bn->type))
1883 			return split;
1884 
1885 		mas->mas_flags |= MA_STATE_REBALANCE;
1886 		if (!bn->slot[split])
1887 			split--;
1888 		return split;
1889 	}
1890 
1891 	/*
1892 	 * Although extremely rare, it is possible to enter what is known as the 3-way
1893 	 * split scenario.  The 3-way split comes about by means of a store of a range
1894 	 * that overwrites the end and beginning of two full nodes.  The result is a set
1895 	 * of entries that cannot be stored in 2 nodes.  Sometimes, these two nodes can
1896 	 * also be located in different parent nodes which are also full.  This can
1897 	 * carry upwards all the way to the root in the worst case.
1898 	 */
1899 	if (unlikely(mab_middle_node(bn, split, slot_count))) {
1900 		split = b_end / 3;
1901 		*mid_split = split * 2;
1902 	} else {
1903 		slot_min = mt_min_slots[bn->type];
1904 
1905 		*mid_split = 0;
1906 		/*
1907 		 * Avoid having a range less than the slot count unless it
1908 		 * causes one node to be deficient.
1909 		 * NOTE: mt_min_slots is 1 based, b_end and split are zero.
1910 		 */
1911 		while ((split < slot_count - 1) &&
1912 		       ((bn->pivot[split] - min) < slot_count - 1) &&
1913 		       (b_end - split > slot_min))
1914 			split++;
1915 	}
1916 
1917 	/* Avoid ending a node on a NULL entry */
1918 	split = mab_no_null_split(bn, split, slot_count);
1919 
1920 	if (unlikely(*mid_split))
1921 		*mid_split = mab_no_null_split(bn, *mid_split, slot_count);
1922 
1923 	return split;
1924 }
1925 
1926 /*
1927  * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
1928  * and set @b_node->b_end to the next free slot.
1929  * @mas: The maple state
1930  * @mas_start: The starting slot to copy
1931  * @mas_end: The end slot to copy (inclusively)
1932  * @b_node: The maple_big_node to place the data
1933  * @mab_start: The starting location in maple_big_node to store the data.
1934  */
1935 static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
1936 			unsigned char mas_end, struct maple_big_node *b_node,
1937 			unsigned char mab_start)
1938 {
1939 	enum maple_type mt;
1940 	struct maple_node *node;
1941 	void __rcu **slots;
1942 	unsigned long *pivots, *gaps;
1943 	int i = mas_start, j = mab_start;
1944 	unsigned char piv_end;
1945 
1946 	node = mas_mn(mas);
1947 	mt = mte_node_type(mas->node);
1948 	pivots = ma_pivots(node, mt);
1949 	if (!i) {
1950 		b_node->pivot[j] = pivots[i++];
1951 		if (unlikely(i > mas_end))
1952 			goto complete;
1953 		j++;
1954 	}
1955 
1956 	piv_end = min(mas_end, mt_pivots[mt]);
1957 	for (; i < piv_end; i++, j++) {
1958 		b_node->pivot[j] = pivots[i];
1959 		if (unlikely(!b_node->pivot[j]))
1960 			goto complete;
1961 
1962 		if (unlikely(mas->max == b_node->pivot[j]))
1963 			goto complete;
1964 	}
1965 
1966 	b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt);
1967 
1968 complete:
1969 	b_node->b_end = ++j;
1970 	j -= mab_start;
1971 	slots = ma_slots(node, mt);
1972 	memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j);
1973 	if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) {
1974 		gaps = ma_gaps(node, mt);
1975 		memcpy(b_node->gap + mab_start, gaps + mas_start,
1976 		       sizeof(unsigned long) * j);
1977 	}
1978 }
1979 
1980 /*
1981  * mas_leaf_set_meta() - Set the metadata of a leaf if possible.
1982  * @node: The maple node
1983  * @mt: The maple type
1984  * @end: The node end
1985  */
1986 static inline void mas_leaf_set_meta(struct maple_node *node,
1987 		enum maple_type mt, unsigned char end)
1988 {
1989 	if (end < mt_slots[mt] - 1)
1990 		ma_set_meta(node, mt, 0, end);
1991 }
1992 
1993 /*
1994  * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
1995  * @b_node: the maple_big_node that has the data
1996  * @mab_start: the start location in @b_node.
1997  * @mab_end: The end location in @b_node (inclusively)
1998  * @mas: The maple state with the maple encoded node.
1999  */
2000 static inline void mab_mas_cp(struct maple_big_node *b_node,
2001 			      unsigned char mab_start, unsigned char mab_end,
2002 			      struct ma_state *mas, bool new_max)
2003 {
2004 	int i, j = 0;
2005 	enum maple_type mt = mte_node_type(mas->node);
2006 	struct maple_node *node = mte_to_node(mas->node);
2007 	void __rcu **slots = ma_slots(node, mt);
2008 	unsigned long *pivots = ma_pivots(node, mt);
2009 	unsigned long *gaps = NULL;
2010 	unsigned char end;
2011 
2012 	if (mab_end - mab_start > mt_pivots[mt])
2013 		mab_end--;
2014 
2015 	if (!pivots[mt_pivots[mt] - 1])
2016 		slots[mt_pivots[mt]] = NULL;
2017 
2018 	i = mab_start;
2019 	do {
2020 		pivots[j++] = b_node->pivot[i++];
2021 	} while (i <= mab_end && likely(b_node->pivot[i]));
2022 
2023 	memcpy(slots, b_node->slot + mab_start,
2024 	       sizeof(void *) * (i - mab_start));
2025 
2026 	if (new_max)
2027 		mas->max = b_node->pivot[i - 1];
2028 
2029 	end = j - 1;
2030 	if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) {
2031 		unsigned long max_gap = 0;
2032 		unsigned char offset = 0;
2033 
2034 		gaps = ma_gaps(node, mt);
2035 		do {
2036 			gaps[--j] = b_node->gap[--i];
2037 			if (gaps[j] > max_gap) {
2038 				offset = j;
2039 				max_gap = gaps[j];
2040 			}
2041 		} while (j);
2042 
2043 		ma_set_meta(node, mt, offset, end);
2044 	} else {
2045 		mas_leaf_set_meta(node, mt, end);
2046 	}
2047 }
2048 
2049 /*
2050  * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert.
2051  * @mas: The maple state
2052  * @end: The maple node end
2053  * @mt: The maple node type
2054  */
2055 static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end,
2056 				      enum maple_type mt)
2057 {
2058 	if (!(mas->mas_flags & MA_STATE_BULK))
2059 		return;
2060 
2061 	if (mte_is_root(mas->node))
2062 		return;
2063 
2064 	if (end > mt_min_slots[mt]) {
2065 		mas->mas_flags &= ~MA_STATE_REBALANCE;
2066 		return;
2067 	}
2068 }
2069 
2070 /*
2071  * mas_store_b_node() - Store an @entry into the b_node while also copying the
2072  * data from a maple encoded node.
2073  * @wr_mas: the maple write state
2074  * @b_node: the maple_big_node to fill with data
2075  * @offset_end: the offset to end copying
2076  *
2077  * Return: The actual end of the data stored in @b_node
2078  */
2079 static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas,
2080 		struct maple_big_node *b_node, unsigned char offset_end)
2081 {
2082 	unsigned char slot;
2083 	unsigned char b_end;
2084 	/* Possible underflow of piv will wrap back to 0 before use. */
2085 	unsigned long piv;
2086 	struct ma_state *mas = wr_mas->mas;
2087 
2088 	b_node->type = wr_mas->type;
2089 	b_end = 0;
2090 	slot = mas->offset;
2091 	if (slot) {
2092 		/* Copy start data up to insert. */
2093 		mas_mab_cp(mas, 0, slot - 1, b_node, 0);
2094 		b_end = b_node->b_end;
2095 		piv = b_node->pivot[b_end - 1];
2096 	} else
2097 		piv = mas->min - 1;
2098 
2099 	if (piv + 1 < mas->index) {
2100 		/* Handle range starting after old range */
2101 		b_node->slot[b_end] = wr_mas->content;
2102 		if (!wr_mas->content)
2103 			b_node->gap[b_end] = mas->index - 1 - piv;
2104 		b_node->pivot[b_end++] = mas->index - 1;
2105 	}
2106 
2107 	/* Store the new entry. */
2108 	mas->offset = b_end;
2109 	b_node->slot[b_end] = wr_mas->entry;
2110 	b_node->pivot[b_end] = mas->last;
2111 
2112 	/* Appended. */
2113 	if (mas->last >= mas->max)
2114 		goto b_end;
2115 
2116 	/* Handle new range ending before old range ends */
2117 	piv = mas_safe_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type);
2118 	if (piv > mas->last) {
2119 		if (piv == ULONG_MAX)
2120 			mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type);
2121 
2122 		if (offset_end != slot)
2123 			wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
2124 							  offset_end);
2125 
2126 		b_node->slot[++b_end] = wr_mas->content;
2127 		if (!wr_mas->content)
2128 			b_node->gap[b_end] = piv - mas->last + 1;
2129 		b_node->pivot[b_end] = piv;
2130 	}
2131 
2132 	slot = offset_end + 1;
2133 	if (slot > mas->end)
2134 		goto b_end;
2135 
2136 	/* Copy end data to the end of the node. */
2137 	mas_mab_cp(mas, slot, mas->end + 1, b_node, ++b_end);
2138 	b_node->b_end--;
2139 	return;
2140 
2141 b_end:
2142 	b_node->b_end = b_end;
2143 }
2144 
2145 /*
2146  * mas_prev_sibling() - Find the previous node with the same parent.
2147  * @mas: the maple state
2148  *
2149  * Return: True if there is a previous sibling, false otherwise.
2150  */
2151 static inline bool mas_prev_sibling(struct ma_state *mas)
2152 {
2153 	unsigned int p_slot = mte_parent_slot(mas->node);
2154 
2155 	/* For root node, p_slot is set to 0 by mte_parent_slot(). */
2156 	if (!p_slot)
2157 		return false;
2158 
2159 	mas_ascend(mas);
2160 	mas->offset = p_slot - 1;
2161 	mas_descend(mas);
2162 	return true;
2163 }
2164 
2165 /*
2166  * mas_next_sibling() - Find the next node with the same parent.
2167  * @mas: the maple state
2168  *
2169  * Return: true if there is a next sibling, false otherwise.
2170  */
2171 static inline bool mas_next_sibling(struct ma_state *mas)
2172 {
2173 	MA_STATE(parent, mas->tree, mas->index, mas->last);
2174 
2175 	if (mte_is_root(mas->node))
2176 		return false;
2177 
2178 	parent = *mas;
2179 	mas_ascend(&parent);
2180 	parent.offset = mte_parent_slot(mas->node) + 1;
2181 	if (parent.offset > mas_data_end(&parent))
2182 		return false;
2183 
2184 	*mas = parent;
2185 	mas_descend(mas);
2186 	return true;
2187 }
2188 
2189 /*
2190  * mas_node_or_none() - Set the enode and state.
2191  * @mas: the maple state
2192  * @enode: The encoded maple node.
2193  *
2194  * Set the node to the enode and the status.
2195  */
2196 static inline void mas_node_or_none(struct ma_state *mas,
2197 		struct maple_enode *enode)
2198 {
2199 	if (enode) {
2200 		mas->node = enode;
2201 		mas->status = ma_active;
2202 	} else {
2203 		mas->node = NULL;
2204 		mas->status = ma_none;
2205 	}
2206 }
2207 
2208 /*
2209  * mas_wr_node_walk() - Find the correct offset for the index in the @mas.
2210  *                      If @mas->index cannot be found within the containing
2211  *                      node, we traverse to the last entry in the node.
2212  * @wr_mas: The maple write state
2213  *
2214  * Uses mas_slot_locked() and does not need to worry about dead nodes.
2215  */
2216 static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
2217 {
2218 	struct ma_state *mas = wr_mas->mas;
2219 	unsigned char count, offset;
2220 
2221 	if (unlikely(ma_is_dense(wr_mas->type))) {
2222 		wr_mas->r_max = wr_mas->r_min = mas->index;
2223 		mas->offset = mas->index = mas->min;
2224 		return;
2225 	}
2226 
2227 	wr_mas->node = mas_mn(wr_mas->mas);
2228 	wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type);
2229 	count = mas->end = ma_data_end(wr_mas->node, wr_mas->type,
2230 				       wr_mas->pivots, mas->max);
2231 	offset = mas->offset;
2232 
2233 	while (offset < count && mas->index > wr_mas->pivots[offset])
2234 		offset++;
2235 
2236 	wr_mas->r_max = offset < count ? wr_mas->pivots[offset] : mas->max;
2237 	wr_mas->r_min = mas_safe_min(mas, wr_mas->pivots, offset);
2238 	wr_mas->offset_end = mas->offset = offset;
2239 }
2240 
2241 /*
2242  * mast_rebalance_next() - Rebalance against the next node
2243  * @mast: The maple subtree state
2244  */
2245 static inline void mast_rebalance_next(struct maple_subtree_state *mast)
2246 {
2247 	unsigned char b_end = mast->bn->b_end;
2248 
2249 	mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node),
2250 		   mast->bn, b_end);
2251 	mast->orig_r->last = mast->orig_r->max;
2252 }
2253 
2254 /*
2255  * mast_rebalance_prev() - Rebalance against the previous node
2256  * @mast: The maple subtree state
2257  */
2258 static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
2259 {
2260 	unsigned char end = mas_data_end(mast->orig_l) + 1;
2261 	unsigned char b_end = mast->bn->b_end;
2262 
2263 	mab_shift_right(mast->bn, end);
2264 	mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0);
2265 	mast->l->min = mast->orig_l->min;
2266 	mast->orig_l->index = mast->orig_l->min;
2267 	mast->bn->b_end = end + b_end;
2268 	mast->l->offset += end;
2269 }
2270 
2271 /*
2272  * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
2273  * the node to the right.  Checking the nodes to the right then the left at each
2274  * level upwards until root is reached.
2275  * Data is copied into the @mast->bn.
2276  * @mast: The maple_subtree_state.
2277  */
2278 static inline
2279 bool mast_spanning_rebalance(struct maple_subtree_state *mast)
2280 {
2281 	struct ma_state r_tmp = *mast->orig_r;
2282 	struct ma_state l_tmp = *mast->orig_l;
2283 	unsigned char depth = 0;
2284 
2285 	do {
2286 		mas_ascend(mast->orig_r);
2287 		mas_ascend(mast->orig_l);
2288 		depth++;
2289 		if (mast->orig_r->offset < mas_data_end(mast->orig_r)) {
2290 			mast->orig_r->offset++;
2291 			do {
2292 				mas_descend(mast->orig_r);
2293 				mast->orig_r->offset = 0;
2294 			} while (--depth);
2295 
2296 			mast_rebalance_next(mast);
2297 			*mast->orig_l = l_tmp;
2298 			return true;
2299 		} else if (mast->orig_l->offset != 0) {
2300 			mast->orig_l->offset--;
2301 			do {
2302 				mas_descend(mast->orig_l);
2303 				mast->orig_l->offset =
2304 					mas_data_end(mast->orig_l);
2305 			} while (--depth);
2306 
2307 			mast_rebalance_prev(mast);
2308 			*mast->orig_r = r_tmp;
2309 			return true;
2310 		}
2311 	} while (!mte_is_root(mast->orig_r->node));
2312 
2313 	*mast->orig_r = r_tmp;
2314 	*mast->orig_l = l_tmp;
2315 	return false;
2316 }
2317 
2318 /*
2319  * mast_ascend() - Ascend the original left and right maple states.
2320  * @mast: the maple subtree state.
2321  *
2322  * Ascend the original left and right sides.  Set the offsets to point to the
2323  * data already in the new tree (@mast->l and @mast->r).
2324  */
2325 static inline void mast_ascend(struct maple_subtree_state *mast)
2326 {
2327 	MA_WR_STATE(wr_mas, mast->orig_r,  NULL);
2328 	mas_ascend(mast->orig_l);
2329 	mas_ascend(mast->orig_r);
2330 
2331 	mast->orig_r->offset = 0;
2332 	mast->orig_r->index = mast->r->max;
2333 	/* last should be larger than or equal to index */
2334 	if (mast->orig_r->last < mast->orig_r->index)
2335 		mast->orig_r->last = mast->orig_r->index;
2336 
2337 	wr_mas.type = mte_node_type(mast->orig_r->node);
2338 	mas_wr_node_walk(&wr_mas);
2339 	/* Set up the left side of things */
2340 	mast->orig_l->offset = 0;
2341 	mast->orig_l->index = mast->l->min;
2342 	wr_mas.mas = mast->orig_l;
2343 	wr_mas.type = mte_node_type(mast->orig_l->node);
2344 	mas_wr_node_walk(&wr_mas);
2345 
2346 	mast->bn->type = wr_mas.type;
2347 }
2348 
2349 /*
2350  * mas_new_ma_node() - Create and return a new maple node.  Helper function.
2351  * @mas: the maple state with the allocations.
2352  * @b_node: the maple_big_node with the type encoding.
2353  *
2354  * Use the node type from the maple_big_node to allocate a new node from the
2355  * ma_state.  This function exists mainly for code readability.
2356  *
2357  * Return: A new maple encoded node
2358  */
2359 static inline struct maple_enode
2360 *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
2361 {
2362 	return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type);
2363 }
2364 
2365 /*
2366  * mas_mab_to_node() - Set up right and middle nodes
2367  *
2368  * @mas: the maple state that contains the allocations.
2369  * @b_node: the node which contains the data.
2370  * @left: The pointer which will have the left node
2371  * @right: The pointer which may have the right node
2372  * @middle: the pointer which may have the middle node (rare)
2373  * @mid_split: the split location for the middle node
2374  *
2375  * Return: the split of left.
2376  */
2377 static inline unsigned char mas_mab_to_node(struct ma_state *mas,
2378 	struct maple_big_node *b_node, struct maple_enode **left,
2379 	struct maple_enode **right, struct maple_enode **middle,
2380 	unsigned char *mid_split, unsigned long min)
2381 {
2382 	unsigned char split = 0;
2383 	unsigned char slot_count = mt_slots[b_node->type];
2384 
2385 	*left = mas_new_ma_node(mas, b_node);
2386 	*right = NULL;
2387 	*middle = NULL;
2388 	*mid_split = 0;
2389 
2390 	if (b_node->b_end < slot_count) {
2391 		split = b_node->b_end;
2392 	} else {
2393 		split = mab_calc_split(mas, b_node, mid_split, min);
2394 		*right = mas_new_ma_node(mas, b_node);
2395 	}
2396 
2397 	if (*mid_split)
2398 		*middle = mas_new_ma_node(mas, b_node);
2399 
2400 	return split;
2401 
2402 }
2403 
2404 /*
2405  * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
2406  * pointer.
2407  * @b_node: the big node to add the entry
2408  * @mas: the maple state to get the pivot (mas->max)
2409  * @entry: the entry to add, if NULL nothing happens.
2410  */
2411 static inline void mab_set_b_end(struct maple_big_node *b_node,
2412 				 struct ma_state *mas,
2413 				 void *entry)
2414 {
2415 	if (!entry)
2416 		return;
2417 
2418 	b_node->slot[b_node->b_end] = entry;
2419 	if (mt_is_alloc(mas->tree))
2420 		b_node->gap[b_node->b_end] = mas_max_gap(mas);
2421 	b_node->pivot[b_node->b_end++] = mas->max;
2422 }
2423 
2424 /*
2425  * mas_set_split_parent() - combine_then_separate helper function.  Sets the parent
2426  * of @mas->node to either @left or @right, depending on @slot and @split
2427  *
2428  * @mas: the maple state with the node that needs a parent
2429  * @left: possible parent 1
2430  * @right: possible parent 2
2431  * @slot: the slot the mas->node was placed
2432  * @split: the split location between @left and @right
2433  */
2434 static inline void mas_set_split_parent(struct ma_state *mas,
2435 					struct maple_enode *left,
2436 					struct maple_enode *right,
2437 					unsigned char *slot, unsigned char split)
2438 {
2439 	if (mas_is_none(mas))
2440 		return;
2441 
2442 	if ((*slot) <= split)
2443 		mas_set_parent(mas, mas->node, left, *slot);
2444 	else if (right)
2445 		mas_set_parent(mas, mas->node, right, (*slot) - split - 1);
2446 
2447 	(*slot)++;
2448 }
2449 
2450 /*
2451  * mte_mid_split_check() - Check if the next node passes the mid-split
2452  * @l: Pointer to left encoded maple node.
2453  * @m: Pointer to middle encoded maple node.
2454  * @r: Pointer to right encoded maple node.
2455  * @slot: The offset
2456  * @split: The split location.
2457  * @mid_split: The middle split.
2458  */
2459 static inline void mte_mid_split_check(struct maple_enode **l,
2460 				       struct maple_enode **r,
2461 				       struct maple_enode *right,
2462 				       unsigned char slot,
2463 				       unsigned char *split,
2464 				       unsigned char mid_split)
2465 {
2466 	if (*r == right)
2467 		return;
2468 
2469 	if (slot < mid_split)
2470 		return;
2471 
2472 	*l = *r;
2473 	*r = right;
2474 	*split = mid_split;
2475 }
2476 
2477 /*
2478  * mast_set_split_parents() - Helper function to set three nodes parents.  Slot
2479  * is taken from @mast->l.
2480  * @mast: the maple subtree state
2481  * @left: the left node
2482  * @right: the right node
2483  * @split: the split location.
2484  */
2485 static inline void mast_set_split_parents(struct maple_subtree_state *mast,
2486 					  struct maple_enode *left,
2487 					  struct maple_enode *middle,
2488 					  struct maple_enode *right,
2489 					  unsigned char split,
2490 					  unsigned char mid_split)
2491 {
2492 	unsigned char slot;
2493 	struct maple_enode *l = left;
2494 	struct maple_enode *r = right;
2495 
2496 	if (mas_is_none(mast->l))
2497 		return;
2498 
2499 	if (middle)
2500 		r = middle;
2501 
2502 	slot = mast->l->offset;
2503 
2504 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2505 	mas_set_split_parent(mast->l, l, r, &slot, split);
2506 
2507 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2508 	mas_set_split_parent(mast->m, l, r, &slot, split);
2509 
2510 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2511 	mas_set_split_parent(mast->r, l, r, &slot, split);
2512 }
2513 
2514 /*
2515  * mas_topiary_node() - Dispose of a single node
2516  * @mas: The maple state for pushing nodes
2517  * @in_rcu: If the tree is in rcu mode
2518  *
2519  * The node will either be RCU freed or pushed back on the maple state.
2520  */
2521 static inline void mas_topiary_node(struct ma_state *mas,
2522 		struct ma_state *tmp_mas, bool in_rcu)
2523 {
2524 	struct maple_node *tmp;
2525 	struct maple_enode *enode;
2526 
2527 	if (mas_is_none(tmp_mas))
2528 		return;
2529 
2530 	enode = tmp_mas->node;
2531 	tmp = mte_to_node(enode);
2532 	mte_set_node_dead(enode);
2533 	if (in_rcu)
2534 		ma_free_rcu(tmp);
2535 	else
2536 		mas_push_node(mas, tmp);
2537 }
2538 
2539 /*
2540  * mas_topiary_replace() - Replace the data with new data, then repair the
2541  * parent links within the new tree.  Iterate over the dead sub-tree and collect
2542  * the dead subtrees and topiary the nodes that are no longer of use.
2543  *
2544  * The new tree will have up to three children with the correct parent.  Keep
2545  * track of the new entries as they need to be followed to find the next level
2546  * of new entries.
2547  *
2548  * The old tree will have up to three children with the old parent.  Keep track
2549  * of the old entries as they may have more nodes below replaced.  Nodes within
2550  * [index, last] are dead subtrees, others need to be freed and followed.
2551  *
2552  * @mas: The maple state pointing at the new data
2553  * @old_enode: The maple encoded node being replaced
2554  *
2555  */
2556 static inline void mas_topiary_replace(struct ma_state *mas,
2557 		struct maple_enode *old_enode)
2558 {
2559 	struct ma_state tmp[3], tmp_next[3];
2560 	MA_TOPIARY(subtrees, mas->tree);
2561 	bool in_rcu;
2562 	int i, n;
2563 
2564 	/* Place data in tree & then mark node as old */
2565 	mas_put_in_tree(mas, old_enode);
2566 
2567 	/* Update the parent pointers in the tree */
2568 	tmp[0] = *mas;
2569 	tmp[0].offset = 0;
2570 	tmp[1].status = ma_none;
2571 	tmp[2].status = ma_none;
2572 	while (!mte_is_leaf(tmp[0].node)) {
2573 		n = 0;
2574 		for (i = 0; i < 3; i++) {
2575 			if (mas_is_none(&tmp[i]))
2576 				continue;
2577 
2578 			while (n < 3) {
2579 				if (!mas_find_child(&tmp[i], &tmp_next[n]))
2580 					break;
2581 				n++;
2582 			}
2583 
2584 			mas_adopt_children(&tmp[i], tmp[i].node);
2585 		}
2586 
2587 		if (MAS_WARN_ON(mas, n == 0))
2588 			break;
2589 
2590 		while (n < 3)
2591 			tmp_next[n++].status = ma_none;
2592 
2593 		for (i = 0; i < 3; i++)
2594 			tmp[i] = tmp_next[i];
2595 	}
2596 
2597 	/* Collect the old nodes that need to be discarded */
2598 	if (mte_is_leaf(old_enode))
2599 		return mas_free(mas, old_enode);
2600 
2601 	tmp[0] = *mas;
2602 	tmp[0].offset = 0;
2603 	tmp[0].node = old_enode;
2604 	tmp[1].status = ma_none;
2605 	tmp[2].status = ma_none;
2606 	in_rcu = mt_in_rcu(mas->tree);
2607 	do {
2608 		n = 0;
2609 		for (i = 0; i < 3; i++) {
2610 			if (mas_is_none(&tmp[i]))
2611 				continue;
2612 
2613 			while (n < 3) {
2614 				if (!mas_find_child(&tmp[i], &tmp_next[n]))
2615 					break;
2616 
2617 				if ((tmp_next[n].min >= tmp_next->index) &&
2618 				    (tmp_next[n].max <= tmp_next->last)) {
2619 					mat_add(&subtrees, tmp_next[n].node);
2620 					tmp_next[n].status = ma_none;
2621 				} else {
2622 					n++;
2623 				}
2624 			}
2625 		}
2626 
2627 		if (MAS_WARN_ON(mas, n == 0))
2628 			break;
2629 
2630 		while (n < 3)
2631 			tmp_next[n++].status = ma_none;
2632 
2633 		for (i = 0; i < 3; i++) {
2634 			mas_topiary_node(mas, &tmp[i], in_rcu);
2635 			tmp[i] = tmp_next[i];
2636 		}
2637 	} while (!mte_is_leaf(tmp[0].node));
2638 
2639 	for (i = 0; i < 3; i++)
2640 		mas_topiary_node(mas, &tmp[i], in_rcu);
2641 
2642 	mas_mat_destroy(mas, &subtrees);
2643 }
2644 
2645 /*
2646  * mas_wmb_replace() - Write memory barrier and replace
2647  * @mas: The maple state
2648  * @old_enode: The old maple encoded node that is being replaced.
2649  *
2650  * Updates gap as necessary.
2651  */
2652 static inline void mas_wmb_replace(struct ma_state *mas,
2653 		struct maple_enode *old_enode)
2654 {
2655 	/* Insert the new data in the tree */
2656 	mas_topiary_replace(mas, old_enode);
2657 
2658 	if (mte_is_leaf(mas->node))
2659 		return;
2660 
2661 	mas_update_gap(mas);
2662 }
2663 
2664 /*
2665  * mast_cp_to_nodes() - Copy data out to nodes.
2666  * @mast: The maple subtree state
2667  * @left: The left encoded maple node
2668  * @middle: The middle encoded maple node
2669  * @right: The right encoded maple node
2670  * @split: The location to split between left and (middle ? middle : right)
2671  * @mid_split: The location to split between middle and right.
2672  */
2673 static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
2674 	struct maple_enode *left, struct maple_enode *middle,
2675 	struct maple_enode *right, unsigned char split, unsigned char mid_split)
2676 {
2677 	bool new_lmax = true;
2678 
2679 	mas_node_or_none(mast->l, left);
2680 	mas_node_or_none(mast->m, middle);
2681 	mas_node_or_none(mast->r, right);
2682 
2683 	mast->l->min = mast->orig_l->min;
2684 	if (split == mast->bn->b_end) {
2685 		mast->l->max = mast->orig_r->max;
2686 		new_lmax = false;
2687 	}
2688 
2689 	mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax);
2690 
2691 	if (middle) {
2692 		mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true);
2693 		mast->m->min = mast->bn->pivot[split] + 1;
2694 		split = mid_split;
2695 	}
2696 
2697 	mast->r->max = mast->orig_r->max;
2698 	if (right) {
2699 		mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false);
2700 		mast->r->min = mast->bn->pivot[split] + 1;
2701 	}
2702 }
2703 
2704 /*
2705  * mast_combine_cp_left - Copy in the original left side of the tree into the
2706  * combined data set in the maple subtree state big node.
2707  * @mast: The maple subtree state
2708  */
2709 static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
2710 {
2711 	unsigned char l_slot = mast->orig_l->offset;
2712 
2713 	if (!l_slot)
2714 		return;
2715 
2716 	mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0);
2717 }
2718 
2719 /*
2720  * mast_combine_cp_right: Copy in the original right side of the tree into the
2721  * combined data set in the maple subtree state big node.
2722  * @mast: The maple subtree state
2723  */
2724 static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
2725 {
2726 	if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max)
2727 		return;
2728 
2729 	mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1,
2730 		   mt_slot_count(mast->orig_r->node), mast->bn,
2731 		   mast->bn->b_end);
2732 	mast->orig_r->last = mast->orig_r->max;
2733 }
2734 
2735 /*
2736  * mast_sufficient: Check if the maple subtree state has enough data in the big
2737  * node to create at least one sufficient node
2738  * @mast: the maple subtree state
2739  */
2740 static inline bool mast_sufficient(struct maple_subtree_state *mast)
2741 {
2742 	if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node))
2743 		return true;
2744 
2745 	return false;
2746 }
2747 
2748 /*
2749  * mast_overflow: Check if there is too much data in the subtree state for a
2750  * single node.
2751  * @mast: The maple subtree state
2752  */
2753 static inline bool mast_overflow(struct maple_subtree_state *mast)
2754 {
2755 	if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node))
2756 		return true;
2757 
2758 	return false;
2759 }
2760 
2761 static inline void *mtree_range_walk(struct ma_state *mas)
2762 {
2763 	unsigned long *pivots;
2764 	unsigned char offset;
2765 	struct maple_node *node;
2766 	struct maple_enode *next, *last;
2767 	enum maple_type type;
2768 	void __rcu **slots;
2769 	unsigned char end;
2770 	unsigned long max, min;
2771 	unsigned long prev_max, prev_min;
2772 
2773 	next = mas->node;
2774 	min = mas->min;
2775 	max = mas->max;
2776 	do {
2777 		last = next;
2778 		node = mte_to_node(next);
2779 		type = mte_node_type(next);
2780 		pivots = ma_pivots(node, type);
2781 		end = ma_data_end(node, type, pivots, max);
2782 		prev_min = min;
2783 		prev_max = max;
2784 		if (pivots[0] >= mas->index) {
2785 			offset = 0;
2786 			max = pivots[0];
2787 			goto next;
2788 		}
2789 
2790 		offset = 1;
2791 		while (offset < end) {
2792 			if (pivots[offset] >= mas->index) {
2793 				max = pivots[offset];
2794 				break;
2795 			}
2796 			offset++;
2797 		}
2798 
2799 		min = pivots[offset - 1] + 1;
2800 next:
2801 		slots = ma_slots(node, type);
2802 		next = mt_slot(mas->tree, slots, offset);
2803 		if (unlikely(ma_dead_node(node)))
2804 			goto dead_node;
2805 	} while (!ma_is_leaf(type));
2806 
2807 	mas->end = end;
2808 	mas->offset = offset;
2809 	mas->index = min;
2810 	mas->last = max;
2811 	mas->min = prev_min;
2812 	mas->max = prev_max;
2813 	mas->node = last;
2814 	return (void *)next;
2815 
2816 dead_node:
2817 	mas_reset(mas);
2818 	return NULL;
2819 }
2820 
2821 /*
2822  * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
2823  * @mas: The starting maple state
2824  * @mast: The maple_subtree_state, keeps track of 4 maple states.
2825  * @count: The estimated count of iterations needed.
2826  *
2827  * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
2828  * is hit.  First @b_node is split into two entries which are inserted into the
2829  * next iteration of the loop.  @b_node is returned populated with the final
2830  * iteration. @mas is used to obtain allocations.  orig_l_mas keeps track of the
2831  * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
2832  * to account of what has been copied into the new sub-tree.  The update of
2833  * orig_l_mas->last is used in mas_consume to find the slots that will need to
2834  * be either freed or destroyed.  orig_l_mas->depth keeps track of the height of
2835  * the new sub-tree in case the sub-tree becomes the full tree.
2836  */
2837 static void mas_spanning_rebalance(struct ma_state *mas,
2838 		struct maple_subtree_state *mast, unsigned char count)
2839 {
2840 	unsigned char split, mid_split;
2841 	unsigned char slot = 0;
2842 	struct maple_enode *left = NULL, *middle = NULL, *right = NULL;
2843 	struct maple_enode *old_enode;
2844 
2845 	MA_STATE(l_mas, mas->tree, mas->index, mas->index);
2846 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2847 	MA_STATE(m_mas, mas->tree, mas->index, mas->index);
2848 
2849 	/*
2850 	 * The tree needs to be rebalanced and leaves need to be kept at the same level.
2851 	 * Rebalancing is done by use of the ``struct maple_topiary``.
2852 	 */
2853 	mast->l = &l_mas;
2854 	mast->m = &m_mas;
2855 	mast->r = &r_mas;
2856 	l_mas.status = r_mas.status = m_mas.status = ma_none;
2857 
2858 	/* Check if this is not root and has sufficient data.  */
2859 	if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) &&
2860 	    unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type]))
2861 		mast_spanning_rebalance(mast);
2862 
2863 	l_mas.depth = 0;
2864 
2865 	/*
2866 	 * Each level of the tree is examined and balanced, pushing data to the left or
2867 	 * right, or rebalancing against left or right nodes is employed to avoid
2868 	 * rippling up the tree to limit the amount of churn.  Once a new sub-section of
2869 	 * the tree is created, there may be a mix of new and old nodes.  The old nodes
2870 	 * will have the incorrect parent pointers and currently be in two trees: the
2871 	 * original tree and the partially new tree.  To remedy the parent pointers in
2872 	 * the old tree, the new data is swapped into the active tree and a walk down
2873 	 * the tree is performed and the parent pointers are updated.
2874 	 * See mas_topiary_replace() for more information.
2875 	 */
2876 	while (count--) {
2877 		mast->bn->b_end--;
2878 		mast->bn->type = mte_node_type(mast->orig_l->node);
2879 		split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle,
2880 					&mid_split, mast->orig_l->min);
2881 		mast_set_split_parents(mast, left, middle, right, split,
2882 				       mid_split);
2883 		mast_cp_to_nodes(mast, left, middle, right, split, mid_split);
2884 
2885 		/*
2886 		 * Copy data from next level in the tree to mast->bn from next
2887 		 * iteration
2888 		 */
2889 		memset(mast->bn, 0, sizeof(struct maple_big_node));
2890 		mast->bn->type = mte_node_type(left);
2891 		l_mas.depth++;
2892 
2893 		/* Root already stored in l->node. */
2894 		if (mas_is_root_limits(mast->l))
2895 			goto new_root;
2896 
2897 		mast_ascend(mast);
2898 		mast_combine_cp_left(mast);
2899 		l_mas.offset = mast->bn->b_end;
2900 		mab_set_b_end(mast->bn, &l_mas, left);
2901 		mab_set_b_end(mast->bn, &m_mas, middle);
2902 		mab_set_b_end(mast->bn, &r_mas, right);
2903 
2904 		/* Copy anything necessary out of the right node. */
2905 		mast_combine_cp_right(mast);
2906 		mast->orig_l->last = mast->orig_l->max;
2907 
2908 		if (mast_sufficient(mast))
2909 			continue;
2910 
2911 		if (mast_overflow(mast))
2912 			continue;
2913 
2914 		/* May be a new root stored in mast->bn */
2915 		if (mas_is_root_limits(mast->orig_l))
2916 			break;
2917 
2918 		mast_spanning_rebalance(mast);
2919 
2920 		/* rebalancing from other nodes may require another loop. */
2921 		if (!count)
2922 			count++;
2923 	}
2924 
2925 	l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)),
2926 				mte_node_type(mast->orig_l->node));
2927 	l_mas.depth++;
2928 	mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true);
2929 	mas_set_parent(mas, left, l_mas.node, slot);
2930 	if (middle)
2931 		mas_set_parent(mas, middle, l_mas.node, ++slot);
2932 
2933 	if (right)
2934 		mas_set_parent(mas, right, l_mas.node, ++slot);
2935 
2936 	if (mas_is_root_limits(mast->l)) {
2937 new_root:
2938 		mas_mn(mast->l)->parent = ma_parent_ptr(mas_tree_parent(mas));
2939 		while (!mte_is_root(mast->orig_l->node))
2940 			mast_ascend(mast);
2941 	} else {
2942 		mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent;
2943 	}
2944 
2945 	old_enode = mast->orig_l->node;
2946 	mas->depth = l_mas.depth;
2947 	mas->node = l_mas.node;
2948 	mas->min = l_mas.min;
2949 	mas->max = l_mas.max;
2950 	mas->offset = l_mas.offset;
2951 	mas_wmb_replace(mas, old_enode);
2952 	mtree_range_walk(mas);
2953 	return;
2954 }
2955 
2956 /*
2957  * mas_rebalance() - Rebalance a given node.
2958  * @mas: The maple state
2959  * @b_node: The big maple node.
2960  *
2961  * Rebalance two nodes into a single node or two new nodes that are sufficient.
2962  * Continue upwards until tree is sufficient.
2963  */
2964 static inline void mas_rebalance(struct ma_state *mas,
2965 				struct maple_big_node *b_node)
2966 {
2967 	char empty_count = mas_mt_height(mas);
2968 	struct maple_subtree_state mast;
2969 	unsigned char shift, b_end = ++b_node->b_end;
2970 
2971 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
2972 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2973 
2974 	trace_ma_op(__func__, mas);
2975 
2976 	/*
2977 	 * Rebalancing occurs if a node is insufficient.  Data is rebalanced
2978 	 * against the node to the right if it exists, otherwise the node to the
2979 	 * left of this node is rebalanced against this node.  If rebalancing
2980 	 * causes just one node to be produced instead of two, then the parent
2981 	 * is also examined and rebalanced if it is insufficient.  Every level
2982 	 * tries to combine the data in the same way.  If one node contains the
2983 	 * entire range of the tree, then that node is used as a new root node.
2984 	 */
2985 
2986 	mast.orig_l = &l_mas;
2987 	mast.orig_r = &r_mas;
2988 	mast.bn = b_node;
2989 	mast.bn->type = mte_node_type(mas->node);
2990 
2991 	l_mas = r_mas = *mas;
2992 
2993 	if (mas_next_sibling(&r_mas)) {
2994 		mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end);
2995 		r_mas.last = r_mas.index = r_mas.max;
2996 	} else {
2997 		mas_prev_sibling(&l_mas);
2998 		shift = mas_data_end(&l_mas) + 1;
2999 		mab_shift_right(b_node, shift);
3000 		mas->offset += shift;
3001 		mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0);
3002 		b_node->b_end = shift + b_end;
3003 		l_mas.index = l_mas.last = l_mas.min;
3004 	}
3005 
3006 	return mas_spanning_rebalance(mas, &mast, empty_count);
3007 }
3008 
3009 /*
3010  * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple
3011  * state.
3012  * @mas: The maple state
3013  * @end: The end of the left-most node.
3014  *
3015  * During a mass-insert event (such as forking), it may be necessary to
3016  * rebalance the left-most node when it is not sufficient.
3017  */
3018 static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end)
3019 {
3020 	enum maple_type mt = mte_node_type(mas->node);
3021 	struct maple_node reuse, *newnode, *parent, *new_left, *left, *node;
3022 	struct maple_enode *eparent, *old_eparent;
3023 	unsigned char offset, tmp, split = mt_slots[mt] / 2;
3024 	void __rcu **l_slots, **slots;
3025 	unsigned long *l_pivs, *pivs, gap;
3026 	bool in_rcu = mt_in_rcu(mas->tree);
3027 
3028 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3029 
3030 	l_mas = *mas;
3031 	mas_prev_sibling(&l_mas);
3032 
3033 	/* set up node. */
3034 	if (in_rcu) {
3035 		newnode = mas_pop_node(mas);
3036 	} else {
3037 		newnode = &reuse;
3038 	}
3039 
3040 	node = mas_mn(mas);
3041 	newnode->parent = node->parent;
3042 	slots = ma_slots(newnode, mt);
3043 	pivs = ma_pivots(newnode, mt);
3044 	left = mas_mn(&l_mas);
3045 	l_slots = ma_slots(left, mt);
3046 	l_pivs = ma_pivots(left, mt);
3047 	if (!l_slots[split])
3048 		split++;
3049 	tmp = mas_data_end(&l_mas) - split;
3050 
3051 	memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp);
3052 	memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp);
3053 	pivs[tmp] = l_mas.max;
3054 	memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end);
3055 	memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end);
3056 
3057 	l_mas.max = l_pivs[split];
3058 	mas->min = l_mas.max + 1;
3059 	old_eparent = mt_mk_node(mte_parent(l_mas.node),
3060 			     mas_parent_type(&l_mas, l_mas.node));
3061 	tmp += end;
3062 	if (!in_rcu) {
3063 		unsigned char max_p = mt_pivots[mt];
3064 		unsigned char max_s = mt_slots[mt];
3065 
3066 		if (tmp < max_p)
3067 			memset(pivs + tmp, 0,
3068 			       sizeof(unsigned long) * (max_p - tmp));
3069 
3070 		if (tmp < mt_slots[mt])
3071 			memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3072 
3073 		memcpy(node, newnode, sizeof(struct maple_node));
3074 		ma_set_meta(node, mt, 0, tmp - 1);
3075 		mte_set_pivot(old_eparent, mte_parent_slot(l_mas.node),
3076 			      l_pivs[split]);
3077 
3078 		/* Remove data from l_pivs. */
3079 		tmp = split + 1;
3080 		memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp));
3081 		memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3082 		ma_set_meta(left, mt, 0, split);
3083 		eparent = old_eparent;
3084 
3085 		goto done;
3086 	}
3087 
3088 	/* RCU requires replacing both l_mas, mas, and parent. */
3089 	mas->node = mt_mk_node(newnode, mt);
3090 	ma_set_meta(newnode, mt, 0, tmp);
3091 
3092 	new_left = mas_pop_node(mas);
3093 	new_left->parent = left->parent;
3094 	mt = mte_node_type(l_mas.node);
3095 	slots = ma_slots(new_left, mt);
3096 	pivs = ma_pivots(new_left, mt);
3097 	memcpy(slots, l_slots, sizeof(void *) * split);
3098 	memcpy(pivs, l_pivs, sizeof(unsigned long) * split);
3099 	ma_set_meta(new_left, mt, 0, split);
3100 	l_mas.node = mt_mk_node(new_left, mt);
3101 
3102 	/* replace parent. */
3103 	offset = mte_parent_slot(mas->node);
3104 	mt = mas_parent_type(&l_mas, l_mas.node);
3105 	parent = mas_pop_node(mas);
3106 	slots = ma_slots(parent, mt);
3107 	pivs = ma_pivots(parent, mt);
3108 	memcpy(parent, mte_to_node(old_eparent), sizeof(struct maple_node));
3109 	rcu_assign_pointer(slots[offset], mas->node);
3110 	rcu_assign_pointer(slots[offset - 1], l_mas.node);
3111 	pivs[offset - 1] = l_mas.max;
3112 	eparent = mt_mk_node(parent, mt);
3113 done:
3114 	gap = mas_leaf_max_gap(mas);
3115 	mte_set_gap(eparent, mte_parent_slot(mas->node), gap);
3116 	gap = mas_leaf_max_gap(&l_mas);
3117 	mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap);
3118 	mas_ascend(mas);
3119 
3120 	if (in_rcu) {
3121 		mas_replace_node(mas, old_eparent);
3122 		mas_adopt_children(mas, mas->node);
3123 	}
3124 
3125 	mas_update_gap(mas);
3126 }
3127 
3128 /*
3129  * mas_split_final_node() - Split the final node in a subtree operation.
3130  * @mast: the maple subtree state
3131  * @mas: The maple state
3132  * @height: The height of the tree in case it's a new root.
3133  */
3134 static inline void mas_split_final_node(struct maple_subtree_state *mast,
3135 					struct ma_state *mas, int height)
3136 {
3137 	struct maple_enode *ancestor;
3138 
3139 	if (mte_is_root(mas->node)) {
3140 		if (mt_is_alloc(mas->tree))
3141 			mast->bn->type = maple_arange_64;
3142 		else
3143 			mast->bn->type = maple_range_64;
3144 		mas->depth = height;
3145 	}
3146 	/*
3147 	 * Only a single node is used here, could be root.
3148 	 * The Big_node data should just fit in a single node.
3149 	 */
3150 	ancestor = mas_new_ma_node(mas, mast->bn);
3151 	mas_set_parent(mas, mast->l->node, ancestor, mast->l->offset);
3152 	mas_set_parent(mas, mast->r->node, ancestor, mast->r->offset);
3153 	mte_to_node(ancestor)->parent = mas_mn(mas)->parent;
3154 
3155 	mast->l->node = ancestor;
3156 	mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true);
3157 	mas->offset = mast->bn->b_end - 1;
3158 }
3159 
3160 /*
3161  * mast_fill_bnode() - Copy data into the big node in the subtree state
3162  * @mast: The maple subtree state
3163  * @mas: the maple state
3164  * @skip: The number of entries to skip for new nodes insertion.
3165  */
3166 static inline void mast_fill_bnode(struct maple_subtree_state *mast,
3167 					 struct ma_state *mas,
3168 					 unsigned char skip)
3169 {
3170 	bool cp = true;
3171 	unsigned char split;
3172 
3173 	memset(mast->bn, 0, sizeof(struct maple_big_node));
3174 
3175 	if (mte_is_root(mas->node)) {
3176 		cp = false;
3177 	} else {
3178 		mas_ascend(mas);
3179 		mas->offset = mte_parent_slot(mas->node);
3180 	}
3181 
3182 	if (cp && mast->l->offset)
3183 		mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0);
3184 
3185 	split = mast->bn->b_end;
3186 	mab_set_b_end(mast->bn, mast->l, mast->l->node);
3187 	mast->r->offset = mast->bn->b_end;
3188 	mab_set_b_end(mast->bn, mast->r, mast->r->node);
3189 	if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max)
3190 		cp = false;
3191 
3192 	if (cp)
3193 		mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1,
3194 			   mast->bn, mast->bn->b_end);
3195 
3196 	mast->bn->b_end--;
3197 	mast->bn->type = mte_node_type(mas->node);
3198 }
3199 
3200 /*
3201  * mast_split_data() - Split the data in the subtree state big node into regular
3202  * nodes.
3203  * @mast: The maple subtree state
3204  * @mas: The maple state
3205  * @split: The location to split the big node
3206  */
3207 static inline void mast_split_data(struct maple_subtree_state *mast,
3208 	   struct ma_state *mas, unsigned char split)
3209 {
3210 	unsigned char p_slot;
3211 
3212 	mab_mas_cp(mast->bn, 0, split, mast->l, true);
3213 	mte_set_pivot(mast->r->node, 0, mast->r->max);
3214 	mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false);
3215 	mast->l->offset = mte_parent_slot(mas->node);
3216 	mast->l->max = mast->bn->pivot[split];
3217 	mast->r->min = mast->l->max + 1;
3218 	if (mte_is_leaf(mas->node))
3219 		return;
3220 
3221 	p_slot = mast->orig_l->offset;
3222 	mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node,
3223 			     &p_slot, split);
3224 	mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node,
3225 			     &p_slot, split);
3226 }
3227 
3228 /*
3229  * mas_push_data() - Instead of splitting a node, it is beneficial to push the
3230  * data to the right or left node if there is room.
3231  * @mas: The maple state
3232  * @height: The current height of the maple state
3233  * @mast: The maple subtree state
3234  * @left: Push left or not.
3235  *
3236  * Keeping the height of the tree low means faster lookups.
3237  *
3238  * Return: True if pushed, false otherwise.
3239  */
3240 static inline bool mas_push_data(struct ma_state *mas, int height,
3241 				 struct maple_subtree_state *mast, bool left)
3242 {
3243 	unsigned char slot_total = mast->bn->b_end;
3244 	unsigned char end, space, split;
3245 
3246 	MA_STATE(tmp_mas, mas->tree, mas->index, mas->last);
3247 	tmp_mas = *mas;
3248 	tmp_mas.depth = mast->l->depth;
3249 
3250 	if (left && !mas_prev_sibling(&tmp_mas))
3251 		return false;
3252 	else if (!left && !mas_next_sibling(&tmp_mas))
3253 		return false;
3254 
3255 	end = mas_data_end(&tmp_mas);
3256 	slot_total += end;
3257 	space = 2 * mt_slot_count(mas->node) - 2;
3258 	/* -2 instead of -1 to ensure there isn't a triple split */
3259 	if (ma_is_leaf(mast->bn->type))
3260 		space--;
3261 
3262 	if (mas->max == ULONG_MAX)
3263 		space--;
3264 
3265 	if (slot_total >= space)
3266 		return false;
3267 
3268 	/* Get the data; Fill mast->bn */
3269 	mast->bn->b_end++;
3270 	if (left) {
3271 		mab_shift_right(mast->bn, end + 1);
3272 		mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0);
3273 		mast->bn->b_end = slot_total + 1;
3274 	} else {
3275 		mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end);
3276 	}
3277 
3278 	/* Configure mast for splitting of mast->bn */
3279 	split = mt_slots[mast->bn->type] - 2;
3280 	if (left) {
3281 		/*  Switch mas to prev node  */
3282 		*mas = tmp_mas;
3283 		/* Start using mast->l for the left side. */
3284 		tmp_mas.node = mast->l->node;
3285 		*mast->l = tmp_mas;
3286 	} else {
3287 		tmp_mas.node = mast->r->node;
3288 		*mast->r = tmp_mas;
3289 		split = slot_total - split;
3290 	}
3291 	split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]);
3292 	/* Update parent slot for split calculation. */
3293 	if (left)
3294 		mast->orig_l->offset += end + 1;
3295 
3296 	mast_split_data(mast, mas, split);
3297 	mast_fill_bnode(mast, mas, 2);
3298 	mas_split_final_node(mast, mas, height + 1);
3299 	return true;
3300 }
3301 
3302 /*
3303  * mas_split() - Split data that is too big for one node into two.
3304  * @mas: The maple state
3305  * @b_node: The maple big node
3306  */
3307 static void mas_split(struct ma_state *mas, struct maple_big_node *b_node)
3308 {
3309 	struct maple_subtree_state mast;
3310 	int height = 0;
3311 	unsigned char mid_split, split = 0;
3312 	struct maple_enode *old;
3313 
3314 	/*
3315 	 * Splitting is handled differently from any other B-tree; the Maple
3316 	 * Tree splits upwards.  Splitting up means that the split operation
3317 	 * occurs when the walk of the tree hits the leaves and not on the way
3318 	 * down.  The reason for splitting up is that it is impossible to know
3319 	 * how much space will be needed until the leaf is (or leaves are)
3320 	 * reached.  Since overwriting data is allowed and a range could
3321 	 * overwrite more than one range or result in changing one entry into 3
3322 	 * entries, it is impossible to know if a split is required until the
3323 	 * data is examined.
3324 	 *
3325 	 * Splitting is a balancing act between keeping allocations to a minimum
3326 	 * and avoiding a 'jitter' event where a tree is expanded to make room
3327 	 * for an entry followed by a contraction when the entry is removed.  To
3328 	 * accomplish the balance, there are empty slots remaining in both left
3329 	 * and right nodes after a split.
3330 	 */
3331 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3332 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3333 	MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last);
3334 	MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last);
3335 
3336 	trace_ma_op(__func__, mas);
3337 	mas->depth = mas_mt_height(mas);
3338 
3339 	mast.l = &l_mas;
3340 	mast.r = &r_mas;
3341 	mast.orig_l = &prev_l_mas;
3342 	mast.orig_r = &prev_r_mas;
3343 	mast.bn = b_node;
3344 
3345 	while (height++ <= mas->depth) {
3346 		if (mt_slots[b_node->type] > b_node->b_end) {
3347 			mas_split_final_node(&mast, mas, height);
3348 			break;
3349 		}
3350 
3351 		l_mas = r_mas = *mas;
3352 		l_mas.node = mas_new_ma_node(mas, b_node);
3353 		r_mas.node = mas_new_ma_node(mas, b_node);
3354 		/*
3355 		 * Another way that 'jitter' is avoided is to terminate a split up early if the
3356 		 * left or right node has space to spare.  This is referred to as "pushing left"
3357 		 * or "pushing right" and is similar to the B* tree, except the nodes left or
3358 		 * right can rarely be reused due to RCU, but the ripple upwards is halted which
3359 		 * is a significant savings.
3360 		 */
3361 		/* Try to push left. */
3362 		if (mas_push_data(mas, height, &mast, true))
3363 			break;
3364 		/* Try to push right. */
3365 		if (mas_push_data(mas, height, &mast, false))
3366 			break;
3367 
3368 		split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min);
3369 		mast_split_data(&mast, mas, split);
3370 		/*
3371 		 * Usually correct, mab_mas_cp in the above call overwrites
3372 		 * r->max.
3373 		 */
3374 		mast.r->max = mas->max;
3375 		mast_fill_bnode(&mast, mas, 1);
3376 		prev_l_mas = *mast.l;
3377 		prev_r_mas = *mast.r;
3378 	}
3379 
3380 	/* Set the original node as dead */
3381 	old = mas->node;
3382 	mas->node = l_mas.node;
3383 	mas_wmb_replace(mas, old);
3384 	mtree_range_walk(mas);
3385 	return;
3386 }
3387 
3388 /*
3389  * mas_commit_b_node() - Commit the big node into the tree.
3390  * @wr_mas: The maple write state
3391  * @b_node: The maple big node
3392  */
3393 static noinline_for_kasan void mas_commit_b_node(struct ma_wr_state *wr_mas,
3394 			    struct maple_big_node *b_node)
3395 {
3396 	enum store_type type = wr_mas->mas->store_type;
3397 
3398 	WARN_ON_ONCE(type != wr_rebalance && type != wr_split_store);
3399 
3400 	if (type == wr_rebalance)
3401 		return mas_rebalance(wr_mas->mas, b_node);
3402 
3403 	return mas_split(wr_mas->mas, b_node);
3404 }
3405 
3406 /*
3407  * mas_root_expand() - Expand a root to a node
3408  * @mas: The maple state
3409  * @entry: The entry to store into the tree
3410  */
3411 static inline int mas_root_expand(struct ma_state *mas, void *entry)
3412 {
3413 	void *contents = mas_root_locked(mas);
3414 	enum maple_type type = maple_leaf_64;
3415 	struct maple_node *node;
3416 	void __rcu **slots;
3417 	unsigned long *pivots;
3418 	int slot = 0;
3419 
3420 	node = mas_pop_node(mas);
3421 	pivots = ma_pivots(node, type);
3422 	slots = ma_slots(node, type);
3423 	node->parent = ma_parent_ptr(mas_tree_parent(mas));
3424 	mas->node = mt_mk_node(node, type);
3425 	mas->status = ma_active;
3426 
3427 	if (mas->index) {
3428 		if (contents) {
3429 			rcu_assign_pointer(slots[slot], contents);
3430 			if (likely(mas->index > 1))
3431 				slot++;
3432 		}
3433 		pivots[slot++] = mas->index - 1;
3434 	}
3435 
3436 	rcu_assign_pointer(slots[slot], entry);
3437 	mas->offset = slot;
3438 	pivots[slot] = mas->last;
3439 	if (mas->last != ULONG_MAX)
3440 		pivots[++slot] = ULONG_MAX;
3441 
3442 	mas->depth = 1;
3443 	mas_set_height(mas);
3444 	ma_set_meta(node, maple_leaf_64, 0, slot);
3445 	/* swap the new root into the tree */
3446 	rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3447 	return slot;
3448 }
3449 
3450 static inline void mas_store_root(struct ma_state *mas, void *entry)
3451 {
3452 	if (likely((mas->last != 0) || (mas->index != 0)))
3453 		mas_root_expand(mas, entry);
3454 	else if (((unsigned long) (entry) & 3) == 2)
3455 		mas_root_expand(mas, entry);
3456 	else {
3457 		rcu_assign_pointer(mas->tree->ma_root, entry);
3458 		mas->status = ma_start;
3459 	}
3460 }
3461 
3462 /*
3463  * mas_is_span_wr() - Check if the write needs to be treated as a write that
3464  * spans the node.
3465  * @wr_mas: The maple write state
3466  *
3467  * Spanning writes are writes that start in one node and end in another OR if
3468  * the write of a %NULL will cause the node to end with a %NULL.
3469  *
3470  * Return: True if this is a spanning write, false otherwise.
3471  */
3472 static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
3473 {
3474 	unsigned long max = wr_mas->r_max;
3475 	unsigned long last = wr_mas->mas->last;
3476 	enum maple_type type = wr_mas->type;
3477 	void *entry = wr_mas->entry;
3478 
3479 	/* Contained in this pivot, fast path */
3480 	if (last < max)
3481 		return false;
3482 
3483 	if (ma_is_leaf(type)) {
3484 		max = wr_mas->mas->max;
3485 		if (last < max)
3486 			return false;
3487 	}
3488 
3489 	if (last == max) {
3490 		/*
3491 		 * The last entry of leaf node cannot be NULL unless it is the
3492 		 * rightmost node (writing ULONG_MAX), otherwise it spans slots.
3493 		 */
3494 		if (entry || last == ULONG_MAX)
3495 			return false;
3496 	}
3497 
3498 	trace_ma_write(__func__, wr_mas->mas, wr_mas->r_max, entry);
3499 	return true;
3500 }
3501 
3502 static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
3503 {
3504 	wr_mas->type = mte_node_type(wr_mas->mas->node);
3505 	mas_wr_node_walk(wr_mas);
3506 	wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type);
3507 }
3508 
3509 static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
3510 {
3511 	wr_mas->mas->max = wr_mas->r_max;
3512 	wr_mas->mas->min = wr_mas->r_min;
3513 	wr_mas->mas->node = wr_mas->content;
3514 	wr_mas->mas->offset = 0;
3515 	wr_mas->mas->depth++;
3516 }
3517 /*
3518  * mas_wr_walk() - Walk the tree for a write.
3519  * @wr_mas: The maple write state
3520  *
3521  * Uses mas_slot_locked() and does not need to worry about dead nodes.
3522  *
3523  * Return: True if it's contained in a node, false on spanning write.
3524  */
3525 static bool mas_wr_walk(struct ma_wr_state *wr_mas)
3526 {
3527 	struct ma_state *mas = wr_mas->mas;
3528 
3529 	while (true) {
3530 		mas_wr_walk_descend(wr_mas);
3531 		if (unlikely(mas_is_span_wr(wr_mas)))
3532 			return false;
3533 
3534 		wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3535 						  mas->offset);
3536 		if (ma_is_leaf(wr_mas->type))
3537 			return true;
3538 
3539 		mas_wr_walk_traverse(wr_mas);
3540 	}
3541 
3542 	return true;
3543 }
3544 
3545 static void mas_wr_walk_index(struct ma_wr_state *wr_mas)
3546 {
3547 	struct ma_state *mas = wr_mas->mas;
3548 
3549 	while (true) {
3550 		mas_wr_walk_descend(wr_mas);
3551 		wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3552 						  mas->offset);
3553 		if (ma_is_leaf(wr_mas->type))
3554 			return;
3555 		mas_wr_walk_traverse(wr_mas);
3556 	}
3557 }
3558 /*
3559  * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
3560  * @l_wr_mas: The left maple write state
3561  * @r_wr_mas: The right maple write state
3562  */
3563 static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
3564 					    struct ma_wr_state *r_wr_mas)
3565 {
3566 	struct ma_state *r_mas = r_wr_mas->mas;
3567 	struct ma_state *l_mas = l_wr_mas->mas;
3568 	unsigned char l_slot;
3569 
3570 	l_slot = l_mas->offset;
3571 	if (!l_wr_mas->content)
3572 		l_mas->index = l_wr_mas->r_min;
3573 
3574 	if ((l_mas->index == l_wr_mas->r_min) &&
3575 		 (l_slot &&
3576 		  !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) {
3577 		if (l_slot > 1)
3578 			l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1;
3579 		else
3580 			l_mas->index = l_mas->min;
3581 
3582 		l_mas->offset = l_slot - 1;
3583 	}
3584 
3585 	if (!r_wr_mas->content) {
3586 		if (r_mas->last < r_wr_mas->r_max)
3587 			r_mas->last = r_wr_mas->r_max;
3588 		r_mas->offset++;
3589 	} else if ((r_mas->last == r_wr_mas->r_max) &&
3590 	    (r_mas->last < r_mas->max) &&
3591 	    !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) {
3592 		r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots,
3593 					     r_wr_mas->type, r_mas->offset + 1);
3594 		r_mas->offset++;
3595 	}
3596 }
3597 
3598 static inline void *mas_state_walk(struct ma_state *mas)
3599 {
3600 	void *entry;
3601 
3602 	entry = mas_start(mas);
3603 	if (mas_is_none(mas))
3604 		return NULL;
3605 
3606 	if (mas_is_ptr(mas))
3607 		return entry;
3608 
3609 	return mtree_range_walk(mas);
3610 }
3611 
3612 /*
3613  * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
3614  * to date.
3615  *
3616  * @mas: The maple state.
3617  *
3618  * Note: Leaves mas in undesirable state.
3619  * Return: The entry for @mas->index or %NULL on dead node.
3620  */
3621 static inline void *mtree_lookup_walk(struct ma_state *mas)
3622 {
3623 	unsigned long *pivots;
3624 	unsigned char offset;
3625 	struct maple_node *node;
3626 	struct maple_enode *next;
3627 	enum maple_type type;
3628 	void __rcu **slots;
3629 	unsigned char end;
3630 
3631 	next = mas->node;
3632 	do {
3633 		node = mte_to_node(next);
3634 		type = mte_node_type(next);
3635 		pivots = ma_pivots(node, type);
3636 		end = mt_pivots[type];
3637 		offset = 0;
3638 		do {
3639 			if (pivots[offset] >= mas->index)
3640 				break;
3641 		} while (++offset < end);
3642 
3643 		slots = ma_slots(node, type);
3644 		next = mt_slot(mas->tree, slots, offset);
3645 		if (unlikely(ma_dead_node(node)))
3646 			goto dead_node;
3647 	} while (!ma_is_leaf(type));
3648 
3649 	return (void *)next;
3650 
3651 dead_node:
3652 	mas_reset(mas);
3653 	return NULL;
3654 }
3655 
3656 static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
3657 /*
3658  * mas_new_root() - Create a new root node that only contains the entry passed
3659  * in.
3660  * @mas: The maple state
3661  * @entry: The entry to store.
3662  *
3663  * Only valid when the index == 0 and the last == ULONG_MAX
3664  */
3665 static inline void mas_new_root(struct ma_state *mas, void *entry)
3666 {
3667 	struct maple_enode *root = mas_root_locked(mas);
3668 	enum maple_type type = maple_leaf_64;
3669 	struct maple_node *node;
3670 	void __rcu **slots;
3671 	unsigned long *pivots;
3672 
3673 	if (!entry && !mas->index && mas->last == ULONG_MAX) {
3674 		mas->depth = 0;
3675 		mas_set_height(mas);
3676 		rcu_assign_pointer(mas->tree->ma_root, entry);
3677 		mas->status = ma_start;
3678 		goto done;
3679 	}
3680 
3681 	node = mas_pop_node(mas);
3682 	pivots = ma_pivots(node, type);
3683 	slots = ma_slots(node, type);
3684 	node->parent = ma_parent_ptr(mas_tree_parent(mas));
3685 	mas->node = mt_mk_node(node, type);
3686 	mas->status = ma_active;
3687 	rcu_assign_pointer(slots[0], entry);
3688 	pivots[0] = mas->last;
3689 	mas->depth = 1;
3690 	mas_set_height(mas);
3691 	rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3692 
3693 done:
3694 	if (xa_is_node(root))
3695 		mte_destroy_walk(root, mas->tree);
3696 
3697 	return;
3698 }
3699 /*
3700  * mas_wr_spanning_store() - Create a subtree with the store operation completed
3701  * and new nodes where necessary, then place the sub-tree in the actual tree.
3702  * Note that mas is expected to point to the node which caused the store to
3703  * span.
3704  * @wr_mas: The maple write state
3705  */
3706 static noinline void mas_wr_spanning_store(struct ma_wr_state *wr_mas)
3707 {
3708 	struct maple_subtree_state mast;
3709 	struct maple_big_node b_node;
3710 	struct ma_state *mas;
3711 	unsigned char height;
3712 
3713 	/* Left and Right side of spanning store */
3714 	MA_STATE(l_mas, NULL, 0, 0);
3715 	MA_STATE(r_mas, NULL, 0, 0);
3716 	MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry);
3717 	MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry);
3718 
3719 	/*
3720 	 * A store operation that spans multiple nodes is called a spanning
3721 	 * store and is handled early in the store call stack by the function
3722 	 * mas_is_span_wr().  When a spanning store is identified, the maple
3723 	 * state is duplicated.  The first maple state walks the left tree path
3724 	 * to ``index``, the duplicate walks the right tree path to ``last``.
3725 	 * The data in the two nodes are combined into a single node, two nodes,
3726 	 * or possibly three nodes (see the 3-way split above).  A ``NULL``
3727 	 * written to the last entry of a node is considered a spanning store as
3728 	 * a rebalance is required for the operation to complete and an overflow
3729 	 * of data may happen.
3730 	 */
3731 	mas = wr_mas->mas;
3732 	trace_ma_op(__func__, mas);
3733 
3734 	if (unlikely(!mas->index && mas->last == ULONG_MAX))
3735 		return mas_new_root(mas, wr_mas->entry);
3736 	/*
3737 	 * Node rebalancing may occur due to this store, so there may be three new
3738 	 * entries per level plus a new root.
3739 	 */
3740 	height = mas_mt_height(mas);
3741 
3742 	/*
3743 	 * Set up right side.  Need to get to the next offset after the spanning
3744 	 * store to ensure it's not NULL and to combine both the next node and
3745 	 * the node with the start together.
3746 	 */
3747 	r_mas = *mas;
3748 	/* Avoid overflow, walk to next slot in the tree. */
3749 	if (r_mas.last + 1)
3750 		r_mas.last++;
3751 
3752 	r_mas.index = r_mas.last;
3753 	mas_wr_walk_index(&r_wr_mas);
3754 	r_mas.last = r_mas.index = mas->last;
3755 
3756 	/* Set up left side. */
3757 	l_mas = *mas;
3758 	mas_wr_walk_index(&l_wr_mas);
3759 
3760 	if (!wr_mas->entry) {
3761 		mas_extend_spanning_null(&l_wr_mas, &r_wr_mas);
3762 		mas->offset = l_mas.offset;
3763 		mas->index = l_mas.index;
3764 		mas->last = l_mas.last = r_mas.last;
3765 	}
3766 
3767 	/* expanding NULLs may make this cover the entire range */
3768 	if (!l_mas.index && r_mas.last == ULONG_MAX) {
3769 		mas_set_range(mas, 0, ULONG_MAX);
3770 		return mas_new_root(mas, wr_mas->entry);
3771 	}
3772 
3773 	memset(&b_node, 0, sizeof(struct maple_big_node));
3774 	/* Copy l_mas and store the value in b_node. */
3775 	mas_store_b_node(&l_wr_mas, &b_node, l_mas.end);
3776 	/* Copy r_mas into b_node if there is anything to copy. */
3777 	if (r_mas.max > r_mas.last)
3778 		mas_mab_cp(&r_mas, r_mas.offset, r_mas.end,
3779 			   &b_node, b_node.b_end + 1);
3780 	else
3781 		b_node.b_end++;
3782 
3783 	/* Stop spanning searches by searching for just index. */
3784 	l_mas.index = l_mas.last = mas->index;
3785 
3786 	mast.bn = &b_node;
3787 	mast.orig_l = &l_mas;
3788 	mast.orig_r = &r_mas;
3789 	/* Combine l_mas and r_mas and split them up evenly again. */
3790 	return mas_spanning_rebalance(mas, &mast, height + 1);
3791 }
3792 
3793 /*
3794  * mas_wr_node_store() - Attempt to store the value in a node
3795  * @wr_mas: The maple write state
3796  *
3797  * Attempts to reuse the node, but may allocate.
3798  */
3799 static inline void mas_wr_node_store(struct ma_wr_state *wr_mas,
3800 				     unsigned char new_end)
3801 {
3802 	struct ma_state *mas = wr_mas->mas;
3803 	void __rcu **dst_slots;
3804 	unsigned long *dst_pivots;
3805 	unsigned char dst_offset, offset_end = wr_mas->offset_end;
3806 	struct maple_node reuse, *newnode;
3807 	unsigned char copy_size, node_pivots = mt_pivots[wr_mas->type];
3808 	bool in_rcu = mt_in_rcu(mas->tree);
3809 
3810 	if (mas->last == wr_mas->end_piv)
3811 		offset_end++; /* don't copy this offset */
3812 	else if (unlikely(wr_mas->r_max == ULONG_MAX))
3813 		mas_bulk_rebalance(mas, mas->end, wr_mas->type);
3814 
3815 	/* set up node. */
3816 	if (in_rcu) {
3817 		newnode = mas_pop_node(mas);
3818 	} else {
3819 		memset(&reuse, 0, sizeof(struct maple_node));
3820 		newnode = &reuse;
3821 	}
3822 
3823 	newnode->parent = mas_mn(mas)->parent;
3824 	dst_pivots = ma_pivots(newnode, wr_mas->type);
3825 	dst_slots = ma_slots(newnode, wr_mas->type);
3826 	/* Copy from start to insert point */
3827 	memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * mas->offset);
3828 	memcpy(dst_slots, wr_mas->slots, sizeof(void *) * mas->offset);
3829 
3830 	/* Handle insert of new range starting after old range */
3831 	if (wr_mas->r_min < mas->index) {
3832 		rcu_assign_pointer(dst_slots[mas->offset], wr_mas->content);
3833 		dst_pivots[mas->offset++] = mas->index - 1;
3834 	}
3835 
3836 	/* Store the new entry and range end. */
3837 	if (mas->offset < node_pivots)
3838 		dst_pivots[mas->offset] = mas->last;
3839 	rcu_assign_pointer(dst_slots[mas->offset], wr_mas->entry);
3840 
3841 	/*
3842 	 * this range wrote to the end of the node or it overwrote the rest of
3843 	 * the data
3844 	 */
3845 	if (offset_end > mas->end)
3846 		goto done;
3847 
3848 	dst_offset = mas->offset + 1;
3849 	/* Copy to the end of node if necessary. */
3850 	copy_size = mas->end - offset_end + 1;
3851 	memcpy(dst_slots + dst_offset, wr_mas->slots + offset_end,
3852 	       sizeof(void *) * copy_size);
3853 	memcpy(dst_pivots + dst_offset, wr_mas->pivots + offset_end,
3854 	       sizeof(unsigned long) * (copy_size - 1));
3855 
3856 	if (new_end < node_pivots)
3857 		dst_pivots[new_end] = mas->max;
3858 
3859 done:
3860 	mas_leaf_set_meta(newnode, maple_leaf_64, new_end);
3861 	if (in_rcu) {
3862 		struct maple_enode *old_enode = mas->node;
3863 
3864 		mas->node = mt_mk_node(newnode, wr_mas->type);
3865 		mas_replace_node(mas, old_enode);
3866 	} else {
3867 		memcpy(wr_mas->node, newnode, sizeof(struct maple_node));
3868 	}
3869 	trace_ma_write(__func__, mas, 0, wr_mas->entry);
3870 	mas_update_gap(mas);
3871 	mas->end = new_end;
3872 	return;
3873 }
3874 
3875 /*
3876  * mas_wr_slot_store: Attempt to store a value in a slot.
3877  * @wr_mas: the maple write state
3878  */
3879 static inline void mas_wr_slot_store(struct ma_wr_state *wr_mas)
3880 {
3881 	struct ma_state *mas = wr_mas->mas;
3882 	unsigned char offset = mas->offset;
3883 	void __rcu **slots = wr_mas->slots;
3884 	bool gap = false;
3885 
3886 	gap |= !mt_slot_locked(mas->tree, slots, offset);
3887 	gap |= !mt_slot_locked(mas->tree, slots, offset + 1);
3888 
3889 	if (wr_mas->offset_end - offset == 1) {
3890 		if (mas->index == wr_mas->r_min) {
3891 			/* Overwriting the range and a part of the next one */
3892 			rcu_assign_pointer(slots[offset], wr_mas->entry);
3893 			wr_mas->pivots[offset] = mas->last;
3894 		} else {
3895 			/* Overwriting a part of the range and the next one */
3896 			rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
3897 			wr_mas->pivots[offset] = mas->index - 1;
3898 			mas->offset++; /* Keep mas accurate. */
3899 		}
3900 	} else {
3901 		WARN_ON_ONCE(mt_in_rcu(mas->tree));
3902 		/*
3903 		 * Expand the range, only partially overwriting the previous and
3904 		 * next ranges
3905 		 */
3906 		gap |= !mt_slot_locked(mas->tree, slots, offset + 2);
3907 		rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
3908 		wr_mas->pivots[offset] = mas->index - 1;
3909 		wr_mas->pivots[offset + 1] = mas->last;
3910 		mas->offset++; /* Keep mas accurate. */
3911 	}
3912 
3913 	trace_ma_write(__func__, mas, 0, wr_mas->entry);
3914 	/*
3915 	 * Only update gap when the new entry is empty or there is an empty
3916 	 * entry in the original two ranges.
3917 	 */
3918 	if (!wr_mas->entry || gap)
3919 		mas_update_gap(mas);
3920 
3921 	return;
3922 }
3923 
3924 static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
3925 {
3926 	struct ma_state *mas = wr_mas->mas;
3927 
3928 	if (!wr_mas->slots[wr_mas->offset_end]) {
3929 		/* If this one is null, the next and prev are not */
3930 		mas->last = wr_mas->end_piv;
3931 	} else {
3932 		/* Check next slot(s) if we are overwriting the end */
3933 		if ((mas->last == wr_mas->end_piv) &&
3934 		    (mas->end != wr_mas->offset_end) &&
3935 		    !wr_mas->slots[wr_mas->offset_end + 1]) {
3936 			wr_mas->offset_end++;
3937 			if (wr_mas->offset_end == mas->end)
3938 				mas->last = mas->max;
3939 			else
3940 				mas->last = wr_mas->pivots[wr_mas->offset_end];
3941 			wr_mas->end_piv = mas->last;
3942 		}
3943 	}
3944 
3945 	if (!wr_mas->content) {
3946 		/* If this one is null, the next and prev are not */
3947 		mas->index = wr_mas->r_min;
3948 	} else {
3949 		/* Check prev slot if we are overwriting the start */
3950 		if (mas->index == wr_mas->r_min && mas->offset &&
3951 		    !wr_mas->slots[mas->offset - 1]) {
3952 			mas->offset--;
3953 			wr_mas->r_min = mas->index =
3954 				mas_safe_min(mas, wr_mas->pivots, mas->offset);
3955 			wr_mas->r_max = wr_mas->pivots[mas->offset];
3956 		}
3957 	}
3958 }
3959 
3960 static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
3961 {
3962 	while ((wr_mas->offset_end < wr_mas->mas->end) &&
3963 	       (wr_mas->mas->last > wr_mas->pivots[wr_mas->offset_end]))
3964 		wr_mas->offset_end++;
3965 
3966 	if (wr_mas->offset_end < wr_mas->mas->end)
3967 		wr_mas->end_piv = wr_mas->pivots[wr_mas->offset_end];
3968 	else
3969 		wr_mas->end_piv = wr_mas->mas->max;
3970 }
3971 
3972 static inline unsigned char mas_wr_new_end(struct ma_wr_state *wr_mas)
3973 {
3974 	struct ma_state *mas = wr_mas->mas;
3975 	unsigned char new_end = mas->end + 2;
3976 
3977 	new_end -= wr_mas->offset_end - mas->offset;
3978 	if (wr_mas->r_min == mas->index)
3979 		new_end--;
3980 
3981 	if (wr_mas->end_piv == mas->last)
3982 		new_end--;
3983 
3984 	return new_end;
3985 }
3986 
3987 /*
3988  * mas_wr_append: Attempt to append
3989  * @wr_mas: the maple write state
3990  * @new_end: The end of the node after the modification
3991  *
3992  * This is currently unsafe in rcu mode since the end of the node may be cached
3993  * by readers while the node contents may be updated which could result in
3994  * inaccurate information.
3995  */
3996 static inline void mas_wr_append(struct ma_wr_state *wr_mas,
3997 		unsigned char new_end)
3998 {
3999 	struct ma_state *mas = wr_mas->mas;
4000 	void __rcu **slots;
4001 	unsigned char end = mas->end;
4002 
4003 	if (new_end < mt_pivots[wr_mas->type]) {
4004 		wr_mas->pivots[new_end] = wr_mas->pivots[end];
4005 		ma_set_meta(wr_mas->node, wr_mas->type, 0, new_end);
4006 	}
4007 
4008 	slots = wr_mas->slots;
4009 	if (new_end == end + 1) {
4010 		if (mas->last == wr_mas->r_max) {
4011 			/* Append to end of range */
4012 			rcu_assign_pointer(slots[new_end], wr_mas->entry);
4013 			wr_mas->pivots[end] = mas->index - 1;
4014 			mas->offset = new_end;
4015 		} else {
4016 			/* Append to start of range */
4017 			rcu_assign_pointer(slots[new_end], wr_mas->content);
4018 			wr_mas->pivots[end] = mas->last;
4019 			rcu_assign_pointer(slots[end], wr_mas->entry);
4020 		}
4021 	} else {
4022 		/* Append to the range without touching any boundaries. */
4023 		rcu_assign_pointer(slots[new_end], wr_mas->content);
4024 		wr_mas->pivots[end + 1] = mas->last;
4025 		rcu_assign_pointer(slots[end + 1], wr_mas->entry);
4026 		wr_mas->pivots[end] = mas->index - 1;
4027 		mas->offset = end + 1;
4028 	}
4029 
4030 	if (!wr_mas->content || !wr_mas->entry)
4031 		mas_update_gap(mas);
4032 
4033 	mas->end = new_end;
4034 	trace_ma_write(__func__, mas, new_end, wr_mas->entry);
4035 	return;
4036 }
4037 
4038 /*
4039  * mas_wr_bnode() - Slow path for a modification.
4040  * @wr_mas: The write maple state
4041  *
4042  * This is where split, rebalance end up.
4043  */
4044 static void mas_wr_bnode(struct ma_wr_state *wr_mas)
4045 {
4046 	struct maple_big_node b_node;
4047 
4048 	trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry);
4049 	memset(&b_node, 0, sizeof(struct maple_big_node));
4050 	mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end);
4051 	mas_commit_b_node(wr_mas, &b_node);
4052 }
4053 
4054 /*
4055  * mas_wr_store_entry() - Internal call to store a value
4056  * @wr_mas: The maple write state
4057  */
4058 static inline void mas_wr_store_entry(struct ma_wr_state *wr_mas)
4059 {
4060 	struct ma_state *mas = wr_mas->mas;
4061 	unsigned char new_end = mas_wr_new_end(wr_mas);
4062 
4063 	switch (mas->store_type) {
4064 	case wr_invalid:
4065 		MT_BUG_ON(mas->tree, 1);
4066 		return;
4067 	case wr_new_root:
4068 		mas_new_root(mas, wr_mas->entry);
4069 		break;
4070 	case wr_store_root:
4071 		mas_store_root(mas, wr_mas->entry);
4072 		break;
4073 	case wr_exact_fit:
4074 		rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry);
4075 		if (!!wr_mas->entry ^ !!wr_mas->content)
4076 			mas_update_gap(mas);
4077 		break;
4078 	case wr_append:
4079 		mas_wr_append(wr_mas, new_end);
4080 		break;
4081 	case wr_slot_store:
4082 		mas_wr_slot_store(wr_mas);
4083 		break;
4084 	case wr_node_store:
4085 		mas_wr_node_store(wr_mas, new_end);
4086 		break;
4087 	case wr_spanning_store:
4088 		mas_wr_spanning_store(wr_mas);
4089 		break;
4090 	case wr_split_store:
4091 	case wr_rebalance:
4092 		mas_wr_bnode(wr_mas);
4093 		break;
4094 	}
4095 
4096 	return;
4097 }
4098 
4099 static inline void mas_wr_prealloc_setup(struct ma_wr_state *wr_mas)
4100 {
4101 	struct ma_state *mas = wr_mas->mas;
4102 
4103 	if (!mas_is_active(mas)) {
4104 		if (mas_is_start(mas))
4105 			goto set_content;
4106 
4107 		if (unlikely(mas_is_paused(mas)))
4108 			goto reset;
4109 
4110 		if (unlikely(mas_is_none(mas)))
4111 			goto reset;
4112 
4113 		if (unlikely(mas_is_overflow(mas)))
4114 			goto reset;
4115 
4116 		if (unlikely(mas_is_underflow(mas)))
4117 			goto reset;
4118 	}
4119 
4120 	/*
4121 	 * A less strict version of mas_is_span_wr() where we allow spanning
4122 	 * writes within this node.  This is to stop partial walks in
4123 	 * mas_prealloc() from being reset.
4124 	 */
4125 	if (mas->last > mas->max)
4126 		goto reset;
4127 
4128 	if (wr_mas->entry)
4129 		goto set_content;
4130 
4131 	if (mte_is_leaf(mas->node) && mas->last == mas->max)
4132 		goto reset;
4133 
4134 	goto set_content;
4135 
4136 reset:
4137 	mas_reset(mas);
4138 set_content:
4139 	wr_mas->content = mas_start(mas);
4140 }
4141 
4142 /**
4143  * mas_prealloc_calc() - Calculate number of nodes needed for a
4144  * given store oepration
4145  * @mas: The maple state
4146  * @entry: The entry to store into the tree
4147  *
4148  * Return: Number of nodes required for preallocation.
4149  */
4150 static inline int mas_prealloc_calc(struct ma_state *mas, void *entry)
4151 {
4152 	int ret = mas_mt_height(mas) * 3 + 1;
4153 
4154 	switch (mas->store_type) {
4155 	case wr_invalid:
4156 		WARN_ON_ONCE(1);
4157 		break;
4158 	case wr_new_root:
4159 		ret = 1;
4160 		break;
4161 	case wr_store_root:
4162 		if (likely((mas->last != 0) || (mas->index != 0)))
4163 			ret = 1;
4164 		else if (((unsigned long) (entry) & 3) == 2)
4165 			ret = 1;
4166 		else
4167 			ret = 0;
4168 		break;
4169 	case wr_spanning_store:
4170 		ret =  mas_mt_height(mas) * 3 + 1;
4171 		break;
4172 	case wr_split_store:
4173 		ret =  mas_mt_height(mas) * 2 + 1;
4174 		break;
4175 	case wr_rebalance:
4176 		ret =  mas_mt_height(mas) * 2 - 1;
4177 		break;
4178 	case wr_node_store:
4179 		ret = mt_in_rcu(mas->tree) ? 1 : 0;
4180 		break;
4181 	case wr_append:
4182 	case wr_exact_fit:
4183 	case wr_slot_store:
4184 		ret = 0;
4185 	}
4186 
4187 	return ret;
4188 }
4189 
4190 /*
4191  * mas_wr_store_type() - Determine the store type for a given
4192  * store operation.
4193  * @wr_mas: The maple write state
4194  *
4195  * Return: the type of store needed for the operation
4196  */
4197 static inline enum store_type mas_wr_store_type(struct ma_wr_state *wr_mas)
4198 {
4199 	struct ma_state *mas = wr_mas->mas;
4200 	unsigned char new_end;
4201 
4202 	if (unlikely(mas_is_none(mas) || mas_is_ptr(mas)))
4203 		return wr_store_root;
4204 
4205 	if (unlikely(!mas_wr_walk(wr_mas)))
4206 		return wr_spanning_store;
4207 
4208 	/* At this point, we are at the leaf node that needs to be altered. */
4209 	mas_wr_end_piv(wr_mas);
4210 	if (!wr_mas->entry)
4211 		mas_wr_extend_null(wr_mas);
4212 
4213 	if ((wr_mas->r_min == mas->index) && (wr_mas->r_max == mas->last))
4214 		return wr_exact_fit;
4215 
4216 	if (unlikely(!mas->index && mas->last == ULONG_MAX))
4217 		return wr_new_root;
4218 
4219 	new_end = mas_wr_new_end(wr_mas);
4220 	/* Potential spanning rebalance collapsing a node */
4221 	if (new_end < mt_min_slots[wr_mas->type]) {
4222 		if (!mte_is_root(mas->node) && !(mas->mas_flags & MA_STATE_BULK))
4223 			return  wr_rebalance;
4224 		return wr_node_store;
4225 	}
4226 
4227 	if (new_end >= mt_slots[wr_mas->type])
4228 		return wr_split_store;
4229 
4230 	if (!mt_in_rcu(mas->tree) && (mas->offset == mas->end))
4231 		return wr_append;
4232 
4233 	if ((new_end == mas->end) && (!mt_in_rcu(mas->tree) ||
4234 		(wr_mas->offset_end - mas->offset == 1)))
4235 		return wr_slot_store;
4236 
4237 	return wr_node_store;
4238 }
4239 
4240 /**
4241  * mas_wr_preallocate() - Preallocate enough nodes for a store operation
4242  * @wr_mas: The maple write state
4243  * @entry: The entry that will be stored
4244  *
4245  */
4246 static inline void mas_wr_preallocate(struct ma_wr_state *wr_mas, void *entry)
4247 {
4248 	struct ma_state *mas = wr_mas->mas;
4249 	int request;
4250 
4251 	mas_wr_prealloc_setup(wr_mas);
4252 	mas->store_type = mas_wr_store_type(wr_mas);
4253 	request = mas_prealloc_calc(mas, entry);
4254 	if (!request)
4255 		return;
4256 
4257 	mas_node_count(mas, request);
4258 }
4259 
4260 /**
4261  * mas_insert() - Internal call to insert a value
4262  * @mas: The maple state
4263  * @entry: The entry to store
4264  *
4265  * Return: %NULL or the contents that already exists at the requested index
4266  * otherwise.  The maple state needs to be checked for error conditions.
4267  */
4268 static inline void *mas_insert(struct ma_state *mas, void *entry)
4269 {
4270 	MA_WR_STATE(wr_mas, mas, entry);
4271 
4272 	/*
4273 	 * Inserting a new range inserts either 0, 1, or 2 pivots within the
4274 	 * tree.  If the insert fits exactly into an existing gap with a value
4275 	 * of NULL, then the slot only needs to be written with the new value.
4276 	 * If the range being inserted is adjacent to another range, then only a
4277 	 * single pivot needs to be inserted (as well as writing the entry).  If
4278 	 * the new range is within a gap but does not touch any other ranges,
4279 	 * then two pivots need to be inserted: the start - 1, and the end.  As
4280 	 * usual, the entry must be written.  Most operations require a new node
4281 	 * to be allocated and replace an existing node to ensure RCU safety,
4282 	 * when in RCU mode.  The exception to requiring a newly allocated node
4283 	 * is when inserting at the end of a node (appending).  When done
4284 	 * carefully, appending can reuse the node in place.
4285 	 */
4286 	wr_mas.content = mas_start(mas);
4287 	if (wr_mas.content)
4288 		goto exists;
4289 
4290 	mas_wr_preallocate(&wr_mas, entry);
4291 	if (mas_is_err(mas))
4292 		return NULL;
4293 
4294 	/* spanning writes always overwrite something */
4295 	if (mas->store_type == wr_spanning_store)
4296 		goto exists;
4297 
4298 	/* At this point, we are at the leaf node that needs to be altered. */
4299 	if (mas->store_type != wr_new_root && mas->store_type != wr_store_root) {
4300 		wr_mas.offset_end = mas->offset;
4301 		wr_mas.end_piv = wr_mas.r_max;
4302 
4303 		if (wr_mas.content || (mas->last > wr_mas.r_max))
4304 			goto exists;
4305 	}
4306 
4307 	mas_wr_store_entry(&wr_mas);
4308 	return wr_mas.content;
4309 
4310 exists:
4311 	mas_set_err(mas, -EEXIST);
4312 	return wr_mas.content;
4313 
4314 }
4315 
4316 /**
4317  * mas_alloc_cyclic() - Internal call to find somewhere to store an entry
4318  * @mas: The maple state.
4319  * @startp: Pointer to ID.
4320  * @range_lo: Lower bound of range to search.
4321  * @range_hi: Upper bound of range to search.
4322  * @entry: The entry to store.
4323  * @next: Pointer to next ID to allocate.
4324  * @gfp: The GFP_FLAGS to use for allocations.
4325  *
4326  * Return: 0 if the allocation succeeded without wrapping, 1 if the
4327  * allocation succeeded after wrapping, or -EBUSY if there are no
4328  * free entries.
4329  */
4330 int mas_alloc_cyclic(struct ma_state *mas, unsigned long *startp,
4331 		void *entry, unsigned long range_lo, unsigned long range_hi,
4332 		unsigned long *next, gfp_t gfp)
4333 {
4334 	unsigned long min = range_lo;
4335 	int ret = 0;
4336 
4337 	range_lo = max(min, *next);
4338 	ret = mas_empty_area(mas, range_lo, range_hi, 1);
4339 	if ((mas->tree->ma_flags & MT_FLAGS_ALLOC_WRAPPED) && ret == 0) {
4340 		mas->tree->ma_flags &= ~MT_FLAGS_ALLOC_WRAPPED;
4341 		ret = 1;
4342 	}
4343 	if (ret < 0 && range_lo > min) {
4344 		ret = mas_empty_area(mas, min, range_hi, 1);
4345 		if (ret == 0)
4346 			ret = 1;
4347 	}
4348 	if (ret < 0)
4349 		return ret;
4350 
4351 	do {
4352 		mas_insert(mas, entry);
4353 	} while (mas_nomem(mas, gfp));
4354 	if (mas_is_err(mas))
4355 		return xa_err(mas->node);
4356 
4357 	*startp = mas->index;
4358 	*next = *startp + 1;
4359 	if (*next == 0)
4360 		mas->tree->ma_flags |= MT_FLAGS_ALLOC_WRAPPED;
4361 
4362 	mas_destroy(mas);
4363 	return ret;
4364 }
4365 EXPORT_SYMBOL(mas_alloc_cyclic);
4366 
4367 static __always_inline void mas_rewalk(struct ma_state *mas, unsigned long index)
4368 {
4369 retry:
4370 	mas_set(mas, index);
4371 	mas_state_walk(mas);
4372 	if (mas_is_start(mas))
4373 		goto retry;
4374 }
4375 
4376 static __always_inline bool mas_rewalk_if_dead(struct ma_state *mas,
4377 		struct maple_node *node, const unsigned long index)
4378 {
4379 	if (unlikely(ma_dead_node(node))) {
4380 		mas_rewalk(mas, index);
4381 		return true;
4382 	}
4383 	return false;
4384 }
4385 
4386 /*
4387  * mas_prev_node() - Find the prev non-null entry at the same level in the
4388  * tree.  The prev value will be mas->node[mas->offset] or the status will be
4389  * ma_none.
4390  * @mas: The maple state
4391  * @min: The lower limit to search
4392  *
4393  * The prev node value will be mas->node[mas->offset] or the status will be
4394  * ma_none.
4395  * Return: 1 if the node is dead, 0 otherwise.
4396  */
4397 static int mas_prev_node(struct ma_state *mas, unsigned long min)
4398 {
4399 	enum maple_type mt;
4400 	int offset, level;
4401 	void __rcu **slots;
4402 	struct maple_node *node;
4403 	unsigned long *pivots;
4404 	unsigned long max;
4405 
4406 	node = mas_mn(mas);
4407 	if (!mas->min)
4408 		goto no_entry;
4409 
4410 	max = mas->min - 1;
4411 	if (max < min)
4412 		goto no_entry;
4413 
4414 	level = 0;
4415 	do {
4416 		if (ma_is_root(node))
4417 			goto no_entry;
4418 
4419 		/* Walk up. */
4420 		if (unlikely(mas_ascend(mas)))
4421 			return 1;
4422 		offset = mas->offset;
4423 		level++;
4424 		node = mas_mn(mas);
4425 	} while (!offset);
4426 
4427 	offset--;
4428 	mt = mte_node_type(mas->node);
4429 	while (level > 1) {
4430 		level--;
4431 		slots = ma_slots(node, mt);
4432 		mas->node = mas_slot(mas, slots, offset);
4433 		if (unlikely(ma_dead_node(node)))
4434 			return 1;
4435 
4436 		mt = mte_node_type(mas->node);
4437 		node = mas_mn(mas);
4438 		pivots = ma_pivots(node, mt);
4439 		offset = ma_data_end(node, mt, pivots, max);
4440 		if (unlikely(ma_dead_node(node)))
4441 			return 1;
4442 	}
4443 
4444 	slots = ma_slots(node, mt);
4445 	mas->node = mas_slot(mas, slots, offset);
4446 	pivots = ma_pivots(node, mt);
4447 	if (unlikely(ma_dead_node(node)))
4448 		return 1;
4449 
4450 	if (likely(offset))
4451 		mas->min = pivots[offset - 1] + 1;
4452 	mas->max = max;
4453 	mas->offset = mas_data_end(mas);
4454 	if (unlikely(mte_dead_node(mas->node)))
4455 		return 1;
4456 
4457 	mas->end = mas->offset;
4458 	return 0;
4459 
4460 no_entry:
4461 	if (unlikely(ma_dead_node(node)))
4462 		return 1;
4463 
4464 	mas->status = ma_underflow;
4465 	return 0;
4466 }
4467 
4468 /*
4469  * mas_prev_slot() - Get the entry in the previous slot
4470  *
4471  * @mas: The maple state
4472  * @min: The minimum starting range
4473  * @empty: Can be empty
4474  *
4475  * Return: The entry in the previous slot which is possibly NULL
4476  */
4477 static void *mas_prev_slot(struct ma_state *mas, unsigned long min, bool empty)
4478 {
4479 	void *entry;
4480 	void __rcu **slots;
4481 	unsigned long pivot;
4482 	enum maple_type type;
4483 	unsigned long *pivots;
4484 	struct maple_node *node;
4485 	unsigned long save_point = mas->index;
4486 
4487 retry:
4488 	node = mas_mn(mas);
4489 	type = mte_node_type(mas->node);
4490 	pivots = ma_pivots(node, type);
4491 	if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4492 		goto retry;
4493 
4494 	if (mas->min <= min) {
4495 		pivot = mas_safe_min(mas, pivots, mas->offset);
4496 
4497 		if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4498 			goto retry;
4499 
4500 		if (pivot <= min)
4501 			goto underflow;
4502 	}
4503 
4504 again:
4505 	if (likely(mas->offset)) {
4506 		mas->offset--;
4507 		mas->last = mas->index - 1;
4508 		mas->index = mas_safe_min(mas, pivots, mas->offset);
4509 	} else  {
4510 		if (mas->index <= min)
4511 			goto underflow;
4512 
4513 		if (mas_prev_node(mas, min)) {
4514 			mas_rewalk(mas, save_point);
4515 			goto retry;
4516 		}
4517 
4518 		if (WARN_ON_ONCE(mas_is_underflow(mas)))
4519 			return NULL;
4520 
4521 		mas->last = mas->max;
4522 		node = mas_mn(mas);
4523 		type = mte_node_type(mas->node);
4524 		pivots = ma_pivots(node, type);
4525 		mas->index = pivots[mas->offset - 1] + 1;
4526 	}
4527 
4528 	slots = ma_slots(node, type);
4529 	entry = mas_slot(mas, slots, mas->offset);
4530 	if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4531 		goto retry;
4532 
4533 
4534 	if (likely(entry))
4535 		return entry;
4536 
4537 	if (!empty) {
4538 		if (mas->index <= min) {
4539 			mas->status = ma_underflow;
4540 			return NULL;
4541 		}
4542 
4543 		goto again;
4544 	}
4545 
4546 	return entry;
4547 
4548 underflow:
4549 	mas->status = ma_underflow;
4550 	return NULL;
4551 }
4552 
4553 /*
4554  * mas_next_node() - Get the next node at the same level in the tree.
4555  * @mas: The maple state
4556  * @node: The maple node
4557  * @max: The maximum pivot value to check.
4558  *
4559  * The next value will be mas->node[mas->offset] or the status will have
4560  * overflowed.
4561  * Return: 1 on dead node, 0 otherwise.
4562  */
4563 static int mas_next_node(struct ma_state *mas, struct maple_node *node,
4564 		unsigned long max)
4565 {
4566 	unsigned long min;
4567 	unsigned long *pivots;
4568 	struct maple_enode *enode;
4569 	struct maple_node *tmp;
4570 	int level = 0;
4571 	unsigned char node_end;
4572 	enum maple_type mt;
4573 	void __rcu **slots;
4574 
4575 	if (mas->max >= max)
4576 		goto overflow;
4577 
4578 	min = mas->max + 1;
4579 	level = 0;
4580 	do {
4581 		if (ma_is_root(node))
4582 			goto overflow;
4583 
4584 		/* Walk up. */
4585 		if (unlikely(mas_ascend(mas)))
4586 			return 1;
4587 
4588 		level++;
4589 		node = mas_mn(mas);
4590 		mt = mte_node_type(mas->node);
4591 		pivots = ma_pivots(node, mt);
4592 		node_end = ma_data_end(node, mt, pivots, mas->max);
4593 		if (unlikely(ma_dead_node(node)))
4594 			return 1;
4595 
4596 	} while (unlikely(mas->offset == node_end));
4597 
4598 	slots = ma_slots(node, mt);
4599 	mas->offset++;
4600 	enode = mas_slot(mas, slots, mas->offset);
4601 	if (unlikely(ma_dead_node(node)))
4602 		return 1;
4603 
4604 	if (level > 1)
4605 		mas->offset = 0;
4606 
4607 	while (unlikely(level > 1)) {
4608 		level--;
4609 		mas->node = enode;
4610 		node = mas_mn(mas);
4611 		mt = mte_node_type(mas->node);
4612 		slots = ma_slots(node, mt);
4613 		enode = mas_slot(mas, slots, 0);
4614 		if (unlikely(ma_dead_node(node)))
4615 			return 1;
4616 	}
4617 
4618 	if (!mas->offset)
4619 		pivots = ma_pivots(node, mt);
4620 
4621 	mas->max = mas_safe_pivot(mas, pivots, mas->offset, mt);
4622 	tmp = mte_to_node(enode);
4623 	mt = mte_node_type(enode);
4624 	pivots = ma_pivots(tmp, mt);
4625 	mas->end = ma_data_end(tmp, mt, pivots, mas->max);
4626 	if (unlikely(ma_dead_node(node)))
4627 		return 1;
4628 
4629 	mas->node = enode;
4630 	mas->min = min;
4631 	return 0;
4632 
4633 overflow:
4634 	if (unlikely(ma_dead_node(node)))
4635 		return 1;
4636 
4637 	mas->status = ma_overflow;
4638 	return 0;
4639 }
4640 
4641 /*
4642  * mas_next_slot() - Get the entry in the next slot
4643  *
4644  * @mas: The maple state
4645  * @max: The maximum starting range
4646  * @empty: Can be empty
4647  *
4648  * Return: The entry in the next slot which is possibly NULL
4649  */
4650 static void *mas_next_slot(struct ma_state *mas, unsigned long max, bool empty)
4651 {
4652 	void __rcu **slots;
4653 	unsigned long *pivots;
4654 	unsigned long pivot;
4655 	enum maple_type type;
4656 	struct maple_node *node;
4657 	unsigned long save_point = mas->last;
4658 	void *entry;
4659 
4660 retry:
4661 	node = mas_mn(mas);
4662 	type = mte_node_type(mas->node);
4663 	pivots = ma_pivots(node, type);
4664 	if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4665 		goto retry;
4666 
4667 	if (mas->max >= max) {
4668 		if (likely(mas->offset < mas->end))
4669 			pivot = pivots[mas->offset];
4670 		else
4671 			pivot = mas->max;
4672 
4673 		if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4674 			goto retry;
4675 
4676 		if (pivot >= max) { /* Was at the limit, next will extend beyond */
4677 			mas->status = ma_overflow;
4678 			return NULL;
4679 		}
4680 	}
4681 
4682 	if (likely(mas->offset < mas->end)) {
4683 		mas->index = pivots[mas->offset] + 1;
4684 again:
4685 		mas->offset++;
4686 		if (likely(mas->offset < mas->end))
4687 			mas->last = pivots[mas->offset];
4688 		else
4689 			mas->last = mas->max;
4690 	} else  {
4691 		if (mas->last >= max) {
4692 			mas->status = ma_overflow;
4693 			return NULL;
4694 		}
4695 
4696 		if (mas_next_node(mas, node, max)) {
4697 			mas_rewalk(mas, save_point);
4698 			goto retry;
4699 		}
4700 
4701 		if (WARN_ON_ONCE(mas_is_overflow(mas)))
4702 			return NULL;
4703 
4704 		mas->offset = 0;
4705 		mas->index = mas->min;
4706 		node = mas_mn(mas);
4707 		type = mte_node_type(mas->node);
4708 		pivots = ma_pivots(node, type);
4709 		mas->last = pivots[0];
4710 	}
4711 
4712 	slots = ma_slots(node, type);
4713 	entry = mt_slot(mas->tree, slots, mas->offset);
4714 	if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4715 		goto retry;
4716 
4717 	if (entry)
4718 		return entry;
4719 
4720 
4721 	if (!empty) {
4722 		if (mas->last >= max) {
4723 			mas->status = ma_overflow;
4724 			return NULL;
4725 		}
4726 
4727 		mas->index = mas->last + 1;
4728 		goto again;
4729 	}
4730 
4731 	return entry;
4732 }
4733 
4734 /*
4735  * mas_next_entry() - Internal function to get the next entry.
4736  * @mas: The maple state
4737  * @limit: The maximum range start.
4738  *
4739  * Set the @mas->node to the next entry and the range_start to
4740  * the beginning value for the entry.  Does not check beyond @limit.
4741  * Sets @mas->index and @mas->last to the range, Does not update @mas->index and
4742  * @mas->last on overflow.
4743  * Restarts on dead nodes.
4744  *
4745  * Return: the next entry or %NULL.
4746  */
4747 static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit)
4748 {
4749 	if (mas->last >= limit) {
4750 		mas->status = ma_overflow;
4751 		return NULL;
4752 	}
4753 
4754 	return mas_next_slot(mas, limit, false);
4755 }
4756 
4757 /*
4758  * mas_rev_awalk() - Internal function.  Reverse allocation walk.  Find the
4759  * highest gap address of a given size in a given node and descend.
4760  * @mas: The maple state
4761  * @size: The needed size.
4762  *
4763  * Return: True if found in a leaf, false otherwise.
4764  *
4765  */
4766 static bool mas_rev_awalk(struct ma_state *mas, unsigned long size,
4767 		unsigned long *gap_min, unsigned long *gap_max)
4768 {
4769 	enum maple_type type = mte_node_type(mas->node);
4770 	struct maple_node *node = mas_mn(mas);
4771 	unsigned long *pivots, *gaps;
4772 	void __rcu **slots;
4773 	unsigned long gap = 0;
4774 	unsigned long max, min;
4775 	unsigned char offset;
4776 
4777 	if (unlikely(mas_is_err(mas)))
4778 		return true;
4779 
4780 	if (ma_is_dense(type)) {
4781 		/* dense nodes. */
4782 		mas->offset = (unsigned char)(mas->index - mas->min);
4783 		return true;
4784 	}
4785 
4786 	pivots = ma_pivots(node, type);
4787 	slots = ma_slots(node, type);
4788 	gaps = ma_gaps(node, type);
4789 	offset = mas->offset;
4790 	min = mas_safe_min(mas, pivots, offset);
4791 	/* Skip out of bounds. */
4792 	while (mas->last < min)
4793 		min = mas_safe_min(mas, pivots, --offset);
4794 
4795 	max = mas_safe_pivot(mas, pivots, offset, type);
4796 	while (mas->index <= max) {
4797 		gap = 0;
4798 		if (gaps)
4799 			gap = gaps[offset];
4800 		else if (!mas_slot(mas, slots, offset))
4801 			gap = max - min + 1;
4802 
4803 		if (gap) {
4804 			if ((size <= gap) && (size <= mas->last - min + 1))
4805 				break;
4806 
4807 			if (!gaps) {
4808 				/* Skip the next slot, it cannot be a gap. */
4809 				if (offset < 2)
4810 					goto ascend;
4811 
4812 				offset -= 2;
4813 				max = pivots[offset];
4814 				min = mas_safe_min(mas, pivots, offset);
4815 				continue;
4816 			}
4817 		}
4818 
4819 		if (!offset)
4820 			goto ascend;
4821 
4822 		offset--;
4823 		max = min - 1;
4824 		min = mas_safe_min(mas, pivots, offset);
4825 	}
4826 
4827 	if (unlikely((mas->index > max) || (size - 1 > max - mas->index)))
4828 		goto no_space;
4829 
4830 	if (unlikely(ma_is_leaf(type))) {
4831 		mas->offset = offset;
4832 		*gap_min = min;
4833 		*gap_max = min + gap - 1;
4834 		return true;
4835 	}
4836 
4837 	/* descend, only happens under lock. */
4838 	mas->node = mas_slot(mas, slots, offset);
4839 	mas->min = min;
4840 	mas->max = max;
4841 	mas->offset = mas_data_end(mas);
4842 	return false;
4843 
4844 ascend:
4845 	if (!mte_is_root(mas->node))
4846 		return false;
4847 
4848 no_space:
4849 	mas_set_err(mas, -EBUSY);
4850 	return false;
4851 }
4852 
4853 static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
4854 {
4855 	enum maple_type type = mte_node_type(mas->node);
4856 	unsigned long pivot, min, gap = 0;
4857 	unsigned char offset, data_end;
4858 	unsigned long *gaps, *pivots;
4859 	void __rcu **slots;
4860 	struct maple_node *node;
4861 	bool found = false;
4862 
4863 	if (ma_is_dense(type)) {
4864 		mas->offset = (unsigned char)(mas->index - mas->min);
4865 		return true;
4866 	}
4867 
4868 	node = mas_mn(mas);
4869 	pivots = ma_pivots(node, type);
4870 	slots = ma_slots(node, type);
4871 	gaps = ma_gaps(node, type);
4872 	offset = mas->offset;
4873 	min = mas_safe_min(mas, pivots, offset);
4874 	data_end = ma_data_end(node, type, pivots, mas->max);
4875 	for (; offset <= data_end; offset++) {
4876 		pivot = mas_safe_pivot(mas, pivots, offset, type);
4877 
4878 		/* Not within lower bounds */
4879 		if (mas->index > pivot)
4880 			goto next_slot;
4881 
4882 		if (gaps)
4883 			gap = gaps[offset];
4884 		else if (!mas_slot(mas, slots, offset))
4885 			gap = min(pivot, mas->last) - max(mas->index, min) + 1;
4886 		else
4887 			goto next_slot;
4888 
4889 		if (gap >= size) {
4890 			if (ma_is_leaf(type)) {
4891 				found = true;
4892 				goto done;
4893 			}
4894 			if (mas->index <= pivot) {
4895 				mas->node = mas_slot(mas, slots, offset);
4896 				mas->min = min;
4897 				mas->max = pivot;
4898 				offset = 0;
4899 				break;
4900 			}
4901 		}
4902 next_slot:
4903 		min = pivot + 1;
4904 		if (mas->last <= pivot) {
4905 			mas_set_err(mas, -EBUSY);
4906 			return true;
4907 		}
4908 	}
4909 
4910 	if (mte_is_root(mas->node))
4911 		found = true;
4912 done:
4913 	mas->offset = offset;
4914 	return found;
4915 }
4916 
4917 /**
4918  * mas_walk() - Search for @mas->index in the tree.
4919  * @mas: The maple state.
4920  *
4921  * mas->index and mas->last will be set to the range if there is a value.  If
4922  * mas->status is ma_none, reset to ma_start
4923  *
4924  * Return: the entry at the location or %NULL.
4925  */
4926 void *mas_walk(struct ma_state *mas)
4927 {
4928 	void *entry;
4929 
4930 	if (!mas_is_active(mas) || !mas_is_start(mas))
4931 		mas->status = ma_start;
4932 retry:
4933 	entry = mas_state_walk(mas);
4934 	if (mas_is_start(mas)) {
4935 		goto retry;
4936 	} else if (mas_is_none(mas)) {
4937 		mas->index = 0;
4938 		mas->last = ULONG_MAX;
4939 	} else if (mas_is_ptr(mas)) {
4940 		if (!mas->index) {
4941 			mas->last = 0;
4942 			return entry;
4943 		}
4944 
4945 		mas->index = 1;
4946 		mas->last = ULONG_MAX;
4947 		mas->status = ma_none;
4948 		return NULL;
4949 	}
4950 
4951 	return entry;
4952 }
4953 EXPORT_SYMBOL_GPL(mas_walk);
4954 
4955 static inline bool mas_rewind_node(struct ma_state *mas)
4956 {
4957 	unsigned char slot;
4958 
4959 	do {
4960 		if (mte_is_root(mas->node)) {
4961 			slot = mas->offset;
4962 			if (!slot)
4963 				return false;
4964 		} else {
4965 			mas_ascend(mas);
4966 			slot = mas->offset;
4967 		}
4968 	} while (!slot);
4969 
4970 	mas->offset = --slot;
4971 	return true;
4972 }
4973 
4974 /*
4975  * mas_skip_node() - Internal function.  Skip over a node.
4976  * @mas: The maple state.
4977  *
4978  * Return: true if there is another node, false otherwise.
4979  */
4980 static inline bool mas_skip_node(struct ma_state *mas)
4981 {
4982 	if (mas_is_err(mas))
4983 		return false;
4984 
4985 	do {
4986 		if (mte_is_root(mas->node)) {
4987 			if (mas->offset >= mas_data_end(mas)) {
4988 				mas_set_err(mas, -EBUSY);
4989 				return false;
4990 			}
4991 		} else {
4992 			mas_ascend(mas);
4993 		}
4994 	} while (mas->offset >= mas_data_end(mas));
4995 
4996 	mas->offset++;
4997 	return true;
4998 }
4999 
5000 /*
5001  * mas_awalk() - Allocation walk.  Search from low address to high, for a gap of
5002  * @size
5003  * @mas: The maple state
5004  * @size: The size of the gap required
5005  *
5006  * Search between @mas->index and @mas->last for a gap of @size.
5007  */
5008 static inline void mas_awalk(struct ma_state *mas, unsigned long size)
5009 {
5010 	struct maple_enode *last = NULL;
5011 
5012 	/*
5013 	 * There are 4 options:
5014 	 * go to child (descend)
5015 	 * go back to parent (ascend)
5016 	 * no gap found. (return, slot == MAPLE_NODE_SLOTS)
5017 	 * found the gap. (return, slot != MAPLE_NODE_SLOTS)
5018 	 */
5019 	while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) {
5020 		if (last == mas->node)
5021 			mas_skip_node(mas);
5022 		else
5023 			last = mas->node;
5024 	}
5025 }
5026 
5027 /*
5028  * mas_sparse_area() - Internal function.  Return upper or lower limit when
5029  * searching for a gap in an empty tree.
5030  * @mas: The maple state
5031  * @min: the minimum range
5032  * @max: The maximum range
5033  * @size: The size of the gap
5034  * @fwd: Searching forward or back
5035  */
5036 static inline int mas_sparse_area(struct ma_state *mas, unsigned long min,
5037 				unsigned long max, unsigned long size, bool fwd)
5038 {
5039 	if (!unlikely(mas_is_none(mas)) && min == 0) {
5040 		min++;
5041 		/*
5042 		 * At this time, min is increased, we need to recheck whether
5043 		 * the size is satisfied.
5044 		 */
5045 		if (min > max || max - min + 1 < size)
5046 			return -EBUSY;
5047 	}
5048 	/* mas_is_ptr */
5049 
5050 	if (fwd) {
5051 		mas->index = min;
5052 		mas->last = min + size - 1;
5053 	} else {
5054 		mas->last = max;
5055 		mas->index = max - size + 1;
5056 	}
5057 	return 0;
5058 }
5059 
5060 /*
5061  * mas_empty_area() - Get the lowest address within the range that is
5062  * sufficient for the size requested.
5063  * @mas: The maple state
5064  * @min: The lowest value of the range
5065  * @max: The highest value of the range
5066  * @size: The size needed
5067  */
5068 int mas_empty_area(struct ma_state *mas, unsigned long min,
5069 		unsigned long max, unsigned long size)
5070 {
5071 	unsigned char offset;
5072 	unsigned long *pivots;
5073 	enum maple_type mt;
5074 	struct maple_node *node;
5075 
5076 	if (min > max)
5077 		return -EINVAL;
5078 
5079 	if (size == 0 || max - min < size - 1)
5080 		return -EINVAL;
5081 
5082 	if (mas_is_start(mas))
5083 		mas_start(mas);
5084 	else if (mas->offset >= 2)
5085 		mas->offset -= 2;
5086 	else if (!mas_skip_node(mas))
5087 		return -EBUSY;
5088 
5089 	/* Empty set */
5090 	if (mas_is_none(mas) || mas_is_ptr(mas))
5091 		return mas_sparse_area(mas, min, max, size, true);
5092 
5093 	/* The start of the window can only be within these values */
5094 	mas->index = min;
5095 	mas->last = max;
5096 	mas_awalk(mas, size);
5097 
5098 	if (unlikely(mas_is_err(mas)))
5099 		return xa_err(mas->node);
5100 
5101 	offset = mas->offset;
5102 	if (unlikely(offset == MAPLE_NODE_SLOTS))
5103 		return -EBUSY;
5104 
5105 	node = mas_mn(mas);
5106 	mt = mte_node_type(mas->node);
5107 	pivots = ma_pivots(node, mt);
5108 	min = mas_safe_min(mas, pivots, offset);
5109 	if (mas->index < min)
5110 		mas->index = min;
5111 	mas->last = mas->index + size - 1;
5112 	mas->end = ma_data_end(node, mt, pivots, mas->max);
5113 	return 0;
5114 }
5115 EXPORT_SYMBOL_GPL(mas_empty_area);
5116 
5117 /*
5118  * mas_empty_area_rev() - Get the highest address within the range that is
5119  * sufficient for the size requested.
5120  * @mas: The maple state
5121  * @min: The lowest value of the range
5122  * @max: The highest value of the range
5123  * @size: The size needed
5124  */
5125 int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
5126 		unsigned long max, unsigned long size)
5127 {
5128 	struct maple_enode *last = mas->node;
5129 
5130 	if (min > max)
5131 		return -EINVAL;
5132 
5133 	if (size == 0 || max - min < size - 1)
5134 		return -EINVAL;
5135 
5136 	if (mas_is_start(mas))
5137 		mas_start(mas);
5138 	else if ((mas->offset < 2) && (!mas_rewind_node(mas)))
5139 		return -EBUSY;
5140 
5141 	if (unlikely(mas_is_none(mas) || mas_is_ptr(mas)))
5142 		return mas_sparse_area(mas, min, max, size, false);
5143 	else if (mas->offset >= 2)
5144 		mas->offset -= 2;
5145 	else
5146 		mas->offset = mas_data_end(mas);
5147 
5148 
5149 	/* The start of the window can only be within these values. */
5150 	mas->index = min;
5151 	mas->last = max;
5152 
5153 	while (!mas_rev_awalk(mas, size, &min, &max)) {
5154 		if (last == mas->node) {
5155 			if (!mas_rewind_node(mas))
5156 				return -EBUSY;
5157 		} else {
5158 			last = mas->node;
5159 		}
5160 	}
5161 
5162 	if (mas_is_err(mas))
5163 		return xa_err(mas->node);
5164 
5165 	if (unlikely(mas->offset == MAPLE_NODE_SLOTS))
5166 		return -EBUSY;
5167 
5168 	/* Trim the upper limit to the max. */
5169 	if (max < mas->last)
5170 		mas->last = max;
5171 
5172 	mas->index = mas->last - size + 1;
5173 	mas->end = mas_data_end(mas);
5174 	return 0;
5175 }
5176 EXPORT_SYMBOL_GPL(mas_empty_area_rev);
5177 
5178 /*
5179  * mte_dead_leaves() - Mark all leaves of a node as dead.
5180  * @enode: the encoded node
5181  * @mt: the maple tree
5182  * @slots: Pointer to the slot array
5183  *
5184  * Must hold the write lock.
5185  *
5186  * Return: The number of leaves marked as dead.
5187  */
5188 static inline
5189 unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt,
5190 			      void __rcu **slots)
5191 {
5192 	struct maple_node *node;
5193 	enum maple_type type;
5194 	void *entry;
5195 	int offset;
5196 
5197 	for (offset = 0; offset < mt_slot_count(enode); offset++) {
5198 		entry = mt_slot(mt, slots, offset);
5199 		type = mte_node_type(entry);
5200 		node = mte_to_node(entry);
5201 		/* Use both node and type to catch LE & BE metadata */
5202 		if (!node || !type)
5203 			break;
5204 
5205 		mte_set_node_dead(entry);
5206 		node->type = type;
5207 		rcu_assign_pointer(slots[offset], node);
5208 	}
5209 
5210 	return offset;
5211 }
5212 
5213 /**
5214  * mte_dead_walk() - Walk down a dead tree to just before the leaves
5215  * @enode: The maple encoded node
5216  * @offset: The starting offset
5217  *
5218  * Note: This can only be used from the RCU callback context.
5219  */
5220 static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset)
5221 {
5222 	struct maple_node *node, *next;
5223 	void __rcu **slots = NULL;
5224 
5225 	next = mte_to_node(*enode);
5226 	do {
5227 		*enode = ma_enode_ptr(next);
5228 		node = mte_to_node(*enode);
5229 		slots = ma_slots(node, node->type);
5230 		next = rcu_dereference_protected(slots[offset],
5231 					lock_is_held(&rcu_callback_map));
5232 		offset = 0;
5233 	} while (!ma_is_leaf(next->type));
5234 
5235 	return slots;
5236 }
5237 
5238 /**
5239  * mt_free_walk() - Walk & free a tree in the RCU callback context
5240  * @head: The RCU head that's within the node.
5241  *
5242  * Note: This can only be used from the RCU callback context.
5243  */
5244 static void mt_free_walk(struct rcu_head *head)
5245 {
5246 	void __rcu **slots;
5247 	struct maple_node *node, *start;
5248 	struct maple_enode *enode;
5249 	unsigned char offset;
5250 	enum maple_type type;
5251 
5252 	node = container_of(head, struct maple_node, rcu);
5253 
5254 	if (ma_is_leaf(node->type))
5255 		goto free_leaf;
5256 
5257 	start = node;
5258 	enode = mt_mk_node(node, node->type);
5259 	slots = mte_dead_walk(&enode, 0);
5260 	node = mte_to_node(enode);
5261 	do {
5262 		mt_free_bulk(node->slot_len, slots);
5263 		offset = node->parent_slot + 1;
5264 		enode = node->piv_parent;
5265 		if (mte_to_node(enode) == node)
5266 			goto free_leaf;
5267 
5268 		type = mte_node_type(enode);
5269 		slots = ma_slots(mte_to_node(enode), type);
5270 		if ((offset < mt_slots[type]) &&
5271 		    rcu_dereference_protected(slots[offset],
5272 					      lock_is_held(&rcu_callback_map)))
5273 			slots = mte_dead_walk(&enode, offset);
5274 		node = mte_to_node(enode);
5275 	} while ((node != start) || (node->slot_len < offset));
5276 
5277 	slots = ma_slots(node, node->type);
5278 	mt_free_bulk(node->slot_len, slots);
5279 
5280 free_leaf:
5281 	mt_free_rcu(&node->rcu);
5282 }
5283 
5284 static inline void __rcu **mte_destroy_descend(struct maple_enode **enode,
5285 	struct maple_tree *mt, struct maple_enode *prev, unsigned char offset)
5286 {
5287 	struct maple_node *node;
5288 	struct maple_enode *next = *enode;
5289 	void __rcu **slots = NULL;
5290 	enum maple_type type;
5291 	unsigned char next_offset = 0;
5292 
5293 	do {
5294 		*enode = next;
5295 		node = mte_to_node(*enode);
5296 		type = mte_node_type(*enode);
5297 		slots = ma_slots(node, type);
5298 		next = mt_slot_locked(mt, slots, next_offset);
5299 		if ((mte_dead_node(next)))
5300 			next = mt_slot_locked(mt, slots, ++next_offset);
5301 
5302 		mte_set_node_dead(*enode);
5303 		node->type = type;
5304 		node->piv_parent = prev;
5305 		node->parent_slot = offset;
5306 		offset = next_offset;
5307 		next_offset = 0;
5308 		prev = *enode;
5309 	} while (!mte_is_leaf(next));
5310 
5311 	return slots;
5312 }
5313 
5314 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
5315 			    bool free)
5316 {
5317 	void __rcu **slots;
5318 	struct maple_node *node = mte_to_node(enode);
5319 	struct maple_enode *start;
5320 
5321 	if (mte_is_leaf(enode)) {
5322 		node->type = mte_node_type(enode);
5323 		goto free_leaf;
5324 	}
5325 
5326 	start = enode;
5327 	slots = mte_destroy_descend(&enode, mt, start, 0);
5328 	node = mte_to_node(enode); // Updated in the above call.
5329 	do {
5330 		enum maple_type type;
5331 		unsigned char offset;
5332 		struct maple_enode *parent, *tmp;
5333 
5334 		node->slot_len = mte_dead_leaves(enode, mt, slots);
5335 		if (free)
5336 			mt_free_bulk(node->slot_len, slots);
5337 		offset = node->parent_slot + 1;
5338 		enode = node->piv_parent;
5339 		if (mte_to_node(enode) == node)
5340 			goto free_leaf;
5341 
5342 		type = mte_node_type(enode);
5343 		slots = ma_slots(mte_to_node(enode), type);
5344 		if (offset >= mt_slots[type])
5345 			goto next;
5346 
5347 		tmp = mt_slot_locked(mt, slots, offset);
5348 		if (mte_node_type(tmp) && mte_to_node(tmp)) {
5349 			parent = enode;
5350 			enode = tmp;
5351 			slots = mte_destroy_descend(&enode, mt, parent, offset);
5352 		}
5353 next:
5354 		node = mte_to_node(enode);
5355 	} while (start != enode);
5356 
5357 	node = mte_to_node(enode);
5358 	node->slot_len = mte_dead_leaves(enode, mt, slots);
5359 	if (free)
5360 		mt_free_bulk(node->slot_len, slots);
5361 
5362 free_leaf:
5363 	if (free)
5364 		mt_free_rcu(&node->rcu);
5365 	else
5366 		mt_clear_meta(mt, node, node->type);
5367 }
5368 
5369 /*
5370  * mte_destroy_walk() - Free a tree or sub-tree.
5371  * @enode: the encoded maple node (maple_enode) to start
5372  * @mt: the tree to free - needed for node types.
5373  *
5374  * Must hold the write lock.
5375  */
5376 static inline void mte_destroy_walk(struct maple_enode *enode,
5377 				    struct maple_tree *mt)
5378 {
5379 	struct maple_node *node = mte_to_node(enode);
5380 
5381 	if (mt_in_rcu(mt)) {
5382 		mt_destroy_walk(enode, mt, false);
5383 		call_rcu(&node->rcu, mt_free_walk);
5384 	} else {
5385 		mt_destroy_walk(enode, mt, true);
5386 	}
5387 }
5388 /* Interface */
5389 
5390 /**
5391  * mas_store() - Store an @entry.
5392  * @mas: The maple state.
5393  * @entry: The entry to store.
5394  *
5395  * The @mas->index and @mas->last is used to set the range for the @entry.
5396  *
5397  * Return: the first entry between mas->index and mas->last or %NULL.
5398  */
5399 void *mas_store(struct ma_state *mas, void *entry)
5400 {
5401 	int request;
5402 	MA_WR_STATE(wr_mas, mas, entry);
5403 
5404 	trace_ma_write(__func__, mas, 0, entry);
5405 #ifdef CONFIG_DEBUG_MAPLE_TREE
5406 	if (MAS_WARN_ON(mas, mas->index > mas->last))
5407 		pr_err("Error %lX > %lX " PTR_FMT "\n", mas->index, mas->last,
5408 		       entry);
5409 
5410 	if (mas->index > mas->last) {
5411 		mas_set_err(mas, -EINVAL);
5412 		return NULL;
5413 	}
5414 
5415 #endif
5416 
5417 	/*
5418 	 * Storing is the same operation as insert with the added caveat that it
5419 	 * can overwrite entries.  Although this seems simple enough, one may
5420 	 * want to examine what happens if a single store operation was to
5421 	 * overwrite multiple entries within a self-balancing B-Tree.
5422 	 */
5423 	mas_wr_prealloc_setup(&wr_mas);
5424 	mas->store_type = mas_wr_store_type(&wr_mas);
5425 	if (mas->mas_flags & MA_STATE_PREALLOC) {
5426 		mas_wr_store_entry(&wr_mas);
5427 		MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas));
5428 		return wr_mas.content;
5429 	}
5430 
5431 	request = mas_prealloc_calc(mas, entry);
5432 	if (!request)
5433 		goto store;
5434 
5435 	mas_node_count(mas, request);
5436 	if (mas_is_err(mas))
5437 		return NULL;
5438 
5439 store:
5440 	mas_wr_store_entry(&wr_mas);
5441 	mas_destroy(mas);
5442 	return wr_mas.content;
5443 }
5444 EXPORT_SYMBOL_GPL(mas_store);
5445 
5446 /**
5447  * mas_store_gfp() - Store a value into the tree.
5448  * @mas: The maple state
5449  * @entry: The entry to store
5450  * @gfp: The GFP_FLAGS to use for allocations if necessary.
5451  *
5452  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
5453  * be allocated.
5454  */
5455 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
5456 {
5457 	unsigned long index = mas->index;
5458 	unsigned long last = mas->last;
5459 	MA_WR_STATE(wr_mas, mas, entry);
5460 	int ret = 0;
5461 
5462 retry:
5463 	mas_wr_preallocate(&wr_mas, entry);
5464 	if (unlikely(mas_nomem(mas, gfp))) {
5465 		if (!entry)
5466 			__mas_set_range(mas, index, last);
5467 		goto retry;
5468 	}
5469 
5470 	if (mas_is_err(mas)) {
5471 		ret = xa_err(mas->node);
5472 		goto out;
5473 	}
5474 
5475 	mas_wr_store_entry(&wr_mas);
5476 out:
5477 	mas_destroy(mas);
5478 	return ret;
5479 }
5480 EXPORT_SYMBOL_GPL(mas_store_gfp);
5481 
5482 /**
5483  * mas_store_prealloc() - Store a value into the tree using memory
5484  * preallocated in the maple state.
5485  * @mas: The maple state
5486  * @entry: The entry to store.
5487  */
5488 void mas_store_prealloc(struct ma_state *mas, void *entry)
5489 {
5490 	MA_WR_STATE(wr_mas, mas, entry);
5491 
5492 	if (mas->store_type == wr_store_root) {
5493 		mas_wr_prealloc_setup(&wr_mas);
5494 		goto store;
5495 	}
5496 
5497 	mas_wr_walk_descend(&wr_mas);
5498 	if (mas->store_type != wr_spanning_store) {
5499 		/* set wr_mas->content to current slot */
5500 		wr_mas.content = mas_slot_locked(mas, wr_mas.slots, mas->offset);
5501 		mas_wr_end_piv(&wr_mas);
5502 	}
5503 
5504 store:
5505 	trace_ma_write(__func__, mas, 0, entry);
5506 	mas_wr_store_entry(&wr_mas);
5507 	MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas));
5508 	mas_destroy(mas);
5509 }
5510 EXPORT_SYMBOL_GPL(mas_store_prealloc);
5511 
5512 /**
5513  * mas_preallocate() - Preallocate enough nodes for a store operation
5514  * @mas: The maple state
5515  * @entry: The entry that will be stored
5516  * @gfp: The GFP_FLAGS to use for allocations.
5517  *
5518  * Return: 0 on success, -ENOMEM if memory could not be allocated.
5519  */
5520 int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp)
5521 {
5522 	MA_WR_STATE(wr_mas, mas, entry);
5523 	int ret = 0;
5524 	int request;
5525 
5526 	mas_wr_prealloc_setup(&wr_mas);
5527 	mas->store_type = mas_wr_store_type(&wr_mas);
5528 	request = mas_prealloc_calc(mas, entry);
5529 	if (!request)
5530 		return ret;
5531 
5532 	mas_node_count_gfp(mas, request, gfp);
5533 	if (mas_is_err(mas)) {
5534 		mas_set_alloc_req(mas, 0);
5535 		ret = xa_err(mas->node);
5536 		mas_destroy(mas);
5537 		mas_reset(mas);
5538 		return ret;
5539 	}
5540 
5541 	mas->mas_flags |= MA_STATE_PREALLOC;
5542 	return ret;
5543 }
5544 EXPORT_SYMBOL_GPL(mas_preallocate);
5545 
5546 /*
5547  * mas_destroy() - destroy a maple state.
5548  * @mas: The maple state
5549  *
5550  * Upon completion, check the left-most node and rebalance against the node to
5551  * the right if necessary.  Frees any allocated nodes associated with this maple
5552  * state.
5553  */
5554 void mas_destroy(struct ma_state *mas)
5555 {
5556 	struct maple_alloc *node;
5557 	unsigned long total;
5558 
5559 	/*
5560 	 * When using mas_for_each() to insert an expected number of elements,
5561 	 * it is possible that the number inserted is less than the expected
5562 	 * number.  To fix an invalid final node, a check is performed here to
5563 	 * rebalance the previous node with the final node.
5564 	 */
5565 	if (mas->mas_flags & MA_STATE_REBALANCE) {
5566 		unsigned char end;
5567 		if (mas_is_err(mas))
5568 			mas_reset(mas);
5569 		mas_start(mas);
5570 		mtree_range_walk(mas);
5571 		end = mas->end + 1;
5572 		if (end < mt_min_slot_count(mas->node) - 1)
5573 			mas_destroy_rebalance(mas, end);
5574 
5575 		mas->mas_flags &= ~MA_STATE_REBALANCE;
5576 	}
5577 	mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC);
5578 
5579 	total = mas_allocated(mas);
5580 	while (total) {
5581 		node = mas->alloc;
5582 		mas->alloc = node->slot[0];
5583 		if (node->node_count > 1) {
5584 			size_t count = node->node_count - 1;
5585 
5586 			mt_free_bulk(count, (void __rcu **)&node->slot[1]);
5587 			total -= count;
5588 		}
5589 		mt_free_one(ma_mnode_ptr(node));
5590 		total--;
5591 	}
5592 
5593 	mas->alloc = NULL;
5594 }
5595 EXPORT_SYMBOL_GPL(mas_destroy);
5596 
5597 /*
5598  * mas_expected_entries() - Set the expected number of entries that will be inserted.
5599  * @mas: The maple state
5600  * @nr_entries: The number of expected entries.
5601  *
5602  * This will attempt to pre-allocate enough nodes to store the expected number
5603  * of entries.  The allocations will occur using the bulk allocator interface
5604  * for speed.  Please call mas_destroy() on the @mas after inserting the entries
5605  * to ensure any unused nodes are freed.
5606  *
5607  * Return: 0 on success, -ENOMEM if memory could not be allocated.
5608  */
5609 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries)
5610 {
5611 	int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2;
5612 	struct maple_enode *enode = mas->node;
5613 	int nr_nodes;
5614 	int ret;
5615 
5616 	/*
5617 	 * Sometimes it is necessary to duplicate a tree to a new tree, such as
5618 	 * forking a process and duplicating the VMAs from one tree to a new
5619 	 * tree.  When such a situation arises, it is known that the new tree is
5620 	 * not going to be used until the entire tree is populated.  For
5621 	 * performance reasons, it is best to use a bulk load with RCU disabled.
5622 	 * This allows for optimistic splitting that favours the left and reuse
5623 	 * of nodes during the operation.
5624 	 */
5625 
5626 	/* Optimize splitting for bulk insert in-order */
5627 	mas->mas_flags |= MA_STATE_BULK;
5628 
5629 	/*
5630 	 * Avoid overflow, assume a gap between each entry and a trailing null.
5631 	 * If this is wrong, it just means allocation can happen during
5632 	 * insertion of entries.
5633 	 */
5634 	nr_nodes = max(nr_entries, nr_entries * 2 + 1);
5635 	if (!mt_is_alloc(mas->tree))
5636 		nonleaf_cap = MAPLE_RANGE64_SLOTS - 2;
5637 
5638 	/* Leaves; reduce slots to keep space for expansion */
5639 	nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2);
5640 	/* Internal nodes */
5641 	nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap);
5642 	/* Add working room for split (2 nodes) + new parents */
5643 	mas_node_count_gfp(mas, nr_nodes + 3, GFP_KERNEL);
5644 
5645 	/* Detect if allocations run out */
5646 	mas->mas_flags |= MA_STATE_PREALLOC;
5647 
5648 	if (!mas_is_err(mas))
5649 		return 0;
5650 
5651 	ret = xa_err(mas->node);
5652 	mas->node = enode;
5653 	mas_destroy(mas);
5654 	return ret;
5655 
5656 }
5657 EXPORT_SYMBOL_GPL(mas_expected_entries);
5658 
5659 static bool mas_next_setup(struct ma_state *mas, unsigned long max,
5660 		void **entry)
5661 {
5662 	bool was_none = mas_is_none(mas);
5663 
5664 	if (unlikely(mas->last >= max)) {
5665 		mas->status = ma_overflow;
5666 		return true;
5667 	}
5668 
5669 	switch (mas->status) {
5670 	case ma_active:
5671 		return false;
5672 	case ma_none:
5673 		fallthrough;
5674 	case ma_pause:
5675 		mas->status = ma_start;
5676 		fallthrough;
5677 	case ma_start:
5678 		mas_walk(mas); /* Retries on dead nodes handled by mas_walk */
5679 		break;
5680 	case ma_overflow:
5681 		/* Overflowed before, but the max changed */
5682 		mas->status = ma_active;
5683 		break;
5684 	case ma_underflow:
5685 		/* The user expects the mas to be one before where it is */
5686 		mas->status = ma_active;
5687 		*entry = mas_walk(mas);
5688 		if (*entry)
5689 			return true;
5690 		break;
5691 	case ma_root:
5692 		break;
5693 	case ma_error:
5694 		return true;
5695 	}
5696 
5697 	if (likely(mas_is_active(mas))) /* Fast path */
5698 		return false;
5699 
5700 	if (mas_is_ptr(mas)) {
5701 		*entry = NULL;
5702 		if (was_none && mas->index == 0) {
5703 			mas->index = mas->last = 0;
5704 			return true;
5705 		}
5706 		mas->index = 1;
5707 		mas->last = ULONG_MAX;
5708 		mas->status = ma_none;
5709 		return true;
5710 	}
5711 
5712 	if (mas_is_none(mas))
5713 		return true;
5714 
5715 	return false;
5716 }
5717 
5718 /**
5719  * mas_next() - Get the next entry.
5720  * @mas: The maple state
5721  * @max: The maximum index to check.
5722  *
5723  * Returns the next entry after @mas->index.
5724  * Must hold rcu_read_lock or the write lock.
5725  * Can return the zero entry.
5726  *
5727  * Return: The next entry or %NULL
5728  */
5729 void *mas_next(struct ma_state *mas, unsigned long max)
5730 {
5731 	void *entry = NULL;
5732 
5733 	if (mas_next_setup(mas, max, &entry))
5734 		return entry;
5735 
5736 	/* Retries on dead nodes handled by mas_next_slot */
5737 	return mas_next_slot(mas, max, false);
5738 }
5739 EXPORT_SYMBOL_GPL(mas_next);
5740 
5741 /**
5742  * mas_next_range() - Advance the maple state to the next range
5743  * @mas: The maple state
5744  * @max: The maximum index to check.
5745  *
5746  * Sets @mas->index and @mas->last to the range.
5747  * Must hold rcu_read_lock or the write lock.
5748  * Can return the zero entry.
5749  *
5750  * Return: The next entry or %NULL
5751  */
5752 void *mas_next_range(struct ma_state *mas, unsigned long max)
5753 {
5754 	void *entry = NULL;
5755 
5756 	if (mas_next_setup(mas, max, &entry))
5757 		return entry;
5758 
5759 	/* Retries on dead nodes handled by mas_next_slot */
5760 	return mas_next_slot(mas, max, true);
5761 }
5762 EXPORT_SYMBOL_GPL(mas_next_range);
5763 
5764 /**
5765  * mt_next() - get the next value in the maple tree
5766  * @mt: The maple tree
5767  * @index: The start index
5768  * @max: The maximum index to check
5769  *
5770  * Takes RCU read lock internally to protect the search, which does not
5771  * protect the returned pointer after dropping RCU read lock.
5772  * See also: Documentation/core-api/maple_tree.rst
5773  *
5774  * Return: The entry higher than @index or %NULL if nothing is found.
5775  */
5776 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
5777 {
5778 	void *entry = NULL;
5779 	MA_STATE(mas, mt, index, index);
5780 
5781 	rcu_read_lock();
5782 	entry = mas_next(&mas, max);
5783 	rcu_read_unlock();
5784 	return entry;
5785 }
5786 EXPORT_SYMBOL_GPL(mt_next);
5787 
5788 static bool mas_prev_setup(struct ma_state *mas, unsigned long min, void **entry)
5789 {
5790 	if (unlikely(mas->index <= min)) {
5791 		mas->status = ma_underflow;
5792 		return true;
5793 	}
5794 
5795 	switch (mas->status) {
5796 	case ma_active:
5797 		return false;
5798 	case ma_start:
5799 		break;
5800 	case ma_none:
5801 		fallthrough;
5802 	case ma_pause:
5803 		mas->status = ma_start;
5804 		break;
5805 	case ma_underflow:
5806 		/* underflowed before but the min changed */
5807 		mas->status = ma_active;
5808 		break;
5809 	case ma_overflow:
5810 		/* User expects mas to be one after where it is */
5811 		mas->status = ma_active;
5812 		*entry = mas_walk(mas);
5813 		if (*entry)
5814 			return true;
5815 		break;
5816 	case ma_root:
5817 		break;
5818 	case ma_error:
5819 		return true;
5820 	}
5821 
5822 	if (mas_is_start(mas))
5823 		mas_walk(mas);
5824 
5825 	if (unlikely(mas_is_ptr(mas))) {
5826 		if (!mas->index) {
5827 			mas->status = ma_none;
5828 			return true;
5829 		}
5830 		mas->index = mas->last = 0;
5831 		*entry = mas_root(mas);
5832 		return true;
5833 	}
5834 
5835 	if (mas_is_none(mas)) {
5836 		if (mas->index) {
5837 			/* Walked to out-of-range pointer? */
5838 			mas->index = mas->last = 0;
5839 			mas->status = ma_root;
5840 			*entry = mas_root(mas);
5841 			return true;
5842 		}
5843 		return true;
5844 	}
5845 
5846 	return false;
5847 }
5848 
5849 /**
5850  * mas_prev() - Get the previous entry
5851  * @mas: The maple state
5852  * @min: The minimum value to check.
5853  *
5854  * Must hold rcu_read_lock or the write lock.
5855  * Will reset mas to ma_start if the status is ma_none.  Will stop on not
5856  * searchable nodes.
5857  *
5858  * Return: the previous value or %NULL.
5859  */
5860 void *mas_prev(struct ma_state *mas, unsigned long min)
5861 {
5862 	void *entry = NULL;
5863 
5864 	if (mas_prev_setup(mas, min, &entry))
5865 		return entry;
5866 
5867 	return mas_prev_slot(mas, min, false);
5868 }
5869 EXPORT_SYMBOL_GPL(mas_prev);
5870 
5871 /**
5872  * mas_prev_range() - Advance to the previous range
5873  * @mas: The maple state
5874  * @min: The minimum value to check.
5875  *
5876  * Sets @mas->index and @mas->last to the range.
5877  * Must hold rcu_read_lock or the write lock.
5878  * Will reset mas to ma_start if the node is ma_none.  Will stop on not
5879  * searchable nodes.
5880  *
5881  * Return: the previous value or %NULL.
5882  */
5883 void *mas_prev_range(struct ma_state *mas, unsigned long min)
5884 {
5885 	void *entry = NULL;
5886 
5887 	if (mas_prev_setup(mas, min, &entry))
5888 		return entry;
5889 
5890 	return mas_prev_slot(mas, min, true);
5891 }
5892 EXPORT_SYMBOL_GPL(mas_prev_range);
5893 
5894 /**
5895  * mt_prev() - get the previous value in the maple tree
5896  * @mt: The maple tree
5897  * @index: The start index
5898  * @min: The minimum index to check
5899  *
5900  * Takes RCU read lock internally to protect the search, which does not
5901  * protect the returned pointer after dropping RCU read lock.
5902  * See also: Documentation/core-api/maple_tree.rst
5903  *
5904  * Return: The entry before @index or %NULL if nothing is found.
5905  */
5906 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
5907 {
5908 	void *entry = NULL;
5909 	MA_STATE(mas, mt, index, index);
5910 
5911 	rcu_read_lock();
5912 	entry = mas_prev(&mas, min);
5913 	rcu_read_unlock();
5914 	return entry;
5915 }
5916 EXPORT_SYMBOL_GPL(mt_prev);
5917 
5918 /**
5919  * mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
5920  * @mas: The maple state to pause
5921  *
5922  * Some users need to pause a walk and drop the lock they're holding in
5923  * order to yield to a higher priority thread or carry out an operation
5924  * on an entry.  Those users should call this function before they drop
5925  * the lock.  It resets the @mas to be suitable for the next iteration
5926  * of the loop after the user has reacquired the lock.  If most entries
5927  * found during a walk require you to call mas_pause(), the mt_for_each()
5928  * iterator may be more appropriate.
5929  *
5930  */
5931 void mas_pause(struct ma_state *mas)
5932 {
5933 	mas->status = ma_pause;
5934 	mas->node = NULL;
5935 }
5936 EXPORT_SYMBOL_GPL(mas_pause);
5937 
5938 /**
5939  * mas_find_setup() - Internal function to set up mas_find*().
5940  * @mas: The maple state
5941  * @max: The maximum index
5942  * @entry: Pointer to the entry
5943  *
5944  * Returns: True if entry is the answer, false otherwise.
5945  */
5946 static __always_inline bool mas_find_setup(struct ma_state *mas, unsigned long max, void **entry)
5947 {
5948 	switch (mas->status) {
5949 	case ma_active:
5950 		if (mas->last < max)
5951 			return false;
5952 		return true;
5953 	case ma_start:
5954 		break;
5955 	case ma_pause:
5956 		if (unlikely(mas->last >= max))
5957 			return true;
5958 
5959 		mas->index = ++mas->last;
5960 		mas->status = ma_start;
5961 		break;
5962 	case ma_none:
5963 		if (unlikely(mas->last >= max))
5964 			return true;
5965 
5966 		mas->index = mas->last;
5967 		mas->status = ma_start;
5968 		break;
5969 	case ma_underflow:
5970 		/* mas is pointing at entry before unable to go lower */
5971 		if (unlikely(mas->index >= max)) {
5972 			mas->status = ma_overflow;
5973 			return true;
5974 		}
5975 
5976 		mas->status = ma_active;
5977 		*entry = mas_walk(mas);
5978 		if (*entry)
5979 			return true;
5980 		break;
5981 	case ma_overflow:
5982 		if (unlikely(mas->last >= max))
5983 			return true;
5984 
5985 		mas->status = ma_active;
5986 		*entry = mas_walk(mas);
5987 		if (*entry)
5988 			return true;
5989 		break;
5990 	case ma_root:
5991 		break;
5992 	case ma_error:
5993 		return true;
5994 	}
5995 
5996 	if (mas_is_start(mas)) {
5997 		/* First run or continue */
5998 		if (mas->index > max)
5999 			return true;
6000 
6001 		*entry = mas_walk(mas);
6002 		if (*entry)
6003 			return true;
6004 
6005 	}
6006 
6007 	if (unlikely(mas_is_ptr(mas)))
6008 		goto ptr_out_of_range;
6009 
6010 	if (unlikely(mas_is_none(mas)))
6011 		return true;
6012 
6013 	if (mas->index == max)
6014 		return true;
6015 
6016 	return false;
6017 
6018 ptr_out_of_range:
6019 	mas->status = ma_none;
6020 	mas->index = 1;
6021 	mas->last = ULONG_MAX;
6022 	return true;
6023 }
6024 
6025 /**
6026  * mas_find() - On the first call, find the entry at or after mas->index up to
6027  * %max.  Otherwise, find the entry after mas->index.
6028  * @mas: The maple state
6029  * @max: The maximum value to check.
6030  *
6031  * Must hold rcu_read_lock or the write lock.
6032  * If an entry exists, last and index are updated accordingly.
6033  * May set @mas->status to ma_overflow.
6034  *
6035  * Return: The entry or %NULL.
6036  */
6037 void *mas_find(struct ma_state *mas, unsigned long max)
6038 {
6039 	void *entry = NULL;
6040 
6041 	if (mas_find_setup(mas, max, &entry))
6042 		return entry;
6043 
6044 	/* Retries on dead nodes handled by mas_next_slot */
6045 	entry = mas_next_slot(mas, max, false);
6046 	/* Ignore overflow */
6047 	mas->status = ma_active;
6048 	return entry;
6049 }
6050 EXPORT_SYMBOL_GPL(mas_find);
6051 
6052 /**
6053  * mas_find_range() - On the first call, find the entry at or after
6054  * mas->index up to %max.  Otherwise, advance to the next slot mas->index.
6055  * @mas: The maple state
6056  * @max: The maximum value to check.
6057  *
6058  * Must hold rcu_read_lock or the write lock.
6059  * If an entry exists, last and index are updated accordingly.
6060  * May set @mas->status to ma_overflow.
6061  *
6062  * Return: The entry or %NULL.
6063  */
6064 void *mas_find_range(struct ma_state *mas, unsigned long max)
6065 {
6066 	void *entry = NULL;
6067 
6068 	if (mas_find_setup(mas, max, &entry))
6069 		return entry;
6070 
6071 	/* Retries on dead nodes handled by mas_next_slot */
6072 	return mas_next_slot(mas, max, true);
6073 }
6074 EXPORT_SYMBOL_GPL(mas_find_range);
6075 
6076 /**
6077  * mas_find_rev_setup() - Internal function to set up mas_find_*_rev()
6078  * @mas: The maple state
6079  * @min: The minimum index
6080  * @entry: Pointer to the entry
6081  *
6082  * Returns: True if entry is the answer, false otherwise.
6083  */
6084 static bool mas_find_rev_setup(struct ma_state *mas, unsigned long min,
6085 		void **entry)
6086 {
6087 
6088 	switch (mas->status) {
6089 	case ma_active:
6090 		goto active;
6091 	case ma_start:
6092 		break;
6093 	case ma_pause:
6094 		if (unlikely(mas->index <= min)) {
6095 			mas->status = ma_underflow;
6096 			return true;
6097 		}
6098 		mas->last = --mas->index;
6099 		mas->status = ma_start;
6100 		break;
6101 	case ma_none:
6102 		if (mas->index <= min)
6103 			goto none;
6104 
6105 		mas->last = mas->index;
6106 		mas->status = ma_start;
6107 		break;
6108 	case ma_overflow: /* user expects the mas to be one after where it is */
6109 		if (unlikely(mas->index <= min)) {
6110 			mas->status = ma_underflow;
6111 			return true;
6112 		}
6113 
6114 		mas->status = ma_active;
6115 		break;
6116 	case ma_underflow: /* user expects the mas to be one before where it is */
6117 		if (unlikely(mas->index <= min))
6118 			return true;
6119 
6120 		mas->status = ma_active;
6121 		break;
6122 	case ma_root:
6123 		break;
6124 	case ma_error:
6125 		return true;
6126 	}
6127 
6128 	if (mas_is_start(mas)) {
6129 		/* First run or continue */
6130 		if (mas->index < min)
6131 			return true;
6132 
6133 		*entry = mas_walk(mas);
6134 		if (*entry)
6135 			return true;
6136 	}
6137 
6138 	if (unlikely(mas_is_ptr(mas)))
6139 		goto none;
6140 
6141 	if (unlikely(mas_is_none(mas))) {
6142 		/*
6143 		 * Walked to the location, and there was nothing so the previous
6144 		 * location is 0.
6145 		 */
6146 		mas->last = mas->index = 0;
6147 		mas->status = ma_root;
6148 		*entry = mas_root(mas);
6149 		return true;
6150 	}
6151 
6152 active:
6153 	if (mas->index < min)
6154 		return true;
6155 
6156 	return false;
6157 
6158 none:
6159 	mas->status = ma_none;
6160 	return true;
6161 }
6162 
6163 /**
6164  * mas_find_rev: On the first call, find the first non-null entry at or below
6165  * mas->index down to %min.  Otherwise find the first non-null entry below
6166  * mas->index down to %min.
6167  * @mas: The maple state
6168  * @min: The minimum value to check.
6169  *
6170  * Must hold rcu_read_lock or the write lock.
6171  * If an entry exists, last and index are updated accordingly.
6172  * May set @mas->status to ma_underflow.
6173  *
6174  * Return: The entry or %NULL.
6175  */
6176 void *mas_find_rev(struct ma_state *mas, unsigned long min)
6177 {
6178 	void *entry = NULL;
6179 
6180 	if (mas_find_rev_setup(mas, min, &entry))
6181 		return entry;
6182 
6183 	/* Retries on dead nodes handled by mas_prev_slot */
6184 	return mas_prev_slot(mas, min, false);
6185 
6186 }
6187 EXPORT_SYMBOL_GPL(mas_find_rev);
6188 
6189 /**
6190  * mas_find_range_rev: On the first call, find the first non-null entry at or
6191  * below mas->index down to %min.  Otherwise advance to the previous slot after
6192  * mas->index down to %min.
6193  * @mas: The maple state
6194  * @min: The minimum value to check.
6195  *
6196  * Must hold rcu_read_lock or the write lock.
6197  * If an entry exists, last and index are updated accordingly.
6198  * May set @mas->status to ma_underflow.
6199  *
6200  * Return: The entry or %NULL.
6201  */
6202 void *mas_find_range_rev(struct ma_state *mas, unsigned long min)
6203 {
6204 	void *entry = NULL;
6205 
6206 	if (mas_find_rev_setup(mas, min, &entry))
6207 		return entry;
6208 
6209 	/* Retries on dead nodes handled by mas_prev_slot */
6210 	return mas_prev_slot(mas, min, true);
6211 }
6212 EXPORT_SYMBOL_GPL(mas_find_range_rev);
6213 
6214 /**
6215  * mas_erase() - Find the range in which index resides and erase the entire
6216  * range.
6217  * @mas: The maple state
6218  *
6219  * Must hold the write lock.
6220  * Searches for @mas->index, sets @mas->index and @mas->last to the range and
6221  * erases that range.
6222  *
6223  * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
6224  */
6225 void *mas_erase(struct ma_state *mas)
6226 {
6227 	void *entry;
6228 	unsigned long index = mas->index;
6229 	MA_WR_STATE(wr_mas, mas, NULL);
6230 
6231 	if (!mas_is_active(mas) || !mas_is_start(mas))
6232 		mas->status = ma_start;
6233 
6234 write_retry:
6235 	entry = mas_state_walk(mas);
6236 	if (!entry)
6237 		return NULL;
6238 
6239 	/* Must reset to ensure spanning writes of last slot are detected */
6240 	mas_reset(mas);
6241 	mas_wr_preallocate(&wr_mas, NULL);
6242 	if (mas_nomem(mas, GFP_KERNEL)) {
6243 		/* in case the range of entry changed when unlocked */
6244 		mas->index = mas->last = index;
6245 		goto write_retry;
6246 	}
6247 
6248 	if (mas_is_err(mas))
6249 		goto out;
6250 
6251 	mas_wr_store_entry(&wr_mas);
6252 out:
6253 	mas_destroy(mas);
6254 	return entry;
6255 }
6256 EXPORT_SYMBOL_GPL(mas_erase);
6257 
6258 /**
6259  * mas_nomem() - Check if there was an error allocating and do the allocation
6260  * if necessary If there are allocations, then free them.
6261  * @mas: The maple state
6262  * @gfp: The GFP_FLAGS to use for allocations
6263  * Return: true on allocation, false otherwise.
6264  */
6265 bool mas_nomem(struct ma_state *mas, gfp_t gfp)
6266 	__must_hold(mas->tree->ma_lock)
6267 {
6268 	if (likely(mas->node != MA_ERROR(-ENOMEM)))
6269 		return false;
6270 
6271 	if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) {
6272 		mtree_unlock(mas->tree);
6273 		mas_alloc_nodes(mas, gfp);
6274 		mtree_lock(mas->tree);
6275 	} else {
6276 		mas_alloc_nodes(mas, gfp);
6277 	}
6278 
6279 	if (!mas_allocated(mas))
6280 		return false;
6281 
6282 	mas->status = ma_start;
6283 	return true;
6284 }
6285 
6286 void __init maple_tree_init(void)
6287 {
6288 	maple_node_cache = kmem_cache_create("maple_node",
6289 			sizeof(struct maple_node), sizeof(struct maple_node),
6290 			SLAB_PANIC, NULL);
6291 }
6292 
6293 /**
6294  * mtree_load() - Load a value stored in a maple tree
6295  * @mt: The maple tree
6296  * @index: The index to load
6297  *
6298  * Return: the entry or %NULL
6299  */
6300 void *mtree_load(struct maple_tree *mt, unsigned long index)
6301 {
6302 	MA_STATE(mas, mt, index, index);
6303 	void *entry;
6304 
6305 	trace_ma_read(__func__, &mas);
6306 	rcu_read_lock();
6307 retry:
6308 	entry = mas_start(&mas);
6309 	if (unlikely(mas_is_none(&mas)))
6310 		goto unlock;
6311 
6312 	if (unlikely(mas_is_ptr(&mas))) {
6313 		if (index)
6314 			entry = NULL;
6315 
6316 		goto unlock;
6317 	}
6318 
6319 	entry = mtree_lookup_walk(&mas);
6320 	if (!entry && unlikely(mas_is_start(&mas)))
6321 		goto retry;
6322 unlock:
6323 	rcu_read_unlock();
6324 	if (xa_is_zero(entry))
6325 		return NULL;
6326 
6327 	return entry;
6328 }
6329 EXPORT_SYMBOL(mtree_load);
6330 
6331 /**
6332  * mtree_store_range() - Store an entry at a given range.
6333  * @mt: The maple tree
6334  * @index: The start of the range
6335  * @last: The end of the range
6336  * @entry: The entry to store
6337  * @gfp: The GFP_FLAGS to use for allocations
6338  *
6339  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6340  * be allocated.
6341  */
6342 int mtree_store_range(struct maple_tree *mt, unsigned long index,
6343 		unsigned long last, void *entry, gfp_t gfp)
6344 {
6345 	MA_STATE(mas, mt, index, last);
6346 	int ret = 0;
6347 
6348 	trace_ma_write(__func__, &mas, 0, entry);
6349 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
6350 		return -EINVAL;
6351 
6352 	if (index > last)
6353 		return -EINVAL;
6354 
6355 	mtree_lock(mt);
6356 	ret = mas_store_gfp(&mas, entry, gfp);
6357 	mtree_unlock(mt);
6358 
6359 	return ret;
6360 }
6361 EXPORT_SYMBOL(mtree_store_range);
6362 
6363 /**
6364  * mtree_store() - Store an entry at a given index.
6365  * @mt: The maple tree
6366  * @index: The index to store the value
6367  * @entry: The entry to store
6368  * @gfp: The GFP_FLAGS to use for allocations
6369  *
6370  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6371  * be allocated.
6372  */
6373 int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
6374 		 gfp_t gfp)
6375 {
6376 	return mtree_store_range(mt, index, index, entry, gfp);
6377 }
6378 EXPORT_SYMBOL(mtree_store);
6379 
6380 /**
6381  * mtree_insert_range() - Insert an entry at a given range if there is no value.
6382  * @mt: The maple tree
6383  * @first: The start of the range
6384  * @last: The end of the range
6385  * @entry: The entry to store
6386  * @gfp: The GFP_FLAGS to use for allocations.
6387  *
6388  * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6389  * request, -ENOMEM if memory could not be allocated.
6390  */
6391 int mtree_insert_range(struct maple_tree *mt, unsigned long first,
6392 		unsigned long last, void *entry, gfp_t gfp)
6393 {
6394 	MA_STATE(ms, mt, first, last);
6395 	int ret = 0;
6396 
6397 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
6398 		return -EINVAL;
6399 
6400 	if (first > last)
6401 		return -EINVAL;
6402 
6403 	mtree_lock(mt);
6404 retry:
6405 	mas_insert(&ms, entry);
6406 	if (mas_nomem(&ms, gfp))
6407 		goto retry;
6408 
6409 	mtree_unlock(mt);
6410 	if (mas_is_err(&ms))
6411 		ret = xa_err(ms.node);
6412 
6413 	mas_destroy(&ms);
6414 	return ret;
6415 }
6416 EXPORT_SYMBOL(mtree_insert_range);
6417 
6418 /**
6419  * mtree_insert() - Insert an entry at a given index if there is no value.
6420  * @mt: The maple tree
6421  * @index : The index to store the value
6422  * @entry: The entry to store
6423  * @gfp: The GFP_FLAGS to use for allocations.
6424  *
6425  * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6426  * request, -ENOMEM if memory could not be allocated.
6427  */
6428 int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
6429 		 gfp_t gfp)
6430 {
6431 	return mtree_insert_range(mt, index, index, entry, gfp);
6432 }
6433 EXPORT_SYMBOL(mtree_insert);
6434 
6435 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
6436 		void *entry, unsigned long size, unsigned long min,
6437 		unsigned long max, gfp_t gfp)
6438 {
6439 	int ret = 0;
6440 
6441 	MA_STATE(mas, mt, 0, 0);
6442 	if (!mt_is_alloc(mt))
6443 		return -EINVAL;
6444 
6445 	if (WARN_ON_ONCE(mt_is_reserved(entry)))
6446 		return -EINVAL;
6447 
6448 	mtree_lock(mt);
6449 retry:
6450 	ret = mas_empty_area(&mas, min, max, size);
6451 	if (ret)
6452 		goto unlock;
6453 
6454 	mas_insert(&mas, entry);
6455 	/*
6456 	 * mas_nomem() may release the lock, causing the allocated area
6457 	 * to be unavailable, so try to allocate a free area again.
6458 	 */
6459 	if (mas_nomem(&mas, gfp))
6460 		goto retry;
6461 
6462 	if (mas_is_err(&mas))
6463 		ret = xa_err(mas.node);
6464 	else
6465 		*startp = mas.index;
6466 
6467 unlock:
6468 	mtree_unlock(mt);
6469 	mas_destroy(&mas);
6470 	return ret;
6471 }
6472 EXPORT_SYMBOL(mtree_alloc_range);
6473 
6474 /**
6475  * mtree_alloc_cyclic() - Find somewhere to store this entry in the tree.
6476  * @mt: The maple tree.
6477  * @startp: Pointer to ID.
6478  * @range_lo: Lower bound of range to search.
6479  * @range_hi: Upper bound of range to search.
6480  * @entry: The entry to store.
6481  * @next: Pointer to next ID to allocate.
6482  * @gfp: The GFP_FLAGS to use for allocations.
6483  *
6484  * Finds an empty entry in @mt after @next, stores the new index into
6485  * the @id pointer, stores the entry at that index, then updates @next.
6486  *
6487  * @mt must be initialized with the MT_FLAGS_ALLOC_RANGE flag.
6488  *
6489  * Context: Any context.  Takes and releases the mt.lock.  May sleep if
6490  * the @gfp flags permit.
6491  *
6492  * Return: 0 if the allocation succeeded without wrapping, 1 if the
6493  * allocation succeeded after wrapping, -ENOMEM if memory could not be
6494  * allocated, -EINVAL if @mt cannot be used, or -EBUSY if there are no
6495  * free entries.
6496  */
6497 int mtree_alloc_cyclic(struct maple_tree *mt, unsigned long *startp,
6498 		void *entry, unsigned long range_lo, unsigned long range_hi,
6499 		unsigned long *next, gfp_t gfp)
6500 {
6501 	int ret;
6502 
6503 	MA_STATE(mas, mt, 0, 0);
6504 
6505 	if (!mt_is_alloc(mt))
6506 		return -EINVAL;
6507 	if (WARN_ON_ONCE(mt_is_reserved(entry)))
6508 		return -EINVAL;
6509 	mtree_lock(mt);
6510 	ret = mas_alloc_cyclic(&mas, startp, entry, range_lo, range_hi,
6511 			       next, gfp);
6512 	mtree_unlock(mt);
6513 	return ret;
6514 }
6515 EXPORT_SYMBOL(mtree_alloc_cyclic);
6516 
6517 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
6518 		void *entry, unsigned long size, unsigned long min,
6519 		unsigned long max, gfp_t gfp)
6520 {
6521 	int ret = 0;
6522 
6523 	MA_STATE(mas, mt, 0, 0);
6524 	if (!mt_is_alloc(mt))
6525 		return -EINVAL;
6526 
6527 	if (WARN_ON_ONCE(mt_is_reserved(entry)))
6528 		return -EINVAL;
6529 
6530 	mtree_lock(mt);
6531 retry:
6532 	ret = mas_empty_area_rev(&mas, min, max, size);
6533 	if (ret)
6534 		goto unlock;
6535 
6536 	mas_insert(&mas, entry);
6537 	/*
6538 	 * mas_nomem() may release the lock, causing the allocated area
6539 	 * to be unavailable, so try to allocate a free area again.
6540 	 */
6541 	if (mas_nomem(&mas, gfp))
6542 		goto retry;
6543 
6544 	if (mas_is_err(&mas))
6545 		ret = xa_err(mas.node);
6546 	else
6547 		*startp = mas.index;
6548 
6549 unlock:
6550 	mtree_unlock(mt);
6551 	mas_destroy(&mas);
6552 	return ret;
6553 }
6554 EXPORT_SYMBOL(mtree_alloc_rrange);
6555 
6556 /**
6557  * mtree_erase() - Find an index and erase the entire range.
6558  * @mt: The maple tree
6559  * @index: The index to erase
6560  *
6561  * Erasing is the same as a walk to an entry then a store of a NULL to that
6562  * ENTIRE range.  In fact, it is implemented as such using the advanced API.
6563  *
6564  * Return: The entry stored at the @index or %NULL
6565  */
6566 void *mtree_erase(struct maple_tree *mt, unsigned long index)
6567 {
6568 	void *entry = NULL;
6569 
6570 	MA_STATE(mas, mt, index, index);
6571 	trace_ma_op(__func__, &mas);
6572 
6573 	mtree_lock(mt);
6574 	entry = mas_erase(&mas);
6575 	mtree_unlock(mt);
6576 
6577 	return entry;
6578 }
6579 EXPORT_SYMBOL(mtree_erase);
6580 
6581 /*
6582  * mas_dup_free() - Free an incomplete duplication of a tree.
6583  * @mas: The maple state of a incomplete tree.
6584  *
6585  * The parameter @mas->node passed in indicates that the allocation failed on
6586  * this node. This function frees all nodes starting from @mas->node in the
6587  * reverse order of mas_dup_build(). There is no need to hold the source tree
6588  * lock at this time.
6589  */
6590 static void mas_dup_free(struct ma_state *mas)
6591 {
6592 	struct maple_node *node;
6593 	enum maple_type type;
6594 	void __rcu **slots;
6595 	unsigned char count, i;
6596 
6597 	/* Maybe the first node allocation failed. */
6598 	if (mas_is_none(mas))
6599 		return;
6600 
6601 	while (!mte_is_root(mas->node)) {
6602 		mas_ascend(mas);
6603 		if (mas->offset) {
6604 			mas->offset--;
6605 			do {
6606 				mas_descend(mas);
6607 				mas->offset = mas_data_end(mas);
6608 			} while (!mte_is_leaf(mas->node));
6609 
6610 			mas_ascend(mas);
6611 		}
6612 
6613 		node = mte_to_node(mas->node);
6614 		type = mte_node_type(mas->node);
6615 		slots = ma_slots(node, type);
6616 		count = mas_data_end(mas) + 1;
6617 		for (i = 0; i < count; i++)
6618 			((unsigned long *)slots)[i] &= ~MAPLE_NODE_MASK;
6619 		mt_free_bulk(count, slots);
6620 	}
6621 
6622 	node = mte_to_node(mas->node);
6623 	mt_free_one(node);
6624 }
6625 
6626 /*
6627  * mas_copy_node() - Copy a maple node and replace the parent.
6628  * @mas: The maple state of source tree.
6629  * @new_mas: The maple state of new tree.
6630  * @parent: The parent of the new node.
6631  *
6632  * Copy @mas->node to @new_mas->node, set @parent to be the parent of
6633  * @new_mas->node. If memory allocation fails, @mas is set to -ENOMEM.
6634  */
6635 static inline void mas_copy_node(struct ma_state *mas, struct ma_state *new_mas,
6636 		struct maple_pnode *parent)
6637 {
6638 	struct maple_node *node = mte_to_node(mas->node);
6639 	struct maple_node *new_node = mte_to_node(new_mas->node);
6640 	unsigned long val;
6641 
6642 	/* Copy the node completely. */
6643 	memcpy(new_node, node, sizeof(struct maple_node));
6644 	/* Update the parent node pointer. */
6645 	val = (unsigned long)node->parent & MAPLE_NODE_MASK;
6646 	new_node->parent = ma_parent_ptr(val | (unsigned long)parent);
6647 }
6648 
6649 /*
6650  * mas_dup_alloc() - Allocate child nodes for a maple node.
6651  * @mas: The maple state of source tree.
6652  * @new_mas: The maple state of new tree.
6653  * @gfp: The GFP_FLAGS to use for allocations.
6654  *
6655  * This function allocates child nodes for @new_mas->node during the duplication
6656  * process. If memory allocation fails, @mas is set to -ENOMEM.
6657  */
6658 static inline void mas_dup_alloc(struct ma_state *mas, struct ma_state *new_mas,
6659 		gfp_t gfp)
6660 {
6661 	struct maple_node *node = mte_to_node(mas->node);
6662 	struct maple_node *new_node = mte_to_node(new_mas->node);
6663 	enum maple_type type;
6664 	unsigned char request, count, i;
6665 	void __rcu **slots;
6666 	void __rcu **new_slots;
6667 	unsigned long val;
6668 
6669 	/* Allocate memory for child nodes. */
6670 	type = mte_node_type(mas->node);
6671 	new_slots = ma_slots(new_node, type);
6672 	request = mas_data_end(mas) + 1;
6673 	count = mt_alloc_bulk(gfp, request, (void **)new_slots);
6674 	if (unlikely(count < request)) {
6675 		memset(new_slots, 0, request * sizeof(void *));
6676 		mas_set_err(mas, -ENOMEM);
6677 		return;
6678 	}
6679 
6680 	/* Restore node type information in slots. */
6681 	slots = ma_slots(node, type);
6682 	for (i = 0; i < count; i++) {
6683 		val = (unsigned long)mt_slot_locked(mas->tree, slots, i);
6684 		val &= MAPLE_NODE_MASK;
6685 		((unsigned long *)new_slots)[i] |= val;
6686 	}
6687 }
6688 
6689 /*
6690  * mas_dup_build() - Build a new maple tree from a source tree
6691  * @mas: The maple state of source tree, need to be in MAS_START state.
6692  * @new_mas: The maple state of new tree, need to be in MAS_START state.
6693  * @gfp: The GFP_FLAGS to use for allocations.
6694  *
6695  * This function builds a new tree in DFS preorder. If the memory allocation
6696  * fails, the error code -ENOMEM will be set in @mas, and @new_mas points to the
6697  * last node. mas_dup_free() will free the incomplete duplication of a tree.
6698  *
6699  * Note that the attributes of the two trees need to be exactly the same, and the
6700  * new tree needs to be empty, otherwise -EINVAL will be set in @mas.
6701  */
6702 static inline void mas_dup_build(struct ma_state *mas, struct ma_state *new_mas,
6703 		gfp_t gfp)
6704 {
6705 	struct maple_node *node;
6706 	struct maple_pnode *parent = NULL;
6707 	struct maple_enode *root;
6708 	enum maple_type type;
6709 
6710 	if (unlikely(mt_attr(mas->tree) != mt_attr(new_mas->tree)) ||
6711 	    unlikely(!mtree_empty(new_mas->tree))) {
6712 		mas_set_err(mas, -EINVAL);
6713 		return;
6714 	}
6715 
6716 	root = mas_start(mas);
6717 	if (mas_is_ptr(mas) || mas_is_none(mas))
6718 		goto set_new_tree;
6719 
6720 	node = mt_alloc_one(gfp);
6721 	if (!node) {
6722 		new_mas->status = ma_none;
6723 		mas_set_err(mas, -ENOMEM);
6724 		return;
6725 	}
6726 
6727 	type = mte_node_type(mas->node);
6728 	root = mt_mk_node(node, type);
6729 	new_mas->node = root;
6730 	new_mas->min = 0;
6731 	new_mas->max = ULONG_MAX;
6732 	root = mte_mk_root(root);
6733 	while (1) {
6734 		mas_copy_node(mas, new_mas, parent);
6735 		if (!mte_is_leaf(mas->node)) {
6736 			/* Only allocate child nodes for non-leaf nodes. */
6737 			mas_dup_alloc(mas, new_mas, gfp);
6738 			if (unlikely(mas_is_err(mas)))
6739 				return;
6740 		} else {
6741 			/*
6742 			 * This is the last leaf node and duplication is
6743 			 * completed.
6744 			 */
6745 			if (mas->max == ULONG_MAX)
6746 				goto done;
6747 
6748 			/* This is not the last leaf node and needs to go up. */
6749 			do {
6750 				mas_ascend(mas);
6751 				mas_ascend(new_mas);
6752 			} while (mas->offset == mas_data_end(mas));
6753 
6754 			/* Move to the next subtree. */
6755 			mas->offset++;
6756 			new_mas->offset++;
6757 		}
6758 
6759 		mas_descend(mas);
6760 		parent = ma_parent_ptr(mte_to_node(new_mas->node));
6761 		mas_descend(new_mas);
6762 		mas->offset = 0;
6763 		new_mas->offset = 0;
6764 	}
6765 done:
6766 	/* Specially handle the parent of the root node. */
6767 	mte_to_node(root)->parent = ma_parent_ptr(mas_tree_parent(new_mas));
6768 set_new_tree:
6769 	/* Make them the same height */
6770 	new_mas->tree->ma_flags = mas->tree->ma_flags;
6771 	rcu_assign_pointer(new_mas->tree->ma_root, root);
6772 }
6773 
6774 /**
6775  * __mt_dup(): Duplicate an entire maple tree
6776  * @mt: The source maple tree
6777  * @new: The new maple tree
6778  * @gfp: The GFP_FLAGS to use for allocations
6779  *
6780  * This function duplicates a maple tree in Depth-First Search (DFS) pre-order
6781  * traversal. It uses memcpy() to copy nodes in the source tree and allocate
6782  * new child nodes in non-leaf nodes. The new node is exactly the same as the
6783  * source node except for all the addresses stored in it. It will be faster than
6784  * traversing all elements in the source tree and inserting them one by one into
6785  * the new tree.
6786  * The user needs to ensure that the attributes of the source tree and the new
6787  * tree are the same, and the new tree needs to be an empty tree, otherwise
6788  * -EINVAL will be returned.
6789  * Note that the user needs to manually lock the source tree and the new tree.
6790  *
6791  * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If
6792  * the attributes of the two trees are different or the new tree is not an empty
6793  * tree.
6794  */
6795 int __mt_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp)
6796 {
6797 	int ret = 0;
6798 	MA_STATE(mas, mt, 0, 0);
6799 	MA_STATE(new_mas, new, 0, 0);
6800 
6801 	mas_dup_build(&mas, &new_mas, gfp);
6802 	if (unlikely(mas_is_err(&mas))) {
6803 		ret = xa_err(mas.node);
6804 		if (ret == -ENOMEM)
6805 			mas_dup_free(&new_mas);
6806 	}
6807 
6808 	return ret;
6809 }
6810 EXPORT_SYMBOL(__mt_dup);
6811 
6812 /**
6813  * mtree_dup(): Duplicate an entire maple tree
6814  * @mt: The source maple tree
6815  * @new: The new maple tree
6816  * @gfp: The GFP_FLAGS to use for allocations
6817  *
6818  * This function duplicates a maple tree in Depth-First Search (DFS) pre-order
6819  * traversal. It uses memcpy() to copy nodes in the source tree and allocate
6820  * new child nodes in non-leaf nodes. The new node is exactly the same as the
6821  * source node except for all the addresses stored in it. It will be faster than
6822  * traversing all elements in the source tree and inserting them one by one into
6823  * the new tree.
6824  * The user needs to ensure that the attributes of the source tree and the new
6825  * tree are the same, and the new tree needs to be an empty tree, otherwise
6826  * -EINVAL will be returned.
6827  *
6828  * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If
6829  * the attributes of the two trees are different or the new tree is not an empty
6830  * tree.
6831  */
6832 int mtree_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp)
6833 {
6834 	int ret = 0;
6835 	MA_STATE(mas, mt, 0, 0);
6836 	MA_STATE(new_mas, new, 0, 0);
6837 
6838 	mas_lock(&new_mas);
6839 	mas_lock_nested(&mas, SINGLE_DEPTH_NESTING);
6840 	mas_dup_build(&mas, &new_mas, gfp);
6841 	mas_unlock(&mas);
6842 	if (unlikely(mas_is_err(&mas))) {
6843 		ret = xa_err(mas.node);
6844 		if (ret == -ENOMEM)
6845 			mas_dup_free(&new_mas);
6846 	}
6847 
6848 	mas_unlock(&new_mas);
6849 	return ret;
6850 }
6851 EXPORT_SYMBOL(mtree_dup);
6852 
6853 /**
6854  * __mt_destroy() - Walk and free all nodes of a locked maple tree.
6855  * @mt: The maple tree
6856  *
6857  * Note: Does not handle locking.
6858  */
6859 void __mt_destroy(struct maple_tree *mt)
6860 {
6861 	void *root = mt_root_locked(mt);
6862 
6863 	rcu_assign_pointer(mt->ma_root, NULL);
6864 	if (xa_is_node(root))
6865 		mte_destroy_walk(root, mt);
6866 
6867 	mt->ma_flags = mt_attr(mt);
6868 }
6869 EXPORT_SYMBOL_GPL(__mt_destroy);
6870 
6871 /**
6872  * mtree_destroy() - Destroy a maple tree
6873  * @mt: The maple tree
6874  *
6875  * Frees all resources used by the tree.  Handles locking.
6876  */
6877 void mtree_destroy(struct maple_tree *mt)
6878 {
6879 	mtree_lock(mt);
6880 	__mt_destroy(mt);
6881 	mtree_unlock(mt);
6882 }
6883 EXPORT_SYMBOL(mtree_destroy);
6884 
6885 /**
6886  * mt_find() - Search from the start up until an entry is found.
6887  * @mt: The maple tree
6888  * @index: Pointer which contains the start location of the search
6889  * @max: The maximum value of the search range
6890  *
6891  * Takes RCU read lock internally to protect the search, which does not
6892  * protect the returned pointer after dropping RCU read lock.
6893  * See also: Documentation/core-api/maple_tree.rst
6894  *
6895  * In case that an entry is found @index is updated to point to the next
6896  * possible entry independent whether the found entry is occupying a
6897  * single index or a range if indices.
6898  *
6899  * Return: The entry at or after the @index or %NULL
6900  */
6901 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
6902 {
6903 	MA_STATE(mas, mt, *index, *index);
6904 	void *entry;
6905 #ifdef CONFIG_DEBUG_MAPLE_TREE
6906 	unsigned long copy = *index;
6907 #endif
6908 
6909 	trace_ma_read(__func__, &mas);
6910 
6911 	if ((*index) > max)
6912 		return NULL;
6913 
6914 	rcu_read_lock();
6915 retry:
6916 	entry = mas_state_walk(&mas);
6917 	if (mas_is_start(&mas))
6918 		goto retry;
6919 
6920 	if (unlikely(xa_is_zero(entry)))
6921 		entry = NULL;
6922 
6923 	if (entry)
6924 		goto unlock;
6925 
6926 	while (mas_is_active(&mas) && (mas.last < max)) {
6927 		entry = mas_next_entry(&mas, max);
6928 		if (likely(entry && !xa_is_zero(entry)))
6929 			break;
6930 	}
6931 
6932 	if (unlikely(xa_is_zero(entry)))
6933 		entry = NULL;
6934 unlock:
6935 	rcu_read_unlock();
6936 	if (likely(entry)) {
6937 		*index = mas.last + 1;
6938 #ifdef CONFIG_DEBUG_MAPLE_TREE
6939 		if (MT_WARN_ON(mt, (*index) && ((*index) <= copy)))
6940 			pr_err("index not increased! %lx <= %lx\n",
6941 			       *index, copy);
6942 #endif
6943 	}
6944 
6945 	return entry;
6946 }
6947 EXPORT_SYMBOL(mt_find);
6948 
6949 /**
6950  * mt_find_after() - Search from the start up until an entry is found.
6951  * @mt: The maple tree
6952  * @index: Pointer which contains the start location of the search
6953  * @max: The maximum value to check
6954  *
6955  * Same as mt_find() except that it checks @index for 0 before
6956  * searching. If @index == 0, the search is aborted. This covers a wrap
6957  * around of @index to 0 in an iterator loop.
6958  *
6959  * Return: The entry at or after the @index or %NULL
6960  */
6961 void *mt_find_after(struct maple_tree *mt, unsigned long *index,
6962 		    unsigned long max)
6963 {
6964 	if (!(*index))
6965 		return NULL;
6966 
6967 	return mt_find(mt, index, max);
6968 }
6969 EXPORT_SYMBOL(mt_find_after);
6970 
6971 #ifdef CONFIG_DEBUG_MAPLE_TREE
6972 atomic_t maple_tree_tests_run;
6973 EXPORT_SYMBOL_GPL(maple_tree_tests_run);
6974 atomic_t maple_tree_tests_passed;
6975 EXPORT_SYMBOL_GPL(maple_tree_tests_passed);
6976 
6977 #ifndef __KERNEL__
6978 extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
6979 void mt_set_non_kernel(unsigned int val)
6980 {
6981 	kmem_cache_set_non_kernel(maple_node_cache, val);
6982 }
6983 
6984 extern void kmem_cache_set_callback(struct kmem_cache *cachep,
6985 		void (*callback)(void *));
6986 void mt_set_callback(void (*callback)(void *))
6987 {
6988 	kmem_cache_set_callback(maple_node_cache, callback);
6989 }
6990 
6991 extern void kmem_cache_set_private(struct kmem_cache *cachep, void *private);
6992 void mt_set_private(void *private)
6993 {
6994 	kmem_cache_set_private(maple_node_cache, private);
6995 }
6996 
6997 extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
6998 unsigned long mt_get_alloc_size(void)
6999 {
7000 	return kmem_cache_get_alloc(maple_node_cache);
7001 }
7002 
7003 extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
7004 void mt_zero_nr_tallocated(void)
7005 {
7006 	kmem_cache_zero_nr_tallocated(maple_node_cache);
7007 }
7008 
7009 extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
7010 unsigned int mt_nr_tallocated(void)
7011 {
7012 	return kmem_cache_nr_tallocated(maple_node_cache);
7013 }
7014 
7015 extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
7016 unsigned int mt_nr_allocated(void)
7017 {
7018 	return kmem_cache_nr_allocated(maple_node_cache);
7019 }
7020 
7021 void mt_cache_shrink(void)
7022 {
7023 }
7024 #else
7025 /*
7026  * mt_cache_shrink() - For testing, don't use this.
7027  *
7028  * Certain testcases can trigger an OOM when combined with other memory
7029  * debugging configuration options.  This function is used to reduce the
7030  * possibility of an out of memory even due to kmem_cache objects remaining
7031  * around for longer than usual.
7032  */
7033 void mt_cache_shrink(void)
7034 {
7035 	kmem_cache_shrink(maple_node_cache);
7036 
7037 }
7038 EXPORT_SYMBOL_GPL(mt_cache_shrink);
7039 
7040 #endif /* not defined __KERNEL__ */
7041 /*
7042  * mas_get_slot() - Get the entry in the maple state node stored at @offset.
7043  * @mas: The maple state
7044  * @offset: The offset into the slot array to fetch.
7045  *
7046  * Return: The entry stored at @offset.
7047  */
7048 static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
7049 		unsigned char offset)
7050 {
7051 	return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)),
7052 			offset);
7053 }
7054 
7055 /* Depth first search, post-order */
7056 static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
7057 {
7058 
7059 	struct maple_enode *p, *mn = mas->node;
7060 	unsigned long p_min, p_max;
7061 
7062 	mas_next_node(mas, mas_mn(mas), max);
7063 	if (!mas_is_overflow(mas))
7064 		return;
7065 
7066 	if (mte_is_root(mn))
7067 		return;
7068 
7069 	mas->node = mn;
7070 	mas_ascend(mas);
7071 	do {
7072 		p = mas->node;
7073 		p_min = mas->min;
7074 		p_max = mas->max;
7075 		mas_prev_node(mas, 0);
7076 	} while (!mas_is_underflow(mas));
7077 
7078 	mas->node = p;
7079 	mas->max = p_max;
7080 	mas->min = p_min;
7081 }
7082 
7083 /* Tree validations */
7084 static void mt_dump_node(const struct maple_tree *mt, void *entry,
7085 		unsigned long min, unsigned long max, unsigned int depth,
7086 		enum mt_dump_format format);
7087 static void mt_dump_range(unsigned long min, unsigned long max,
7088 			  unsigned int depth, enum mt_dump_format format)
7089 {
7090 	static const char spaces[] = "                                ";
7091 
7092 	switch(format) {
7093 	case mt_dump_hex:
7094 		if (min == max)
7095 			pr_info("%.*s%lx: ", depth * 2, spaces, min);
7096 		else
7097 			pr_info("%.*s%lx-%lx: ", depth * 2, spaces, min, max);
7098 		break;
7099 	case mt_dump_dec:
7100 		if (min == max)
7101 			pr_info("%.*s%lu: ", depth * 2, spaces, min);
7102 		else
7103 			pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max);
7104 	}
7105 }
7106 
7107 static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
7108 			  unsigned int depth, enum mt_dump_format format)
7109 {
7110 	mt_dump_range(min, max, depth, format);
7111 
7112 	if (xa_is_value(entry))
7113 		pr_cont("value %ld (0x%lx) [" PTR_FMT "]\n", xa_to_value(entry),
7114 			xa_to_value(entry), entry);
7115 	else if (xa_is_zero(entry))
7116 		pr_cont("zero (%ld)\n", xa_to_internal(entry));
7117 	else if (mt_is_reserved(entry))
7118 		pr_cont("UNKNOWN ENTRY (" PTR_FMT ")\n", entry);
7119 	else
7120 		pr_cont(PTR_FMT "\n", entry);
7121 }
7122 
7123 static void mt_dump_range64(const struct maple_tree *mt, void *entry,
7124 		unsigned long min, unsigned long max, unsigned int depth,
7125 		enum mt_dump_format format)
7126 {
7127 	struct maple_range_64 *node = &mte_to_node(entry)->mr64;
7128 	bool leaf = mte_is_leaf(entry);
7129 	unsigned long first = min;
7130 	int i;
7131 
7132 	pr_cont(" contents: ");
7133 	for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++) {
7134 		switch(format) {
7135 		case mt_dump_hex:
7136 			pr_cont(PTR_FMT " %lX ", node->slot[i], node->pivot[i]);
7137 			break;
7138 		case mt_dump_dec:
7139 			pr_cont(PTR_FMT " %lu ", node->slot[i], node->pivot[i]);
7140 		}
7141 	}
7142 	pr_cont(PTR_FMT "\n", node->slot[i]);
7143 	for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) {
7144 		unsigned long last = max;
7145 
7146 		if (i < (MAPLE_RANGE64_SLOTS - 1))
7147 			last = node->pivot[i];
7148 		else if (!node->slot[i] && max != mt_node_max(entry))
7149 			break;
7150 		if (last == 0 && i > 0)
7151 			break;
7152 		if (leaf)
7153 			mt_dump_entry(mt_slot(mt, node->slot, i),
7154 					first, last, depth + 1, format);
7155 		else if (node->slot[i])
7156 			mt_dump_node(mt, mt_slot(mt, node->slot, i),
7157 					first, last, depth + 1, format);
7158 
7159 		if (last == max)
7160 			break;
7161 		if (last > max) {
7162 			switch(format) {
7163 			case mt_dump_hex:
7164 				pr_err("node " PTR_FMT " last (%lx) > max (%lx) at pivot %d!\n",
7165 					node, last, max, i);
7166 				break;
7167 			case mt_dump_dec:
7168 				pr_err("node " PTR_FMT " last (%lu) > max (%lu) at pivot %d!\n",
7169 					node, last, max, i);
7170 			}
7171 		}
7172 		first = last + 1;
7173 	}
7174 }
7175 
7176 static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
7177 	unsigned long min, unsigned long max, unsigned int depth,
7178 	enum mt_dump_format format)
7179 {
7180 	struct maple_arange_64 *node = &mte_to_node(entry)->ma64;
7181 	unsigned long first = min;
7182 	int i;
7183 
7184 	pr_cont(" contents: ");
7185 	for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
7186 		switch (format) {
7187 		case mt_dump_hex:
7188 			pr_cont("%lx ", node->gap[i]);
7189 			break;
7190 		case mt_dump_dec:
7191 			pr_cont("%lu ", node->gap[i]);
7192 		}
7193 	}
7194 	pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap);
7195 	for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++) {
7196 		switch (format) {
7197 		case mt_dump_hex:
7198 			pr_cont(PTR_FMT " %lX ", node->slot[i], node->pivot[i]);
7199 			break;
7200 		case mt_dump_dec:
7201 			pr_cont(PTR_FMT " %lu ", node->slot[i], node->pivot[i]);
7202 		}
7203 	}
7204 	pr_cont(PTR_FMT "\n", node->slot[i]);
7205 	for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
7206 		unsigned long last = max;
7207 
7208 		if (i < (MAPLE_ARANGE64_SLOTS - 1))
7209 			last = node->pivot[i];
7210 		else if (!node->slot[i])
7211 			break;
7212 		if (last == 0 && i > 0)
7213 			break;
7214 		if (node->slot[i])
7215 			mt_dump_node(mt, mt_slot(mt, node->slot, i),
7216 					first, last, depth + 1, format);
7217 
7218 		if (last == max)
7219 			break;
7220 		if (last > max) {
7221 			switch(format) {
7222 			case mt_dump_hex:
7223 				pr_err("node " PTR_FMT " last (%lx) > max (%lx) at pivot %d!\n",
7224 					node, last, max, i);
7225 				break;
7226 			case mt_dump_dec:
7227 				pr_err("node " PTR_FMT " last (%lu) > max (%lu) at pivot %d!\n",
7228 					node, last, max, i);
7229 			}
7230 		}
7231 		first = last + 1;
7232 	}
7233 }
7234 
7235 static void mt_dump_node(const struct maple_tree *mt, void *entry,
7236 		unsigned long min, unsigned long max, unsigned int depth,
7237 		enum mt_dump_format format)
7238 {
7239 	struct maple_node *node = mte_to_node(entry);
7240 	unsigned int type = mte_node_type(entry);
7241 	unsigned int i;
7242 
7243 	mt_dump_range(min, max, depth, format);
7244 
7245 	pr_cont("node " PTR_FMT " depth %d type %d parent " PTR_FMT, node,
7246 		depth, type, node ? node->parent : NULL);
7247 	switch (type) {
7248 	case maple_dense:
7249 		pr_cont("\n");
7250 		for (i = 0; i < MAPLE_NODE_SLOTS; i++) {
7251 			if (min + i > max)
7252 				pr_cont("OUT OF RANGE: ");
7253 			mt_dump_entry(mt_slot(mt, node->slot, i),
7254 					min + i, min + i, depth, format);
7255 		}
7256 		break;
7257 	case maple_leaf_64:
7258 	case maple_range_64:
7259 		mt_dump_range64(mt, entry, min, max, depth, format);
7260 		break;
7261 	case maple_arange_64:
7262 		mt_dump_arange64(mt, entry, min, max, depth, format);
7263 		break;
7264 
7265 	default:
7266 		pr_cont(" UNKNOWN TYPE\n");
7267 	}
7268 }
7269 
7270 void mt_dump(const struct maple_tree *mt, enum mt_dump_format format)
7271 {
7272 	void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt));
7273 
7274 	pr_info("maple_tree(" PTR_FMT ") flags %X, height %u root " PTR_FMT "\n",
7275 		 mt, mt->ma_flags, mt_height(mt), entry);
7276 	if (!xa_is_node(entry))
7277 		mt_dump_entry(entry, 0, 0, 0, format);
7278 	else if (entry)
7279 		mt_dump_node(mt, entry, 0, mt_node_max(entry), 0, format);
7280 }
7281 EXPORT_SYMBOL_GPL(mt_dump);
7282 
7283 /*
7284  * Calculate the maximum gap in a node and check if that's what is reported in
7285  * the parent (unless root).
7286  */
7287 static void mas_validate_gaps(struct ma_state *mas)
7288 {
7289 	struct maple_enode *mte = mas->node;
7290 	struct maple_node *p_mn, *node = mte_to_node(mte);
7291 	enum maple_type mt = mte_node_type(mas->node);
7292 	unsigned long gap = 0, max_gap = 0;
7293 	unsigned long p_end, p_start = mas->min;
7294 	unsigned char p_slot, offset;
7295 	unsigned long *gaps = NULL;
7296 	unsigned long *pivots = ma_pivots(node, mt);
7297 	unsigned int i;
7298 
7299 	if (ma_is_dense(mt)) {
7300 		for (i = 0; i < mt_slot_count(mte); i++) {
7301 			if (mas_get_slot(mas, i)) {
7302 				if (gap > max_gap)
7303 					max_gap = gap;
7304 				gap = 0;
7305 				continue;
7306 			}
7307 			gap++;
7308 		}
7309 		goto counted;
7310 	}
7311 
7312 	gaps = ma_gaps(node, mt);
7313 	for (i = 0; i < mt_slot_count(mte); i++) {
7314 		p_end = mas_safe_pivot(mas, pivots, i, mt);
7315 
7316 		if (!gaps) {
7317 			if (!mas_get_slot(mas, i))
7318 				gap = p_end - p_start + 1;
7319 		} else {
7320 			void *entry = mas_get_slot(mas, i);
7321 
7322 			gap = gaps[i];
7323 			MT_BUG_ON(mas->tree, !entry);
7324 
7325 			if (gap > p_end - p_start + 1) {
7326 				pr_err(PTR_FMT "[%u] %lu >= %lu - %lu + 1 (%lu)\n",
7327 				       mas_mn(mas), i, gap, p_end, p_start,
7328 				       p_end - p_start + 1);
7329 				MT_BUG_ON(mas->tree, gap > p_end - p_start + 1);
7330 			}
7331 		}
7332 
7333 		if (gap > max_gap)
7334 			max_gap = gap;
7335 
7336 		p_start = p_end + 1;
7337 		if (p_end >= mas->max)
7338 			break;
7339 	}
7340 
7341 counted:
7342 	if (mt == maple_arange_64) {
7343 		MT_BUG_ON(mas->tree, !gaps);
7344 		offset = ma_meta_gap(node);
7345 		if (offset > i) {
7346 			pr_err("gap offset " PTR_FMT "[%u] is invalid\n", node, offset);
7347 			MT_BUG_ON(mas->tree, 1);
7348 		}
7349 
7350 		if (gaps[offset] != max_gap) {
7351 			pr_err("gap " PTR_FMT "[%u] is not the largest gap %lu\n",
7352 			       node, offset, max_gap);
7353 			MT_BUG_ON(mas->tree, 1);
7354 		}
7355 
7356 		for (i++ ; i < mt_slot_count(mte); i++) {
7357 			if (gaps[i] != 0) {
7358 				pr_err("gap " PTR_FMT "[%u] beyond node limit != 0\n",
7359 				       node, i);
7360 				MT_BUG_ON(mas->tree, 1);
7361 			}
7362 		}
7363 	}
7364 
7365 	if (mte_is_root(mte))
7366 		return;
7367 
7368 	p_slot = mte_parent_slot(mas->node);
7369 	p_mn = mte_parent(mte);
7370 	MT_BUG_ON(mas->tree, max_gap > mas->max);
7371 	if (ma_gaps(p_mn, mas_parent_type(mas, mte))[p_slot] != max_gap) {
7372 		pr_err("gap " PTR_FMT "[%u] != %lu\n", p_mn, p_slot, max_gap);
7373 		mt_dump(mas->tree, mt_dump_hex);
7374 		MT_BUG_ON(mas->tree, 1);
7375 	}
7376 }
7377 
7378 static void mas_validate_parent_slot(struct ma_state *mas)
7379 {
7380 	struct maple_node *parent;
7381 	struct maple_enode *node;
7382 	enum maple_type p_type;
7383 	unsigned char p_slot;
7384 	void __rcu **slots;
7385 	int i;
7386 
7387 	if (mte_is_root(mas->node))
7388 		return;
7389 
7390 	p_slot = mte_parent_slot(mas->node);
7391 	p_type = mas_parent_type(mas, mas->node);
7392 	parent = mte_parent(mas->node);
7393 	slots = ma_slots(parent, p_type);
7394 	MT_BUG_ON(mas->tree, mas_mn(mas) == parent);
7395 
7396 	/* Check prev/next parent slot for duplicate node entry */
7397 
7398 	for (i = 0; i < mt_slots[p_type]; i++) {
7399 		node = mas_slot(mas, slots, i);
7400 		if (i == p_slot) {
7401 			if (node != mas->node)
7402 				pr_err("parent " PTR_FMT "[%u] does not have " PTR_FMT "\n",
7403 					parent, i, mas_mn(mas));
7404 			MT_BUG_ON(mas->tree, node != mas->node);
7405 		} else if (node == mas->node) {
7406 			pr_err("Invalid child " PTR_FMT " at parent " PTR_FMT "[%u] p_slot %u\n",
7407 			       mas_mn(mas), parent, i, p_slot);
7408 			MT_BUG_ON(mas->tree, node == mas->node);
7409 		}
7410 	}
7411 }
7412 
7413 static void mas_validate_child_slot(struct ma_state *mas)
7414 {
7415 	enum maple_type type = mte_node_type(mas->node);
7416 	void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7417 	unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type);
7418 	struct maple_enode *child;
7419 	unsigned char i;
7420 
7421 	if (mte_is_leaf(mas->node))
7422 		return;
7423 
7424 	for (i = 0; i < mt_slots[type]; i++) {
7425 		child = mas_slot(mas, slots, i);
7426 
7427 		if (!child) {
7428 			pr_err("Non-leaf node lacks child at " PTR_FMT "[%u]\n",
7429 			       mas_mn(mas), i);
7430 			MT_BUG_ON(mas->tree, 1);
7431 		}
7432 
7433 		if (mte_parent_slot(child) != i) {
7434 			pr_err("Slot error at " PTR_FMT "[%u]: child " PTR_FMT " has pslot %u\n",
7435 			       mas_mn(mas), i, mte_to_node(child),
7436 			       mte_parent_slot(child));
7437 			MT_BUG_ON(mas->tree, 1);
7438 		}
7439 
7440 		if (mte_parent(child) != mte_to_node(mas->node)) {
7441 			pr_err("child " PTR_FMT " has parent " PTR_FMT " not " PTR_FMT "\n",
7442 			       mte_to_node(child), mte_parent(child),
7443 			       mte_to_node(mas->node));
7444 			MT_BUG_ON(mas->tree, 1);
7445 		}
7446 
7447 		if (i < mt_pivots[type] && pivots[i] == mas->max)
7448 			break;
7449 	}
7450 }
7451 
7452 /*
7453  * Validate all pivots are within mas->min and mas->max, check metadata ends
7454  * where the maximum ends and ensure there is no slots or pivots set outside of
7455  * the end of the data.
7456  */
7457 static void mas_validate_limits(struct ma_state *mas)
7458 {
7459 	int i;
7460 	unsigned long prev_piv = 0;
7461 	enum maple_type type = mte_node_type(mas->node);
7462 	void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7463 	unsigned long *pivots = ma_pivots(mas_mn(mas), type);
7464 
7465 	for (i = 0; i < mt_slots[type]; i++) {
7466 		unsigned long piv;
7467 
7468 		piv = mas_safe_pivot(mas, pivots, i, type);
7469 
7470 		if (!piv && (i != 0)) {
7471 			pr_err("Missing node limit pivot at " PTR_FMT "[%u]",
7472 			       mas_mn(mas), i);
7473 			MAS_WARN_ON(mas, 1);
7474 		}
7475 
7476 		if (prev_piv > piv) {
7477 			pr_err(PTR_FMT "[%u] piv %lu < prev_piv %lu\n",
7478 				mas_mn(mas), i, piv, prev_piv);
7479 			MAS_WARN_ON(mas, piv < prev_piv);
7480 		}
7481 
7482 		if (piv < mas->min) {
7483 			pr_err(PTR_FMT "[%u] %lu < %lu\n", mas_mn(mas), i,
7484 				piv, mas->min);
7485 			MAS_WARN_ON(mas, piv < mas->min);
7486 		}
7487 		if (piv > mas->max) {
7488 			pr_err(PTR_FMT "[%u] %lu > %lu\n", mas_mn(mas), i,
7489 				piv, mas->max);
7490 			MAS_WARN_ON(mas, piv > mas->max);
7491 		}
7492 		prev_piv = piv;
7493 		if (piv == mas->max)
7494 			break;
7495 	}
7496 
7497 	if (mas_data_end(mas) != i) {
7498 		pr_err("node" PTR_FMT ": data_end %u != the last slot offset %u\n",
7499 		       mas_mn(mas), mas_data_end(mas), i);
7500 		MT_BUG_ON(mas->tree, 1);
7501 	}
7502 
7503 	for (i += 1; i < mt_slots[type]; i++) {
7504 		void *entry = mas_slot(mas, slots, i);
7505 
7506 		if (entry && (i != mt_slots[type] - 1)) {
7507 			pr_err(PTR_FMT "[%u] should not have entry " PTR_FMT "\n",
7508 			       mas_mn(mas), i, entry);
7509 			MT_BUG_ON(mas->tree, entry != NULL);
7510 		}
7511 
7512 		if (i < mt_pivots[type]) {
7513 			unsigned long piv = pivots[i];
7514 
7515 			if (!piv)
7516 				continue;
7517 
7518 			pr_err(PTR_FMT "[%u] should not have piv %lu\n",
7519 			       mas_mn(mas), i, piv);
7520 			MAS_WARN_ON(mas, i < mt_pivots[type] - 1);
7521 		}
7522 	}
7523 }
7524 
7525 static void mt_validate_nulls(struct maple_tree *mt)
7526 {
7527 	void *entry, *last = (void *)1;
7528 	unsigned char offset = 0;
7529 	void __rcu **slots;
7530 	MA_STATE(mas, mt, 0, 0);
7531 
7532 	mas_start(&mas);
7533 	if (mas_is_none(&mas) || (mas_is_ptr(&mas)))
7534 		return;
7535 
7536 	while (!mte_is_leaf(mas.node))
7537 		mas_descend(&mas);
7538 
7539 	slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node));
7540 	do {
7541 		entry = mas_slot(&mas, slots, offset);
7542 		if (!last && !entry) {
7543 			pr_err("Sequential nulls end at " PTR_FMT "[%u]\n",
7544 				mas_mn(&mas), offset);
7545 		}
7546 		MT_BUG_ON(mt, !last && !entry);
7547 		last = entry;
7548 		if (offset == mas_data_end(&mas)) {
7549 			mas_next_node(&mas, mas_mn(&mas), ULONG_MAX);
7550 			if (mas_is_overflow(&mas))
7551 				return;
7552 			offset = 0;
7553 			slots = ma_slots(mte_to_node(mas.node),
7554 					 mte_node_type(mas.node));
7555 		} else {
7556 			offset++;
7557 		}
7558 
7559 	} while (!mas_is_overflow(&mas));
7560 }
7561 
7562 /*
7563  * validate a maple tree by checking:
7564  * 1. The limits (pivots are within mas->min to mas->max)
7565  * 2. The gap is correctly set in the parents
7566  */
7567 void mt_validate(struct maple_tree *mt)
7568 	__must_hold(mas->tree->ma_lock)
7569 {
7570 	unsigned char end;
7571 
7572 	MA_STATE(mas, mt, 0, 0);
7573 	mas_start(&mas);
7574 	if (!mas_is_active(&mas))
7575 		return;
7576 
7577 	while (!mte_is_leaf(mas.node))
7578 		mas_descend(&mas);
7579 
7580 	while (!mas_is_overflow(&mas)) {
7581 		MAS_WARN_ON(&mas, mte_dead_node(mas.node));
7582 		end = mas_data_end(&mas);
7583 		if (MAS_WARN_ON(&mas, (end < mt_min_slot_count(mas.node)) &&
7584 				(mas.max != ULONG_MAX))) {
7585 			pr_err("Invalid size %u of " PTR_FMT "\n",
7586 			       end, mas_mn(&mas));
7587 		}
7588 
7589 		mas_validate_parent_slot(&mas);
7590 		mas_validate_limits(&mas);
7591 		mas_validate_child_slot(&mas);
7592 		if (mt_is_alloc(mt))
7593 			mas_validate_gaps(&mas);
7594 		mas_dfs_postorder(&mas, ULONG_MAX);
7595 	}
7596 	mt_validate_nulls(mt);
7597 }
7598 EXPORT_SYMBOL_GPL(mt_validate);
7599 
7600 void mas_dump(const struct ma_state *mas)
7601 {
7602 	pr_err("MAS: tree=" PTR_FMT " enode=" PTR_FMT " ",
7603 	       mas->tree, mas->node);
7604 	switch (mas->status) {
7605 	case ma_active:
7606 		pr_err("(ma_active)");
7607 		break;
7608 	case ma_none:
7609 		pr_err("(ma_none)");
7610 		break;
7611 	case ma_root:
7612 		pr_err("(ma_root)");
7613 		break;
7614 	case ma_start:
7615 		pr_err("(ma_start) ");
7616 		break;
7617 	case ma_pause:
7618 		pr_err("(ma_pause) ");
7619 		break;
7620 	case ma_overflow:
7621 		pr_err("(ma_overflow) ");
7622 		break;
7623 	case ma_underflow:
7624 		pr_err("(ma_underflow) ");
7625 		break;
7626 	case ma_error:
7627 		pr_err("(ma_error) ");
7628 		break;
7629 	}
7630 
7631 	pr_err("Store Type: ");
7632 	switch (mas->store_type) {
7633 	case wr_invalid:
7634 		pr_err("invalid store type\n");
7635 		break;
7636 	case wr_new_root:
7637 		pr_err("new_root\n");
7638 		break;
7639 	case wr_store_root:
7640 		pr_err("store_root\n");
7641 		break;
7642 	case wr_exact_fit:
7643 		pr_err("exact_fit\n");
7644 		break;
7645 	case wr_split_store:
7646 		pr_err("split_store\n");
7647 		break;
7648 	case wr_slot_store:
7649 		pr_err("slot_store\n");
7650 		break;
7651 	case wr_append:
7652 		pr_err("append\n");
7653 		break;
7654 	case wr_node_store:
7655 		pr_err("node_store\n");
7656 		break;
7657 	case wr_spanning_store:
7658 		pr_err("spanning_store\n");
7659 		break;
7660 	case wr_rebalance:
7661 		pr_err("rebalance\n");
7662 		break;
7663 	}
7664 
7665 	pr_err("[%u/%u] index=%lx last=%lx\n", mas->offset, mas->end,
7666 	       mas->index, mas->last);
7667 	pr_err("     min=%lx max=%lx alloc=" PTR_FMT ", depth=%u, flags=%x\n",
7668 	       mas->min, mas->max, mas->alloc, mas->depth, mas->mas_flags);
7669 	if (mas->index > mas->last)
7670 		pr_err("Check index & last\n");
7671 }
7672 EXPORT_SYMBOL_GPL(mas_dump);
7673 
7674 void mas_wr_dump(const struct ma_wr_state *wr_mas)
7675 {
7676 	pr_err("WR_MAS: node=" PTR_FMT " r_min=%lx r_max=%lx\n",
7677 	       wr_mas->node, wr_mas->r_min, wr_mas->r_max);
7678 	pr_err("        type=%u off_end=%u, node_end=%u, end_piv=%lx\n",
7679 	       wr_mas->type, wr_mas->offset_end, wr_mas->mas->end,
7680 	       wr_mas->end_piv);
7681 }
7682 EXPORT_SYMBOL_GPL(mas_wr_dump);
7683 
7684 #endif /* CONFIG_DEBUG_MAPLE_TREE */
7685