1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Maple Tree implementation
4 * Copyright (c) 2018-2022 Oracle Corporation
5 * Authors: Liam R. Howlett <Liam.Howlett@oracle.com>
6 * Matthew Wilcox <willy@infradead.org>
7 * Copyright (c) 2023 ByteDance
8 * Author: Peng Zhang <zhangpeng.00@bytedance.com>
9 */
10
11 /*
12 * DOC: Interesting implementation details of the Maple Tree
13 *
14 * Each node type has a number of slots for entries and a number of slots for
15 * pivots. In the case of dense nodes, the pivots are implied by the position
16 * and are simply the slot index + the minimum of the node.
17 *
18 * In regular B-Tree terms, pivots are called keys. The term pivot is used to
19 * indicate that the tree is specifying ranges. Pivots may appear in the
20 * subtree with an entry attached to the value whereas keys are unique to a
21 * specific position of a B-tree. Pivot values are inclusive of the slot with
22 * the same index.
23 *
24 *
25 * The following illustrates the layout of a range64 nodes slots and pivots.
26 *
27 *
28 * Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
29 * ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬
30 * │ │ │ │ │ │ │ │ └─ Implied maximum
31 * │ │ │ │ │ │ │ └─ Pivot 14
32 * │ │ │ │ │ │ └─ Pivot 13
33 * │ │ │ │ │ └─ Pivot 12
34 * │ │ │ │ └─ Pivot 11
35 * │ │ │ └─ Pivot 2
36 * │ │ └─ Pivot 1
37 * │ └─ Pivot 0
38 * └─ Implied minimum
39 *
40 * Slot contents:
41 * Internal (non-leaf) nodes contain pointers to other nodes.
42 * Leaf nodes contain entries.
43 *
44 * The location of interest is often referred to as an offset. All offsets have
45 * a slot, but the last offset has an implied pivot from the node above (or
46 * UINT_MAX for the root node.
47 *
48 * Ranges complicate certain write activities. When modifying any of
49 * the B-tree variants, it is known that one entry will either be added or
50 * deleted. When modifying the Maple Tree, one store operation may overwrite
51 * the entire data set, or one half of the tree, or the middle half of the tree.
52 *
53 */
54
55
56 #include <linux/maple_tree.h>
57 #include <linux/xarray.h>
58 #include <linux/types.h>
59 #include <linux/export.h>
60 #include <linux/slab.h>
61 #include <linux/limits.h>
62 #include <asm/barrier.h>
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/maple_tree.h>
66
67 /*
68 * Kernel pointer hashing renders much of the maple tree dump useless as tagged
69 * pointers get hashed to arbitrary values.
70 *
71 * If CONFIG_DEBUG_VM_MAPLE_TREE is set we are in a debug mode where it is
72 * permissible to bypass this. Otherwise remain cautious and retain the hashing.
73 *
74 * Userland doesn't know about %px so also use %p there.
75 */
76 #if defined(__KERNEL__) && defined(CONFIG_DEBUG_VM_MAPLE_TREE)
77 #define PTR_FMT "%px"
78 #else
79 #define PTR_FMT "%p"
80 #endif
81
82 #define MA_ROOT_PARENT 1
83
84 /*
85 * Maple state flags
86 * * MA_STATE_BULK - Bulk insert mode
87 * * MA_STATE_REBALANCE - Indicate a rebalance during bulk insert
88 * * MA_STATE_PREALLOC - Preallocated nodes, WARN_ON allocation
89 */
90 #define MA_STATE_BULK 1
91 #define MA_STATE_REBALANCE 2
92 #define MA_STATE_PREALLOC 4
93
94 #define ma_parent_ptr(x) ((struct maple_pnode *)(x))
95 #define mas_tree_parent(x) ((unsigned long)(x->tree) | MA_ROOT_PARENT)
96 #define ma_mnode_ptr(x) ((struct maple_node *)(x))
97 #define ma_enode_ptr(x) ((struct maple_enode *)(x))
98 static struct kmem_cache *maple_node_cache;
99
100 #ifdef CONFIG_DEBUG_MAPLE_TREE
101 static const unsigned long mt_max[] = {
102 [maple_dense] = MAPLE_NODE_SLOTS,
103 [maple_leaf_64] = ULONG_MAX,
104 [maple_range_64] = ULONG_MAX,
105 [maple_arange_64] = ULONG_MAX,
106 };
107 #define mt_node_max(x) mt_max[mte_node_type(x)]
108 #endif
109
110 static const unsigned char mt_slots[] = {
111 [maple_dense] = MAPLE_NODE_SLOTS,
112 [maple_leaf_64] = MAPLE_RANGE64_SLOTS,
113 [maple_range_64] = MAPLE_RANGE64_SLOTS,
114 [maple_arange_64] = MAPLE_ARANGE64_SLOTS,
115 };
116 #define mt_slot_count(x) mt_slots[mte_node_type(x)]
117
118 static const unsigned char mt_pivots[] = {
119 [maple_dense] = 0,
120 [maple_leaf_64] = MAPLE_RANGE64_SLOTS - 1,
121 [maple_range_64] = MAPLE_RANGE64_SLOTS - 1,
122 [maple_arange_64] = MAPLE_ARANGE64_SLOTS - 1,
123 };
124 #define mt_pivot_count(x) mt_pivots[mte_node_type(x)]
125
126 static const unsigned char mt_min_slots[] = {
127 [maple_dense] = MAPLE_NODE_SLOTS / 2,
128 [maple_leaf_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
129 [maple_range_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
130 [maple_arange_64] = (MAPLE_ARANGE64_SLOTS / 2) - 1,
131 };
132 #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)]
133
134 #define MAPLE_BIG_NODE_SLOTS (MAPLE_RANGE64_SLOTS * 2 + 2)
135 #define MAPLE_BIG_NODE_GAPS (MAPLE_ARANGE64_SLOTS * 2 + 1)
136
137 struct maple_big_node {
138 unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1];
139 union {
140 struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS];
141 struct {
142 unsigned long padding[MAPLE_BIG_NODE_GAPS];
143 unsigned long gap[MAPLE_BIG_NODE_GAPS];
144 };
145 };
146 unsigned char b_end;
147 enum maple_type type;
148 };
149
150 /*
151 * The maple_subtree_state is used to build a tree to replace a segment of an
152 * existing tree in a more atomic way. Any walkers of the older tree will hit a
153 * dead node and restart on updates.
154 */
155 struct maple_subtree_state {
156 struct ma_state *orig_l; /* Original left side of subtree */
157 struct ma_state *orig_r; /* Original right side of subtree */
158 struct ma_state *l; /* New left side of subtree */
159 struct ma_state *m; /* New middle of subtree (rare) */
160 struct ma_state *r; /* New right side of subtree */
161 struct ma_topiary *free; /* nodes to be freed */
162 struct ma_topiary *destroy; /* Nodes to be destroyed (walked and freed) */
163 struct maple_big_node *bn;
164 };
165
166 #ifdef CONFIG_KASAN_STACK
167 /* Prevent mas_wr_bnode() from exceeding the stack frame limit */
168 #define noinline_for_kasan noinline_for_stack
169 #else
170 #define noinline_for_kasan inline
171 #endif
172
173 /* Functions */
mt_alloc_one(gfp_t gfp)174 static inline struct maple_node *mt_alloc_one(gfp_t gfp)
175 {
176 return kmem_cache_alloc(maple_node_cache, gfp);
177 }
178
mt_alloc_bulk(gfp_t gfp,size_t size,void ** nodes)179 static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes)
180 {
181 return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes);
182 }
183
mt_free_one(struct maple_node * node)184 static inline void mt_free_one(struct maple_node *node)
185 {
186 kmem_cache_free(maple_node_cache, node);
187 }
188
mt_free_bulk(size_t size,void __rcu ** nodes)189 static inline void mt_free_bulk(size_t size, void __rcu **nodes)
190 {
191 kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes);
192 }
193
mt_free_rcu(struct rcu_head * head)194 static void mt_free_rcu(struct rcu_head *head)
195 {
196 struct maple_node *node = container_of(head, struct maple_node, rcu);
197
198 kmem_cache_free(maple_node_cache, node);
199 }
200
201 /*
202 * ma_free_rcu() - Use rcu callback to free a maple node
203 * @node: The node to free
204 *
205 * The maple tree uses the parent pointer to indicate this node is no longer in
206 * use and will be freed.
207 */
ma_free_rcu(struct maple_node * node)208 static void ma_free_rcu(struct maple_node *node)
209 {
210 WARN_ON(node->parent != ma_parent_ptr(node));
211 call_rcu(&node->rcu, mt_free_rcu);
212 }
213
mas_set_height(struct ma_state * mas)214 static void mas_set_height(struct ma_state *mas)
215 {
216 unsigned int new_flags = mas->tree->ma_flags;
217
218 new_flags &= ~MT_FLAGS_HEIGHT_MASK;
219 MAS_BUG_ON(mas, mas->depth > MAPLE_HEIGHT_MAX);
220 new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET;
221 mas->tree->ma_flags = new_flags;
222 }
223
mas_mt_height(struct ma_state * mas)224 static unsigned int mas_mt_height(struct ma_state *mas)
225 {
226 return mt_height(mas->tree);
227 }
228
mt_attr(struct maple_tree * mt)229 static inline unsigned int mt_attr(struct maple_tree *mt)
230 {
231 return mt->ma_flags & ~MT_FLAGS_HEIGHT_MASK;
232 }
233
mte_node_type(const struct maple_enode * entry)234 static __always_inline enum maple_type mte_node_type(
235 const struct maple_enode *entry)
236 {
237 return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) &
238 MAPLE_NODE_TYPE_MASK;
239 }
240
ma_is_dense(const enum maple_type type)241 static __always_inline bool ma_is_dense(const enum maple_type type)
242 {
243 return type < maple_leaf_64;
244 }
245
ma_is_leaf(const enum maple_type type)246 static __always_inline bool ma_is_leaf(const enum maple_type type)
247 {
248 return type < maple_range_64;
249 }
250
mte_is_leaf(const struct maple_enode * entry)251 static __always_inline bool mte_is_leaf(const struct maple_enode *entry)
252 {
253 return ma_is_leaf(mte_node_type(entry));
254 }
255
256 /*
257 * We also reserve values with the bottom two bits set to '10' which are
258 * below 4096
259 */
mt_is_reserved(const void * entry)260 static __always_inline bool mt_is_reserved(const void *entry)
261 {
262 return ((unsigned long)entry < MAPLE_RESERVED_RANGE) &&
263 xa_is_internal(entry);
264 }
265
mas_set_err(struct ma_state * mas,long err)266 static __always_inline void mas_set_err(struct ma_state *mas, long err)
267 {
268 mas->node = MA_ERROR(err);
269 mas->status = ma_error;
270 }
271
mas_is_ptr(const struct ma_state * mas)272 static __always_inline bool mas_is_ptr(const struct ma_state *mas)
273 {
274 return mas->status == ma_root;
275 }
276
mas_is_start(const struct ma_state * mas)277 static __always_inline bool mas_is_start(const struct ma_state *mas)
278 {
279 return mas->status == ma_start;
280 }
281
mas_is_none(const struct ma_state * mas)282 static __always_inline bool mas_is_none(const struct ma_state *mas)
283 {
284 return mas->status == ma_none;
285 }
286
mas_is_paused(const struct ma_state * mas)287 static __always_inline bool mas_is_paused(const struct ma_state *mas)
288 {
289 return mas->status == ma_pause;
290 }
291
mas_is_overflow(struct ma_state * mas)292 static __always_inline bool mas_is_overflow(struct ma_state *mas)
293 {
294 return mas->status == ma_overflow;
295 }
296
mas_is_underflow(struct ma_state * mas)297 static inline bool mas_is_underflow(struct ma_state *mas)
298 {
299 return mas->status == ma_underflow;
300 }
301
mte_to_node(const struct maple_enode * entry)302 static __always_inline struct maple_node *mte_to_node(
303 const struct maple_enode *entry)
304 {
305 return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK);
306 }
307
308 /*
309 * mte_to_mat() - Convert a maple encoded node to a maple topiary node.
310 * @entry: The maple encoded node
311 *
312 * Return: a maple topiary pointer
313 */
mte_to_mat(const struct maple_enode * entry)314 static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
315 {
316 return (struct maple_topiary *)
317 ((unsigned long)entry & ~MAPLE_NODE_MASK);
318 }
319
320 /*
321 * mas_mn() - Get the maple state node.
322 * @mas: The maple state
323 *
324 * Return: the maple node (not encoded - bare pointer).
325 */
mas_mn(const struct ma_state * mas)326 static inline struct maple_node *mas_mn(const struct ma_state *mas)
327 {
328 return mte_to_node(mas->node);
329 }
330
331 /*
332 * mte_set_node_dead() - Set a maple encoded node as dead.
333 * @mn: The maple encoded node.
334 */
mte_set_node_dead(struct maple_enode * mn)335 static inline void mte_set_node_dead(struct maple_enode *mn)
336 {
337 mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn));
338 smp_wmb(); /* Needed for RCU */
339 }
340
341 /* Bit 1 indicates the root is a node */
342 #define MAPLE_ROOT_NODE 0x02
343 /* maple_type stored bit 3-6 */
344 #define MAPLE_ENODE_TYPE_SHIFT 0x03
345 /* Bit 2 means a NULL somewhere below */
346 #define MAPLE_ENODE_NULL 0x04
347
mt_mk_node(const struct maple_node * node,enum maple_type type)348 static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
349 enum maple_type type)
350 {
351 return (void *)((unsigned long)node |
352 (type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL);
353 }
354
mte_mk_root(const struct maple_enode * node)355 static inline void *mte_mk_root(const struct maple_enode *node)
356 {
357 return (void *)((unsigned long)node | MAPLE_ROOT_NODE);
358 }
359
mte_safe_root(const struct maple_enode * node)360 static inline void *mte_safe_root(const struct maple_enode *node)
361 {
362 return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE);
363 }
364
mte_set_full(const struct maple_enode * node)365 static inline void __maybe_unused *mte_set_full(const struct maple_enode *node)
366 {
367 return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL);
368 }
369
mte_clear_full(const struct maple_enode * node)370 static inline void __maybe_unused *mte_clear_full(const struct maple_enode *node)
371 {
372 return (void *)((unsigned long)node | MAPLE_ENODE_NULL);
373 }
374
mte_has_null(const struct maple_enode * node)375 static inline bool __maybe_unused mte_has_null(const struct maple_enode *node)
376 {
377 return (unsigned long)node & MAPLE_ENODE_NULL;
378 }
379
ma_is_root(struct maple_node * node)380 static __always_inline bool ma_is_root(struct maple_node *node)
381 {
382 return ((unsigned long)node->parent & MA_ROOT_PARENT);
383 }
384
mte_is_root(const struct maple_enode * node)385 static __always_inline bool mte_is_root(const struct maple_enode *node)
386 {
387 return ma_is_root(mte_to_node(node));
388 }
389
mas_is_root_limits(const struct ma_state * mas)390 static inline bool mas_is_root_limits(const struct ma_state *mas)
391 {
392 return !mas->min && mas->max == ULONG_MAX;
393 }
394
mt_is_alloc(struct maple_tree * mt)395 static __always_inline bool mt_is_alloc(struct maple_tree *mt)
396 {
397 return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE);
398 }
399
400 /*
401 * The Parent Pointer
402 * Excluding root, the parent pointer is 256B aligned like all other tree nodes.
403 * When storing a 32 or 64 bit values, the offset can fit into 5 bits. The 16
404 * bit values need an extra bit to store the offset. This extra bit comes from
405 * a reuse of the last bit in the node type. This is possible by using bit 1 to
406 * indicate if bit 2 is part of the type or the slot.
407 *
408 * Note types:
409 * 0x??1 = Root
410 * 0x?00 = 16 bit nodes
411 * 0x010 = 32 bit nodes
412 * 0x110 = 64 bit nodes
413 *
414 * Slot size and alignment
415 * 0b??1 : Root
416 * 0b?00 : 16 bit values, type in 0-1, slot in 2-7
417 * 0b010 : 32 bit values, type in 0-2, slot in 3-7
418 * 0b110 : 64 bit values, type in 0-2, slot in 3-7
419 */
420
421 #define MAPLE_PARENT_ROOT 0x01
422
423 #define MAPLE_PARENT_SLOT_SHIFT 0x03
424 #define MAPLE_PARENT_SLOT_MASK 0xF8
425
426 #define MAPLE_PARENT_16B_SLOT_SHIFT 0x02
427 #define MAPLE_PARENT_16B_SLOT_MASK 0xFC
428
429 #define MAPLE_PARENT_RANGE64 0x06
430 #define MAPLE_PARENT_RANGE32 0x04
431 #define MAPLE_PARENT_NOT_RANGE16 0x02
432
433 /*
434 * mte_parent_shift() - Get the parent shift for the slot storage.
435 * @parent: The parent pointer cast as an unsigned long
436 * Return: The shift into that pointer to the star to of the slot
437 */
mte_parent_shift(unsigned long parent)438 static inline unsigned long mte_parent_shift(unsigned long parent)
439 {
440 /* Note bit 1 == 0 means 16B */
441 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
442 return MAPLE_PARENT_SLOT_SHIFT;
443
444 return MAPLE_PARENT_16B_SLOT_SHIFT;
445 }
446
447 /*
448 * mte_parent_slot_mask() - Get the slot mask for the parent.
449 * @parent: The parent pointer cast as an unsigned long.
450 * Return: The slot mask for that parent.
451 */
mte_parent_slot_mask(unsigned long parent)452 static inline unsigned long mte_parent_slot_mask(unsigned long parent)
453 {
454 /* Note bit 1 == 0 means 16B */
455 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
456 return MAPLE_PARENT_SLOT_MASK;
457
458 return MAPLE_PARENT_16B_SLOT_MASK;
459 }
460
461 /*
462 * mas_parent_type() - Return the maple_type of the parent from the stored
463 * parent type.
464 * @mas: The maple state
465 * @enode: The maple_enode to extract the parent's enum
466 * Return: The node->parent maple_type
467 */
468 static inline
mas_parent_type(struct ma_state * mas,struct maple_enode * enode)469 enum maple_type mas_parent_type(struct ma_state *mas, struct maple_enode *enode)
470 {
471 unsigned long p_type;
472
473 p_type = (unsigned long)mte_to_node(enode)->parent;
474 if (WARN_ON(p_type & MAPLE_PARENT_ROOT))
475 return 0;
476
477 p_type &= MAPLE_NODE_MASK;
478 p_type &= ~mte_parent_slot_mask(p_type);
479 switch (p_type) {
480 case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */
481 if (mt_is_alloc(mas->tree))
482 return maple_arange_64;
483 return maple_range_64;
484 }
485
486 return 0;
487 }
488
489 /*
490 * mas_set_parent() - Set the parent node and encode the slot
491 * @mas: The maple state
492 * @enode: The encoded maple node.
493 * @parent: The encoded maple node that is the parent of @enode.
494 * @slot: The slot that @enode resides in @parent.
495 *
496 * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
497 * parent type.
498 */
499 static inline
mas_set_parent(struct ma_state * mas,struct maple_enode * enode,const struct maple_enode * parent,unsigned char slot)500 void mas_set_parent(struct ma_state *mas, struct maple_enode *enode,
501 const struct maple_enode *parent, unsigned char slot)
502 {
503 unsigned long val = (unsigned long)parent;
504 unsigned long shift;
505 unsigned long type;
506 enum maple_type p_type = mte_node_type(parent);
507
508 MAS_BUG_ON(mas, p_type == maple_dense);
509 MAS_BUG_ON(mas, p_type == maple_leaf_64);
510
511 switch (p_type) {
512 case maple_range_64:
513 case maple_arange_64:
514 shift = MAPLE_PARENT_SLOT_SHIFT;
515 type = MAPLE_PARENT_RANGE64;
516 break;
517 default:
518 case maple_dense:
519 case maple_leaf_64:
520 shift = type = 0;
521 break;
522 }
523
524 val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */
525 val |= (slot << shift) | type;
526 mte_to_node(enode)->parent = ma_parent_ptr(val);
527 }
528
529 /*
530 * mte_parent_slot() - get the parent slot of @enode.
531 * @enode: The encoded maple node.
532 *
533 * Return: The slot in the parent node where @enode resides.
534 */
535 static __always_inline
mte_parent_slot(const struct maple_enode * enode)536 unsigned int mte_parent_slot(const struct maple_enode *enode)
537 {
538 unsigned long val = (unsigned long)mte_to_node(enode)->parent;
539
540 if (unlikely(val & MA_ROOT_PARENT))
541 return 0;
542
543 /*
544 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost
545 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT
546 */
547 return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val);
548 }
549
550 /*
551 * mte_parent() - Get the parent of @node.
552 * @enode: The encoded maple node.
553 *
554 * Return: The parent maple node.
555 */
556 static __always_inline
mte_parent(const struct maple_enode * enode)557 struct maple_node *mte_parent(const struct maple_enode *enode)
558 {
559 return (void *)((unsigned long)
560 (mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK);
561 }
562
563 /*
564 * ma_dead_node() - check if the @enode is dead.
565 * @enode: The encoded maple node
566 *
567 * Return: true if dead, false otherwise.
568 */
ma_dead_node(const struct maple_node * node)569 static __always_inline bool ma_dead_node(const struct maple_node *node)
570 {
571 struct maple_node *parent;
572
573 /* Do not reorder reads from the node prior to the parent check */
574 smp_rmb();
575 parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK);
576 return (parent == node);
577 }
578
579 /*
580 * mte_dead_node() - check if the @enode is dead.
581 * @enode: The encoded maple node
582 *
583 * Return: true if dead, false otherwise.
584 */
mte_dead_node(const struct maple_enode * enode)585 static __always_inline bool mte_dead_node(const struct maple_enode *enode)
586 {
587 struct maple_node *parent, *node;
588
589 node = mte_to_node(enode);
590 /* Do not reorder reads from the node prior to the parent check */
591 smp_rmb();
592 parent = mte_parent(enode);
593 return (parent == node);
594 }
595
596 /*
597 * mas_allocated() - Get the number of nodes allocated in a maple state.
598 * @mas: The maple state
599 *
600 * The ma_state alloc member is overloaded to hold a pointer to the first
601 * allocated node or to the number of requested nodes to allocate. If bit 0 is
602 * set, then the alloc contains the number of requested nodes. If there is an
603 * allocated node, then the total allocated nodes is in that node.
604 *
605 * Return: The total number of nodes allocated
606 */
mas_allocated(const struct ma_state * mas)607 static inline unsigned long mas_allocated(const struct ma_state *mas)
608 {
609 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1))
610 return 0;
611
612 return mas->alloc->total;
613 }
614
615 /*
616 * mas_set_alloc_req() - Set the requested number of allocations.
617 * @mas: the maple state
618 * @count: the number of allocations.
619 *
620 * The requested number of allocations is either in the first allocated node,
621 * located in @mas->alloc->request_count, or directly in @mas->alloc if there is
622 * no allocated node. Set the request either in the node or do the necessary
623 * encoding to store in @mas->alloc directly.
624 */
mas_set_alloc_req(struct ma_state * mas,unsigned long count)625 static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count)
626 {
627 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) {
628 if (!count)
629 mas->alloc = NULL;
630 else
631 mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U);
632 return;
633 }
634
635 mas->alloc->request_count = count;
636 }
637
638 /*
639 * mas_alloc_req() - get the requested number of allocations.
640 * @mas: The maple state
641 *
642 * The alloc count is either stored directly in @mas, or in
643 * @mas->alloc->request_count if there is at least one node allocated. Decode
644 * the request count if it's stored directly in @mas->alloc.
645 *
646 * Return: The allocation request count.
647 */
mas_alloc_req(const struct ma_state * mas)648 static inline unsigned int mas_alloc_req(const struct ma_state *mas)
649 {
650 if ((unsigned long)mas->alloc & 0x1)
651 return (unsigned long)(mas->alloc) >> 1;
652 else if (mas->alloc)
653 return mas->alloc->request_count;
654 return 0;
655 }
656
657 /*
658 * ma_pivots() - Get a pointer to the maple node pivots.
659 * @node: the maple node
660 * @type: the node type
661 *
662 * In the event of a dead node, this array may be %NULL
663 *
664 * Return: A pointer to the maple node pivots
665 */
ma_pivots(struct maple_node * node,enum maple_type type)666 static inline unsigned long *ma_pivots(struct maple_node *node,
667 enum maple_type type)
668 {
669 switch (type) {
670 case maple_arange_64:
671 return node->ma64.pivot;
672 case maple_range_64:
673 case maple_leaf_64:
674 return node->mr64.pivot;
675 case maple_dense:
676 return NULL;
677 }
678 return NULL;
679 }
680
681 /*
682 * ma_gaps() - Get a pointer to the maple node gaps.
683 * @node: the maple node
684 * @type: the node type
685 *
686 * Return: A pointer to the maple node gaps
687 */
ma_gaps(struct maple_node * node,enum maple_type type)688 static inline unsigned long *ma_gaps(struct maple_node *node,
689 enum maple_type type)
690 {
691 switch (type) {
692 case maple_arange_64:
693 return node->ma64.gap;
694 case maple_range_64:
695 case maple_leaf_64:
696 case maple_dense:
697 return NULL;
698 }
699 return NULL;
700 }
701
702 /*
703 * mas_safe_pivot() - get the pivot at @piv or mas->max.
704 * @mas: The maple state
705 * @pivots: The pointer to the maple node pivots
706 * @piv: The pivot to fetch
707 * @type: The maple node type
708 *
709 * Return: The pivot at @piv within the limit of the @pivots array, @mas->max
710 * otherwise.
711 */
712 static __always_inline unsigned long
mas_safe_pivot(const struct ma_state * mas,unsigned long * pivots,unsigned char piv,enum maple_type type)713 mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
714 unsigned char piv, enum maple_type type)
715 {
716 if (piv >= mt_pivots[type])
717 return mas->max;
718
719 return pivots[piv];
720 }
721
722 /*
723 * mas_safe_min() - Return the minimum for a given offset.
724 * @mas: The maple state
725 * @pivots: The pointer to the maple node pivots
726 * @offset: The offset into the pivot array
727 *
728 * Return: The minimum range value that is contained in @offset.
729 */
730 static inline unsigned long
mas_safe_min(struct ma_state * mas,unsigned long * pivots,unsigned char offset)731 mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
732 {
733 if (likely(offset))
734 return pivots[offset - 1] + 1;
735
736 return mas->min;
737 }
738
739 /*
740 * mte_set_pivot() - Set a pivot to a value in an encoded maple node.
741 * @mn: The encoded maple node
742 * @piv: The pivot offset
743 * @val: The value of the pivot
744 */
mte_set_pivot(struct maple_enode * mn,unsigned char piv,unsigned long val)745 static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
746 unsigned long val)
747 {
748 struct maple_node *node = mte_to_node(mn);
749 enum maple_type type = mte_node_type(mn);
750
751 BUG_ON(piv >= mt_pivots[type]);
752 switch (type) {
753 case maple_range_64:
754 case maple_leaf_64:
755 node->mr64.pivot[piv] = val;
756 break;
757 case maple_arange_64:
758 node->ma64.pivot[piv] = val;
759 break;
760 case maple_dense:
761 break;
762 }
763
764 }
765
766 /*
767 * ma_slots() - Get a pointer to the maple node slots.
768 * @mn: The maple node
769 * @mt: The maple node type
770 *
771 * Return: A pointer to the maple node slots
772 */
ma_slots(struct maple_node * mn,enum maple_type mt)773 static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
774 {
775 switch (mt) {
776 case maple_arange_64:
777 return mn->ma64.slot;
778 case maple_range_64:
779 case maple_leaf_64:
780 return mn->mr64.slot;
781 case maple_dense:
782 return mn->slot;
783 }
784
785 return NULL;
786 }
787
mt_write_locked(const struct maple_tree * mt)788 static inline bool mt_write_locked(const struct maple_tree *mt)
789 {
790 return mt_external_lock(mt) ? mt_write_lock_is_held(mt) :
791 lockdep_is_held(&mt->ma_lock);
792 }
793
mt_locked(const struct maple_tree * mt)794 static __always_inline bool mt_locked(const struct maple_tree *mt)
795 {
796 return mt_external_lock(mt) ? mt_lock_is_held(mt) :
797 lockdep_is_held(&mt->ma_lock);
798 }
799
mt_slot(const struct maple_tree * mt,void __rcu ** slots,unsigned char offset)800 static __always_inline void *mt_slot(const struct maple_tree *mt,
801 void __rcu **slots, unsigned char offset)
802 {
803 return rcu_dereference_check(slots[offset], mt_locked(mt));
804 }
805
mt_slot_locked(struct maple_tree * mt,void __rcu ** slots,unsigned char offset)806 static __always_inline void *mt_slot_locked(struct maple_tree *mt,
807 void __rcu **slots, unsigned char offset)
808 {
809 return rcu_dereference_protected(slots[offset], mt_write_locked(mt));
810 }
811 /*
812 * mas_slot_locked() - Get the slot value when holding the maple tree lock.
813 * @mas: The maple state
814 * @slots: The pointer to the slots
815 * @offset: The offset into the slots array to fetch
816 *
817 * Return: The entry stored in @slots at the @offset.
818 */
mas_slot_locked(struct ma_state * mas,void __rcu ** slots,unsigned char offset)819 static __always_inline void *mas_slot_locked(struct ma_state *mas,
820 void __rcu **slots, unsigned char offset)
821 {
822 return mt_slot_locked(mas->tree, slots, offset);
823 }
824
825 /*
826 * mas_slot() - Get the slot value when not holding the maple tree lock.
827 * @mas: The maple state
828 * @slots: The pointer to the slots
829 * @offset: The offset into the slots array to fetch
830 *
831 * Return: The entry stored in @slots at the @offset
832 */
mas_slot(struct ma_state * mas,void __rcu ** slots,unsigned char offset)833 static __always_inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
834 unsigned char offset)
835 {
836 return mt_slot(mas->tree, slots, offset);
837 }
838
839 /*
840 * mas_root() - Get the maple tree root.
841 * @mas: The maple state.
842 *
843 * Return: The pointer to the root of the tree
844 */
mas_root(struct ma_state * mas)845 static __always_inline void *mas_root(struct ma_state *mas)
846 {
847 return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree));
848 }
849
mt_root_locked(struct maple_tree * mt)850 static inline void *mt_root_locked(struct maple_tree *mt)
851 {
852 return rcu_dereference_protected(mt->ma_root, mt_write_locked(mt));
853 }
854
855 /*
856 * mas_root_locked() - Get the maple tree root when holding the maple tree lock.
857 * @mas: The maple state.
858 *
859 * Return: The pointer to the root of the tree
860 */
mas_root_locked(struct ma_state * mas)861 static inline void *mas_root_locked(struct ma_state *mas)
862 {
863 return mt_root_locked(mas->tree);
864 }
865
ma_meta(struct maple_node * mn,enum maple_type mt)866 static inline struct maple_metadata *ma_meta(struct maple_node *mn,
867 enum maple_type mt)
868 {
869 switch (mt) {
870 case maple_arange_64:
871 return &mn->ma64.meta;
872 default:
873 return &mn->mr64.meta;
874 }
875 }
876
877 /*
878 * ma_set_meta() - Set the metadata information of a node.
879 * @mn: The maple node
880 * @mt: The maple node type
881 * @offset: The offset of the highest sub-gap in this node.
882 * @end: The end of the data in this node.
883 */
ma_set_meta(struct maple_node * mn,enum maple_type mt,unsigned char offset,unsigned char end)884 static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
885 unsigned char offset, unsigned char end)
886 {
887 struct maple_metadata *meta = ma_meta(mn, mt);
888
889 meta->gap = offset;
890 meta->end = end;
891 }
892
893 /*
894 * mt_clear_meta() - clear the metadata information of a node, if it exists
895 * @mt: The maple tree
896 * @mn: The maple node
897 * @type: The maple node type
898 */
mt_clear_meta(struct maple_tree * mt,struct maple_node * mn,enum maple_type type)899 static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn,
900 enum maple_type type)
901 {
902 struct maple_metadata *meta;
903 unsigned long *pivots;
904 void __rcu **slots;
905 void *next;
906
907 switch (type) {
908 case maple_range_64:
909 pivots = mn->mr64.pivot;
910 if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) {
911 slots = mn->mr64.slot;
912 next = mt_slot_locked(mt, slots,
913 MAPLE_RANGE64_SLOTS - 1);
914 if (unlikely((mte_to_node(next) &&
915 mte_node_type(next))))
916 return; /* no metadata, could be node */
917 }
918 fallthrough;
919 case maple_arange_64:
920 meta = ma_meta(mn, type);
921 break;
922 default:
923 return;
924 }
925
926 meta->gap = 0;
927 meta->end = 0;
928 }
929
930 /*
931 * ma_meta_end() - Get the data end of a node from the metadata
932 * @mn: The maple node
933 * @mt: The maple node type
934 */
ma_meta_end(struct maple_node * mn,enum maple_type mt)935 static inline unsigned char ma_meta_end(struct maple_node *mn,
936 enum maple_type mt)
937 {
938 struct maple_metadata *meta = ma_meta(mn, mt);
939
940 return meta->end;
941 }
942
943 /*
944 * ma_meta_gap() - Get the largest gap location of a node from the metadata
945 * @mn: The maple node
946 */
ma_meta_gap(struct maple_node * mn)947 static inline unsigned char ma_meta_gap(struct maple_node *mn)
948 {
949 return mn->ma64.meta.gap;
950 }
951
952 /*
953 * ma_set_meta_gap() - Set the largest gap location in a nodes metadata
954 * @mn: The maple node
955 * @mt: The maple node type
956 * @offset: The location of the largest gap.
957 */
ma_set_meta_gap(struct maple_node * mn,enum maple_type mt,unsigned char offset)958 static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
959 unsigned char offset)
960 {
961
962 struct maple_metadata *meta = ma_meta(mn, mt);
963
964 meta->gap = offset;
965 }
966
967 /*
968 * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
969 * @mat: the ma_topiary, a linked list of dead nodes.
970 * @dead_enode: the node to be marked as dead and added to the tail of the list
971 *
972 * Add the @dead_enode to the linked list in @mat.
973 */
mat_add(struct ma_topiary * mat,struct maple_enode * dead_enode)974 static inline void mat_add(struct ma_topiary *mat,
975 struct maple_enode *dead_enode)
976 {
977 mte_set_node_dead(dead_enode);
978 mte_to_mat(dead_enode)->next = NULL;
979 if (!mat->tail) {
980 mat->tail = mat->head = dead_enode;
981 return;
982 }
983
984 mte_to_mat(mat->tail)->next = dead_enode;
985 mat->tail = dead_enode;
986 }
987
988 static void mt_free_walk(struct rcu_head *head);
989 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
990 bool free);
991 /*
992 * mas_mat_destroy() - Free all nodes and subtrees in a dead list.
993 * @mas: the maple state
994 * @mat: the ma_topiary linked list of dead nodes to free.
995 *
996 * Destroy walk a dead list.
997 */
mas_mat_destroy(struct ma_state * mas,struct ma_topiary * mat)998 static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
999 {
1000 struct maple_enode *next;
1001 struct maple_node *node;
1002 bool in_rcu = mt_in_rcu(mas->tree);
1003
1004 while (mat->head) {
1005 next = mte_to_mat(mat->head)->next;
1006 node = mte_to_node(mat->head);
1007 mt_destroy_walk(mat->head, mas->tree, !in_rcu);
1008 if (in_rcu)
1009 call_rcu(&node->rcu, mt_free_walk);
1010 mat->head = next;
1011 }
1012 }
1013 /*
1014 * mas_descend() - Descend into the slot stored in the ma_state.
1015 * @mas: the maple state.
1016 *
1017 * Note: Not RCU safe, only use in write side or debug code.
1018 */
mas_descend(struct ma_state * mas)1019 static inline void mas_descend(struct ma_state *mas)
1020 {
1021 enum maple_type type;
1022 unsigned long *pivots;
1023 struct maple_node *node;
1024 void __rcu **slots;
1025
1026 node = mas_mn(mas);
1027 type = mte_node_type(mas->node);
1028 pivots = ma_pivots(node, type);
1029 slots = ma_slots(node, type);
1030
1031 if (mas->offset)
1032 mas->min = pivots[mas->offset - 1] + 1;
1033 mas->max = mas_safe_pivot(mas, pivots, mas->offset, type);
1034 mas->node = mas_slot(mas, slots, mas->offset);
1035 }
1036
1037 /*
1038 * mte_set_gap() - Set a maple node gap.
1039 * @mn: The encoded maple node
1040 * @gap: The offset of the gap to set
1041 * @val: The gap value
1042 */
mte_set_gap(const struct maple_enode * mn,unsigned char gap,unsigned long val)1043 static inline void mte_set_gap(const struct maple_enode *mn,
1044 unsigned char gap, unsigned long val)
1045 {
1046 switch (mte_node_type(mn)) {
1047 default:
1048 break;
1049 case maple_arange_64:
1050 mte_to_node(mn)->ma64.gap[gap] = val;
1051 break;
1052 }
1053 }
1054
1055 /*
1056 * mas_ascend() - Walk up a level of the tree.
1057 * @mas: The maple state
1058 *
1059 * Sets the @mas->max and @mas->min to the correct values when walking up. This
1060 * may cause several levels of walking up to find the correct min and max.
1061 * May find a dead node which will cause a premature return.
1062 * Return: 1 on dead node, 0 otherwise
1063 */
mas_ascend(struct ma_state * mas)1064 static int mas_ascend(struct ma_state *mas)
1065 {
1066 struct maple_enode *p_enode; /* parent enode. */
1067 struct maple_enode *a_enode; /* ancestor enode. */
1068 struct maple_node *a_node; /* ancestor node. */
1069 struct maple_node *p_node; /* parent node. */
1070 unsigned char a_slot;
1071 enum maple_type a_type;
1072 unsigned long min, max;
1073 unsigned long *pivots;
1074 bool set_max = false, set_min = false;
1075
1076 a_node = mas_mn(mas);
1077 if (ma_is_root(a_node)) {
1078 mas->offset = 0;
1079 return 0;
1080 }
1081
1082 p_node = mte_parent(mas->node);
1083 if (unlikely(a_node == p_node))
1084 return 1;
1085
1086 a_type = mas_parent_type(mas, mas->node);
1087 mas->offset = mte_parent_slot(mas->node);
1088 a_enode = mt_mk_node(p_node, a_type);
1089
1090 /* Check to make sure all parent information is still accurate */
1091 if (p_node != mte_parent(mas->node))
1092 return 1;
1093
1094 mas->node = a_enode;
1095
1096 if (mte_is_root(a_enode)) {
1097 mas->max = ULONG_MAX;
1098 mas->min = 0;
1099 return 0;
1100 }
1101
1102 min = 0;
1103 max = ULONG_MAX;
1104 if (!mas->offset) {
1105 min = mas->min;
1106 set_min = true;
1107 }
1108
1109 if (mas->max == ULONG_MAX)
1110 set_max = true;
1111
1112 do {
1113 p_enode = a_enode;
1114 a_type = mas_parent_type(mas, p_enode);
1115 a_node = mte_parent(p_enode);
1116 a_slot = mte_parent_slot(p_enode);
1117 a_enode = mt_mk_node(a_node, a_type);
1118 pivots = ma_pivots(a_node, a_type);
1119
1120 if (unlikely(ma_dead_node(a_node)))
1121 return 1;
1122
1123 if (!set_min && a_slot) {
1124 set_min = true;
1125 min = pivots[a_slot - 1] + 1;
1126 }
1127
1128 if (!set_max && a_slot < mt_pivots[a_type]) {
1129 set_max = true;
1130 max = pivots[a_slot];
1131 }
1132
1133 if (unlikely(ma_dead_node(a_node)))
1134 return 1;
1135
1136 if (unlikely(ma_is_root(a_node)))
1137 break;
1138
1139 } while (!set_min || !set_max);
1140
1141 mas->max = max;
1142 mas->min = min;
1143 return 0;
1144 }
1145
1146 /*
1147 * mas_pop_node() - Get a previously allocated maple node from the maple state.
1148 * @mas: The maple state
1149 *
1150 * Return: A pointer to a maple node.
1151 */
mas_pop_node(struct ma_state * mas)1152 static inline struct maple_node *mas_pop_node(struct ma_state *mas)
1153 {
1154 struct maple_alloc *ret, *node = mas->alloc;
1155 unsigned long total = mas_allocated(mas);
1156 unsigned int req = mas_alloc_req(mas);
1157
1158 /* nothing or a request pending. */
1159 if (WARN_ON(!total))
1160 return NULL;
1161
1162 if (total == 1) {
1163 /* single allocation in this ma_state */
1164 mas->alloc = NULL;
1165 ret = node;
1166 goto single_node;
1167 }
1168
1169 if (node->node_count == 1) {
1170 /* Single allocation in this node. */
1171 mas->alloc = node->slot[0];
1172 mas->alloc->total = node->total - 1;
1173 ret = node;
1174 goto new_head;
1175 }
1176 node->total--;
1177 ret = node->slot[--node->node_count];
1178 node->slot[node->node_count] = NULL;
1179
1180 single_node:
1181 new_head:
1182 if (req) {
1183 req++;
1184 mas_set_alloc_req(mas, req);
1185 }
1186
1187 memset(ret, 0, sizeof(*ret));
1188 return (struct maple_node *)ret;
1189 }
1190
1191 /*
1192 * mas_push_node() - Push a node back on the maple state allocation.
1193 * @mas: The maple state
1194 * @used: The used maple node
1195 *
1196 * Stores the maple node back into @mas->alloc for reuse. Updates allocated and
1197 * requested node count as necessary.
1198 */
mas_push_node(struct ma_state * mas,struct maple_node * used)1199 static inline void mas_push_node(struct ma_state *mas, struct maple_node *used)
1200 {
1201 struct maple_alloc *reuse = (struct maple_alloc *)used;
1202 struct maple_alloc *head = mas->alloc;
1203 unsigned long count;
1204 unsigned int requested = mas_alloc_req(mas);
1205
1206 count = mas_allocated(mas);
1207
1208 reuse->request_count = 0;
1209 reuse->node_count = 0;
1210 if (count) {
1211 if (head->node_count < MAPLE_ALLOC_SLOTS) {
1212 head->slot[head->node_count++] = reuse;
1213 head->total++;
1214 goto done;
1215 }
1216 reuse->slot[0] = head;
1217 reuse->node_count = 1;
1218 }
1219
1220 reuse->total = count + 1;
1221 mas->alloc = reuse;
1222 done:
1223 if (requested > 1)
1224 mas_set_alloc_req(mas, requested - 1);
1225 }
1226
1227 /*
1228 * mas_alloc_nodes() - Allocate nodes into a maple state
1229 * @mas: The maple state
1230 * @gfp: The GFP Flags
1231 */
mas_alloc_nodes(struct ma_state * mas,gfp_t gfp)1232 static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
1233 {
1234 struct maple_alloc *node;
1235 unsigned long allocated = mas_allocated(mas);
1236 unsigned int requested = mas_alloc_req(mas);
1237 unsigned int count;
1238 void **slots = NULL;
1239 unsigned int max_req = 0;
1240
1241 if (!requested)
1242 return;
1243
1244 mas_set_alloc_req(mas, 0);
1245 if (mas->mas_flags & MA_STATE_PREALLOC) {
1246 if (allocated)
1247 return;
1248 BUG_ON(!allocated);
1249 WARN_ON(!allocated);
1250 }
1251
1252 if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) {
1253 node = (struct maple_alloc *)mt_alloc_one(gfp);
1254 if (!node)
1255 goto nomem_one;
1256
1257 if (allocated) {
1258 node->slot[0] = mas->alloc;
1259 node->node_count = 1;
1260 } else {
1261 node->node_count = 0;
1262 }
1263
1264 mas->alloc = node;
1265 node->total = ++allocated;
1266 node->request_count = 0;
1267 requested--;
1268 }
1269
1270 node = mas->alloc;
1271 while (requested) {
1272 max_req = MAPLE_ALLOC_SLOTS - node->node_count;
1273 slots = (void **)&node->slot[node->node_count];
1274 max_req = min(requested, max_req);
1275 count = mt_alloc_bulk(gfp, max_req, slots);
1276 if (!count)
1277 goto nomem_bulk;
1278
1279 if (node->node_count == 0) {
1280 node->slot[0]->node_count = 0;
1281 node->slot[0]->request_count = 0;
1282 }
1283
1284 node->node_count += count;
1285 allocated += count;
1286 /* find a non-full node*/
1287 do {
1288 node = node->slot[0];
1289 } while (unlikely(node->node_count == MAPLE_ALLOC_SLOTS));
1290 requested -= count;
1291 }
1292 mas->alloc->total = allocated;
1293 return;
1294
1295 nomem_bulk:
1296 /* Clean up potential freed allocations on bulk failure */
1297 memset(slots, 0, max_req * sizeof(unsigned long));
1298 mas->alloc->total = allocated;
1299 nomem_one:
1300 mas_set_alloc_req(mas, requested);
1301 mas_set_err(mas, -ENOMEM);
1302 }
1303
1304 /*
1305 * mas_free() - Free an encoded maple node
1306 * @mas: The maple state
1307 * @used: The encoded maple node to free.
1308 *
1309 * Uses rcu free if necessary, pushes @used back on the maple state allocations
1310 * otherwise.
1311 */
mas_free(struct ma_state * mas,struct maple_enode * used)1312 static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
1313 {
1314 struct maple_node *tmp = mte_to_node(used);
1315
1316 if (mt_in_rcu(mas->tree))
1317 ma_free_rcu(tmp);
1318 else
1319 mas_push_node(mas, tmp);
1320 }
1321
1322 /*
1323 * mas_node_count_gfp() - Check if enough nodes are allocated and request more
1324 * if there is not enough nodes.
1325 * @mas: The maple state
1326 * @count: The number of nodes needed
1327 * @gfp: the gfp flags
1328 */
mas_node_count_gfp(struct ma_state * mas,int count,gfp_t gfp)1329 static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp)
1330 {
1331 unsigned long allocated = mas_allocated(mas);
1332
1333 if (allocated < count) {
1334 mas_set_alloc_req(mas, count - allocated);
1335 mas_alloc_nodes(mas, gfp);
1336 }
1337 }
1338
1339 /*
1340 * mas_node_count() - Check if enough nodes are allocated and request more if
1341 * there is not enough nodes.
1342 * @mas: The maple state
1343 * @count: The number of nodes needed
1344 *
1345 * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags.
1346 */
mas_node_count(struct ma_state * mas,int count)1347 static void mas_node_count(struct ma_state *mas, int count)
1348 {
1349 return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN);
1350 }
1351
1352 /*
1353 * mas_start() - Sets up maple state for operations.
1354 * @mas: The maple state.
1355 *
1356 * If mas->status == mas_start, then set the min, max and depth to
1357 * defaults.
1358 *
1359 * Return:
1360 * - If mas->node is an error or not mas_start, return NULL.
1361 * - If it's an empty tree: NULL & mas->status == ma_none
1362 * - If it's a single entry: The entry & mas->status == ma_root
1363 * - If it's a tree: NULL & mas->status == ma_active
1364 */
mas_start(struct ma_state * mas)1365 static inline struct maple_enode *mas_start(struct ma_state *mas)
1366 {
1367 if (likely(mas_is_start(mas))) {
1368 struct maple_enode *root;
1369
1370 mas->min = 0;
1371 mas->max = ULONG_MAX;
1372
1373 retry:
1374 mas->depth = 0;
1375 root = mas_root(mas);
1376 /* Tree with nodes */
1377 if (likely(xa_is_node(root))) {
1378 mas->depth = 1;
1379 mas->status = ma_active;
1380 mas->node = mte_safe_root(root);
1381 mas->offset = 0;
1382 if (mte_dead_node(mas->node))
1383 goto retry;
1384
1385 return NULL;
1386 }
1387
1388 mas->node = NULL;
1389 /* empty tree */
1390 if (unlikely(!root)) {
1391 mas->status = ma_none;
1392 mas->offset = MAPLE_NODE_SLOTS;
1393 return NULL;
1394 }
1395
1396 /* Single entry tree */
1397 mas->status = ma_root;
1398 mas->offset = MAPLE_NODE_SLOTS;
1399
1400 /* Single entry tree. */
1401 if (mas->index > 0)
1402 return NULL;
1403
1404 return root;
1405 }
1406
1407 return NULL;
1408 }
1409
1410 /*
1411 * ma_data_end() - Find the end of the data in a node.
1412 * @node: The maple node
1413 * @type: The maple node type
1414 * @pivots: The array of pivots in the node
1415 * @max: The maximum value in the node
1416 *
1417 * Uses metadata to find the end of the data when possible.
1418 * Return: The zero indexed last slot with data (may be null).
1419 */
ma_data_end(struct maple_node * node,enum maple_type type,unsigned long * pivots,unsigned long max)1420 static __always_inline unsigned char ma_data_end(struct maple_node *node,
1421 enum maple_type type, unsigned long *pivots, unsigned long max)
1422 {
1423 unsigned char offset;
1424
1425 if (!pivots)
1426 return 0;
1427
1428 if (type == maple_arange_64)
1429 return ma_meta_end(node, type);
1430
1431 offset = mt_pivots[type] - 1;
1432 if (likely(!pivots[offset]))
1433 return ma_meta_end(node, type);
1434
1435 if (likely(pivots[offset] == max))
1436 return offset;
1437
1438 return mt_pivots[type];
1439 }
1440
1441 /*
1442 * mas_data_end() - Find the end of the data (slot).
1443 * @mas: the maple state
1444 *
1445 * This method is optimized to check the metadata of a node if the node type
1446 * supports data end metadata.
1447 *
1448 * Return: The zero indexed last slot with data (may be null).
1449 */
mas_data_end(struct ma_state * mas)1450 static inline unsigned char mas_data_end(struct ma_state *mas)
1451 {
1452 enum maple_type type;
1453 struct maple_node *node;
1454 unsigned char offset;
1455 unsigned long *pivots;
1456
1457 type = mte_node_type(mas->node);
1458 node = mas_mn(mas);
1459 if (type == maple_arange_64)
1460 return ma_meta_end(node, type);
1461
1462 pivots = ma_pivots(node, type);
1463 if (unlikely(ma_dead_node(node)))
1464 return 0;
1465
1466 offset = mt_pivots[type] - 1;
1467 if (likely(!pivots[offset]))
1468 return ma_meta_end(node, type);
1469
1470 if (likely(pivots[offset] == mas->max))
1471 return offset;
1472
1473 return mt_pivots[type];
1474 }
1475
1476 /*
1477 * mas_leaf_max_gap() - Returns the largest gap in a leaf node
1478 * @mas: the maple state
1479 *
1480 * Return: The maximum gap in the leaf.
1481 */
mas_leaf_max_gap(struct ma_state * mas)1482 static unsigned long mas_leaf_max_gap(struct ma_state *mas)
1483 {
1484 enum maple_type mt;
1485 unsigned long pstart, gap, max_gap;
1486 struct maple_node *mn;
1487 unsigned long *pivots;
1488 void __rcu **slots;
1489 unsigned char i;
1490 unsigned char max_piv;
1491
1492 mt = mte_node_type(mas->node);
1493 mn = mas_mn(mas);
1494 slots = ma_slots(mn, mt);
1495 max_gap = 0;
1496 if (unlikely(ma_is_dense(mt))) {
1497 gap = 0;
1498 for (i = 0; i < mt_slots[mt]; i++) {
1499 if (slots[i]) {
1500 if (gap > max_gap)
1501 max_gap = gap;
1502 gap = 0;
1503 } else {
1504 gap++;
1505 }
1506 }
1507 if (gap > max_gap)
1508 max_gap = gap;
1509 return max_gap;
1510 }
1511
1512 /*
1513 * Check the first implied pivot optimizes the loop below and slot 1 may
1514 * be skipped if there is a gap in slot 0.
1515 */
1516 pivots = ma_pivots(mn, mt);
1517 if (likely(!slots[0])) {
1518 max_gap = pivots[0] - mas->min + 1;
1519 i = 2;
1520 } else {
1521 i = 1;
1522 }
1523
1524 /* reduce max_piv as the special case is checked before the loop */
1525 max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1;
1526 /*
1527 * Check end implied pivot which can only be a gap on the right most
1528 * node.
1529 */
1530 if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) {
1531 gap = ULONG_MAX - pivots[max_piv];
1532 if (gap > max_gap)
1533 max_gap = gap;
1534
1535 if (max_gap > pivots[max_piv] - mas->min)
1536 return max_gap;
1537 }
1538
1539 for (; i <= max_piv; i++) {
1540 /* data == no gap. */
1541 if (likely(slots[i]))
1542 continue;
1543
1544 pstart = pivots[i - 1];
1545 gap = pivots[i] - pstart;
1546 if (gap > max_gap)
1547 max_gap = gap;
1548
1549 /* There cannot be two gaps in a row. */
1550 i++;
1551 }
1552 return max_gap;
1553 }
1554
1555 /*
1556 * ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
1557 * @node: The maple node
1558 * @gaps: The pointer to the gaps
1559 * @mt: The maple node type
1560 * @off: Pointer to store the offset location of the gap.
1561 *
1562 * Uses the metadata data end to scan backwards across set gaps.
1563 *
1564 * Return: The maximum gap value
1565 */
1566 static inline unsigned long
ma_max_gap(struct maple_node * node,unsigned long * gaps,enum maple_type mt,unsigned char * off)1567 ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
1568 unsigned char *off)
1569 {
1570 unsigned char offset, i;
1571 unsigned long max_gap = 0;
1572
1573 i = offset = ma_meta_end(node, mt);
1574 do {
1575 if (gaps[i] > max_gap) {
1576 max_gap = gaps[i];
1577 offset = i;
1578 }
1579 } while (i--);
1580
1581 *off = offset;
1582 return max_gap;
1583 }
1584
1585 /*
1586 * mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
1587 * @mas: The maple state.
1588 *
1589 * Return: The gap value.
1590 */
mas_max_gap(struct ma_state * mas)1591 static inline unsigned long mas_max_gap(struct ma_state *mas)
1592 {
1593 unsigned long *gaps;
1594 unsigned char offset;
1595 enum maple_type mt;
1596 struct maple_node *node;
1597
1598 mt = mte_node_type(mas->node);
1599 if (ma_is_leaf(mt))
1600 return mas_leaf_max_gap(mas);
1601
1602 node = mas_mn(mas);
1603 MAS_BUG_ON(mas, mt != maple_arange_64);
1604 offset = ma_meta_gap(node);
1605 gaps = ma_gaps(node, mt);
1606 return gaps[offset];
1607 }
1608
1609 /*
1610 * mas_parent_gap() - Set the parent gap and any gaps above, as needed
1611 * @mas: The maple state
1612 * @offset: The gap offset in the parent to set
1613 * @new: The new gap value.
1614 *
1615 * Set the parent gap then continue to set the gap upwards, using the metadata
1616 * of the parent to see if it is necessary to check the node above.
1617 */
mas_parent_gap(struct ma_state * mas,unsigned char offset,unsigned long new)1618 static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
1619 unsigned long new)
1620 {
1621 unsigned long meta_gap = 0;
1622 struct maple_node *pnode;
1623 struct maple_enode *penode;
1624 unsigned long *pgaps;
1625 unsigned char meta_offset;
1626 enum maple_type pmt;
1627
1628 pnode = mte_parent(mas->node);
1629 pmt = mas_parent_type(mas, mas->node);
1630 penode = mt_mk_node(pnode, pmt);
1631 pgaps = ma_gaps(pnode, pmt);
1632
1633 ascend:
1634 MAS_BUG_ON(mas, pmt != maple_arange_64);
1635 meta_offset = ma_meta_gap(pnode);
1636 meta_gap = pgaps[meta_offset];
1637
1638 pgaps[offset] = new;
1639
1640 if (meta_gap == new)
1641 return;
1642
1643 if (offset != meta_offset) {
1644 if (meta_gap > new)
1645 return;
1646
1647 ma_set_meta_gap(pnode, pmt, offset);
1648 } else if (new < meta_gap) {
1649 new = ma_max_gap(pnode, pgaps, pmt, &meta_offset);
1650 ma_set_meta_gap(pnode, pmt, meta_offset);
1651 }
1652
1653 if (ma_is_root(pnode))
1654 return;
1655
1656 /* Go to the parent node. */
1657 pnode = mte_parent(penode);
1658 pmt = mas_parent_type(mas, penode);
1659 pgaps = ma_gaps(pnode, pmt);
1660 offset = mte_parent_slot(penode);
1661 penode = mt_mk_node(pnode, pmt);
1662 goto ascend;
1663 }
1664
1665 /*
1666 * mas_update_gap() - Update a nodes gaps and propagate up if necessary.
1667 * @mas: the maple state.
1668 */
mas_update_gap(struct ma_state * mas)1669 static inline void mas_update_gap(struct ma_state *mas)
1670 {
1671 unsigned char pslot;
1672 unsigned long p_gap;
1673 unsigned long max_gap;
1674
1675 if (!mt_is_alloc(mas->tree))
1676 return;
1677
1678 if (mte_is_root(mas->node))
1679 return;
1680
1681 max_gap = mas_max_gap(mas);
1682
1683 pslot = mte_parent_slot(mas->node);
1684 p_gap = ma_gaps(mte_parent(mas->node),
1685 mas_parent_type(mas, mas->node))[pslot];
1686
1687 if (p_gap != max_gap)
1688 mas_parent_gap(mas, pslot, max_gap);
1689 }
1690
1691 /*
1692 * mas_adopt_children() - Set the parent pointer of all nodes in @parent to
1693 * @parent with the slot encoded.
1694 * @mas: the maple state (for the tree)
1695 * @parent: the maple encoded node containing the children.
1696 */
mas_adopt_children(struct ma_state * mas,struct maple_enode * parent)1697 static inline void mas_adopt_children(struct ma_state *mas,
1698 struct maple_enode *parent)
1699 {
1700 enum maple_type type = mte_node_type(parent);
1701 struct maple_node *node = mte_to_node(parent);
1702 void __rcu **slots = ma_slots(node, type);
1703 unsigned long *pivots = ma_pivots(node, type);
1704 struct maple_enode *child;
1705 unsigned char offset;
1706
1707 offset = ma_data_end(node, type, pivots, mas->max);
1708 do {
1709 child = mas_slot_locked(mas, slots, offset);
1710 mas_set_parent(mas, child, parent, offset);
1711 } while (offset--);
1712 }
1713
1714 /*
1715 * mas_put_in_tree() - Put a new node in the tree, smp_wmb(), and mark the old
1716 * node as dead.
1717 * @mas: the maple state with the new node
1718 * @old_enode: The old maple encoded node to replace.
1719 */
mas_put_in_tree(struct ma_state * mas,struct maple_enode * old_enode)1720 static inline void mas_put_in_tree(struct ma_state *mas,
1721 struct maple_enode *old_enode)
1722 __must_hold(mas->tree->ma_lock)
1723 {
1724 unsigned char offset;
1725 void __rcu **slots;
1726
1727 if (mte_is_root(mas->node)) {
1728 mas_mn(mas)->parent = ma_parent_ptr(mas_tree_parent(mas));
1729 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
1730 mas_set_height(mas);
1731 } else {
1732
1733 offset = mte_parent_slot(mas->node);
1734 slots = ma_slots(mte_parent(mas->node),
1735 mas_parent_type(mas, mas->node));
1736 rcu_assign_pointer(slots[offset], mas->node);
1737 }
1738
1739 mte_set_node_dead(old_enode);
1740 }
1741
1742 /*
1743 * mas_replace_node() - Replace a node by putting it in the tree, marking it
1744 * dead, and freeing it.
1745 * the parent encoding to locate the maple node in the tree.
1746 * @mas: the ma_state with @mas->node pointing to the new node.
1747 * @old_enode: The old maple encoded node.
1748 */
mas_replace_node(struct ma_state * mas,struct maple_enode * old_enode)1749 static inline void mas_replace_node(struct ma_state *mas,
1750 struct maple_enode *old_enode)
1751 __must_hold(mas->tree->ma_lock)
1752 {
1753 mas_put_in_tree(mas, old_enode);
1754 mas_free(mas, old_enode);
1755 }
1756
1757 /*
1758 * mas_find_child() - Find a child who has the parent @mas->node.
1759 * @mas: the maple state with the parent.
1760 * @child: the maple state to store the child.
1761 */
mas_find_child(struct ma_state * mas,struct ma_state * child)1762 static inline bool mas_find_child(struct ma_state *mas, struct ma_state *child)
1763 __must_hold(mas->tree->ma_lock)
1764 {
1765 enum maple_type mt;
1766 unsigned char offset;
1767 unsigned char end;
1768 unsigned long *pivots;
1769 struct maple_enode *entry;
1770 struct maple_node *node;
1771 void __rcu **slots;
1772
1773 mt = mte_node_type(mas->node);
1774 node = mas_mn(mas);
1775 slots = ma_slots(node, mt);
1776 pivots = ma_pivots(node, mt);
1777 end = ma_data_end(node, mt, pivots, mas->max);
1778 for (offset = mas->offset; offset <= end; offset++) {
1779 entry = mas_slot_locked(mas, slots, offset);
1780 if (mte_parent(entry) == node) {
1781 *child = *mas;
1782 mas->offset = offset + 1;
1783 child->offset = offset;
1784 mas_descend(child);
1785 child->offset = 0;
1786 return true;
1787 }
1788 }
1789 return false;
1790 }
1791
1792 /*
1793 * mab_shift_right() - Shift the data in mab right. Note, does not clean out the
1794 * old data or set b_node->b_end.
1795 * @b_node: the maple_big_node
1796 * @shift: the shift count
1797 */
mab_shift_right(struct maple_big_node * b_node,unsigned char shift)1798 static inline void mab_shift_right(struct maple_big_node *b_node,
1799 unsigned char shift)
1800 {
1801 unsigned long size = b_node->b_end * sizeof(unsigned long);
1802
1803 memmove(b_node->pivot + shift, b_node->pivot, size);
1804 memmove(b_node->slot + shift, b_node->slot, size);
1805 if (b_node->type == maple_arange_64)
1806 memmove(b_node->gap + shift, b_node->gap, size);
1807 }
1808
1809 /*
1810 * mab_middle_node() - Check if a middle node is needed (unlikely)
1811 * @b_node: the maple_big_node that contains the data.
1812 * @split: the potential split location
1813 * @slot_count: the size that can be stored in a single node being considered.
1814 *
1815 * Return: true if a middle node is required.
1816 */
mab_middle_node(struct maple_big_node * b_node,int split,unsigned char slot_count)1817 static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
1818 unsigned char slot_count)
1819 {
1820 unsigned char size = b_node->b_end;
1821
1822 if (size >= 2 * slot_count)
1823 return true;
1824
1825 if (!b_node->slot[split] && (size >= 2 * slot_count - 1))
1826 return true;
1827
1828 return false;
1829 }
1830
1831 /*
1832 * mab_no_null_split() - ensure the split doesn't fall on a NULL
1833 * @b_node: the maple_big_node with the data
1834 * @split: the suggested split location
1835 * @slot_count: the number of slots in the node being considered.
1836 *
1837 * Return: the split location.
1838 */
mab_no_null_split(struct maple_big_node * b_node,unsigned char split,unsigned char slot_count)1839 static inline int mab_no_null_split(struct maple_big_node *b_node,
1840 unsigned char split, unsigned char slot_count)
1841 {
1842 if (!b_node->slot[split]) {
1843 /*
1844 * If the split is less than the max slot && the right side will
1845 * still be sufficient, then increment the split on NULL.
1846 */
1847 if ((split < slot_count - 1) &&
1848 (b_node->b_end - split) > (mt_min_slots[b_node->type]))
1849 split++;
1850 else
1851 split--;
1852 }
1853 return split;
1854 }
1855
1856 /*
1857 * mab_calc_split() - Calculate the split location and if there needs to be two
1858 * splits.
1859 * @mas: The maple state
1860 * @bn: The maple_big_node with the data
1861 * @mid_split: The second split, if required. 0 otherwise.
1862 *
1863 * Return: The first split location. The middle split is set in @mid_split.
1864 */
mab_calc_split(struct ma_state * mas,struct maple_big_node * bn,unsigned char * mid_split,unsigned long min)1865 static inline int mab_calc_split(struct ma_state *mas,
1866 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min)
1867 {
1868 unsigned char b_end = bn->b_end;
1869 int split = b_end / 2; /* Assume equal split. */
1870 unsigned char slot_min, slot_count = mt_slots[bn->type];
1871
1872 /*
1873 * To support gap tracking, all NULL entries are kept together and a node cannot
1874 * end on a NULL entry, with the exception of the left-most leaf. The
1875 * limitation means that the split of a node must be checked for this condition
1876 * and be able to put more data in one direction or the other.
1877 */
1878 if (unlikely((mas->mas_flags & MA_STATE_BULK))) {
1879 *mid_split = 0;
1880 split = b_end - mt_min_slots[bn->type];
1881
1882 if (!ma_is_leaf(bn->type))
1883 return split;
1884
1885 mas->mas_flags |= MA_STATE_REBALANCE;
1886 if (!bn->slot[split])
1887 split--;
1888 return split;
1889 }
1890
1891 /*
1892 * Although extremely rare, it is possible to enter what is known as the 3-way
1893 * split scenario. The 3-way split comes about by means of a store of a range
1894 * that overwrites the end and beginning of two full nodes. The result is a set
1895 * of entries that cannot be stored in 2 nodes. Sometimes, these two nodes can
1896 * also be located in different parent nodes which are also full. This can
1897 * carry upwards all the way to the root in the worst case.
1898 */
1899 if (unlikely(mab_middle_node(bn, split, slot_count))) {
1900 split = b_end / 3;
1901 *mid_split = split * 2;
1902 } else {
1903 slot_min = mt_min_slots[bn->type];
1904
1905 *mid_split = 0;
1906 /*
1907 * Avoid having a range less than the slot count unless it
1908 * causes one node to be deficient.
1909 * NOTE: mt_min_slots is 1 based, b_end and split are zero.
1910 */
1911 while ((split < slot_count - 1) &&
1912 ((bn->pivot[split] - min) < slot_count - 1) &&
1913 (b_end - split > slot_min))
1914 split++;
1915 }
1916
1917 /* Avoid ending a node on a NULL entry */
1918 split = mab_no_null_split(bn, split, slot_count);
1919
1920 if (unlikely(*mid_split))
1921 *mid_split = mab_no_null_split(bn, *mid_split, slot_count);
1922
1923 return split;
1924 }
1925
1926 /*
1927 * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
1928 * and set @b_node->b_end to the next free slot.
1929 * @mas: The maple state
1930 * @mas_start: The starting slot to copy
1931 * @mas_end: The end slot to copy (inclusively)
1932 * @b_node: The maple_big_node to place the data
1933 * @mab_start: The starting location in maple_big_node to store the data.
1934 */
mas_mab_cp(struct ma_state * mas,unsigned char mas_start,unsigned char mas_end,struct maple_big_node * b_node,unsigned char mab_start)1935 static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
1936 unsigned char mas_end, struct maple_big_node *b_node,
1937 unsigned char mab_start)
1938 {
1939 enum maple_type mt;
1940 struct maple_node *node;
1941 void __rcu **slots;
1942 unsigned long *pivots, *gaps;
1943 int i = mas_start, j = mab_start;
1944 unsigned char piv_end;
1945
1946 node = mas_mn(mas);
1947 mt = mte_node_type(mas->node);
1948 pivots = ma_pivots(node, mt);
1949 if (!i) {
1950 b_node->pivot[j] = pivots[i++];
1951 if (unlikely(i > mas_end))
1952 goto complete;
1953 j++;
1954 }
1955
1956 piv_end = min(mas_end, mt_pivots[mt]);
1957 for (; i < piv_end; i++, j++) {
1958 b_node->pivot[j] = pivots[i];
1959 if (unlikely(!b_node->pivot[j]))
1960 goto complete;
1961
1962 if (unlikely(mas->max == b_node->pivot[j]))
1963 goto complete;
1964 }
1965
1966 b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt);
1967
1968 complete:
1969 b_node->b_end = ++j;
1970 j -= mab_start;
1971 slots = ma_slots(node, mt);
1972 memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j);
1973 if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) {
1974 gaps = ma_gaps(node, mt);
1975 memcpy(b_node->gap + mab_start, gaps + mas_start,
1976 sizeof(unsigned long) * j);
1977 }
1978 }
1979
1980 /*
1981 * mas_leaf_set_meta() - Set the metadata of a leaf if possible.
1982 * @node: The maple node
1983 * @mt: The maple type
1984 * @end: The node end
1985 */
mas_leaf_set_meta(struct maple_node * node,enum maple_type mt,unsigned char end)1986 static inline void mas_leaf_set_meta(struct maple_node *node,
1987 enum maple_type mt, unsigned char end)
1988 {
1989 if (end < mt_slots[mt] - 1)
1990 ma_set_meta(node, mt, 0, end);
1991 }
1992
1993 /*
1994 * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
1995 * @b_node: the maple_big_node that has the data
1996 * @mab_start: the start location in @b_node.
1997 * @mab_end: The end location in @b_node (inclusively)
1998 * @mas: The maple state with the maple encoded node.
1999 */
mab_mas_cp(struct maple_big_node * b_node,unsigned char mab_start,unsigned char mab_end,struct ma_state * mas,bool new_max)2000 static inline void mab_mas_cp(struct maple_big_node *b_node,
2001 unsigned char mab_start, unsigned char mab_end,
2002 struct ma_state *mas, bool new_max)
2003 {
2004 int i, j = 0;
2005 enum maple_type mt = mte_node_type(mas->node);
2006 struct maple_node *node = mte_to_node(mas->node);
2007 void __rcu **slots = ma_slots(node, mt);
2008 unsigned long *pivots = ma_pivots(node, mt);
2009 unsigned long *gaps = NULL;
2010 unsigned char end;
2011
2012 if (mab_end - mab_start > mt_pivots[mt])
2013 mab_end--;
2014
2015 if (!pivots[mt_pivots[mt] - 1])
2016 slots[mt_pivots[mt]] = NULL;
2017
2018 i = mab_start;
2019 do {
2020 pivots[j++] = b_node->pivot[i++];
2021 } while (i <= mab_end && likely(b_node->pivot[i]));
2022
2023 memcpy(slots, b_node->slot + mab_start,
2024 sizeof(void *) * (i - mab_start));
2025
2026 if (new_max)
2027 mas->max = b_node->pivot[i - 1];
2028
2029 end = j - 1;
2030 if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) {
2031 unsigned long max_gap = 0;
2032 unsigned char offset = 0;
2033
2034 gaps = ma_gaps(node, mt);
2035 do {
2036 gaps[--j] = b_node->gap[--i];
2037 if (gaps[j] > max_gap) {
2038 offset = j;
2039 max_gap = gaps[j];
2040 }
2041 } while (j);
2042
2043 ma_set_meta(node, mt, offset, end);
2044 } else {
2045 mas_leaf_set_meta(node, mt, end);
2046 }
2047 }
2048
2049 /*
2050 * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert.
2051 * @mas: The maple state
2052 * @end: The maple node end
2053 * @mt: The maple node type
2054 */
mas_bulk_rebalance(struct ma_state * mas,unsigned char end,enum maple_type mt)2055 static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end,
2056 enum maple_type mt)
2057 {
2058 if (!(mas->mas_flags & MA_STATE_BULK))
2059 return;
2060
2061 if (mte_is_root(mas->node))
2062 return;
2063
2064 if (end > mt_min_slots[mt]) {
2065 mas->mas_flags &= ~MA_STATE_REBALANCE;
2066 return;
2067 }
2068 }
2069
2070 /*
2071 * mas_store_b_node() - Store an @entry into the b_node while also copying the
2072 * data from a maple encoded node.
2073 * @wr_mas: the maple write state
2074 * @b_node: the maple_big_node to fill with data
2075 * @offset_end: the offset to end copying
2076 *
2077 * Return: The actual end of the data stored in @b_node
2078 */
mas_store_b_node(struct ma_wr_state * wr_mas,struct maple_big_node * b_node,unsigned char offset_end)2079 static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas,
2080 struct maple_big_node *b_node, unsigned char offset_end)
2081 {
2082 unsigned char slot;
2083 unsigned char b_end;
2084 /* Possible underflow of piv will wrap back to 0 before use. */
2085 unsigned long piv;
2086 struct ma_state *mas = wr_mas->mas;
2087
2088 b_node->type = wr_mas->type;
2089 b_end = 0;
2090 slot = mas->offset;
2091 if (slot) {
2092 /* Copy start data up to insert. */
2093 mas_mab_cp(mas, 0, slot - 1, b_node, 0);
2094 b_end = b_node->b_end;
2095 piv = b_node->pivot[b_end - 1];
2096 } else
2097 piv = mas->min - 1;
2098
2099 if (piv + 1 < mas->index) {
2100 /* Handle range starting after old range */
2101 b_node->slot[b_end] = wr_mas->content;
2102 if (!wr_mas->content)
2103 b_node->gap[b_end] = mas->index - 1 - piv;
2104 b_node->pivot[b_end++] = mas->index - 1;
2105 }
2106
2107 /* Store the new entry. */
2108 mas->offset = b_end;
2109 b_node->slot[b_end] = wr_mas->entry;
2110 b_node->pivot[b_end] = mas->last;
2111
2112 /* Appended. */
2113 if (mas->last >= mas->max)
2114 goto b_end;
2115
2116 /* Handle new range ending before old range ends */
2117 piv = mas_safe_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type);
2118 if (piv > mas->last) {
2119 if (piv == ULONG_MAX)
2120 mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type);
2121
2122 if (offset_end != slot)
2123 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
2124 offset_end);
2125
2126 b_node->slot[++b_end] = wr_mas->content;
2127 if (!wr_mas->content)
2128 b_node->gap[b_end] = piv - mas->last + 1;
2129 b_node->pivot[b_end] = piv;
2130 }
2131
2132 slot = offset_end + 1;
2133 if (slot > mas->end)
2134 goto b_end;
2135
2136 /* Copy end data to the end of the node. */
2137 mas_mab_cp(mas, slot, mas->end + 1, b_node, ++b_end);
2138 b_node->b_end--;
2139 return;
2140
2141 b_end:
2142 b_node->b_end = b_end;
2143 }
2144
2145 /*
2146 * mas_prev_sibling() - Find the previous node with the same parent.
2147 * @mas: the maple state
2148 *
2149 * Return: True if there is a previous sibling, false otherwise.
2150 */
mas_prev_sibling(struct ma_state * mas)2151 static inline bool mas_prev_sibling(struct ma_state *mas)
2152 {
2153 unsigned int p_slot = mte_parent_slot(mas->node);
2154
2155 /* For root node, p_slot is set to 0 by mte_parent_slot(). */
2156 if (!p_slot)
2157 return false;
2158
2159 mas_ascend(mas);
2160 mas->offset = p_slot - 1;
2161 mas_descend(mas);
2162 return true;
2163 }
2164
2165 /*
2166 * mas_next_sibling() - Find the next node with the same parent.
2167 * @mas: the maple state
2168 *
2169 * Return: true if there is a next sibling, false otherwise.
2170 */
mas_next_sibling(struct ma_state * mas)2171 static inline bool mas_next_sibling(struct ma_state *mas)
2172 {
2173 MA_STATE(parent, mas->tree, mas->index, mas->last);
2174
2175 if (mte_is_root(mas->node))
2176 return false;
2177
2178 parent = *mas;
2179 mas_ascend(&parent);
2180 parent.offset = mte_parent_slot(mas->node) + 1;
2181 if (parent.offset > mas_data_end(&parent))
2182 return false;
2183
2184 *mas = parent;
2185 mas_descend(mas);
2186 return true;
2187 }
2188
2189 /*
2190 * mas_node_or_none() - Set the enode and state.
2191 * @mas: the maple state
2192 * @enode: The encoded maple node.
2193 *
2194 * Set the node to the enode and the status.
2195 */
mas_node_or_none(struct ma_state * mas,struct maple_enode * enode)2196 static inline void mas_node_or_none(struct ma_state *mas,
2197 struct maple_enode *enode)
2198 {
2199 if (enode) {
2200 mas->node = enode;
2201 mas->status = ma_active;
2202 } else {
2203 mas->node = NULL;
2204 mas->status = ma_none;
2205 }
2206 }
2207
2208 /*
2209 * mas_wr_node_walk() - Find the correct offset for the index in the @mas.
2210 * If @mas->index cannot be found within the containing
2211 * node, we traverse to the last entry in the node.
2212 * @wr_mas: The maple write state
2213 *
2214 * Uses mas_slot_locked() and does not need to worry about dead nodes.
2215 */
mas_wr_node_walk(struct ma_wr_state * wr_mas)2216 static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
2217 {
2218 struct ma_state *mas = wr_mas->mas;
2219 unsigned char count, offset;
2220
2221 if (unlikely(ma_is_dense(wr_mas->type))) {
2222 wr_mas->r_max = wr_mas->r_min = mas->index;
2223 mas->offset = mas->index = mas->min;
2224 return;
2225 }
2226
2227 wr_mas->node = mas_mn(wr_mas->mas);
2228 wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type);
2229 count = mas->end = ma_data_end(wr_mas->node, wr_mas->type,
2230 wr_mas->pivots, mas->max);
2231 offset = mas->offset;
2232
2233 while (offset < count && mas->index > wr_mas->pivots[offset])
2234 offset++;
2235
2236 wr_mas->r_max = offset < count ? wr_mas->pivots[offset] : mas->max;
2237 wr_mas->r_min = mas_safe_min(mas, wr_mas->pivots, offset);
2238 wr_mas->offset_end = mas->offset = offset;
2239 }
2240
2241 /*
2242 * mast_rebalance_next() - Rebalance against the next node
2243 * @mast: The maple subtree state
2244 */
mast_rebalance_next(struct maple_subtree_state * mast)2245 static inline void mast_rebalance_next(struct maple_subtree_state *mast)
2246 {
2247 unsigned char b_end = mast->bn->b_end;
2248
2249 mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node),
2250 mast->bn, b_end);
2251 mast->orig_r->last = mast->orig_r->max;
2252 }
2253
2254 /*
2255 * mast_rebalance_prev() - Rebalance against the previous node
2256 * @mast: The maple subtree state
2257 */
mast_rebalance_prev(struct maple_subtree_state * mast)2258 static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
2259 {
2260 unsigned char end = mas_data_end(mast->orig_l) + 1;
2261 unsigned char b_end = mast->bn->b_end;
2262
2263 mab_shift_right(mast->bn, end);
2264 mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0);
2265 mast->l->min = mast->orig_l->min;
2266 mast->orig_l->index = mast->orig_l->min;
2267 mast->bn->b_end = end + b_end;
2268 mast->l->offset += end;
2269 }
2270
2271 /*
2272 * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
2273 * the node to the right. Checking the nodes to the right then the left at each
2274 * level upwards until root is reached.
2275 * Data is copied into the @mast->bn.
2276 * @mast: The maple_subtree_state.
2277 */
2278 static inline
mast_spanning_rebalance(struct maple_subtree_state * mast)2279 bool mast_spanning_rebalance(struct maple_subtree_state *mast)
2280 {
2281 struct ma_state r_tmp = *mast->orig_r;
2282 struct ma_state l_tmp = *mast->orig_l;
2283 unsigned char depth = 0;
2284
2285 do {
2286 mas_ascend(mast->orig_r);
2287 mas_ascend(mast->orig_l);
2288 depth++;
2289 if (mast->orig_r->offset < mas_data_end(mast->orig_r)) {
2290 mast->orig_r->offset++;
2291 do {
2292 mas_descend(mast->orig_r);
2293 mast->orig_r->offset = 0;
2294 } while (--depth);
2295
2296 mast_rebalance_next(mast);
2297 *mast->orig_l = l_tmp;
2298 return true;
2299 } else if (mast->orig_l->offset != 0) {
2300 mast->orig_l->offset--;
2301 do {
2302 mas_descend(mast->orig_l);
2303 mast->orig_l->offset =
2304 mas_data_end(mast->orig_l);
2305 } while (--depth);
2306
2307 mast_rebalance_prev(mast);
2308 *mast->orig_r = r_tmp;
2309 return true;
2310 }
2311 } while (!mte_is_root(mast->orig_r->node));
2312
2313 *mast->orig_r = r_tmp;
2314 *mast->orig_l = l_tmp;
2315 return false;
2316 }
2317
2318 /*
2319 * mast_ascend() - Ascend the original left and right maple states.
2320 * @mast: the maple subtree state.
2321 *
2322 * Ascend the original left and right sides. Set the offsets to point to the
2323 * data already in the new tree (@mast->l and @mast->r).
2324 */
mast_ascend(struct maple_subtree_state * mast)2325 static inline void mast_ascend(struct maple_subtree_state *mast)
2326 {
2327 MA_WR_STATE(wr_mas, mast->orig_r, NULL);
2328 mas_ascend(mast->orig_l);
2329 mas_ascend(mast->orig_r);
2330
2331 mast->orig_r->offset = 0;
2332 mast->orig_r->index = mast->r->max;
2333 /* last should be larger than or equal to index */
2334 if (mast->orig_r->last < mast->orig_r->index)
2335 mast->orig_r->last = mast->orig_r->index;
2336
2337 wr_mas.type = mte_node_type(mast->orig_r->node);
2338 mas_wr_node_walk(&wr_mas);
2339 /* Set up the left side of things */
2340 mast->orig_l->offset = 0;
2341 mast->orig_l->index = mast->l->min;
2342 wr_mas.mas = mast->orig_l;
2343 wr_mas.type = mte_node_type(mast->orig_l->node);
2344 mas_wr_node_walk(&wr_mas);
2345
2346 mast->bn->type = wr_mas.type;
2347 }
2348
2349 /*
2350 * mas_new_ma_node() - Create and return a new maple node. Helper function.
2351 * @mas: the maple state with the allocations.
2352 * @b_node: the maple_big_node with the type encoding.
2353 *
2354 * Use the node type from the maple_big_node to allocate a new node from the
2355 * ma_state. This function exists mainly for code readability.
2356 *
2357 * Return: A new maple encoded node
2358 */
2359 static inline struct maple_enode
mas_new_ma_node(struct ma_state * mas,struct maple_big_node * b_node)2360 *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
2361 {
2362 return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type);
2363 }
2364
2365 /*
2366 * mas_mab_to_node() - Set up right and middle nodes
2367 *
2368 * @mas: the maple state that contains the allocations.
2369 * @b_node: the node which contains the data.
2370 * @left: The pointer which will have the left node
2371 * @right: The pointer which may have the right node
2372 * @middle: the pointer which may have the middle node (rare)
2373 * @mid_split: the split location for the middle node
2374 *
2375 * Return: the split of left.
2376 */
mas_mab_to_node(struct ma_state * mas,struct maple_big_node * b_node,struct maple_enode ** left,struct maple_enode ** right,struct maple_enode ** middle,unsigned char * mid_split,unsigned long min)2377 static inline unsigned char mas_mab_to_node(struct ma_state *mas,
2378 struct maple_big_node *b_node, struct maple_enode **left,
2379 struct maple_enode **right, struct maple_enode **middle,
2380 unsigned char *mid_split, unsigned long min)
2381 {
2382 unsigned char split = 0;
2383 unsigned char slot_count = mt_slots[b_node->type];
2384
2385 *left = mas_new_ma_node(mas, b_node);
2386 *right = NULL;
2387 *middle = NULL;
2388 *mid_split = 0;
2389
2390 if (b_node->b_end < slot_count) {
2391 split = b_node->b_end;
2392 } else {
2393 split = mab_calc_split(mas, b_node, mid_split, min);
2394 *right = mas_new_ma_node(mas, b_node);
2395 }
2396
2397 if (*mid_split)
2398 *middle = mas_new_ma_node(mas, b_node);
2399
2400 return split;
2401
2402 }
2403
2404 /*
2405 * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
2406 * pointer.
2407 * @b_node: the big node to add the entry
2408 * @mas: the maple state to get the pivot (mas->max)
2409 * @entry: the entry to add, if NULL nothing happens.
2410 */
mab_set_b_end(struct maple_big_node * b_node,struct ma_state * mas,void * entry)2411 static inline void mab_set_b_end(struct maple_big_node *b_node,
2412 struct ma_state *mas,
2413 void *entry)
2414 {
2415 if (!entry)
2416 return;
2417
2418 b_node->slot[b_node->b_end] = entry;
2419 if (mt_is_alloc(mas->tree))
2420 b_node->gap[b_node->b_end] = mas_max_gap(mas);
2421 b_node->pivot[b_node->b_end++] = mas->max;
2422 }
2423
2424 /*
2425 * mas_set_split_parent() - combine_then_separate helper function. Sets the parent
2426 * of @mas->node to either @left or @right, depending on @slot and @split
2427 *
2428 * @mas: the maple state with the node that needs a parent
2429 * @left: possible parent 1
2430 * @right: possible parent 2
2431 * @slot: the slot the mas->node was placed
2432 * @split: the split location between @left and @right
2433 */
mas_set_split_parent(struct ma_state * mas,struct maple_enode * left,struct maple_enode * right,unsigned char * slot,unsigned char split)2434 static inline void mas_set_split_parent(struct ma_state *mas,
2435 struct maple_enode *left,
2436 struct maple_enode *right,
2437 unsigned char *slot, unsigned char split)
2438 {
2439 if (mas_is_none(mas))
2440 return;
2441
2442 if ((*slot) <= split)
2443 mas_set_parent(mas, mas->node, left, *slot);
2444 else if (right)
2445 mas_set_parent(mas, mas->node, right, (*slot) - split - 1);
2446
2447 (*slot)++;
2448 }
2449
2450 /*
2451 * mte_mid_split_check() - Check if the next node passes the mid-split
2452 * @l: Pointer to left encoded maple node.
2453 * @m: Pointer to middle encoded maple node.
2454 * @r: Pointer to right encoded maple node.
2455 * @slot: The offset
2456 * @split: The split location.
2457 * @mid_split: The middle split.
2458 */
mte_mid_split_check(struct maple_enode ** l,struct maple_enode ** r,struct maple_enode * right,unsigned char slot,unsigned char * split,unsigned char mid_split)2459 static inline void mte_mid_split_check(struct maple_enode **l,
2460 struct maple_enode **r,
2461 struct maple_enode *right,
2462 unsigned char slot,
2463 unsigned char *split,
2464 unsigned char mid_split)
2465 {
2466 if (*r == right)
2467 return;
2468
2469 if (slot < mid_split)
2470 return;
2471
2472 *l = *r;
2473 *r = right;
2474 *split = mid_split;
2475 }
2476
2477 /*
2478 * mast_set_split_parents() - Helper function to set three nodes parents. Slot
2479 * is taken from @mast->l.
2480 * @mast: the maple subtree state
2481 * @left: the left node
2482 * @right: the right node
2483 * @split: the split location.
2484 */
mast_set_split_parents(struct maple_subtree_state * mast,struct maple_enode * left,struct maple_enode * middle,struct maple_enode * right,unsigned char split,unsigned char mid_split)2485 static inline void mast_set_split_parents(struct maple_subtree_state *mast,
2486 struct maple_enode *left,
2487 struct maple_enode *middle,
2488 struct maple_enode *right,
2489 unsigned char split,
2490 unsigned char mid_split)
2491 {
2492 unsigned char slot;
2493 struct maple_enode *l = left;
2494 struct maple_enode *r = right;
2495
2496 if (mas_is_none(mast->l))
2497 return;
2498
2499 if (middle)
2500 r = middle;
2501
2502 slot = mast->l->offset;
2503
2504 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2505 mas_set_split_parent(mast->l, l, r, &slot, split);
2506
2507 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2508 mas_set_split_parent(mast->m, l, r, &slot, split);
2509
2510 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2511 mas_set_split_parent(mast->r, l, r, &slot, split);
2512 }
2513
2514 /*
2515 * mas_topiary_node() - Dispose of a single node
2516 * @mas: The maple state for pushing nodes
2517 * @in_rcu: If the tree is in rcu mode
2518 *
2519 * The node will either be RCU freed or pushed back on the maple state.
2520 */
mas_topiary_node(struct ma_state * mas,struct ma_state * tmp_mas,bool in_rcu)2521 static inline void mas_topiary_node(struct ma_state *mas,
2522 struct ma_state *tmp_mas, bool in_rcu)
2523 {
2524 struct maple_node *tmp;
2525 struct maple_enode *enode;
2526
2527 if (mas_is_none(tmp_mas))
2528 return;
2529
2530 enode = tmp_mas->node;
2531 tmp = mte_to_node(enode);
2532 mte_set_node_dead(enode);
2533 if (in_rcu)
2534 ma_free_rcu(tmp);
2535 else
2536 mas_push_node(mas, tmp);
2537 }
2538
2539 /*
2540 * mas_topiary_replace() - Replace the data with new data, then repair the
2541 * parent links within the new tree. Iterate over the dead sub-tree and collect
2542 * the dead subtrees and topiary the nodes that are no longer of use.
2543 *
2544 * The new tree will have up to three children with the correct parent. Keep
2545 * track of the new entries as they need to be followed to find the next level
2546 * of new entries.
2547 *
2548 * The old tree will have up to three children with the old parent. Keep track
2549 * of the old entries as they may have more nodes below replaced. Nodes within
2550 * [index, last] are dead subtrees, others need to be freed and followed.
2551 *
2552 * @mas: The maple state pointing at the new data
2553 * @old_enode: The maple encoded node being replaced
2554 *
2555 */
mas_topiary_replace(struct ma_state * mas,struct maple_enode * old_enode)2556 static inline void mas_topiary_replace(struct ma_state *mas,
2557 struct maple_enode *old_enode)
2558 {
2559 struct ma_state tmp[3], tmp_next[3];
2560 MA_TOPIARY(subtrees, mas->tree);
2561 bool in_rcu;
2562 int i, n;
2563
2564 /* Place data in tree & then mark node as old */
2565 mas_put_in_tree(mas, old_enode);
2566
2567 /* Update the parent pointers in the tree */
2568 tmp[0] = *mas;
2569 tmp[0].offset = 0;
2570 tmp[1].status = ma_none;
2571 tmp[2].status = ma_none;
2572 while (!mte_is_leaf(tmp[0].node)) {
2573 n = 0;
2574 for (i = 0; i < 3; i++) {
2575 if (mas_is_none(&tmp[i]))
2576 continue;
2577
2578 while (n < 3) {
2579 if (!mas_find_child(&tmp[i], &tmp_next[n]))
2580 break;
2581 n++;
2582 }
2583
2584 mas_adopt_children(&tmp[i], tmp[i].node);
2585 }
2586
2587 if (MAS_WARN_ON(mas, n == 0))
2588 break;
2589
2590 while (n < 3)
2591 tmp_next[n++].status = ma_none;
2592
2593 for (i = 0; i < 3; i++)
2594 tmp[i] = tmp_next[i];
2595 }
2596
2597 /* Collect the old nodes that need to be discarded */
2598 if (mte_is_leaf(old_enode))
2599 return mas_free(mas, old_enode);
2600
2601 tmp[0] = *mas;
2602 tmp[0].offset = 0;
2603 tmp[0].node = old_enode;
2604 tmp[1].status = ma_none;
2605 tmp[2].status = ma_none;
2606 in_rcu = mt_in_rcu(mas->tree);
2607 do {
2608 n = 0;
2609 for (i = 0; i < 3; i++) {
2610 if (mas_is_none(&tmp[i]))
2611 continue;
2612
2613 while (n < 3) {
2614 if (!mas_find_child(&tmp[i], &tmp_next[n]))
2615 break;
2616
2617 if ((tmp_next[n].min >= tmp_next->index) &&
2618 (tmp_next[n].max <= tmp_next->last)) {
2619 mat_add(&subtrees, tmp_next[n].node);
2620 tmp_next[n].status = ma_none;
2621 } else {
2622 n++;
2623 }
2624 }
2625 }
2626
2627 if (MAS_WARN_ON(mas, n == 0))
2628 break;
2629
2630 while (n < 3)
2631 tmp_next[n++].status = ma_none;
2632
2633 for (i = 0; i < 3; i++) {
2634 mas_topiary_node(mas, &tmp[i], in_rcu);
2635 tmp[i] = tmp_next[i];
2636 }
2637 } while (!mte_is_leaf(tmp[0].node));
2638
2639 for (i = 0; i < 3; i++)
2640 mas_topiary_node(mas, &tmp[i], in_rcu);
2641
2642 mas_mat_destroy(mas, &subtrees);
2643 }
2644
2645 /*
2646 * mas_wmb_replace() - Write memory barrier and replace
2647 * @mas: The maple state
2648 * @old_enode: The old maple encoded node that is being replaced.
2649 *
2650 * Updates gap as necessary.
2651 */
mas_wmb_replace(struct ma_state * mas,struct maple_enode * old_enode)2652 static inline void mas_wmb_replace(struct ma_state *mas,
2653 struct maple_enode *old_enode)
2654 {
2655 /* Insert the new data in the tree */
2656 mas_topiary_replace(mas, old_enode);
2657
2658 if (mte_is_leaf(mas->node))
2659 return;
2660
2661 mas_update_gap(mas);
2662 }
2663
2664 /*
2665 * mast_cp_to_nodes() - Copy data out to nodes.
2666 * @mast: The maple subtree state
2667 * @left: The left encoded maple node
2668 * @middle: The middle encoded maple node
2669 * @right: The right encoded maple node
2670 * @split: The location to split between left and (middle ? middle : right)
2671 * @mid_split: The location to split between middle and right.
2672 */
mast_cp_to_nodes(struct maple_subtree_state * mast,struct maple_enode * left,struct maple_enode * middle,struct maple_enode * right,unsigned char split,unsigned char mid_split)2673 static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
2674 struct maple_enode *left, struct maple_enode *middle,
2675 struct maple_enode *right, unsigned char split, unsigned char mid_split)
2676 {
2677 bool new_lmax = true;
2678
2679 mas_node_or_none(mast->l, left);
2680 mas_node_or_none(mast->m, middle);
2681 mas_node_or_none(mast->r, right);
2682
2683 mast->l->min = mast->orig_l->min;
2684 if (split == mast->bn->b_end) {
2685 mast->l->max = mast->orig_r->max;
2686 new_lmax = false;
2687 }
2688
2689 mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax);
2690
2691 if (middle) {
2692 mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true);
2693 mast->m->min = mast->bn->pivot[split] + 1;
2694 split = mid_split;
2695 }
2696
2697 mast->r->max = mast->orig_r->max;
2698 if (right) {
2699 mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false);
2700 mast->r->min = mast->bn->pivot[split] + 1;
2701 }
2702 }
2703
2704 /*
2705 * mast_combine_cp_left - Copy in the original left side of the tree into the
2706 * combined data set in the maple subtree state big node.
2707 * @mast: The maple subtree state
2708 */
mast_combine_cp_left(struct maple_subtree_state * mast)2709 static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
2710 {
2711 unsigned char l_slot = mast->orig_l->offset;
2712
2713 if (!l_slot)
2714 return;
2715
2716 mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0);
2717 }
2718
2719 /*
2720 * mast_combine_cp_right: Copy in the original right side of the tree into the
2721 * combined data set in the maple subtree state big node.
2722 * @mast: The maple subtree state
2723 */
mast_combine_cp_right(struct maple_subtree_state * mast)2724 static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
2725 {
2726 if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max)
2727 return;
2728
2729 mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1,
2730 mt_slot_count(mast->orig_r->node), mast->bn,
2731 mast->bn->b_end);
2732 mast->orig_r->last = mast->orig_r->max;
2733 }
2734
2735 /*
2736 * mast_sufficient: Check if the maple subtree state has enough data in the big
2737 * node to create at least one sufficient node
2738 * @mast: the maple subtree state
2739 */
mast_sufficient(struct maple_subtree_state * mast)2740 static inline bool mast_sufficient(struct maple_subtree_state *mast)
2741 {
2742 if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node))
2743 return true;
2744
2745 return false;
2746 }
2747
2748 /*
2749 * mast_overflow: Check if there is too much data in the subtree state for a
2750 * single node.
2751 * @mast: The maple subtree state
2752 */
mast_overflow(struct maple_subtree_state * mast)2753 static inline bool mast_overflow(struct maple_subtree_state *mast)
2754 {
2755 if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node))
2756 return true;
2757
2758 return false;
2759 }
2760
mtree_range_walk(struct ma_state * mas)2761 static inline void *mtree_range_walk(struct ma_state *mas)
2762 {
2763 unsigned long *pivots;
2764 unsigned char offset;
2765 struct maple_node *node;
2766 struct maple_enode *next, *last;
2767 enum maple_type type;
2768 void __rcu **slots;
2769 unsigned char end;
2770 unsigned long max, min;
2771 unsigned long prev_max, prev_min;
2772
2773 next = mas->node;
2774 min = mas->min;
2775 max = mas->max;
2776 do {
2777 last = next;
2778 node = mte_to_node(next);
2779 type = mte_node_type(next);
2780 pivots = ma_pivots(node, type);
2781 end = ma_data_end(node, type, pivots, max);
2782 prev_min = min;
2783 prev_max = max;
2784 if (pivots[0] >= mas->index) {
2785 offset = 0;
2786 max = pivots[0];
2787 goto next;
2788 }
2789
2790 offset = 1;
2791 while (offset < end) {
2792 if (pivots[offset] >= mas->index) {
2793 max = pivots[offset];
2794 break;
2795 }
2796 offset++;
2797 }
2798
2799 min = pivots[offset - 1] + 1;
2800 next:
2801 slots = ma_slots(node, type);
2802 next = mt_slot(mas->tree, slots, offset);
2803 if (unlikely(ma_dead_node(node)))
2804 goto dead_node;
2805 } while (!ma_is_leaf(type));
2806
2807 mas->end = end;
2808 mas->offset = offset;
2809 mas->index = min;
2810 mas->last = max;
2811 mas->min = prev_min;
2812 mas->max = prev_max;
2813 mas->node = last;
2814 return (void *)next;
2815
2816 dead_node:
2817 mas_reset(mas);
2818 return NULL;
2819 }
2820
2821 /*
2822 * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
2823 * @mas: The starting maple state
2824 * @mast: The maple_subtree_state, keeps track of 4 maple states.
2825 * @count: The estimated count of iterations needed.
2826 *
2827 * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
2828 * is hit. First @b_node is split into two entries which are inserted into the
2829 * next iteration of the loop. @b_node is returned populated with the final
2830 * iteration. @mas is used to obtain allocations. orig_l_mas keeps track of the
2831 * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
2832 * to account of what has been copied into the new sub-tree. The update of
2833 * orig_l_mas->last is used in mas_consume to find the slots that will need to
2834 * be either freed or destroyed. orig_l_mas->depth keeps track of the height of
2835 * the new sub-tree in case the sub-tree becomes the full tree.
2836 */
mas_spanning_rebalance(struct ma_state * mas,struct maple_subtree_state * mast,unsigned char count)2837 static void mas_spanning_rebalance(struct ma_state *mas,
2838 struct maple_subtree_state *mast, unsigned char count)
2839 {
2840 unsigned char split, mid_split;
2841 unsigned char slot = 0;
2842 struct maple_enode *left = NULL, *middle = NULL, *right = NULL;
2843 struct maple_enode *old_enode;
2844
2845 MA_STATE(l_mas, mas->tree, mas->index, mas->index);
2846 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2847 MA_STATE(m_mas, mas->tree, mas->index, mas->index);
2848
2849 /*
2850 * The tree needs to be rebalanced and leaves need to be kept at the same level.
2851 * Rebalancing is done by use of the ``struct maple_topiary``.
2852 */
2853 mast->l = &l_mas;
2854 mast->m = &m_mas;
2855 mast->r = &r_mas;
2856 l_mas.status = r_mas.status = m_mas.status = ma_none;
2857
2858 /* Check if this is not root and has sufficient data. */
2859 if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) &&
2860 unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type]))
2861 mast_spanning_rebalance(mast);
2862
2863 l_mas.depth = 0;
2864
2865 /*
2866 * Each level of the tree is examined and balanced, pushing data to the left or
2867 * right, or rebalancing against left or right nodes is employed to avoid
2868 * rippling up the tree to limit the amount of churn. Once a new sub-section of
2869 * the tree is created, there may be a mix of new and old nodes. The old nodes
2870 * will have the incorrect parent pointers and currently be in two trees: the
2871 * original tree and the partially new tree. To remedy the parent pointers in
2872 * the old tree, the new data is swapped into the active tree and a walk down
2873 * the tree is performed and the parent pointers are updated.
2874 * See mas_topiary_replace() for more information.
2875 */
2876 while (count--) {
2877 mast->bn->b_end--;
2878 mast->bn->type = mte_node_type(mast->orig_l->node);
2879 split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle,
2880 &mid_split, mast->orig_l->min);
2881 mast_set_split_parents(mast, left, middle, right, split,
2882 mid_split);
2883 mast_cp_to_nodes(mast, left, middle, right, split, mid_split);
2884
2885 /*
2886 * Copy data from next level in the tree to mast->bn from next
2887 * iteration
2888 */
2889 memset(mast->bn, 0, sizeof(struct maple_big_node));
2890 mast->bn->type = mte_node_type(left);
2891 l_mas.depth++;
2892
2893 /* Root already stored in l->node. */
2894 if (mas_is_root_limits(mast->l))
2895 goto new_root;
2896
2897 mast_ascend(mast);
2898 mast_combine_cp_left(mast);
2899 l_mas.offset = mast->bn->b_end;
2900 mab_set_b_end(mast->bn, &l_mas, left);
2901 mab_set_b_end(mast->bn, &m_mas, middle);
2902 mab_set_b_end(mast->bn, &r_mas, right);
2903
2904 /* Copy anything necessary out of the right node. */
2905 mast_combine_cp_right(mast);
2906 mast->orig_l->last = mast->orig_l->max;
2907
2908 if (mast_sufficient(mast))
2909 continue;
2910
2911 if (mast_overflow(mast))
2912 continue;
2913
2914 /* May be a new root stored in mast->bn */
2915 if (mas_is_root_limits(mast->orig_l))
2916 break;
2917
2918 mast_spanning_rebalance(mast);
2919
2920 /* rebalancing from other nodes may require another loop. */
2921 if (!count)
2922 count++;
2923 }
2924
2925 l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)),
2926 mte_node_type(mast->orig_l->node));
2927 l_mas.depth++;
2928 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true);
2929 mas_set_parent(mas, left, l_mas.node, slot);
2930 if (middle)
2931 mas_set_parent(mas, middle, l_mas.node, ++slot);
2932
2933 if (right)
2934 mas_set_parent(mas, right, l_mas.node, ++slot);
2935
2936 if (mas_is_root_limits(mast->l)) {
2937 new_root:
2938 mas_mn(mast->l)->parent = ma_parent_ptr(mas_tree_parent(mas));
2939 while (!mte_is_root(mast->orig_l->node))
2940 mast_ascend(mast);
2941 } else {
2942 mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent;
2943 }
2944
2945 old_enode = mast->orig_l->node;
2946 mas->depth = l_mas.depth;
2947 mas->node = l_mas.node;
2948 mas->min = l_mas.min;
2949 mas->max = l_mas.max;
2950 mas->offset = l_mas.offset;
2951 mas_wmb_replace(mas, old_enode);
2952 mtree_range_walk(mas);
2953 return;
2954 }
2955
2956 /*
2957 * mas_rebalance() - Rebalance a given node.
2958 * @mas: The maple state
2959 * @b_node: The big maple node.
2960 *
2961 * Rebalance two nodes into a single node or two new nodes that are sufficient.
2962 * Continue upwards until tree is sufficient.
2963 */
mas_rebalance(struct ma_state * mas,struct maple_big_node * b_node)2964 static inline void mas_rebalance(struct ma_state *mas,
2965 struct maple_big_node *b_node)
2966 {
2967 char empty_count = mas_mt_height(mas);
2968 struct maple_subtree_state mast;
2969 unsigned char shift, b_end = ++b_node->b_end;
2970
2971 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
2972 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2973
2974 trace_ma_op(__func__, mas);
2975
2976 /*
2977 * Rebalancing occurs if a node is insufficient. Data is rebalanced
2978 * against the node to the right if it exists, otherwise the node to the
2979 * left of this node is rebalanced against this node. If rebalancing
2980 * causes just one node to be produced instead of two, then the parent
2981 * is also examined and rebalanced if it is insufficient. Every level
2982 * tries to combine the data in the same way. If one node contains the
2983 * entire range of the tree, then that node is used as a new root node.
2984 */
2985
2986 mast.orig_l = &l_mas;
2987 mast.orig_r = &r_mas;
2988 mast.bn = b_node;
2989 mast.bn->type = mte_node_type(mas->node);
2990
2991 l_mas = r_mas = *mas;
2992
2993 if (mas_next_sibling(&r_mas)) {
2994 mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end);
2995 r_mas.last = r_mas.index = r_mas.max;
2996 } else {
2997 mas_prev_sibling(&l_mas);
2998 shift = mas_data_end(&l_mas) + 1;
2999 mab_shift_right(b_node, shift);
3000 mas->offset += shift;
3001 mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0);
3002 b_node->b_end = shift + b_end;
3003 l_mas.index = l_mas.last = l_mas.min;
3004 }
3005
3006 return mas_spanning_rebalance(mas, &mast, empty_count);
3007 }
3008
3009 /*
3010 * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple
3011 * state.
3012 * @mas: The maple state
3013 * @end: The end of the left-most node.
3014 *
3015 * During a mass-insert event (such as forking), it may be necessary to
3016 * rebalance the left-most node when it is not sufficient.
3017 */
mas_destroy_rebalance(struct ma_state * mas,unsigned char end)3018 static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end)
3019 {
3020 enum maple_type mt = mte_node_type(mas->node);
3021 struct maple_node reuse, *newnode, *parent, *new_left, *left, *node;
3022 struct maple_enode *eparent, *old_eparent;
3023 unsigned char offset, tmp, split = mt_slots[mt] / 2;
3024 void __rcu **l_slots, **slots;
3025 unsigned long *l_pivs, *pivs, gap;
3026 bool in_rcu = mt_in_rcu(mas->tree);
3027
3028 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3029
3030 l_mas = *mas;
3031 mas_prev_sibling(&l_mas);
3032
3033 /* set up node. */
3034 if (in_rcu) {
3035 newnode = mas_pop_node(mas);
3036 } else {
3037 newnode = &reuse;
3038 }
3039
3040 node = mas_mn(mas);
3041 newnode->parent = node->parent;
3042 slots = ma_slots(newnode, mt);
3043 pivs = ma_pivots(newnode, mt);
3044 left = mas_mn(&l_mas);
3045 l_slots = ma_slots(left, mt);
3046 l_pivs = ma_pivots(left, mt);
3047 if (!l_slots[split])
3048 split++;
3049 tmp = mas_data_end(&l_mas) - split;
3050
3051 memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp);
3052 memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp);
3053 pivs[tmp] = l_mas.max;
3054 memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end);
3055 memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end);
3056
3057 l_mas.max = l_pivs[split];
3058 mas->min = l_mas.max + 1;
3059 old_eparent = mt_mk_node(mte_parent(l_mas.node),
3060 mas_parent_type(&l_mas, l_mas.node));
3061 tmp += end;
3062 if (!in_rcu) {
3063 unsigned char max_p = mt_pivots[mt];
3064 unsigned char max_s = mt_slots[mt];
3065
3066 if (tmp < max_p)
3067 memset(pivs + tmp, 0,
3068 sizeof(unsigned long) * (max_p - tmp));
3069
3070 if (tmp < mt_slots[mt])
3071 memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3072
3073 memcpy(node, newnode, sizeof(struct maple_node));
3074 ma_set_meta(node, mt, 0, tmp - 1);
3075 mte_set_pivot(old_eparent, mte_parent_slot(l_mas.node),
3076 l_pivs[split]);
3077
3078 /* Remove data from l_pivs. */
3079 tmp = split + 1;
3080 memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp));
3081 memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3082 ma_set_meta(left, mt, 0, split);
3083 eparent = old_eparent;
3084
3085 goto done;
3086 }
3087
3088 /* RCU requires replacing both l_mas, mas, and parent. */
3089 mas->node = mt_mk_node(newnode, mt);
3090 ma_set_meta(newnode, mt, 0, tmp);
3091
3092 new_left = mas_pop_node(mas);
3093 new_left->parent = left->parent;
3094 mt = mte_node_type(l_mas.node);
3095 slots = ma_slots(new_left, mt);
3096 pivs = ma_pivots(new_left, mt);
3097 memcpy(slots, l_slots, sizeof(void *) * split);
3098 memcpy(pivs, l_pivs, sizeof(unsigned long) * split);
3099 ma_set_meta(new_left, mt, 0, split);
3100 l_mas.node = mt_mk_node(new_left, mt);
3101
3102 /* replace parent. */
3103 offset = mte_parent_slot(mas->node);
3104 mt = mas_parent_type(&l_mas, l_mas.node);
3105 parent = mas_pop_node(mas);
3106 slots = ma_slots(parent, mt);
3107 pivs = ma_pivots(parent, mt);
3108 memcpy(parent, mte_to_node(old_eparent), sizeof(struct maple_node));
3109 rcu_assign_pointer(slots[offset], mas->node);
3110 rcu_assign_pointer(slots[offset - 1], l_mas.node);
3111 pivs[offset - 1] = l_mas.max;
3112 eparent = mt_mk_node(parent, mt);
3113 done:
3114 gap = mas_leaf_max_gap(mas);
3115 mte_set_gap(eparent, mte_parent_slot(mas->node), gap);
3116 gap = mas_leaf_max_gap(&l_mas);
3117 mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap);
3118 mas_ascend(mas);
3119
3120 if (in_rcu) {
3121 mas_replace_node(mas, old_eparent);
3122 mas_adopt_children(mas, mas->node);
3123 }
3124
3125 mas_update_gap(mas);
3126 }
3127
3128 /*
3129 * mas_split_final_node() - Split the final node in a subtree operation.
3130 * @mast: the maple subtree state
3131 * @mas: The maple state
3132 * @height: The height of the tree in case it's a new root.
3133 */
mas_split_final_node(struct maple_subtree_state * mast,struct ma_state * mas,int height)3134 static inline void mas_split_final_node(struct maple_subtree_state *mast,
3135 struct ma_state *mas, int height)
3136 {
3137 struct maple_enode *ancestor;
3138
3139 if (mte_is_root(mas->node)) {
3140 if (mt_is_alloc(mas->tree))
3141 mast->bn->type = maple_arange_64;
3142 else
3143 mast->bn->type = maple_range_64;
3144 mas->depth = height;
3145 }
3146 /*
3147 * Only a single node is used here, could be root.
3148 * The Big_node data should just fit in a single node.
3149 */
3150 ancestor = mas_new_ma_node(mas, mast->bn);
3151 mas_set_parent(mas, mast->l->node, ancestor, mast->l->offset);
3152 mas_set_parent(mas, mast->r->node, ancestor, mast->r->offset);
3153 mte_to_node(ancestor)->parent = mas_mn(mas)->parent;
3154
3155 mast->l->node = ancestor;
3156 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true);
3157 mas->offset = mast->bn->b_end - 1;
3158 }
3159
3160 /*
3161 * mast_fill_bnode() - Copy data into the big node in the subtree state
3162 * @mast: The maple subtree state
3163 * @mas: the maple state
3164 * @skip: The number of entries to skip for new nodes insertion.
3165 */
mast_fill_bnode(struct maple_subtree_state * mast,struct ma_state * mas,unsigned char skip)3166 static inline void mast_fill_bnode(struct maple_subtree_state *mast,
3167 struct ma_state *mas,
3168 unsigned char skip)
3169 {
3170 bool cp = true;
3171 unsigned char split;
3172
3173 memset(mast->bn, 0, sizeof(struct maple_big_node));
3174
3175 if (mte_is_root(mas->node)) {
3176 cp = false;
3177 } else {
3178 mas_ascend(mas);
3179 mas->offset = mte_parent_slot(mas->node);
3180 }
3181
3182 if (cp && mast->l->offset)
3183 mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0);
3184
3185 split = mast->bn->b_end;
3186 mab_set_b_end(mast->bn, mast->l, mast->l->node);
3187 mast->r->offset = mast->bn->b_end;
3188 mab_set_b_end(mast->bn, mast->r, mast->r->node);
3189 if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max)
3190 cp = false;
3191
3192 if (cp)
3193 mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1,
3194 mast->bn, mast->bn->b_end);
3195
3196 mast->bn->b_end--;
3197 mast->bn->type = mte_node_type(mas->node);
3198 }
3199
3200 /*
3201 * mast_split_data() - Split the data in the subtree state big node into regular
3202 * nodes.
3203 * @mast: The maple subtree state
3204 * @mas: The maple state
3205 * @split: The location to split the big node
3206 */
mast_split_data(struct maple_subtree_state * mast,struct ma_state * mas,unsigned char split)3207 static inline void mast_split_data(struct maple_subtree_state *mast,
3208 struct ma_state *mas, unsigned char split)
3209 {
3210 unsigned char p_slot;
3211
3212 mab_mas_cp(mast->bn, 0, split, mast->l, true);
3213 mte_set_pivot(mast->r->node, 0, mast->r->max);
3214 mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false);
3215 mast->l->offset = mte_parent_slot(mas->node);
3216 mast->l->max = mast->bn->pivot[split];
3217 mast->r->min = mast->l->max + 1;
3218 if (mte_is_leaf(mas->node))
3219 return;
3220
3221 p_slot = mast->orig_l->offset;
3222 mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node,
3223 &p_slot, split);
3224 mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node,
3225 &p_slot, split);
3226 }
3227
3228 /*
3229 * mas_push_data() - Instead of splitting a node, it is beneficial to push the
3230 * data to the right or left node if there is room.
3231 * @mas: The maple state
3232 * @height: The current height of the maple state
3233 * @mast: The maple subtree state
3234 * @left: Push left or not.
3235 *
3236 * Keeping the height of the tree low means faster lookups.
3237 *
3238 * Return: True if pushed, false otherwise.
3239 */
mas_push_data(struct ma_state * mas,int height,struct maple_subtree_state * mast,bool left)3240 static inline bool mas_push_data(struct ma_state *mas, int height,
3241 struct maple_subtree_state *mast, bool left)
3242 {
3243 unsigned char slot_total = mast->bn->b_end;
3244 unsigned char end, space, split;
3245
3246 MA_STATE(tmp_mas, mas->tree, mas->index, mas->last);
3247 tmp_mas = *mas;
3248 tmp_mas.depth = mast->l->depth;
3249
3250 if (left && !mas_prev_sibling(&tmp_mas))
3251 return false;
3252 else if (!left && !mas_next_sibling(&tmp_mas))
3253 return false;
3254
3255 end = mas_data_end(&tmp_mas);
3256 slot_total += end;
3257 space = 2 * mt_slot_count(mas->node) - 2;
3258 /* -2 instead of -1 to ensure there isn't a triple split */
3259 if (ma_is_leaf(mast->bn->type))
3260 space--;
3261
3262 if (mas->max == ULONG_MAX)
3263 space--;
3264
3265 if (slot_total >= space)
3266 return false;
3267
3268 /* Get the data; Fill mast->bn */
3269 mast->bn->b_end++;
3270 if (left) {
3271 mab_shift_right(mast->bn, end + 1);
3272 mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0);
3273 mast->bn->b_end = slot_total + 1;
3274 } else {
3275 mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end);
3276 }
3277
3278 /* Configure mast for splitting of mast->bn */
3279 split = mt_slots[mast->bn->type] - 2;
3280 if (left) {
3281 /* Switch mas to prev node */
3282 *mas = tmp_mas;
3283 /* Start using mast->l for the left side. */
3284 tmp_mas.node = mast->l->node;
3285 *mast->l = tmp_mas;
3286 } else {
3287 tmp_mas.node = mast->r->node;
3288 *mast->r = tmp_mas;
3289 split = slot_total - split;
3290 }
3291 split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]);
3292 /* Update parent slot for split calculation. */
3293 if (left)
3294 mast->orig_l->offset += end + 1;
3295
3296 mast_split_data(mast, mas, split);
3297 mast_fill_bnode(mast, mas, 2);
3298 mas_split_final_node(mast, mas, height + 1);
3299 return true;
3300 }
3301
3302 /*
3303 * mas_split() - Split data that is too big for one node into two.
3304 * @mas: The maple state
3305 * @b_node: The maple big node
3306 */
mas_split(struct ma_state * mas,struct maple_big_node * b_node)3307 static void mas_split(struct ma_state *mas, struct maple_big_node *b_node)
3308 {
3309 struct maple_subtree_state mast;
3310 int height = 0;
3311 unsigned char mid_split, split = 0;
3312 struct maple_enode *old;
3313
3314 /*
3315 * Splitting is handled differently from any other B-tree; the Maple
3316 * Tree splits upwards. Splitting up means that the split operation
3317 * occurs when the walk of the tree hits the leaves and not on the way
3318 * down. The reason for splitting up is that it is impossible to know
3319 * how much space will be needed until the leaf is (or leaves are)
3320 * reached. Since overwriting data is allowed and a range could
3321 * overwrite more than one range or result in changing one entry into 3
3322 * entries, it is impossible to know if a split is required until the
3323 * data is examined.
3324 *
3325 * Splitting is a balancing act between keeping allocations to a minimum
3326 * and avoiding a 'jitter' event where a tree is expanded to make room
3327 * for an entry followed by a contraction when the entry is removed. To
3328 * accomplish the balance, there are empty slots remaining in both left
3329 * and right nodes after a split.
3330 */
3331 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3332 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3333 MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last);
3334 MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last);
3335
3336 trace_ma_op(__func__, mas);
3337 mas->depth = mas_mt_height(mas);
3338
3339 mast.l = &l_mas;
3340 mast.r = &r_mas;
3341 mast.orig_l = &prev_l_mas;
3342 mast.orig_r = &prev_r_mas;
3343 mast.bn = b_node;
3344
3345 while (height++ <= mas->depth) {
3346 if (mt_slots[b_node->type] > b_node->b_end) {
3347 mas_split_final_node(&mast, mas, height);
3348 break;
3349 }
3350
3351 l_mas = r_mas = *mas;
3352 l_mas.node = mas_new_ma_node(mas, b_node);
3353 r_mas.node = mas_new_ma_node(mas, b_node);
3354 /*
3355 * Another way that 'jitter' is avoided is to terminate a split up early if the
3356 * left or right node has space to spare. This is referred to as "pushing left"
3357 * or "pushing right" and is similar to the B* tree, except the nodes left or
3358 * right can rarely be reused due to RCU, but the ripple upwards is halted which
3359 * is a significant savings.
3360 */
3361 /* Try to push left. */
3362 if (mas_push_data(mas, height, &mast, true))
3363 break;
3364 /* Try to push right. */
3365 if (mas_push_data(mas, height, &mast, false))
3366 break;
3367
3368 split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min);
3369 mast_split_data(&mast, mas, split);
3370 /*
3371 * Usually correct, mab_mas_cp in the above call overwrites
3372 * r->max.
3373 */
3374 mast.r->max = mas->max;
3375 mast_fill_bnode(&mast, mas, 1);
3376 prev_l_mas = *mast.l;
3377 prev_r_mas = *mast.r;
3378 }
3379
3380 /* Set the original node as dead */
3381 old = mas->node;
3382 mas->node = l_mas.node;
3383 mas_wmb_replace(mas, old);
3384 mtree_range_walk(mas);
3385 return;
3386 }
3387
3388 /*
3389 * mas_commit_b_node() - Commit the big node into the tree.
3390 * @wr_mas: The maple write state
3391 * @b_node: The maple big node
3392 */
mas_commit_b_node(struct ma_wr_state * wr_mas,struct maple_big_node * b_node)3393 static noinline_for_kasan void mas_commit_b_node(struct ma_wr_state *wr_mas,
3394 struct maple_big_node *b_node)
3395 {
3396 enum store_type type = wr_mas->mas->store_type;
3397
3398 WARN_ON_ONCE(type != wr_rebalance && type != wr_split_store);
3399
3400 if (type == wr_rebalance)
3401 return mas_rebalance(wr_mas->mas, b_node);
3402
3403 return mas_split(wr_mas->mas, b_node);
3404 }
3405
3406 /*
3407 * mas_root_expand() - Expand a root to a node
3408 * @mas: The maple state
3409 * @entry: The entry to store into the tree
3410 */
mas_root_expand(struct ma_state * mas,void * entry)3411 static inline void mas_root_expand(struct ma_state *mas, void *entry)
3412 {
3413 void *contents = mas_root_locked(mas);
3414 enum maple_type type = maple_leaf_64;
3415 struct maple_node *node;
3416 void __rcu **slots;
3417 unsigned long *pivots;
3418 int slot = 0;
3419
3420 node = mas_pop_node(mas);
3421 pivots = ma_pivots(node, type);
3422 slots = ma_slots(node, type);
3423 node->parent = ma_parent_ptr(mas_tree_parent(mas));
3424 mas->node = mt_mk_node(node, type);
3425 mas->status = ma_active;
3426
3427 if (mas->index) {
3428 if (contents) {
3429 rcu_assign_pointer(slots[slot], contents);
3430 if (likely(mas->index > 1))
3431 slot++;
3432 }
3433 pivots[slot++] = mas->index - 1;
3434 }
3435
3436 rcu_assign_pointer(slots[slot], entry);
3437 mas->offset = slot;
3438 pivots[slot] = mas->last;
3439 if (mas->last != ULONG_MAX)
3440 pivots[++slot] = ULONG_MAX;
3441
3442 mas->depth = 1;
3443 mas_set_height(mas);
3444 ma_set_meta(node, maple_leaf_64, 0, slot);
3445 /* swap the new root into the tree */
3446 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3447 return;
3448 }
3449
3450 /*
3451 * mas_store_root() - Storing value into root.
3452 * @mas: The maple state
3453 * @entry: The entry to store.
3454 *
3455 * There is no root node now and we are storing a value into the root - this
3456 * function either assigns the pointer or expands into a node.
3457 */
mas_store_root(struct ma_state * mas,void * entry)3458 static inline void mas_store_root(struct ma_state *mas, void *entry)
3459 {
3460 if (!entry) {
3461 if (!mas->index)
3462 rcu_assign_pointer(mas->tree->ma_root, NULL);
3463 } else if (likely((mas->last != 0) || (mas->index != 0)))
3464 mas_root_expand(mas, entry);
3465 else if (((unsigned long) (entry) & 3) == 2)
3466 mas_root_expand(mas, entry);
3467 else {
3468 rcu_assign_pointer(mas->tree->ma_root, entry);
3469 mas->status = ma_start;
3470 }
3471 }
3472
3473 /*
3474 * mas_is_span_wr() - Check if the write needs to be treated as a write that
3475 * spans the node.
3476 * @wr_mas: The maple write state
3477 *
3478 * Spanning writes are writes that start in one node and end in another OR if
3479 * the write of a %NULL will cause the node to end with a %NULL.
3480 *
3481 * Return: True if this is a spanning write, false otherwise.
3482 */
mas_is_span_wr(struct ma_wr_state * wr_mas)3483 static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
3484 {
3485 unsigned long max = wr_mas->r_max;
3486 unsigned long last = wr_mas->mas->last;
3487 enum maple_type type = wr_mas->type;
3488 void *entry = wr_mas->entry;
3489
3490 /* Contained in this pivot, fast path */
3491 if (last < max)
3492 return false;
3493
3494 if (ma_is_leaf(type)) {
3495 max = wr_mas->mas->max;
3496 if (last < max)
3497 return false;
3498 }
3499
3500 if (last == max) {
3501 /*
3502 * The last entry of leaf node cannot be NULL unless it is the
3503 * rightmost node (writing ULONG_MAX), otherwise it spans slots.
3504 */
3505 if (entry || last == ULONG_MAX)
3506 return false;
3507 }
3508
3509 trace_ma_write(__func__, wr_mas->mas, wr_mas->r_max, entry);
3510 return true;
3511 }
3512
mas_wr_walk_descend(struct ma_wr_state * wr_mas)3513 static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
3514 {
3515 wr_mas->type = mte_node_type(wr_mas->mas->node);
3516 mas_wr_node_walk(wr_mas);
3517 wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type);
3518 }
3519
mas_wr_walk_traverse(struct ma_wr_state * wr_mas)3520 static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
3521 {
3522 wr_mas->mas->max = wr_mas->r_max;
3523 wr_mas->mas->min = wr_mas->r_min;
3524 wr_mas->mas->node = wr_mas->content;
3525 wr_mas->mas->offset = 0;
3526 wr_mas->mas->depth++;
3527 }
3528 /*
3529 * mas_wr_walk() - Walk the tree for a write.
3530 * @wr_mas: The maple write state
3531 *
3532 * Uses mas_slot_locked() and does not need to worry about dead nodes.
3533 *
3534 * Return: True if it's contained in a node, false on spanning write.
3535 */
mas_wr_walk(struct ma_wr_state * wr_mas)3536 static bool mas_wr_walk(struct ma_wr_state *wr_mas)
3537 {
3538 struct ma_state *mas = wr_mas->mas;
3539
3540 while (true) {
3541 mas_wr_walk_descend(wr_mas);
3542 if (unlikely(mas_is_span_wr(wr_mas)))
3543 return false;
3544
3545 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3546 mas->offset);
3547 if (ma_is_leaf(wr_mas->type))
3548 return true;
3549
3550 mas_wr_walk_traverse(wr_mas);
3551 }
3552
3553 return true;
3554 }
3555
mas_wr_walk_index(struct ma_wr_state * wr_mas)3556 static void mas_wr_walk_index(struct ma_wr_state *wr_mas)
3557 {
3558 struct ma_state *mas = wr_mas->mas;
3559
3560 while (true) {
3561 mas_wr_walk_descend(wr_mas);
3562 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3563 mas->offset);
3564 if (ma_is_leaf(wr_mas->type))
3565 return;
3566 mas_wr_walk_traverse(wr_mas);
3567 }
3568 }
3569 /*
3570 * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
3571 * @l_wr_mas: The left maple write state
3572 * @r_wr_mas: The right maple write state
3573 */
mas_extend_spanning_null(struct ma_wr_state * l_wr_mas,struct ma_wr_state * r_wr_mas)3574 static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
3575 struct ma_wr_state *r_wr_mas)
3576 {
3577 struct ma_state *r_mas = r_wr_mas->mas;
3578 struct ma_state *l_mas = l_wr_mas->mas;
3579 unsigned char l_slot;
3580
3581 l_slot = l_mas->offset;
3582 if (!l_wr_mas->content)
3583 l_mas->index = l_wr_mas->r_min;
3584
3585 if ((l_mas->index == l_wr_mas->r_min) &&
3586 (l_slot &&
3587 !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) {
3588 if (l_slot > 1)
3589 l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1;
3590 else
3591 l_mas->index = l_mas->min;
3592
3593 l_mas->offset = l_slot - 1;
3594 }
3595
3596 if (!r_wr_mas->content) {
3597 if (r_mas->last < r_wr_mas->r_max)
3598 r_mas->last = r_wr_mas->r_max;
3599 r_mas->offset++;
3600 } else if ((r_mas->last == r_wr_mas->r_max) &&
3601 (r_mas->last < r_mas->max) &&
3602 !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) {
3603 r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots,
3604 r_wr_mas->type, r_mas->offset + 1);
3605 r_mas->offset++;
3606 }
3607 }
3608
mas_state_walk(struct ma_state * mas)3609 static inline void *mas_state_walk(struct ma_state *mas)
3610 {
3611 void *entry;
3612
3613 entry = mas_start(mas);
3614 if (mas_is_none(mas))
3615 return NULL;
3616
3617 if (mas_is_ptr(mas))
3618 return entry;
3619
3620 return mtree_range_walk(mas);
3621 }
3622
3623 /*
3624 * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
3625 * to date.
3626 *
3627 * @mas: The maple state.
3628 *
3629 * Note: Leaves mas in undesirable state.
3630 * Return: The entry for @mas->index or %NULL on dead node.
3631 */
mtree_lookup_walk(struct ma_state * mas)3632 static inline void *mtree_lookup_walk(struct ma_state *mas)
3633 {
3634 unsigned long *pivots;
3635 unsigned char offset;
3636 struct maple_node *node;
3637 struct maple_enode *next;
3638 enum maple_type type;
3639 void __rcu **slots;
3640 unsigned char end;
3641
3642 next = mas->node;
3643 do {
3644 node = mte_to_node(next);
3645 type = mte_node_type(next);
3646 pivots = ma_pivots(node, type);
3647 end = mt_pivots[type];
3648 offset = 0;
3649 do {
3650 if (pivots[offset] >= mas->index)
3651 break;
3652 } while (++offset < end);
3653
3654 slots = ma_slots(node, type);
3655 next = mt_slot(mas->tree, slots, offset);
3656 if (unlikely(ma_dead_node(node)))
3657 goto dead_node;
3658 } while (!ma_is_leaf(type));
3659
3660 return (void *)next;
3661
3662 dead_node:
3663 mas_reset(mas);
3664 return NULL;
3665 }
3666
3667 static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
3668 /*
3669 * mas_new_root() - Create a new root node that only contains the entry passed
3670 * in.
3671 * @mas: The maple state
3672 * @entry: The entry to store.
3673 *
3674 * Only valid when the index == 0 and the last == ULONG_MAX
3675 */
mas_new_root(struct ma_state * mas,void * entry)3676 static inline void mas_new_root(struct ma_state *mas, void *entry)
3677 {
3678 struct maple_enode *root = mas_root_locked(mas);
3679 enum maple_type type = maple_leaf_64;
3680 struct maple_node *node;
3681 void __rcu **slots;
3682 unsigned long *pivots;
3683
3684 WARN_ON_ONCE(mas->index || mas->last != ULONG_MAX);
3685
3686 if (!entry) {
3687 mas->depth = 0;
3688 mas_set_height(mas);
3689 rcu_assign_pointer(mas->tree->ma_root, entry);
3690 mas->status = ma_start;
3691 goto done;
3692 }
3693
3694 node = mas_pop_node(mas);
3695 pivots = ma_pivots(node, type);
3696 slots = ma_slots(node, type);
3697 node->parent = ma_parent_ptr(mas_tree_parent(mas));
3698 mas->node = mt_mk_node(node, type);
3699 mas->status = ma_active;
3700 rcu_assign_pointer(slots[0], entry);
3701 pivots[0] = mas->last;
3702 mas->depth = 1;
3703 mas_set_height(mas);
3704 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3705
3706 done:
3707 if (xa_is_node(root))
3708 mte_destroy_walk(root, mas->tree);
3709
3710 return;
3711 }
3712 /*
3713 * mas_wr_spanning_store() - Create a subtree with the store operation completed
3714 * and new nodes where necessary, then place the sub-tree in the actual tree.
3715 * Note that mas is expected to point to the node which caused the store to
3716 * span.
3717 * @wr_mas: The maple write state
3718 */
mas_wr_spanning_store(struct ma_wr_state * wr_mas)3719 static noinline void mas_wr_spanning_store(struct ma_wr_state *wr_mas)
3720 {
3721 struct maple_subtree_state mast;
3722 struct maple_big_node b_node;
3723 struct ma_state *mas;
3724 unsigned char height;
3725
3726 /* Left and Right side of spanning store */
3727 MA_STATE(l_mas, NULL, 0, 0);
3728 MA_STATE(r_mas, NULL, 0, 0);
3729 MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry);
3730 MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry);
3731
3732 /*
3733 * A store operation that spans multiple nodes is called a spanning
3734 * store and is handled early in the store call stack by the function
3735 * mas_is_span_wr(). When a spanning store is identified, the maple
3736 * state is duplicated. The first maple state walks the left tree path
3737 * to ``index``, the duplicate walks the right tree path to ``last``.
3738 * The data in the two nodes are combined into a single node, two nodes,
3739 * or possibly three nodes (see the 3-way split above). A ``NULL``
3740 * written to the last entry of a node is considered a spanning store as
3741 * a rebalance is required for the operation to complete and an overflow
3742 * of data may happen.
3743 */
3744 mas = wr_mas->mas;
3745 trace_ma_op(__func__, mas);
3746
3747 if (unlikely(!mas->index && mas->last == ULONG_MAX))
3748 return mas_new_root(mas, wr_mas->entry);
3749 /*
3750 * Node rebalancing may occur due to this store, so there may be three new
3751 * entries per level plus a new root.
3752 */
3753 height = mas_mt_height(mas);
3754
3755 /*
3756 * Set up right side. Need to get to the next offset after the spanning
3757 * store to ensure it's not NULL and to combine both the next node and
3758 * the node with the start together.
3759 */
3760 r_mas = *mas;
3761 /* Avoid overflow, walk to next slot in the tree. */
3762 if (r_mas.last + 1)
3763 r_mas.last++;
3764
3765 r_mas.index = r_mas.last;
3766 mas_wr_walk_index(&r_wr_mas);
3767 r_mas.last = r_mas.index = mas->last;
3768
3769 /* Set up left side. */
3770 l_mas = *mas;
3771 mas_wr_walk_index(&l_wr_mas);
3772
3773 if (!wr_mas->entry) {
3774 mas_extend_spanning_null(&l_wr_mas, &r_wr_mas);
3775 mas->offset = l_mas.offset;
3776 mas->index = l_mas.index;
3777 mas->last = l_mas.last = r_mas.last;
3778 }
3779
3780 /* expanding NULLs may make this cover the entire range */
3781 if (!l_mas.index && r_mas.last == ULONG_MAX) {
3782 mas_set_range(mas, 0, ULONG_MAX);
3783 return mas_new_root(mas, wr_mas->entry);
3784 }
3785
3786 memset(&b_node, 0, sizeof(struct maple_big_node));
3787 /* Copy l_mas and store the value in b_node. */
3788 mas_store_b_node(&l_wr_mas, &b_node, l_mas.end);
3789 /* Copy r_mas into b_node if there is anything to copy. */
3790 if (r_mas.max > r_mas.last)
3791 mas_mab_cp(&r_mas, r_mas.offset, r_mas.end,
3792 &b_node, b_node.b_end + 1);
3793 else
3794 b_node.b_end++;
3795
3796 /* Stop spanning searches by searching for just index. */
3797 l_mas.index = l_mas.last = mas->index;
3798
3799 mast.bn = &b_node;
3800 mast.orig_l = &l_mas;
3801 mast.orig_r = &r_mas;
3802 /* Combine l_mas and r_mas and split them up evenly again. */
3803 return mas_spanning_rebalance(mas, &mast, height + 1);
3804 }
3805
3806 /*
3807 * mas_wr_node_store() - Attempt to store the value in a node
3808 * @wr_mas: The maple write state
3809 *
3810 * Attempts to reuse the node, but may allocate.
3811 */
mas_wr_node_store(struct ma_wr_state * wr_mas,unsigned char new_end)3812 static inline void mas_wr_node_store(struct ma_wr_state *wr_mas,
3813 unsigned char new_end)
3814 {
3815 struct ma_state *mas = wr_mas->mas;
3816 void __rcu **dst_slots;
3817 unsigned long *dst_pivots;
3818 unsigned char dst_offset, offset_end = wr_mas->offset_end;
3819 struct maple_node reuse, *newnode;
3820 unsigned char copy_size, node_pivots = mt_pivots[wr_mas->type];
3821 bool in_rcu = mt_in_rcu(mas->tree);
3822
3823 if (mas->last == wr_mas->end_piv)
3824 offset_end++; /* don't copy this offset */
3825 else if (unlikely(wr_mas->r_max == ULONG_MAX))
3826 mas_bulk_rebalance(mas, mas->end, wr_mas->type);
3827
3828 /* set up node. */
3829 if (in_rcu) {
3830 newnode = mas_pop_node(mas);
3831 } else {
3832 memset(&reuse, 0, sizeof(struct maple_node));
3833 newnode = &reuse;
3834 }
3835
3836 newnode->parent = mas_mn(mas)->parent;
3837 dst_pivots = ma_pivots(newnode, wr_mas->type);
3838 dst_slots = ma_slots(newnode, wr_mas->type);
3839 /* Copy from start to insert point */
3840 memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * mas->offset);
3841 memcpy(dst_slots, wr_mas->slots, sizeof(void *) * mas->offset);
3842
3843 /* Handle insert of new range starting after old range */
3844 if (wr_mas->r_min < mas->index) {
3845 rcu_assign_pointer(dst_slots[mas->offset], wr_mas->content);
3846 dst_pivots[mas->offset++] = mas->index - 1;
3847 }
3848
3849 /* Store the new entry and range end. */
3850 if (mas->offset < node_pivots)
3851 dst_pivots[mas->offset] = mas->last;
3852 rcu_assign_pointer(dst_slots[mas->offset], wr_mas->entry);
3853
3854 /*
3855 * this range wrote to the end of the node or it overwrote the rest of
3856 * the data
3857 */
3858 if (offset_end > mas->end)
3859 goto done;
3860
3861 dst_offset = mas->offset + 1;
3862 /* Copy to the end of node if necessary. */
3863 copy_size = mas->end - offset_end + 1;
3864 memcpy(dst_slots + dst_offset, wr_mas->slots + offset_end,
3865 sizeof(void *) * copy_size);
3866 memcpy(dst_pivots + dst_offset, wr_mas->pivots + offset_end,
3867 sizeof(unsigned long) * (copy_size - 1));
3868
3869 if (new_end < node_pivots)
3870 dst_pivots[new_end] = mas->max;
3871
3872 done:
3873 mas_leaf_set_meta(newnode, maple_leaf_64, new_end);
3874 if (in_rcu) {
3875 struct maple_enode *old_enode = mas->node;
3876
3877 mas->node = mt_mk_node(newnode, wr_mas->type);
3878 mas_replace_node(mas, old_enode);
3879 } else {
3880 memcpy(wr_mas->node, newnode, sizeof(struct maple_node));
3881 }
3882 trace_ma_write(__func__, mas, 0, wr_mas->entry);
3883 mas_update_gap(mas);
3884 mas->end = new_end;
3885 return;
3886 }
3887
3888 /*
3889 * mas_wr_slot_store: Attempt to store a value in a slot.
3890 * @wr_mas: the maple write state
3891 */
mas_wr_slot_store(struct ma_wr_state * wr_mas)3892 static inline void mas_wr_slot_store(struct ma_wr_state *wr_mas)
3893 {
3894 struct ma_state *mas = wr_mas->mas;
3895 unsigned char offset = mas->offset;
3896 void __rcu **slots = wr_mas->slots;
3897 bool gap = false;
3898
3899 gap |= !mt_slot_locked(mas->tree, slots, offset);
3900 gap |= !mt_slot_locked(mas->tree, slots, offset + 1);
3901
3902 if (wr_mas->offset_end - offset == 1) {
3903 if (mas->index == wr_mas->r_min) {
3904 /* Overwriting the range and a part of the next one */
3905 rcu_assign_pointer(slots[offset], wr_mas->entry);
3906 wr_mas->pivots[offset] = mas->last;
3907 } else {
3908 /* Overwriting a part of the range and the next one */
3909 rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
3910 wr_mas->pivots[offset] = mas->index - 1;
3911 mas->offset++; /* Keep mas accurate. */
3912 }
3913 } else {
3914 WARN_ON_ONCE(mt_in_rcu(mas->tree));
3915 /*
3916 * Expand the range, only partially overwriting the previous and
3917 * next ranges
3918 */
3919 gap |= !mt_slot_locked(mas->tree, slots, offset + 2);
3920 rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
3921 wr_mas->pivots[offset] = mas->index - 1;
3922 wr_mas->pivots[offset + 1] = mas->last;
3923 mas->offset++; /* Keep mas accurate. */
3924 }
3925
3926 trace_ma_write(__func__, mas, 0, wr_mas->entry);
3927 /*
3928 * Only update gap when the new entry is empty or there is an empty
3929 * entry in the original two ranges.
3930 */
3931 if (!wr_mas->entry || gap)
3932 mas_update_gap(mas);
3933
3934 return;
3935 }
3936
mas_wr_extend_null(struct ma_wr_state * wr_mas)3937 static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
3938 {
3939 struct ma_state *mas = wr_mas->mas;
3940
3941 if (!wr_mas->slots[wr_mas->offset_end]) {
3942 /* If this one is null, the next and prev are not */
3943 mas->last = wr_mas->end_piv;
3944 } else {
3945 /* Check next slot(s) if we are overwriting the end */
3946 if ((mas->last == wr_mas->end_piv) &&
3947 (mas->end != wr_mas->offset_end) &&
3948 !wr_mas->slots[wr_mas->offset_end + 1]) {
3949 wr_mas->offset_end++;
3950 if (wr_mas->offset_end == mas->end)
3951 mas->last = mas->max;
3952 else
3953 mas->last = wr_mas->pivots[wr_mas->offset_end];
3954 wr_mas->end_piv = mas->last;
3955 }
3956 }
3957
3958 if (!wr_mas->content) {
3959 /* If this one is null, the next and prev are not */
3960 mas->index = wr_mas->r_min;
3961 } else {
3962 /* Check prev slot if we are overwriting the start */
3963 if (mas->index == wr_mas->r_min && mas->offset &&
3964 !wr_mas->slots[mas->offset - 1]) {
3965 mas->offset--;
3966 wr_mas->r_min = mas->index =
3967 mas_safe_min(mas, wr_mas->pivots, mas->offset);
3968 wr_mas->r_max = wr_mas->pivots[mas->offset];
3969 }
3970 }
3971 }
3972
mas_wr_end_piv(struct ma_wr_state * wr_mas)3973 static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
3974 {
3975 while ((wr_mas->offset_end < wr_mas->mas->end) &&
3976 (wr_mas->mas->last > wr_mas->pivots[wr_mas->offset_end]))
3977 wr_mas->offset_end++;
3978
3979 if (wr_mas->offset_end < wr_mas->mas->end)
3980 wr_mas->end_piv = wr_mas->pivots[wr_mas->offset_end];
3981 else
3982 wr_mas->end_piv = wr_mas->mas->max;
3983 }
3984
mas_wr_new_end(struct ma_wr_state * wr_mas)3985 static inline unsigned char mas_wr_new_end(struct ma_wr_state *wr_mas)
3986 {
3987 struct ma_state *mas = wr_mas->mas;
3988 unsigned char new_end = mas->end + 2;
3989
3990 new_end -= wr_mas->offset_end - mas->offset;
3991 if (wr_mas->r_min == mas->index)
3992 new_end--;
3993
3994 if (wr_mas->end_piv == mas->last)
3995 new_end--;
3996
3997 return new_end;
3998 }
3999
4000 /*
4001 * mas_wr_append: Attempt to append
4002 * @wr_mas: the maple write state
4003 * @new_end: The end of the node after the modification
4004 *
4005 * This is currently unsafe in rcu mode since the end of the node may be cached
4006 * by readers while the node contents may be updated which could result in
4007 * inaccurate information.
4008 */
mas_wr_append(struct ma_wr_state * wr_mas,unsigned char new_end)4009 static inline void mas_wr_append(struct ma_wr_state *wr_mas,
4010 unsigned char new_end)
4011 {
4012 struct ma_state *mas = wr_mas->mas;
4013 void __rcu **slots;
4014 unsigned char end = mas->end;
4015
4016 if (new_end < mt_pivots[wr_mas->type]) {
4017 wr_mas->pivots[new_end] = wr_mas->pivots[end];
4018 ma_set_meta(wr_mas->node, wr_mas->type, 0, new_end);
4019 }
4020
4021 slots = wr_mas->slots;
4022 if (new_end == end + 1) {
4023 if (mas->last == wr_mas->r_max) {
4024 /* Append to end of range */
4025 rcu_assign_pointer(slots[new_end], wr_mas->entry);
4026 wr_mas->pivots[end] = mas->index - 1;
4027 mas->offset = new_end;
4028 } else {
4029 /* Append to start of range */
4030 rcu_assign_pointer(slots[new_end], wr_mas->content);
4031 wr_mas->pivots[end] = mas->last;
4032 rcu_assign_pointer(slots[end], wr_mas->entry);
4033 }
4034 } else {
4035 /* Append to the range without touching any boundaries. */
4036 rcu_assign_pointer(slots[new_end], wr_mas->content);
4037 wr_mas->pivots[end + 1] = mas->last;
4038 rcu_assign_pointer(slots[end + 1], wr_mas->entry);
4039 wr_mas->pivots[end] = mas->index - 1;
4040 mas->offset = end + 1;
4041 }
4042
4043 if (!wr_mas->content || !wr_mas->entry)
4044 mas_update_gap(mas);
4045
4046 mas->end = new_end;
4047 trace_ma_write(__func__, mas, new_end, wr_mas->entry);
4048 return;
4049 }
4050
4051 /*
4052 * mas_wr_bnode() - Slow path for a modification.
4053 * @wr_mas: The write maple state
4054 *
4055 * This is where split, rebalance end up.
4056 */
mas_wr_bnode(struct ma_wr_state * wr_mas)4057 static void mas_wr_bnode(struct ma_wr_state *wr_mas)
4058 {
4059 struct maple_big_node b_node;
4060
4061 trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry);
4062 memset(&b_node, 0, sizeof(struct maple_big_node));
4063 mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end);
4064 mas_commit_b_node(wr_mas, &b_node);
4065 }
4066
4067 /*
4068 * mas_wr_store_entry() - Internal call to store a value
4069 * @wr_mas: The maple write state
4070 */
mas_wr_store_entry(struct ma_wr_state * wr_mas)4071 static inline void mas_wr_store_entry(struct ma_wr_state *wr_mas)
4072 {
4073 struct ma_state *mas = wr_mas->mas;
4074 unsigned char new_end = mas_wr_new_end(wr_mas);
4075
4076 switch (mas->store_type) {
4077 case wr_invalid:
4078 MT_BUG_ON(mas->tree, 1);
4079 return;
4080 case wr_new_root:
4081 mas_new_root(mas, wr_mas->entry);
4082 break;
4083 case wr_store_root:
4084 mas_store_root(mas, wr_mas->entry);
4085 break;
4086 case wr_exact_fit:
4087 rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry);
4088 if (!!wr_mas->entry ^ !!wr_mas->content)
4089 mas_update_gap(mas);
4090 break;
4091 case wr_append:
4092 mas_wr_append(wr_mas, new_end);
4093 break;
4094 case wr_slot_store:
4095 mas_wr_slot_store(wr_mas);
4096 break;
4097 case wr_node_store:
4098 mas_wr_node_store(wr_mas, new_end);
4099 break;
4100 case wr_spanning_store:
4101 mas_wr_spanning_store(wr_mas);
4102 break;
4103 case wr_split_store:
4104 case wr_rebalance:
4105 mas_wr_bnode(wr_mas);
4106 break;
4107 }
4108
4109 return;
4110 }
4111
mas_wr_prealloc_setup(struct ma_wr_state * wr_mas)4112 static inline void mas_wr_prealloc_setup(struct ma_wr_state *wr_mas)
4113 {
4114 struct ma_state *mas = wr_mas->mas;
4115
4116 if (!mas_is_active(mas)) {
4117 if (mas_is_start(mas))
4118 goto set_content;
4119
4120 if (unlikely(mas_is_paused(mas)))
4121 goto reset;
4122
4123 if (unlikely(mas_is_none(mas)))
4124 goto reset;
4125
4126 if (unlikely(mas_is_overflow(mas)))
4127 goto reset;
4128
4129 if (unlikely(mas_is_underflow(mas)))
4130 goto reset;
4131 }
4132
4133 /*
4134 * A less strict version of mas_is_span_wr() where we allow spanning
4135 * writes within this node. This is to stop partial walks in
4136 * mas_prealloc() from being reset.
4137 */
4138 if (mas->last > mas->max)
4139 goto reset;
4140
4141 if (wr_mas->entry)
4142 goto set_content;
4143
4144 if (mte_is_leaf(mas->node) && mas->last == mas->max)
4145 goto reset;
4146
4147 goto set_content;
4148
4149 reset:
4150 mas_reset(mas);
4151 set_content:
4152 wr_mas->content = mas_start(mas);
4153 }
4154
4155 /**
4156 * mas_prealloc_calc() - Calculate number of nodes needed for a
4157 * given store oepration
4158 * @mas: The maple state
4159 * @entry: The entry to store into the tree
4160 *
4161 * Return: Number of nodes required for preallocation.
4162 */
mas_prealloc_calc(struct ma_state * mas,void * entry)4163 static inline int mas_prealloc_calc(struct ma_state *mas, void *entry)
4164 {
4165 int ret = mas_mt_height(mas) * 3 + 1;
4166
4167 switch (mas->store_type) {
4168 case wr_invalid:
4169 WARN_ON_ONCE(1);
4170 break;
4171 case wr_new_root:
4172 ret = 1;
4173 break;
4174 case wr_store_root:
4175 if (likely((mas->last != 0) || (mas->index != 0)))
4176 ret = 1;
4177 else if (((unsigned long) (entry) & 3) == 2)
4178 ret = 1;
4179 else
4180 ret = 0;
4181 break;
4182 case wr_spanning_store:
4183 ret = mas_mt_height(mas) * 3 + 1;
4184 break;
4185 case wr_split_store:
4186 ret = mas_mt_height(mas) * 2 + 1;
4187 break;
4188 case wr_rebalance:
4189 ret = mas_mt_height(mas) * 2 - 1;
4190 break;
4191 case wr_node_store:
4192 ret = mt_in_rcu(mas->tree) ? 1 : 0;
4193 break;
4194 case wr_append:
4195 case wr_exact_fit:
4196 case wr_slot_store:
4197 ret = 0;
4198 }
4199
4200 return ret;
4201 }
4202
4203 /*
4204 * mas_wr_store_type() - Determine the store type for a given
4205 * store operation.
4206 * @wr_mas: The maple write state
4207 *
4208 * Return: the type of store needed for the operation
4209 */
mas_wr_store_type(struct ma_wr_state * wr_mas)4210 static inline enum store_type mas_wr_store_type(struct ma_wr_state *wr_mas)
4211 {
4212 struct ma_state *mas = wr_mas->mas;
4213 unsigned char new_end;
4214
4215 if (unlikely(mas_is_none(mas) || mas_is_ptr(mas)))
4216 return wr_store_root;
4217
4218 if (unlikely(!mas_wr_walk(wr_mas)))
4219 return wr_spanning_store;
4220
4221 /* At this point, we are at the leaf node that needs to be altered. */
4222 mas_wr_end_piv(wr_mas);
4223 if (!wr_mas->entry)
4224 mas_wr_extend_null(wr_mas);
4225
4226 if ((wr_mas->r_min == mas->index) && (wr_mas->r_max == mas->last))
4227 return wr_exact_fit;
4228
4229 if (unlikely(!mas->index && mas->last == ULONG_MAX))
4230 return wr_new_root;
4231
4232 new_end = mas_wr_new_end(wr_mas);
4233 /* Potential spanning rebalance collapsing a node */
4234 if (new_end < mt_min_slots[wr_mas->type]) {
4235 if (!mte_is_root(mas->node) && !(mas->mas_flags & MA_STATE_BULK))
4236 return wr_rebalance;
4237 return wr_node_store;
4238 }
4239
4240 if (new_end >= mt_slots[wr_mas->type])
4241 return wr_split_store;
4242
4243 if (!mt_in_rcu(mas->tree) && (mas->offset == mas->end))
4244 return wr_append;
4245
4246 if ((new_end == mas->end) && (!mt_in_rcu(mas->tree) ||
4247 (wr_mas->offset_end - mas->offset == 1)))
4248 return wr_slot_store;
4249
4250 return wr_node_store;
4251 }
4252
4253 /**
4254 * mas_wr_preallocate() - Preallocate enough nodes for a store operation
4255 * @wr_mas: The maple write state
4256 * @entry: The entry that will be stored
4257 *
4258 */
mas_wr_preallocate(struct ma_wr_state * wr_mas,void * entry)4259 static inline void mas_wr_preallocate(struct ma_wr_state *wr_mas, void *entry)
4260 {
4261 struct ma_state *mas = wr_mas->mas;
4262 int request;
4263
4264 mas_wr_prealloc_setup(wr_mas);
4265 mas->store_type = mas_wr_store_type(wr_mas);
4266 request = mas_prealloc_calc(mas, entry);
4267 if (!request)
4268 return;
4269
4270 mas_node_count(mas, request);
4271 }
4272
4273 /**
4274 * mas_insert() - Internal call to insert a value
4275 * @mas: The maple state
4276 * @entry: The entry to store
4277 *
4278 * Return: %NULL or the contents that already exists at the requested index
4279 * otherwise. The maple state needs to be checked for error conditions.
4280 */
mas_insert(struct ma_state * mas,void * entry)4281 static inline void *mas_insert(struct ma_state *mas, void *entry)
4282 {
4283 MA_WR_STATE(wr_mas, mas, entry);
4284
4285 /*
4286 * Inserting a new range inserts either 0, 1, or 2 pivots within the
4287 * tree. If the insert fits exactly into an existing gap with a value
4288 * of NULL, then the slot only needs to be written with the new value.
4289 * If the range being inserted is adjacent to another range, then only a
4290 * single pivot needs to be inserted (as well as writing the entry). If
4291 * the new range is within a gap but does not touch any other ranges,
4292 * then two pivots need to be inserted: the start - 1, and the end. As
4293 * usual, the entry must be written. Most operations require a new node
4294 * to be allocated and replace an existing node to ensure RCU safety,
4295 * when in RCU mode. The exception to requiring a newly allocated node
4296 * is when inserting at the end of a node (appending). When done
4297 * carefully, appending can reuse the node in place.
4298 */
4299 wr_mas.content = mas_start(mas);
4300 if (wr_mas.content)
4301 goto exists;
4302
4303 mas_wr_preallocate(&wr_mas, entry);
4304 if (mas_is_err(mas))
4305 return NULL;
4306
4307 /* spanning writes always overwrite something */
4308 if (mas->store_type == wr_spanning_store)
4309 goto exists;
4310
4311 /* At this point, we are at the leaf node that needs to be altered. */
4312 if (mas->store_type != wr_new_root && mas->store_type != wr_store_root) {
4313 wr_mas.offset_end = mas->offset;
4314 wr_mas.end_piv = wr_mas.r_max;
4315
4316 if (wr_mas.content || (mas->last > wr_mas.r_max))
4317 goto exists;
4318 }
4319
4320 mas_wr_store_entry(&wr_mas);
4321 return wr_mas.content;
4322
4323 exists:
4324 mas_set_err(mas, -EEXIST);
4325 return wr_mas.content;
4326
4327 }
4328
4329 /**
4330 * mas_alloc_cyclic() - Internal call to find somewhere to store an entry
4331 * @mas: The maple state.
4332 * @startp: Pointer to ID.
4333 * @range_lo: Lower bound of range to search.
4334 * @range_hi: Upper bound of range to search.
4335 * @entry: The entry to store.
4336 * @next: Pointer to next ID to allocate.
4337 * @gfp: The GFP_FLAGS to use for allocations.
4338 *
4339 * Return: 0 if the allocation succeeded without wrapping, 1 if the
4340 * allocation succeeded after wrapping, or -EBUSY if there are no
4341 * free entries.
4342 */
mas_alloc_cyclic(struct ma_state * mas,unsigned long * startp,void * entry,unsigned long range_lo,unsigned long range_hi,unsigned long * next,gfp_t gfp)4343 int mas_alloc_cyclic(struct ma_state *mas, unsigned long *startp,
4344 void *entry, unsigned long range_lo, unsigned long range_hi,
4345 unsigned long *next, gfp_t gfp)
4346 {
4347 unsigned long min = range_lo;
4348 int ret = 0;
4349
4350 range_lo = max(min, *next);
4351 ret = mas_empty_area(mas, range_lo, range_hi, 1);
4352 if ((mas->tree->ma_flags & MT_FLAGS_ALLOC_WRAPPED) && ret == 0) {
4353 mas->tree->ma_flags &= ~MT_FLAGS_ALLOC_WRAPPED;
4354 ret = 1;
4355 }
4356 if (ret < 0 && range_lo > min) {
4357 ret = mas_empty_area(mas, min, range_hi, 1);
4358 if (ret == 0)
4359 ret = 1;
4360 }
4361 if (ret < 0)
4362 return ret;
4363
4364 do {
4365 mas_insert(mas, entry);
4366 } while (mas_nomem(mas, gfp));
4367 if (mas_is_err(mas))
4368 return xa_err(mas->node);
4369
4370 *startp = mas->index;
4371 *next = *startp + 1;
4372 if (*next == 0)
4373 mas->tree->ma_flags |= MT_FLAGS_ALLOC_WRAPPED;
4374
4375 mas_destroy(mas);
4376 return ret;
4377 }
4378 EXPORT_SYMBOL(mas_alloc_cyclic);
4379
mas_rewalk(struct ma_state * mas,unsigned long index)4380 static __always_inline void mas_rewalk(struct ma_state *mas, unsigned long index)
4381 {
4382 retry:
4383 mas_set(mas, index);
4384 mas_state_walk(mas);
4385 if (mas_is_start(mas))
4386 goto retry;
4387 }
4388
mas_rewalk_if_dead(struct ma_state * mas,struct maple_node * node,const unsigned long index)4389 static __always_inline bool mas_rewalk_if_dead(struct ma_state *mas,
4390 struct maple_node *node, const unsigned long index)
4391 {
4392 if (unlikely(ma_dead_node(node))) {
4393 mas_rewalk(mas, index);
4394 return true;
4395 }
4396 return false;
4397 }
4398
4399 /*
4400 * mas_prev_node() - Find the prev non-null entry at the same level in the
4401 * tree. The prev value will be mas->node[mas->offset] or the status will be
4402 * ma_none.
4403 * @mas: The maple state
4404 * @min: The lower limit to search
4405 *
4406 * The prev node value will be mas->node[mas->offset] or the status will be
4407 * ma_none.
4408 * Return: 1 if the node is dead, 0 otherwise.
4409 */
mas_prev_node(struct ma_state * mas,unsigned long min)4410 static int mas_prev_node(struct ma_state *mas, unsigned long min)
4411 {
4412 enum maple_type mt;
4413 int offset, level;
4414 void __rcu **slots;
4415 struct maple_node *node;
4416 unsigned long *pivots;
4417 unsigned long max;
4418
4419 node = mas_mn(mas);
4420 if (!mas->min)
4421 goto no_entry;
4422
4423 max = mas->min - 1;
4424 if (max < min)
4425 goto no_entry;
4426
4427 level = 0;
4428 do {
4429 if (ma_is_root(node))
4430 goto no_entry;
4431
4432 /* Walk up. */
4433 if (unlikely(mas_ascend(mas)))
4434 return 1;
4435 offset = mas->offset;
4436 level++;
4437 node = mas_mn(mas);
4438 } while (!offset);
4439
4440 offset--;
4441 mt = mte_node_type(mas->node);
4442 while (level > 1) {
4443 level--;
4444 slots = ma_slots(node, mt);
4445 mas->node = mas_slot(mas, slots, offset);
4446 if (unlikely(ma_dead_node(node)))
4447 return 1;
4448
4449 mt = mte_node_type(mas->node);
4450 node = mas_mn(mas);
4451 pivots = ma_pivots(node, mt);
4452 offset = ma_data_end(node, mt, pivots, max);
4453 if (unlikely(ma_dead_node(node)))
4454 return 1;
4455 }
4456
4457 slots = ma_slots(node, mt);
4458 mas->node = mas_slot(mas, slots, offset);
4459 pivots = ma_pivots(node, mt);
4460 if (unlikely(ma_dead_node(node)))
4461 return 1;
4462
4463 if (likely(offset))
4464 mas->min = pivots[offset - 1] + 1;
4465 mas->max = max;
4466 mas->offset = mas_data_end(mas);
4467 if (unlikely(mte_dead_node(mas->node)))
4468 return 1;
4469
4470 mas->end = mas->offset;
4471 return 0;
4472
4473 no_entry:
4474 if (unlikely(ma_dead_node(node)))
4475 return 1;
4476
4477 mas->status = ma_underflow;
4478 return 0;
4479 }
4480
4481 /*
4482 * mas_prev_slot() - Get the entry in the previous slot
4483 *
4484 * @mas: The maple state
4485 * @min: The minimum starting range
4486 * @empty: Can be empty
4487 *
4488 * Return: The entry in the previous slot which is possibly NULL
4489 */
mas_prev_slot(struct ma_state * mas,unsigned long min,bool empty)4490 static void *mas_prev_slot(struct ma_state *mas, unsigned long min, bool empty)
4491 {
4492 void *entry;
4493 void __rcu **slots;
4494 unsigned long pivot;
4495 enum maple_type type;
4496 unsigned long *pivots;
4497 struct maple_node *node;
4498 unsigned long save_point = mas->index;
4499
4500 retry:
4501 node = mas_mn(mas);
4502 type = mte_node_type(mas->node);
4503 pivots = ma_pivots(node, type);
4504 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4505 goto retry;
4506
4507 if (mas->min <= min) {
4508 pivot = mas_safe_min(mas, pivots, mas->offset);
4509
4510 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4511 goto retry;
4512
4513 if (pivot <= min)
4514 goto underflow;
4515 }
4516
4517 again:
4518 if (likely(mas->offset)) {
4519 mas->offset--;
4520 mas->last = mas->index - 1;
4521 mas->index = mas_safe_min(mas, pivots, mas->offset);
4522 } else {
4523 if (mas->index <= min)
4524 goto underflow;
4525
4526 if (mas_prev_node(mas, min)) {
4527 mas_rewalk(mas, save_point);
4528 goto retry;
4529 }
4530
4531 if (WARN_ON_ONCE(mas_is_underflow(mas)))
4532 return NULL;
4533
4534 mas->last = mas->max;
4535 node = mas_mn(mas);
4536 type = mte_node_type(mas->node);
4537 pivots = ma_pivots(node, type);
4538 mas->index = pivots[mas->offset - 1] + 1;
4539 }
4540
4541 slots = ma_slots(node, type);
4542 entry = mas_slot(mas, slots, mas->offset);
4543 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4544 goto retry;
4545
4546
4547 if (likely(entry))
4548 return entry;
4549
4550 if (!empty) {
4551 if (mas->index <= min) {
4552 mas->status = ma_underflow;
4553 return NULL;
4554 }
4555
4556 goto again;
4557 }
4558
4559 return entry;
4560
4561 underflow:
4562 mas->status = ma_underflow;
4563 return NULL;
4564 }
4565
4566 /*
4567 * mas_next_node() - Get the next node at the same level in the tree.
4568 * @mas: The maple state
4569 * @node: The maple node
4570 * @max: The maximum pivot value to check.
4571 *
4572 * The next value will be mas->node[mas->offset] or the status will have
4573 * overflowed.
4574 * Return: 1 on dead node, 0 otherwise.
4575 */
mas_next_node(struct ma_state * mas,struct maple_node * node,unsigned long max)4576 static int mas_next_node(struct ma_state *mas, struct maple_node *node,
4577 unsigned long max)
4578 {
4579 unsigned long min;
4580 unsigned long *pivots;
4581 struct maple_enode *enode;
4582 struct maple_node *tmp;
4583 int level = 0;
4584 unsigned char node_end;
4585 enum maple_type mt;
4586 void __rcu **slots;
4587
4588 if (mas->max >= max)
4589 goto overflow;
4590
4591 min = mas->max + 1;
4592 level = 0;
4593 do {
4594 if (ma_is_root(node))
4595 goto overflow;
4596
4597 /* Walk up. */
4598 if (unlikely(mas_ascend(mas)))
4599 return 1;
4600
4601 level++;
4602 node = mas_mn(mas);
4603 mt = mte_node_type(mas->node);
4604 pivots = ma_pivots(node, mt);
4605 node_end = ma_data_end(node, mt, pivots, mas->max);
4606 if (unlikely(ma_dead_node(node)))
4607 return 1;
4608
4609 } while (unlikely(mas->offset == node_end));
4610
4611 slots = ma_slots(node, mt);
4612 mas->offset++;
4613 enode = mas_slot(mas, slots, mas->offset);
4614 if (unlikely(ma_dead_node(node)))
4615 return 1;
4616
4617 if (level > 1)
4618 mas->offset = 0;
4619
4620 while (unlikely(level > 1)) {
4621 level--;
4622 mas->node = enode;
4623 node = mas_mn(mas);
4624 mt = mte_node_type(mas->node);
4625 slots = ma_slots(node, mt);
4626 enode = mas_slot(mas, slots, 0);
4627 if (unlikely(ma_dead_node(node)))
4628 return 1;
4629 }
4630
4631 if (!mas->offset)
4632 pivots = ma_pivots(node, mt);
4633
4634 mas->max = mas_safe_pivot(mas, pivots, mas->offset, mt);
4635 tmp = mte_to_node(enode);
4636 mt = mte_node_type(enode);
4637 pivots = ma_pivots(tmp, mt);
4638 mas->end = ma_data_end(tmp, mt, pivots, mas->max);
4639 if (unlikely(ma_dead_node(node)))
4640 return 1;
4641
4642 mas->node = enode;
4643 mas->min = min;
4644 return 0;
4645
4646 overflow:
4647 if (unlikely(ma_dead_node(node)))
4648 return 1;
4649
4650 mas->status = ma_overflow;
4651 return 0;
4652 }
4653
4654 /*
4655 * mas_next_slot() - Get the entry in the next slot
4656 *
4657 * @mas: The maple state
4658 * @max: The maximum starting range
4659 * @empty: Can be empty
4660 *
4661 * Return: The entry in the next slot which is possibly NULL
4662 */
mas_next_slot(struct ma_state * mas,unsigned long max,bool empty)4663 static void *mas_next_slot(struct ma_state *mas, unsigned long max, bool empty)
4664 {
4665 void __rcu **slots;
4666 unsigned long *pivots;
4667 unsigned long pivot;
4668 enum maple_type type;
4669 struct maple_node *node;
4670 unsigned long save_point = mas->last;
4671 void *entry;
4672
4673 retry:
4674 node = mas_mn(mas);
4675 type = mte_node_type(mas->node);
4676 pivots = ma_pivots(node, type);
4677 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4678 goto retry;
4679
4680 if (mas->max >= max) {
4681 if (likely(mas->offset < mas->end))
4682 pivot = pivots[mas->offset];
4683 else
4684 pivot = mas->max;
4685
4686 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4687 goto retry;
4688
4689 if (pivot >= max) { /* Was at the limit, next will extend beyond */
4690 mas->status = ma_overflow;
4691 return NULL;
4692 }
4693 }
4694
4695 if (likely(mas->offset < mas->end)) {
4696 mas->index = pivots[mas->offset] + 1;
4697 again:
4698 mas->offset++;
4699 if (likely(mas->offset < mas->end))
4700 mas->last = pivots[mas->offset];
4701 else
4702 mas->last = mas->max;
4703 } else {
4704 if (mas->last >= max) {
4705 mas->status = ma_overflow;
4706 return NULL;
4707 }
4708
4709 if (mas_next_node(mas, node, max)) {
4710 mas_rewalk(mas, save_point);
4711 goto retry;
4712 }
4713
4714 if (WARN_ON_ONCE(mas_is_overflow(mas)))
4715 return NULL;
4716
4717 mas->offset = 0;
4718 mas->index = mas->min;
4719 node = mas_mn(mas);
4720 type = mte_node_type(mas->node);
4721 pivots = ma_pivots(node, type);
4722 mas->last = pivots[0];
4723 }
4724
4725 slots = ma_slots(node, type);
4726 entry = mt_slot(mas->tree, slots, mas->offset);
4727 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4728 goto retry;
4729
4730 if (entry)
4731 return entry;
4732
4733
4734 if (!empty) {
4735 if (mas->last >= max) {
4736 mas->status = ma_overflow;
4737 return NULL;
4738 }
4739
4740 mas->index = mas->last + 1;
4741 goto again;
4742 }
4743
4744 return entry;
4745 }
4746
4747 /*
4748 * mas_next_entry() - Internal function to get the next entry.
4749 * @mas: The maple state
4750 * @limit: The maximum range start.
4751 *
4752 * Set the @mas->node to the next entry and the range_start to
4753 * the beginning value for the entry. Does not check beyond @limit.
4754 * Sets @mas->index and @mas->last to the range, Does not update @mas->index and
4755 * @mas->last on overflow.
4756 * Restarts on dead nodes.
4757 *
4758 * Return: the next entry or %NULL.
4759 */
mas_next_entry(struct ma_state * mas,unsigned long limit)4760 static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit)
4761 {
4762 if (mas->last >= limit) {
4763 mas->status = ma_overflow;
4764 return NULL;
4765 }
4766
4767 return mas_next_slot(mas, limit, false);
4768 }
4769
4770 /*
4771 * mas_rev_awalk() - Internal function. Reverse allocation walk. Find the
4772 * highest gap address of a given size in a given node and descend.
4773 * @mas: The maple state
4774 * @size: The needed size.
4775 *
4776 * Return: True if found in a leaf, false otherwise.
4777 *
4778 */
mas_rev_awalk(struct ma_state * mas,unsigned long size,unsigned long * gap_min,unsigned long * gap_max)4779 static bool mas_rev_awalk(struct ma_state *mas, unsigned long size,
4780 unsigned long *gap_min, unsigned long *gap_max)
4781 {
4782 enum maple_type type = mte_node_type(mas->node);
4783 struct maple_node *node = mas_mn(mas);
4784 unsigned long *pivots, *gaps;
4785 void __rcu **slots;
4786 unsigned long gap = 0;
4787 unsigned long max, min;
4788 unsigned char offset;
4789
4790 if (unlikely(mas_is_err(mas)))
4791 return true;
4792
4793 if (ma_is_dense(type)) {
4794 /* dense nodes. */
4795 mas->offset = (unsigned char)(mas->index - mas->min);
4796 return true;
4797 }
4798
4799 pivots = ma_pivots(node, type);
4800 slots = ma_slots(node, type);
4801 gaps = ma_gaps(node, type);
4802 offset = mas->offset;
4803 min = mas_safe_min(mas, pivots, offset);
4804 /* Skip out of bounds. */
4805 while (mas->last < min)
4806 min = mas_safe_min(mas, pivots, --offset);
4807
4808 max = mas_safe_pivot(mas, pivots, offset, type);
4809 while (mas->index <= max) {
4810 gap = 0;
4811 if (gaps)
4812 gap = gaps[offset];
4813 else if (!mas_slot(mas, slots, offset))
4814 gap = max - min + 1;
4815
4816 if (gap) {
4817 if ((size <= gap) && (size <= mas->last - min + 1))
4818 break;
4819
4820 if (!gaps) {
4821 /* Skip the next slot, it cannot be a gap. */
4822 if (offset < 2)
4823 goto ascend;
4824
4825 offset -= 2;
4826 max = pivots[offset];
4827 min = mas_safe_min(mas, pivots, offset);
4828 continue;
4829 }
4830 }
4831
4832 if (!offset)
4833 goto ascend;
4834
4835 offset--;
4836 max = min - 1;
4837 min = mas_safe_min(mas, pivots, offset);
4838 }
4839
4840 if (unlikely((mas->index > max) || (size - 1 > max - mas->index)))
4841 goto no_space;
4842
4843 if (unlikely(ma_is_leaf(type))) {
4844 mas->offset = offset;
4845 *gap_min = min;
4846 *gap_max = min + gap - 1;
4847 return true;
4848 }
4849
4850 /* descend, only happens under lock. */
4851 mas->node = mas_slot(mas, slots, offset);
4852 mas->min = min;
4853 mas->max = max;
4854 mas->offset = mas_data_end(mas);
4855 return false;
4856
4857 ascend:
4858 if (!mte_is_root(mas->node))
4859 return false;
4860
4861 no_space:
4862 mas_set_err(mas, -EBUSY);
4863 return false;
4864 }
4865
mas_anode_descend(struct ma_state * mas,unsigned long size)4866 static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
4867 {
4868 enum maple_type type = mte_node_type(mas->node);
4869 unsigned long pivot, min, gap = 0;
4870 unsigned char offset, data_end;
4871 unsigned long *gaps, *pivots;
4872 void __rcu **slots;
4873 struct maple_node *node;
4874 bool found = false;
4875
4876 if (ma_is_dense(type)) {
4877 mas->offset = (unsigned char)(mas->index - mas->min);
4878 return true;
4879 }
4880
4881 node = mas_mn(mas);
4882 pivots = ma_pivots(node, type);
4883 slots = ma_slots(node, type);
4884 gaps = ma_gaps(node, type);
4885 offset = mas->offset;
4886 min = mas_safe_min(mas, pivots, offset);
4887 data_end = ma_data_end(node, type, pivots, mas->max);
4888 for (; offset <= data_end; offset++) {
4889 pivot = mas_safe_pivot(mas, pivots, offset, type);
4890
4891 /* Not within lower bounds */
4892 if (mas->index > pivot)
4893 goto next_slot;
4894
4895 if (gaps)
4896 gap = gaps[offset];
4897 else if (!mas_slot(mas, slots, offset))
4898 gap = min(pivot, mas->last) - max(mas->index, min) + 1;
4899 else
4900 goto next_slot;
4901
4902 if (gap >= size) {
4903 if (ma_is_leaf(type)) {
4904 found = true;
4905 goto done;
4906 }
4907 if (mas->index <= pivot) {
4908 mas->node = mas_slot(mas, slots, offset);
4909 mas->min = min;
4910 mas->max = pivot;
4911 offset = 0;
4912 break;
4913 }
4914 }
4915 next_slot:
4916 min = pivot + 1;
4917 if (mas->last <= pivot) {
4918 mas_set_err(mas, -EBUSY);
4919 return true;
4920 }
4921 }
4922
4923 if (mte_is_root(mas->node))
4924 found = true;
4925 done:
4926 mas->offset = offset;
4927 return found;
4928 }
4929
4930 /**
4931 * mas_walk() - Search for @mas->index in the tree.
4932 * @mas: The maple state.
4933 *
4934 * mas->index and mas->last will be set to the range if there is a value. If
4935 * mas->status is ma_none, reset to ma_start
4936 *
4937 * Return: the entry at the location or %NULL.
4938 */
mas_walk(struct ma_state * mas)4939 void *mas_walk(struct ma_state *mas)
4940 {
4941 void *entry;
4942
4943 if (!mas_is_active(mas) || !mas_is_start(mas))
4944 mas->status = ma_start;
4945 retry:
4946 entry = mas_state_walk(mas);
4947 if (mas_is_start(mas)) {
4948 goto retry;
4949 } else if (mas_is_none(mas)) {
4950 mas->index = 0;
4951 mas->last = ULONG_MAX;
4952 } else if (mas_is_ptr(mas)) {
4953 if (!mas->index) {
4954 mas->last = 0;
4955 return entry;
4956 }
4957
4958 mas->index = 1;
4959 mas->last = ULONG_MAX;
4960 mas->status = ma_none;
4961 return NULL;
4962 }
4963
4964 return entry;
4965 }
4966 EXPORT_SYMBOL_GPL(mas_walk);
4967
mas_rewind_node(struct ma_state * mas)4968 static inline bool mas_rewind_node(struct ma_state *mas)
4969 {
4970 unsigned char slot;
4971
4972 do {
4973 if (mte_is_root(mas->node)) {
4974 slot = mas->offset;
4975 if (!slot)
4976 return false;
4977 } else {
4978 mas_ascend(mas);
4979 slot = mas->offset;
4980 }
4981 } while (!slot);
4982
4983 mas->offset = --slot;
4984 return true;
4985 }
4986
4987 /*
4988 * mas_skip_node() - Internal function. Skip over a node.
4989 * @mas: The maple state.
4990 *
4991 * Return: true if there is another node, false otherwise.
4992 */
mas_skip_node(struct ma_state * mas)4993 static inline bool mas_skip_node(struct ma_state *mas)
4994 {
4995 if (mas_is_err(mas))
4996 return false;
4997
4998 do {
4999 if (mte_is_root(mas->node)) {
5000 if (mas->offset >= mas_data_end(mas)) {
5001 mas_set_err(mas, -EBUSY);
5002 return false;
5003 }
5004 } else {
5005 mas_ascend(mas);
5006 }
5007 } while (mas->offset >= mas_data_end(mas));
5008
5009 mas->offset++;
5010 return true;
5011 }
5012
5013 /*
5014 * mas_awalk() - Allocation walk. Search from low address to high, for a gap of
5015 * @size
5016 * @mas: The maple state
5017 * @size: The size of the gap required
5018 *
5019 * Search between @mas->index and @mas->last for a gap of @size.
5020 */
mas_awalk(struct ma_state * mas,unsigned long size)5021 static inline void mas_awalk(struct ma_state *mas, unsigned long size)
5022 {
5023 struct maple_enode *last = NULL;
5024
5025 /*
5026 * There are 4 options:
5027 * go to child (descend)
5028 * go back to parent (ascend)
5029 * no gap found. (return, slot == MAPLE_NODE_SLOTS)
5030 * found the gap. (return, slot != MAPLE_NODE_SLOTS)
5031 */
5032 while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) {
5033 if (last == mas->node)
5034 mas_skip_node(mas);
5035 else
5036 last = mas->node;
5037 }
5038 }
5039
5040 /*
5041 * mas_sparse_area() - Internal function. Return upper or lower limit when
5042 * searching for a gap in an empty tree.
5043 * @mas: The maple state
5044 * @min: the minimum range
5045 * @max: The maximum range
5046 * @size: The size of the gap
5047 * @fwd: Searching forward or back
5048 */
mas_sparse_area(struct ma_state * mas,unsigned long min,unsigned long max,unsigned long size,bool fwd)5049 static inline int mas_sparse_area(struct ma_state *mas, unsigned long min,
5050 unsigned long max, unsigned long size, bool fwd)
5051 {
5052 if (!unlikely(mas_is_none(mas)) && min == 0) {
5053 min++;
5054 /*
5055 * At this time, min is increased, we need to recheck whether
5056 * the size is satisfied.
5057 */
5058 if (min > max || max - min + 1 < size)
5059 return -EBUSY;
5060 }
5061 /* mas_is_ptr */
5062
5063 if (fwd) {
5064 mas->index = min;
5065 mas->last = min + size - 1;
5066 } else {
5067 mas->last = max;
5068 mas->index = max - size + 1;
5069 }
5070 return 0;
5071 }
5072
5073 /*
5074 * mas_empty_area() - Get the lowest address within the range that is
5075 * sufficient for the size requested.
5076 * @mas: The maple state
5077 * @min: The lowest value of the range
5078 * @max: The highest value of the range
5079 * @size: The size needed
5080 */
mas_empty_area(struct ma_state * mas,unsigned long min,unsigned long max,unsigned long size)5081 int mas_empty_area(struct ma_state *mas, unsigned long min,
5082 unsigned long max, unsigned long size)
5083 {
5084 unsigned char offset;
5085 unsigned long *pivots;
5086 enum maple_type mt;
5087 struct maple_node *node;
5088
5089 if (min > max)
5090 return -EINVAL;
5091
5092 if (size == 0 || max - min < size - 1)
5093 return -EINVAL;
5094
5095 if (mas_is_start(mas))
5096 mas_start(mas);
5097 else if (mas->offset >= 2)
5098 mas->offset -= 2;
5099 else if (!mas_skip_node(mas))
5100 return -EBUSY;
5101
5102 /* Empty set */
5103 if (mas_is_none(mas) || mas_is_ptr(mas))
5104 return mas_sparse_area(mas, min, max, size, true);
5105
5106 /* The start of the window can only be within these values */
5107 mas->index = min;
5108 mas->last = max;
5109 mas_awalk(mas, size);
5110
5111 if (unlikely(mas_is_err(mas)))
5112 return xa_err(mas->node);
5113
5114 offset = mas->offset;
5115 if (unlikely(offset == MAPLE_NODE_SLOTS))
5116 return -EBUSY;
5117
5118 node = mas_mn(mas);
5119 mt = mte_node_type(mas->node);
5120 pivots = ma_pivots(node, mt);
5121 min = mas_safe_min(mas, pivots, offset);
5122 if (mas->index < min)
5123 mas->index = min;
5124 mas->last = mas->index + size - 1;
5125 mas->end = ma_data_end(node, mt, pivots, mas->max);
5126 return 0;
5127 }
5128 EXPORT_SYMBOL_GPL(mas_empty_area);
5129
5130 /*
5131 * mas_empty_area_rev() - Get the highest address within the range that is
5132 * sufficient for the size requested.
5133 * @mas: The maple state
5134 * @min: The lowest value of the range
5135 * @max: The highest value of the range
5136 * @size: The size needed
5137 */
mas_empty_area_rev(struct ma_state * mas,unsigned long min,unsigned long max,unsigned long size)5138 int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
5139 unsigned long max, unsigned long size)
5140 {
5141 struct maple_enode *last = mas->node;
5142
5143 if (min > max)
5144 return -EINVAL;
5145
5146 if (size == 0 || max - min < size - 1)
5147 return -EINVAL;
5148
5149 if (mas_is_start(mas))
5150 mas_start(mas);
5151 else if ((mas->offset < 2) && (!mas_rewind_node(mas)))
5152 return -EBUSY;
5153
5154 if (unlikely(mas_is_none(mas) || mas_is_ptr(mas)))
5155 return mas_sparse_area(mas, min, max, size, false);
5156 else if (mas->offset >= 2)
5157 mas->offset -= 2;
5158 else
5159 mas->offset = mas_data_end(mas);
5160
5161
5162 /* The start of the window can only be within these values. */
5163 mas->index = min;
5164 mas->last = max;
5165
5166 while (!mas_rev_awalk(mas, size, &min, &max)) {
5167 if (last == mas->node) {
5168 if (!mas_rewind_node(mas))
5169 return -EBUSY;
5170 } else {
5171 last = mas->node;
5172 }
5173 }
5174
5175 if (mas_is_err(mas))
5176 return xa_err(mas->node);
5177
5178 if (unlikely(mas->offset == MAPLE_NODE_SLOTS))
5179 return -EBUSY;
5180
5181 /* Trim the upper limit to the max. */
5182 if (max < mas->last)
5183 mas->last = max;
5184
5185 mas->index = mas->last - size + 1;
5186 mas->end = mas_data_end(mas);
5187 return 0;
5188 }
5189 EXPORT_SYMBOL_GPL(mas_empty_area_rev);
5190
5191 /*
5192 * mte_dead_leaves() - Mark all leaves of a node as dead.
5193 * @enode: the encoded node
5194 * @mt: the maple tree
5195 * @slots: Pointer to the slot array
5196 *
5197 * Must hold the write lock.
5198 *
5199 * Return: The number of leaves marked as dead.
5200 */
5201 static inline
mte_dead_leaves(struct maple_enode * enode,struct maple_tree * mt,void __rcu ** slots)5202 unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt,
5203 void __rcu **slots)
5204 {
5205 struct maple_node *node;
5206 enum maple_type type;
5207 void *entry;
5208 int offset;
5209
5210 for (offset = 0; offset < mt_slot_count(enode); offset++) {
5211 entry = mt_slot(mt, slots, offset);
5212 type = mte_node_type(entry);
5213 node = mte_to_node(entry);
5214 /* Use both node and type to catch LE & BE metadata */
5215 if (!node || !type)
5216 break;
5217
5218 mte_set_node_dead(entry);
5219 node->type = type;
5220 rcu_assign_pointer(slots[offset], node);
5221 }
5222
5223 return offset;
5224 }
5225
5226 /**
5227 * mte_dead_walk() - Walk down a dead tree to just before the leaves
5228 * @enode: The maple encoded node
5229 * @offset: The starting offset
5230 *
5231 * Note: This can only be used from the RCU callback context.
5232 */
mte_dead_walk(struct maple_enode ** enode,unsigned char offset)5233 static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset)
5234 {
5235 struct maple_node *node, *next;
5236 void __rcu **slots = NULL;
5237
5238 next = mte_to_node(*enode);
5239 do {
5240 *enode = ma_enode_ptr(next);
5241 node = mte_to_node(*enode);
5242 slots = ma_slots(node, node->type);
5243 next = rcu_dereference_protected(slots[offset],
5244 lock_is_held(&rcu_callback_map));
5245 offset = 0;
5246 } while (!ma_is_leaf(next->type));
5247
5248 return slots;
5249 }
5250
5251 /**
5252 * mt_free_walk() - Walk & free a tree in the RCU callback context
5253 * @head: The RCU head that's within the node.
5254 *
5255 * Note: This can only be used from the RCU callback context.
5256 */
mt_free_walk(struct rcu_head * head)5257 static void mt_free_walk(struct rcu_head *head)
5258 {
5259 void __rcu **slots;
5260 struct maple_node *node, *start;
5261 struct maple_enode *enode;
5262 unsigned char offset;
5263 enum maple_type type;
5264
5265 node = container_of(head, struct maple_node, rcu);
5266
5267 if (ma_is_leaf(node->type))
5268 goto free_leaf;
5269
5270 start = node;
5271 enode = mt_mk_node(node, node->type);
5272 slots = mte_dead_walk(&enode, 0);
5273 node = mte_to_node(enode);
5274 do {
5275 mt_free_bulk(node->slot_len, slots);
5276 offset = node->parent_slot + 1;
5277 enode = node->piv_parent;
5278 if (mte_to_node(enode) == node)
5279 goto free_leaf;
5280
5281 type = mte_node_type(enode);
5282 slots = ma_slots(mte_to_node(enode), type);
5283 if ((offset < mt_slots[type]) &&
5284 rcu_dereference_protected(slots[offset],
5285 lock_is_held(&rcu_callback_map)))
5286 slots = mte_dead_walk(&enode, offset);
5287 node = mte_to_node(enode);
5288 } while ((node != start) || (node->slot_len < offset));
5289
5290 slots = ma_slots(node, node->type);
5291 mt_free_bulk(node->slot_len, slots);
5292
5293 free_leaf:
5294 mt_free_rcu(&node->rcu);
5295 }
5296
mte_destroy_descend(struct maple_enode ** enode,struct maple_tree * mt,struct maple_enode * prev,unsigned char offset)5297 static inline void __rcu **mte_destroy_descend(struct maple_enode **enode,
5298 struct maple_tree *mt, struct maple_enode *prev, unsigned char offset)
5299 {
5300 struct maple_node *node;
5301 struct maple_enode *next = *enode;
5302 void __rcu **slots = NULL;
5303 enum maple_type type;
5304 unsigned char next_offset = 0;
5305
5306 do {
5307 *enode = next;
5308 node = mte_to_node(*enode);
5309 type = mte_node_type(*enode);
5310 slots = ma_slots(node, type);
5311 next = mt_slot_locked(mt, slots, next_offset);
5312 if ((mte_dead_node(next)))
5313 next = mt_slot_locked(mt, slots, ++next_offset);
5314
5315 mte_set_node_dead(*enode);
5316 node->type = type;
5317 node->piv_parent = prev;
5318 node->parent_slot = offset;
5319 offset = next_offset;
5320 next_offset = 0;
5321 prev = *enode;
5322 } while (!mte_is_leaf(next));
5323
5324 return slots;
5325 }
5326
mt_destroy_walk(struct maple_enode * enode,struct maple_tree * mt,bool free)5327 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
5328 bool free)
5329 {
5330 void __rcu **slots;
5331 struct maple_node *node = mte_to_node(enode);
5332 struct maple_enode *start;
5333
5334 if (mte_is_leaf(enode)) {
5335 node->type = mte_node_type(enode);
5336 goto free_leaf;
5337 }
5338
5339 start = enode;
5340 slots = mte_destroy_descend(&enode, mt, start, 0);
5341 node = mte_to_node(enode); // Updated in the above call.
5342 do {
5343 enum maple_type type;
5344 unsigned char offset;
5345 struct maple_enode *parent, *tmp;
5346
5347 node->slot_len = mte_dead_leaves(enode, mt, slots);
5348 if (free)
5349 mt_free_bulk(node->slot_len, slots);
5350 offset = node->parent_slot + 1;
5351 enode = node->piv_parent;
5352 if (mte_to_node(enode) == node)
5353 goto free_leaf;
5354
5355 type = mte_node_type(enode);
5356 slots = ma_slots(mte_to_node(enode), type);
5357 if (offset >= mt_slots[type])
5358 goto next;
5359
5360 tmp = mt_slot_locked(mt, slots, offset);
5361 if (mte_node_type(tmp) && mte_to_node(tmp)) {
5362 parent = enode;
5363 enode = tmp;
5364 slots = mte_destroy_descend(&enode, mt, parent, offset);
5365 }
5366 next:
5367 node = mte_to_node(enode);
5368 } while (start != enode);
5369
5370 node = mte_to_node(enode);
5371 node->slot_len = mte_dead_leaves(enode, mt, slots);
5372 if (free)
5373 mt_free_bulk(node->slot_len, slots);
5374
5375 free_leaf:
5376 if (free)
5377 mt_free_rcu(&node->rcu);
5378 else
5379 mt_clear_meta(mt, node, node->type);
5380 }
5381
5382 /*
5383 * mte_destroy_walk() - Free a tree or sub-tree.
5384 * @enode: the encoded maple node (maple_enode) to start
5385 * @mt: the tree to free - needed for node types.
5386 *
5387 * Must hold the write lock.
5388 */
mte_destroy_walk(struct maple_enode * enode,struct maple_tree * mt)5389 static inline void mte_destroy_walk(struct maple_enode *enode,
5390 struct maple_tree *mt)
5391 {
5392 struct maple_node *node = mte_to_node(enode);
5393
5394 if (mt_in_rcu(mt)) {
5395 mt_destroy_walk(enode, mt, false);
5396 call_rcu(&node->rcu, mt_free_walk);
5397 } else {
5398 mt_destroy_walk(enode, mt, true);
5399 }
5400 }
5401 /* Interface */
5402
5403 /**
5404 * mas_store() - Store an @entry.
5405 * @mas: The maple state.
5406 * @entry: The entry to store.
5407 *
5408 * The @mas->index and @mas->last is used to set the range for the @entry.
5409 *
5410 * Return: the first entry between mas->index and mas->last or %NULL.
5411 */
mas_store(struct ma_state * mas,void * entry)5412 void *mas_store(struct ma_state *mas, void *entry)
5413 {
5414 int request;
5415 MA_WR_STATE(wr_mas, mas, entry);
5416
5417 trace_ma_write(__func__, mas, 0, entry);
5418 #ifdef CONFIG_DEBUG_MAPLE_TREE
5419 if (MAS_WARN_ON(mas, mas->index > mas->last))
5420 pr_err("Error %lX > %lX " PTR_FMT "\n", mas->index, mas->last,
5421 entry);
5422
5423 if (mas->index > mas->last) {
5424 mas_set_err(mas, -EINVAL);
5425 return NULL;
5426 }
5427
5428 #endif
5429
5430 /*
5431 * Storing is the same operation as insert with the added caveat that it
5432 * can overwrite entries. Although this seems simple enough, one may
5433 * want to examine what happens if a single store operation was to
5434 * overwrite multiple entries within a self-balancing B-Tree.
5435 */
5436 mas_wr_prealloc_setup(&wr_mas);
5437 mas->store_type = mas_wr_store_type(&wr_mas);
5438 if (mas->mas_flags & MA_STATE_PREALLOC) {
5439 mas_wr_store_entry(&wr_mas);
5440 MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas));
5441 return wr_mas.content;
5442 }
5443
5444 request = mas_prealloc_calc(mas, entry);
5445 if (!request)
5446 goto store;
5447
5448 mas_node_count(mas, request);
5449 if (mas_is_err(mas))
5450 return NULL;
5451
5452 store:
5453 mas_wr_store_entry(&wr_mas);
5454 mas_destroy(mas);
5455 return wr_mas.content;
5456 }
5457 EXPORT_SYMBOL_GPL(mas_store);
5458
5459 /**
5460 * mas_store_gfp() - Store a value into the tree.
5461 * @mas: The maple state
5462 * @entry: The entry to store
5463 * @gfp: The GFP_FLAGS to use for allocations if necessary.
5464 *
5465 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
5466 * be allocated.
5467 */
mas_store_gfp(struct ma_state * mas,void * entry,gfp_t gfp)5468 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
5469 {
5470 unsigned long index = mas->index;
5471 unsigned long last = mas->last;
5472 MA_WR_STATE(wr_mas, mas, entry);
5473 int ret = 0;
5474
5475 retry:
5476 mas_wr_preallocate(&wr_mas, entry);
5477 if (unlikely(mas_nomem(mas, gfp))) {
5478 if (!entry)
5479 __mas_set_range(mas, index, last);
5480 goto retry;
5481 }
5482
5483 if (mas_is_err(mas)) {
5484 ret = xa_err(mas->node);
5485 goto out;
5486 }
5487
5488 mas_wr_store_entry(&wr_mas);
5489 out:
5490 mas_destroy(mas);
5491 return ret;
5492 }
5493 EXPORT_SYMBOL_GPL(mas_store_gfp);
5494
5495 /**
5496 * mas_store_prealloc() - Store a value into the tree using memory
5497 * preallocated in the maple state.
5498 * @mas: The maple state
5499 * @entry: The entry to store.
5500 */
mas_store_prealloc(struct ma_state * mas,void * entry)5501 void mas_store_prealloc(struct ma_state *mas, void *entry)
5502 {
5503 MA_WR_STATE(wr_mas, mas, entry);
5504
5505 if (mas->store_type == wr_store_root) {
5506 mas_wr_prealloc_setup(&wr_mas);
5507 goto store;
5508 }
5509
5510 mas_wr_walk_descend(&wr_mas);
5511 if (mas->store_type != wr_spanning_store) {
5512 /* set wr_mas->content to current slot */
5513 wr_mas.content = mas_slot_locked(mas, wr_mas.slots, mas->offset);
5514 mas_wr_end_piv(&wr_mas);
5515 }
5516
5517 store:
5518 trace_ma_write(__func__, mas, 0, entry);
5519 mas_wr_store_entry(&wr_mas);
5520 MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas));
5521 mas_destroy(mas);
5522 }
5523 EXPORT_SYMBOL_GPL(mas_store_prealloc);
5524
5525 /**
5526 * mas_preallocate() - Preallocate enough nodes for a store operation
5527 * @mas: The maple state
5528 * @entry: The entry that will be stored
5529 * @gfp: The GFP_FLAGS to use for allocations.
5530 *
5531 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5532 */
mas_preallocate(struct ma_state * mas,void * entry,gfp_t gfp)5533 int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp)
5534 {
5535 MA_WR_STATE(wr_mas, mas, entry);
5536 int ret = 0;
5537 int request;
5538
5539 mas_wr_prealloc_setup(&wr_mas);
5540 mas->store_type = mas_wr_store_type(&wr_mas);
5541 request = mas_prealloc_calc(mas, entry);
5542 if (!request)
5543 return ret;
5544
5545 mas_node_count_gfp(mas, request, gfp);
5546 if (mas_is_err(mas)) {
5547 mas_set_alloc_req(mas, 0);
5548 ret = xa_err(mas->node);
5549 mas_destroy(mas);
5550 mas_reset(mas);
5551 return ret;
5552 }
5553
5554 mas->mas_flags |= MA_STATE_PREALLOC;
5555 return ret;
5556 }
5557 EXPORT_SYMBOL_GPL(mas_preallocate);
5558
5559 /*
5560 * mas_destroy() - destroy a maple state.
5561 * @mas: The maple state
5562 *
5563 * Upon completion, check the left-most node and rebalance against the node to
5564 * the right if necessary. Frees any allocated nodes associated with this maple
5565 * state.
5566 */
mas_destroy(struct ma_state * mas)5567 void mas_destroy(struct ma_state *mas)
5568 {
5569 struct maple_alloc *node;
5570 unsigned long total;
5571
5572 /*
5573 * When using mas_for_each() to insert an expected number of elements,
5574 * it is possible that the number inserted is less than the expected
5575 * number. To fix an invalid final node, a check is performed here to
5576 * rebalance the previous node with the final node.
5577 */
5578 if (mas->mas_flags & MA_STATE_REBALANCE) {
5579 unsigned char end;
5580 if (mas_is_err(mas))
5581 mas_reset(mas);
5582 mas_start(mas);
5583 mtree_range_walk(mas);
5584 end = mas->end + 1;
5585 if (end < mt_min_slot_count(mas->node) - 1)
5586 mas_destroy_rebalance(mas, end);
5587
5588 mas->mas_flags &= ~MA_STATE_REBALANCE;
5589 }
5590 mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC);
5591
5592 total = mas_allocated(mas);
5593 while (total) {
5594 node = mas->alloc;
5595 mas->alloc = node->slot[0];
5596 if (node->node_count > 1) {
5597 size_t count = node->node_count - 1;
5598
5599 mt_free_bulk(count, (void __rcu **)&node->slot[1]);
5600 total -= count;
5601 }
5602 mt_free_one(ma_mnode_ptr(node));
5603 total--;
5604 }
5605
5606 mas->alloc = NULL;
5607 }
5608 EXPORT_SYMBOL_GPL(mas_destroy);
5609
5610 /*
5611 * mas_expected_entries() - Set the expected number of entries that will be inserted.
5612 * @mas: The maple state
5613 * @nr_entries: The number of expected entries.
5614 *
5615 * This will attempt to pre-allocate enough nodes to store the expected number
5616 * of entries. The allocations will occur using the bulk allocator interface
5617 * for speed. Please call mas_destroy() on the @mas after inserting the entries
5618 * to ensure any unused nodes are freed.
5619 *
5620 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5621 */
mas_expected_entries(struct ma_state * mas,unsigned long nr_entries)5622 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries)
5623 {
5624 int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2;
5625 struct maple_enode *enode = mas->node;
5626 int nr_nodes;
5627 int ret;
5628
5629 /*
5630 * Sometimes it is necessary to duplicate a tree to a new tree, such as
5631 * forking a process and duplicating the VMAs from one tree to a new
5632 * tree. When such a situation arises, it is known that the new tree is
5633 * not going to be used until the entire tree is populated. For
5634 * performance reasons, it is best to use a bulk load with RCU disabled.
5635 * This allows for optimistic splitting that favours the left and reuse
5636 * of nodes during the operation.
5637 */
5638
5639 /* Optimize splitting for bulk insert in-order */
5640 mas->mas_flags |= MA_STATE_BULK;
5641
5642 /*
5643 * Avoid overflow, assume a gap between each entry and a trailing null.
5644 * If this is wrong, it just means allocation can happen during
5645 * insertion of entries.
5646 */
5647 nr_nodes = max(nr_entries, nr_entries * 2 + 1);
5648 if (!mt_is_alloc(mas->tree))
5649 nonleaf_cap = MAPLE_RANGE64_SLOTS - 2;
5650
5651 /* Leaves; reduce slots to keep space for expansion */
5652 nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2);
5653 /* Internal nodes */
5654 nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap);
5655 /* Add working room for split (2 nodes) + new parents */
5656 mas_node_count_gfp(mas, nr_nodes + 3, GFP_KERNEL);
5657
5658 /* Detect if allocations run out */
5659 mas->mas_flags |= MA_STATE_PREALLOC;
5660
5661 if (!mas_is_err(mas))
5662 return 0;
5663
5664 ret = xa_err(mas->node);
5665 mas->node = enode;
5666 mas_destroy(mas);
5667 return ret;
5668
5669 }
5670 EXPORT_SYMBOL_GPL(mas_expected_entries);
5671
mas_next_setup(struct ma_state * mas,unsigned long max,void ** entry)5672 static bool mas_next_setup(struct ma_state *mas, unsigned long max,
5673 void **entry)
5674 {
5675 bool was_none = mas_is_none(mas);
5676
5677 if (unlikely(mas->last >= max)) {
5678 mas->status = ma_overflow;
5679 return true;
5680 }
5681
5682 switch (mas->status) {
5683 case ma_active:
5684 return false;
5685 case ma_none:
5686 fallthrough;
5687 case ma_pause:
5688 mas->status = ma_start;
5689 fallthrough;
5690 case ma_start:
5691 mas_walk(mas); /* Retries on dead nodes handled by mas_walk */
5692 break;
5693 case ma_overflow:
5694 /* Overflowed before, but the max changed */
5695 mas->status = ma_active;
5696 break;
5697 case ma_underflow:
5698 /* The user expects the mas to be one before where it is */
5699 mas->status = ma_active;
5700 *entry = mas_walk(mas);
5701 if (*entry)
5702 return true;
5703 break;
5704 case ma_root:
5705 break;
5706 case ma_error:
5707 return true;
5708 }
5709
5710 if (likely(mas_is_active(mas))) /* Fast path */
5711 return false;
5712
5713 if (mas_is_ptr(mas)) {
5714 *entry = NULL;
5715 if (was_none && mas->index == 0) {
5716 mas->index = mas->last = 0;
5717 return true;
5718 }
5719 mas->index = 1;
5720 mas->last = ULONG_MAX;
5721 mas->status = ma_none;
5722 return true;
5723 }
5724
5725 if (mas_is_none(mas))
5726 return true;
5727
5728 return false;
5729 }
5730
5731 /**
5732 * mas_next() - Get the next entry.
5733 * @mas: The maple state
5734 * @max: The maximum index to check.
5735 *
5736 * Returns the next entry after @mas->index.
5737 * Must hold rcu_read_lock or the write lock.
5738 * Can return the zero entry.
5739 *
5740 * Return: The next entry or %NULL
5741 */
mas_next(struct ma_state * mas,unsigned long max)5742 void *mas_next(struct ma_state *mas, unsigned long max)
5743 {
5744 void *entry = NULL;
5745
5746 if (mas_next_setup(mas, max, &entry))
5747 return entry;
5748
5749 /* Retries on dead nodes handled by mas_next_slot */
5750 return mas_next_slot(mas, max, false);
5751 }
5752 EXPORT_SYMBOL_GPL(mas_next);
5753
5754 /**
5755 * mas_next_range() - Advance the maple state to the next range
5756 * @mas: The maple state
5757 * @max: The maximum index to check.
5758 *
5759 * Sets @mas->index and @mas->last to the range.
5760 * Must hold rcu_read_lock or the write lock.
5761 * Can return the zero entry.
5762 *
5763 * Return: The next entry or %NULL
5764 */
mas_next_range(struct ma_state * mas,unsigned long max)5765 void *mas_next_range(struct ma_state *mas, unsigned long max)
5766 {
5767 void *entry = NULL;
5768
5769 if (mas_next_setup(mas, max, &entry))
5770 return entry;
5771
5772 /* Retries on dead nodes handled by mas_next_slot */
5773 return mas_next_slot(mas, max, true);
5774 }
5775 EXPORT_SYMBOL_GPL(mas_next_range);
5776
5777 /**
5778 * mt_next() - get the next value in the maple tree
5779 * @mt: The maple tree
5780 * @index: The start index
5781 * @max: The maximum index to check
5782 *
5783 * Takes RCU read lock internally to protect the search, which does not
5784 * protect the returned pointer after dropping RCU read lock.
5785 * See also: Documentation/core-api/maple_tree.rst
5786 *
5787 * Return: The entry higher than @index or %NULL if nothing is found.
5788 */
mt_next(struct maple_tree * mt,unsigned long index,unsigned long max)5789 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
5790 {
5791 void *entry = NULL;
5792 MA_STATE(mas, mt, index, index);
5793
5794 rcu_read_lock();
5795 entry = mas_next(&mas, max);
5796 rcu_read_unlock();
5797 return entry;
5798 }
5799 EXPORT_SYMBOL_GPL(mt_next);
5800
mas_prev_setup(struct ma_state * mas,unsigned long min,void ** entry)5801 static bool mas_prev_setup(struct ma_state *mas, unsigned long min, void **entry)
5802 {
5803 if (unlikely(mas->index <= min)) {
5804 mas->status = ma_underflow;
5805 return true;
5806 }
5807
5808 switch (mas->status) {
5809 case ma_active:
5810 return false;
5811 case ma_start:
5812 break;
5813 case ma_none:
5814 fallthrough;
5815 case ma_pause:
5816 mas->status = ma_start;
5817 break;
5818 case ma_underflow:
5819 /* underflowed before but the min changed */
5820 mas->status = ma_active;
5821 break;
5822 case ma_overflow:
5823 /* User expects mas to be one after where it is */
5824 mas->status = ma_active;
5825 *entry = mas_walk(mas);
5826 if (*entry)
5827 return true;
5828 break;
5829 case ma_root:
5830 break;
5831 case ma_error:
5832 return true;
5833 }
5834
5835 if (mas_is_start(mas))
5836 mas_walk(mas);
5837
5838 if (unlikely(mas_is_ptr(mas))) {
5839 if (!mas->index) {
5840 mas->status = ma_none;
5841 return true;
5842 }
5843 mas->index = mas->last = 0;
5844 *entry = mas_root(mas);
5845 return true;
5846 }
5847
5848 if (mas_is_none(mas)) {
5849 if (mas->index) {
5850 /* Walked to out-of-range pointer? */
5851 mas->index = mas->last = 0;
5852 mas->status = ma_root;
5853 *entry = mas_root(mas);
5854 return true;
5855 }
5856 return true;
5857 }
5858
5859 return false;
5860 }
5861
5862 /**
5863 * mas_prev() - Get the previous entry
5864 * @mas: The maple state
5865 * @min: The minimum value to check.
5866 *
5867 * Must hold rcu_read_lock or the write lock.
5868 * Will reset mas to ma_start if the status is ma_none. Will stop on not
5869 * searchable nodes.
5870 *
5871 * Return: the previous value or %NULL.
5872 */
mas_prev(struct ma_state * mas,unsigned long min)5873 void *mas_prev(struct ma_state *mas, unsigned long min)
5874 {
5875 void *entry = NULL;
5876
5877 if (mas_prev_setup(mas, min, &entry))
5878 return entry;
5879
5880 return mas_prev_slot(mas, min, false);
5881 }
5882 EXPORT_SYMBOL_GPL(mas_prev);
5883
5884 /**
5885 * mas_prev_range() - Advance to the previous range
5886 * @mas: The maple state
5887 * @min: The minimum value to check.
5888 *
5889 * Sets @mas->index and @mas->last to the range.
5890 * Must hold rcu_read_lock or the write lock.
5891 * Will reset mas to ma_start if the node is ma_none. Will stop on not
5892 * searchable nodes.
5893 *
5894 * Return: the previous value or %NULL.
5895 */
mas_prev_range(struct ma_state * mas,unsigned long min)5896 void *mas_prev_range(struct ma_state *mas, unsigned long min)
5897 {
5898 void *entry = NULL;
5899
5900 if (mas_prev_setup(mas, min, &entry))
5901 return entry;
5902
5903 return mas_prev_slot(mas, min, true);
5904 }
5905 EXPORT_SYMBOL_GPL(mas_prev_range);
5906
5907 /**
5908 * mt_prev() - get the previous value in the maple tree
5909 * @mt: The maple tree
5910 * @index: The start index
5911 * @min: The minimum index to check
5912 *
5913 * Takes RCU read lock internally to protect the search, which does not
5914 * protect the returned pointer after dropping RCU read lock.
5915 * See also: Documentation/core-api/maple_tree.rst
5916 *
5917 * Return: The entry before @index or %NULL if nothing is found.
5918 */
mt_prev(struct maple_tree * mt,unsigned long index,unsigned long min)5919 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
5920 {
5921 void *entry = NULL;
5922 MA_STATE(mas, mt, index, index);
5923
5924 rcu_read_lock();
5925 entry = mas_prev(&mas, min);
5926 rcu_read_unlock();
5927 return entry;
5928 }
5929 EXPORT_SYMBOL_GPL(mt_prev);
5930
5931 /**
5932 * mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
5933 * @mas: The maple state to pause
5934 *
5935 * Some users need to pause a walk and drop the lock they're holding in
5936 * order to yield to a higher priority thread or carry out an operation
5937 * on an entry. Those users should call this function before they drop
5938 * the lock. It resets the @mas to be suitable for the next iteration
5939 * of the loop after the user has reacquired the lock. If most entries
5940 * found during a walk require you to call mas_pause(), the mt_for_each()
5941 * iterator may be more appropriate.
5942 *
5943 */
mas_pause(struct ma_state * mas)5944 void mas_pause(struct ma_state *mas)
5945 {
5946 mas->status = ma_pause;
5947 mas->node = NULL;
5948 }
5949 EXPORT_SYMBOL_GPL(mas_pause);
5950
5951 /**
5952 * mas_find_setup() - Internal function to set up mas_find*().
5953 * @mas: The maple state
5954 * @max: The maximum index
5955 * @entry: Pointer to the entry
5956 *
5957 * Returns: True if entry is the answer, false otherwise.
5958 */
mas_find_setup(struct ma_state * mas,unsigned long max,void ** entry)5959 static __always_inline bool mas_find_setup(struct ma_state *mas, unsigned long max, void **entry)
5960 {
5961 switch (mas->status) {
5962 case ma_active:
5963 if (mas->last < max)
5964 return false;
5965 return true;
5966 case ma_start:
5967 break;
5968 case ma_pause:
5969 if (unlikely(mas->last >= max))
5970 return true;
5971
5972 mas->index = ++mas->last;
5973 mas->status = ma_start;
5974 break;
5975 case ma_none:
5976 if (unlikely(mas->last >= max))
5977 return true;
5978
5979 mas->index = mas->last;
5980 mas->status = ma_start;
5981 break;
5982 case ma_underflow:
5983 /* mas is pointing at entry before unable to go lower */
5984 if (unlikely(mas->index >= max)) {
5985 mas->status = ma_overflow;
5986 return true;
5987 }
5988
5989 mas->status = ma_active;
5990 *entry = mas_walk(mas);
5991 if (*entry)
5992 return true;
5993 break;
5994 case ma_overflow:
5995 if (unlikely(mas->last >= max))
5996 return true;
5997
5998 mas->status = ma_active;
5999 *entry = mas_walk(mas);
6000 if (*entry)
6001 return true;
6002 break;
6003 case ma_root:
6004 break;
6005 case ma_error:
6006 return true;
6007 }
6008
6009 if (mas_is_start(mas)) {
6010 /* First run or continue */
6011 if (mas->index > max)
6012 return true;
6013
6014 *entry = mas_walk(mas);
6015 if (*entry)
6016 return true;
6017
6018 }
6019
6020 if (unlikely(mas_is_ptr(mas)))
6021 goto ptr_out_of_range;
6022
6023 if (unlikely(mas_is_none(mas)))
6024 return true;
6025
6026 if (mas->index == max)
6027 return true;
6028
6029 return false;
6030
6031 ptr_out_of_range:
6032 mas->status = ma_none;
6033 mas->index = 1;
6034 mas->last = ULONG_MAX;
6035 return true;
6036 }
6037
6038 /**
6039 * mas_find() - On the first call, find the entry at or after mas->index up to
6040 * %max. Otherwise, find the entry after mas->index.
6041 * @mas: The maple state
6042 * @max: The maximum value to check.
6043 *
6044 * Must hold rcu_read_lock or the write lock.
6045 * If an entry exists, last and index are updated accordingly.
6046 * May set @mas->status to ma_overflow.
6047 *
6048 * Return: The entry or %NULL.
6049 */
mas_find(struct ma_state * mas,unsigned long max)6050 void *mas_find(struct ma_state *mas, unsigned long max)
6051 {
6052 void *entry = NULL;
6053
6054 if (mas_find_setup(mas, max, &entry))
6055 return entry;
6056
6057 /* Retries on dead nodes handled by mas_next_slot */
6058 entry = mas_next_slot(mas, max, false);
6059 /* Ignore overflow */
6060 mas->status = ma_active;
6061 return entry;
6062 }
6063 EXPORT_SYMBOL_GPL(mas_find);
6064
6065 /**
6066 * mas_find_range() - On the first call, find the entry at or after
6067 * mas->index up to %max. Otherwise, advance to the next slot mas->index.
6068 * @mas: The maple state
6069 * @max: The maximum value to check.
6070 *
6071 * Must hold rcu_read_lock or the write lock.
6072 * If an entry exists, last and index are updated accordingly.
6073 * May set @mas->status to ma_overflow.
6074 *
6075 * Return: The entry or %NULL.
6076 */
mas_find_range(struct ma_state * mas,unsigned long max)6077 void *mas_find_range(struct ma_state *mas, unsigned long max)
6078 {
6079 void *entry = NULL;
6080
6081 if (mas_find_setup(mas, max, &entry))
6082 return entry;
6083
6084 /* Retries on dead nodes handled by mas_next_slot */
6085 return mas_next_slot(mas, max, true);
6086 }
6087 EXPORT_SYMBOL_GPL(mas_find_range);
6088
6089 /**
6090 * mas_find_rev_setup() - Internal function to set up mas_find_*_rev()
6091 * @mas: The maple state
6092 * @min: The minimum index
6093 * @entry: Pointer to the entry
6094 *
6095 * Returns: True if entry is the answer, false otherwise.
6096 */
mas_find_rev_setup(struct ma_state * mas,unsigned long min,void ** entry)6097 static bool mas_find_rev_setup(struct ma_state *mas, unsigned long min,
6098 void **entry)
6099 {
6100
6101 switch (mas->status) {
6102 case ma_active:
6103 goto active;
6104 case ma_start:
6105 break;
6106 case ma_pause:
6107 if (unlikely(mas->index <= min)) {
6108 mas->status = ma_underflow;
6109 return true;
6110 }
6111 mas->last = --mas->index;
6112 mas->status = ma_start;
6113 break;
6114 case ma_none:
6115 if (mas->index <= min)
6116 goto none;
6117
6118 mas->last = mas->index;
6119 mas->status = ma_start;
6120 break;
6121 case ma_overflow: /* user expects the mas to be one after where it is */
6122 if (unlikely(mas->index <= min)) {
6123 mas->status = ma_underflow;
6124 return true;
6125 }
6126
6127 mas->status = ma_active;
6128 break;
6129 case ma_underflow: /* user expects the mas to be one before where it is */
6130 if (unlikely(mas->index <= min))
6131 return true;
6132
6133 mas->status = ma_active;
6134 break;
6135 case ma_root:
6136 break;
6137 case ma_error:
6138 return true;
6139 }
6140
6141 if (mas_is_start(mas)) {
6142 /* First run or continue */
6143 if (mas->index < min)
6144 return true;
6145
6146 *entry = mas_walk(mas);
6147 if (*entry)
6148 return true;
6149 }
6150
6151 if (unlikely(mas_is_ptr(mas)))
6152 goto none;
6153
6154 if (unlikely(mas_is_none(mas))) {
6155 /*
6156 * Walked to the location, and there was nothing so the previous
6157 * location is 0.
6158 */
6159 mas->last = mas->index = 0;
6160 mas->status = ma_root;
6161 *entry = mas_root(mas);
6162 return true;
6163 }
6164
6165 active:
6166 if (mas->index < min)
6167 return true;
6168
6169 return false;
6170
6171 none:
6172 mas->status = ma_none;
6173 return true;
6174 }
6175
6176 /**
6177 * mas_find_rev: On the first call, find the first non-null entry at or below
6178 * mas->index down to %min. Otherwise find the first non-null entry below
6179 * mas->index down to %min.
6180 * @mas: The maple state
6181 * @min: The minimum value to check.
6182 *
6183 * Must hold rcu_read_lock or the write lock.
6184 * If an entry exists, last and index are updated accordingly.
6185 * May set @mas->status to ma_underflow.
6186 *
6187 * Return: The entry or %NULL.
6188 */
mas_find_rev(struct ma_state * mas,unsigned long min)6189 void *mas_find_rev(struct ma_state *mas, unsigned long min)
6190 {
6191 void *entry = NULL;
6192
6193 if (mas_find_rev_setup(mas, min, &entry))
6194 return entry;
6195
6196 /* Retries on dead nodes handled by mas_prev_slot */
6197 return mas_prev_slot(mas, min, false);
6198
6199 }
6200 EXPORT_SYMBOL_GPL(mas_find_rev);
6201
6202 /**
6203 * mas_find_range_rev: On the first call, find the first non-null entry at or
6204 * below mas->index down to %min. Otherwise advance to the previous slot after
6205 * mas->index down to %min.
6206 * @mas: The maple state
6207 * @min: The minimum value to check.
6208 *
6209 * Must hold rcu_read_lock or the write lock.
6210 * If an entry exists, last and index are updated accordingly.
6211 * May set @mas->status to ma_underflow.
6212 *
6213 * Return: The entry or %NULL.
6214 */
mas_find_range_rev(struct ma_state * mas,unsigned long min)6215 void *mas_find_range_rev(struct ma_state *mas, unsigned long min)
6216 {
6217 void *entry = NULL;
6218
6219 if (mas_find_rev_setup(mas, min, &entry))
6220 return entry;
6221
6222 /* Retries on dead nodes handled by mas_prev_slot */
6223 return mas_prev_slot(mas, min, true);
6224 }
6225 EXPORT_SYMBOL_GPL(mas_find_range_rev);
6226
6227 /**
6228 * mas_erase() - Find the range in which index resides and erase the entire
6229 * range.
6230 * @mas: The maple state
6231 *
6232 * Must hold the write lock.
6233 * Searches for @mas->index, sets @mas->index and @mas->last to the range and
6234 * erases that range.
6235 *
6236 * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
6237 */
mas_erase(struct ma_state * mas)6238 void *mas_erase(struct ma_state *mas)
6239 {
6240 void *entry;
6241 unsigned long index = mas->index;
6242 MA_WR_STATE(wr_mas, mas, NULL);
6243
6244 if (!mas_is_active(mas) || !mas_is_start(mas))
6245 mas->status = ma_start;
6246
6247 write_retry:
6248 entry = mas_state_walk(mas);
6249 if (!entry)
6250 return NULL;
6251
6252 /* Must reset to ensure spanning writes of last slot are detected */
6253 mas_reset(mas);
6254 mas_wr_preallocate(&wr_mas, NULL);
6255 if (mas_nomem(mas, GFP_KERNEL)) {
6256 /* in case the range of entry changed when unlocked */
6257 mas->index = mas->last = index;
6258 goto write_retry;
6259 }
6260
6261 if (mas_is_err(mas))
6262 goto out;
6263
6264 mas_wr_store_entry(&wr_mas);
6265 out:
6266 mas_destroy(mas);
6267 return entry;
6268 }
6269 EXPORT_SYMBOL_GPL(mas_erase);
6270
6271 /**
6272 * mas_nomem() - Check if there was an error allocating and do the allocation
6273 * if necessary If there are allocations, then free them.
6274 * @mas: The maple state
6275 * @gfp: The GFP_FLAGS to use for allocations
6276 * Return: true on allocation, false otherwise.
6277 */
mas_nomem(struct ma_state * mas,gfp_t gfp)6278 bool mas_nomem(struct ma_state *mas, gfp_t gfp)
6279 __must_hold(mas->tree->ma_lock)
6280 {
6281 if (likely(mas->node != MA_ERROR(-ENOMEM)))
6282 return false;
6283
6284 if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) {
6285 mtree_unlock(mas->tree);
6286 mas_alloc_nodes(mas, gfp);
6287 mtree_lock(mas->tree);
6288 } else {
6289 mas_alloc_nodes(mas, gfp);
6290 }
6291
6292 if (!mas_allocated(mas))
6293 return false;
6294
6295 mas->status = ma_start;
6296 return true;
6297 }
6298
maple_tree_init(void)6299 void __init maple_tree_init(void)
6300 {
6301 maple_node_cache = kmem_cache_create("maple_node",
6302 sizeof(struct maple_node), sizeof(struct maple_node),
6303 SLAB_PANIC, NULL);
6304 }
6305
6306 /**
6307 * mtree_load() - Load a value stored in a maple tree
6308 * @mt: The maple tree
6309 * @index: The index to load
6310 *
6311 * Return: the entry or %NULL
6312 */
mtree_load(struct maple_tree * mt,unsigned long index)6313 void *mtree_load(struct maple_tree *mt, unsigned long index)
6314 {
6315 MA_STATE(mas, mt, index, index);
6316 void *entry;
6317
6318 trace_ma_read(__func__, &mas);
6319 rcu_read_lock();
6320 retry:
6321 entry = mas_start(&mas);
6322 if (unlikely(mas_is_none(&mas)))
6323 goto unlock;
6324
6325 if (unlikely(mas_is_ptr(&mas))) {
6326 if (index)
6327 entry = NULL;
6328
6329 goto unlock;
6330 }
6331
6332 entry = mtree_lookup_walk(&mas);
6333 if (!entry && unlikely(mas_is_start(&mas)))
6334 goto retry;
6335 unlock:
6336 rcu_read_unlock();
6337 if (xa_is_zero(entry))
6338 return NULL;
6339
6340 return entry;
6341 }
6342 EXPORT_SYMBOL(mtree_load);
6343
6344 /**
6345 * mtree_store_range() - Store an entry at a given range.
6346 * @mt: The maple tree
6347 * @index: The start of the range
6348 * @last: The end of the range
6349 * @entry: The entry to store
6350 * @gfp: The GFP_FLAGS to use for allocations
6351 *
6352 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6353 * be allocated.
6354 */
mtree_store_range(struct maple_tree * mt,unsigned long index,unsigned long last,void * entry,gfp_t gfp)6355 int mtree_store_range(struct maple_tree *mt, unsigned long index,
6356 unsigned long last, void *entry, gfp_t gfp)
6357 {
6358 MA_STATE(mas, mt, index, last);
6359 int ret = 0;
6360
6361 trace_ma_write(__func__, &mas, 0, entry);
6362 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6363 return -EINVAL;
6364
6365 if (index > last)
6366 return -EINVAL;
6367
6368 mtree_lock(mt);
6369 ret = mas_store_gfp(&mas, entry, gfp);
6370 mtree_unlock(mt);
6371
6372 return ret;
6373 }
6374 EXPORT_SYMBOL(mtree_store_range);
6375
6376 /**
6377 * mtree_store() - Store an entry at a given index.
6378 * @mt: The maple tree
6379 * @index: The index to store the value
6380 * @entry: The entry to store
6381 * @gfp: The GFP_FLAGS to use for allocations
6382 *
6383 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6384 * be allocated.
6385 */
mtree_store(struct maple_tree * mt,unsigned long index,void * entry,gfp_t gfp)6386 int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
6387 gfp_t gfp)
6388 {
6389 return mtree_store_range(mt, index, index, entry, gfp);
6390 }
6391 EXPORT_SYMBOL(mtree_store);
6392
6393 /**
6394 * mtree_insert_range() - Insert an entry at a given range if there is no value.
6395 * @mt: The maple tree
6396 * @first: The start of the range
6397 * @last: The end of the range
6398 * @entry: The entry to store
6399 * @gfp: The GFP_FLAGS to use for allocations.
6400 *
6401 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6402 * request, -ENOMEM if memory could not be allocated.
6403 */
mtree_insert_range(struct maple_tree * mt,unsigned long first,unsigned long last,void * entry,gfp_t gfp)6404 int mtree_insert_range(struct maple_tree *mt, unsigned long first,
6405 unsigned long last, void *entry, gfp_t gfp)
6406 {
6407 MA_STATE(ms, mt, first, last);
6408 int ret = 0;
6409
6410 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6411 return -EINVAL;
6412
6413 if (first > last)
6414 return -EINVAL;
6415
6416 mtree_lock(mt);
6417 retry:
6418 mas_insert(&ms, entry);
6419 if (mas_nomem(&ms, gfp))
6420 goto retry;
6421
6422 mtree_unlock(mt);
6423 if (mas_is_err(&ms))
6424 ret = xa_err(ms.node);
6425
6426 mas_destroy(&ms);
6427 return ret;
6428 }
6429 EXPORT_SYMBOL(mtree_insert_range);
6430
6431 /**
6432 * mtree_insert() - Insert an entry at a given index if there is no value.
6433 * @mt: The maple tree
6434 * @index : The index to store the value
6435 * @entry: The entry to store
6436 * @gfp: The GFP_FLAGS to use for allocations.
6437 *
6438 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6439 * request, -ENOMEM if memory could not be allocated.
6440 */
mtree_insert(struct maple_tree * mt,unsigned long index,void * entry,gfp_t gfp)6441 int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
6442 gfp_t gfp)
6443 {
6444 return mtree_insert_range(mt, index, index, entry, gfp);
6445 }
6446 EXPORT_SYMBOL(mtree_insert);
6447
mtree_alloc_range(struct maple_tree * mt,unsigned long * startp,void * entry,unsigned long size,unsigned long min,unsigned long max,gfp_t gfp)6448 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
6449 void *entry, unsigned long size, unsigned long min,
6450 unsigned long max, gfp_t gfp)
6451 {
6452 int ret = 0;
6453
6454 MA_STATE(mas, mt, 0, 0);
6455 if (!mt_is_alloc(mt))
6456 return -EINVAL;
6457
6458 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6459 return -EINVAL;
6460
6461 mtree_lock(mt);
6462 retry:
6463 ret = mas_empty_area(&mas, min, max, size);
6464 if (ret)
6465 goto unlock;
6466
6467 mas_insert(&mas, entry);
6468 /*
6469 * mas_nomem() may release the lock, causing the allocated area
6470 * to be unavailable, so try to allocate a free area again.
6471 */
6472 if (mas_nomem(&mas, gfp))
6473 goto retry;
6474
6475 if (mas_is_err(&mas))
6476 ret = xa_err(mas.node);
6477 else
6478 *startp = mas.index;
6479
6480 unlock:
6481 mtree_unlock(mt);
6482 mas_destroy(&mas);
6483 return ret;
6484 }
6485 EXPORT_SYMBOL(mtree_alloc_range);
6486
6487 /**
6488 * mtree_alloc_cyclic() - Find somewhere to store this entry in the tree.
6489 * @mt: The maple tree.
6490 * @startp: Pointer to ID.
6491 * @range_lo: Lower bound of range to search.
6492 * @range_hi: Upper bound of range to search.
6493 * @entry: The entry to store.
6494 * @next: Pointer to next ID to allocate.
6495 * @gfp: The GFP_FLAGS to use for allocations.
6496 *
6497 * Finds an empty entry in @mt after @next, stores the new index into
6498 * the @id pointer, stores the entry at that index, then updates @next.
6499 *
6500 * @mt must be initialized with the MT_FLAGS_ALLOC_RANGE flag.
6501 *
6502 * Context: Any context. Takes and releases the mt.lock. May sleep if
6503 * the @gfp flags permit.
6504 *
6505 * Return: 0 if the allocation succeeded without wrapping, 1 if the
6506 * allocation succeeded after wrapping, -ENOMEM if memory could not be
6507 * allocated, -EINVAL if @mt cannot be used, or -EBUSY if there are no
6508 * free entries.
6509 */
mtree_alloc_cyclic(struct maple_tree * mt,unsigned long * startp,void * entry,unsigned long range_lo,unsigned long range_hi,unsigned long * next,gfp_t gfp)6510 int mtree_alloc_cyclic(struct maple_tree *mt, unsigned long *startp,
6511 void *entry, unsigned long range_lo, unsigned long range_hi,
6512 unsigned long *next, gfp_t gfp)
6513 {
6514 int ret;
6515
6516 MA_STATE(mas, mt, 0, 0);
6517
6518 if (!mt_is_alloc(mt))
6519 return -EINVAL;
6520 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6521 return -EINVAL;
6522 mtree_lock(mt);
6523 ret = mas_alloc_cyclic(&mas, startp, entry, range_lo, range_hi,
6524 next, gfp);
6525 mtree_unlock(mt);
6526 return ret;
6527 }
6528 EXPORT_SYMBOL(mtree_alloc_cyclic);
6529
mtree_alloc_rrange(struct maple_tree * mt,unsigned long * startp,void * entry,unsigned long size,unsigned long min,unsigned long max,gfp_t gfp)6530 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
6531 void *entry, unsigned long size, unsigned long min,
6532 unsigned long max, gfp_t gfp)
6533 {
6534 int ret = 0;
6535
6536 MA_STATE(mas, mt, 0, 0);
6537 if (!mt_is_alloc(mt))
6538 return -EINVAL;
6539
6540 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6541 return -EINVAL;
6542
6543 mtree_lock(mt);
6544 retry:
6545 ret = mas_empty_area_rev(&mas, min, max, size);
6546 if (ret)
6547 goto unlock;
6548
6549 mas_insert(&mas, entry);
6550 /*
6551 * mas_nomem() may release the lock, causing the allocated area
6552 * to be unavailable, so try to allocate a free area again.
6553 */
6554 if (mas_nomem(&mas, gfp))
6555 goto retry;
6556
6557 if (mas_is_err(&mas))
6558 ret = xa_err(mas.node);
6559 else
6560 *startp = mas.index;
6561
6562 unlock:
6563 mtree_unlock(mt);
6564 mas_destroy(&mas);
6565 return ret;
6566 }
6567 EXPORT_SYMBOL(mtree_alloc_rrange);
6568
6569 /**
6570 * mtree_erase() - Find an index and erase the entire range.
6571 * @mt: The maple tree
6572 * @index: The index to erase
6573 *
6574 * Erasing is the same as a walk to an entry then a store of a NULL to that
6575 * ENTIRE range. In fact, it is implemented as such using the advanced API.
6576 *
6577 * Return: The entry stored at the @index or %NULL
6578 */
mtree_erase(struct maple_tree * mt,unsigned long index)6579 void *mtree_erase(struct maple_tree *mt, unsigned long index)
6580 {
6581 void *entry = NULL;
6582
6583 MA_STATE(mas, mt, index, index);
6584 trace_ma_op(__func__, &mas);
6585
6586 mtree_lock(mt);
6587 entry = mas_erase(&mas);
6588 mtree_unlock(mt);
6589
6590 return entry;
6591 }
6592 EXPORT_SYMBOL(mtree_erase);
6593
6594 /*
6595 * mas_dup_free() - Free an incomplete duplication of a tree.
6596 * @mas: The maple state of a incomplete tree.
6597 *
6598 * The parameter @mas->node passed in indicates that the allocation failed on
6599 * this node. This function frees all nodes starting from @mas->node in the
6600 * reverse order of mas_dup_build(). There is no need to hold the source tree
6601 * lock at this time.
6602 */
mas_dup_free(struct ma_state * mas)6603 static void mas_dup_free(struct ma_state *mas)
6604 {
6605 struct maple_node *node;
6606 enum maple_type type;
6607 void __rcu **slots;
6608 unsigned char count, i;
6609
6610 /* Maybe the first node allocation failed. */
6611 if (mas_is_none(mas))
6612 return;
6613
6614 while (!mte_is_root(mas->node)) {
6615 mas_ascend(mas);
6616 if (mas->offset) {
6617 mas->offset--;
6618 do {
6619 mas_descend(mas);
6620 mas->offset = mas_data_end(mas);
6621 } while (!mte_is_leaf(mas->node));
6622
6623 mas_ascend(mas);
6624 }
6625
6626 node = mte_to_node(mas->node);
6627 type = mte_node_type(mas->node);
6628 slots = ma_slots(node, type);
6629 count = mas_data_end(mas) + 1;
6630 for (i = 0; i < count; i++)
6631 ((unsigned long *)slots)[i] &= ~MAPLE_NODE_MASK;
6632 mt_free_bulk(count, slots);
6633 }
6634
6635 node = mte_to_node(mas->node);
6636 mt_free_one(node);
6637 }
6638
6639 /*
6640 * mas_copy_node() - Copy a maple node and replace the parent.
6641 * @mas: The maple state of source tree.
6642 * @new_mas: The maple state of new tree.
6643 * @parent: The parent of the new node.
6644 *
6645 * Copy @mas->node to @new_mas->node, set @parent to be the parent of
6646 * @new_mas->node. If memory allocation fails, @mas is set to -ENOMEM.
6647 */
mas_copy_node(struct ma_state * mas,struct ma_state * new_mas,struct maple_pnode * parent)6648 static inline void mas_copy_node(struct ma_state *mas, struct ma_state *new_mas,
6649 struct maple_pnode *parent)
6650 {
6651 struct maple_node *node = mte_to_node(mas->node);
6652 struct maple_node *new_node = mte_to_node(new_mas->node);
6653 unsigned long val;
6654
6655 /* Copy the node completely. */
6656 memcpy(new_node, node, sizeof(struct maple_node));
6657 /* Update the parent node pointer. */
6658 val = (unsigned long)node->parent & MAPLE_NODE_MASK;
6659 new_node->parent = ma_parent_ptr(val | (unsigned long)parent);
6660 }
6661
6662 /*
6663 * mas_dup_alloc() - Allocate child nodes for a maple node.
6664 * @mas: The maple state of source tree.
6665 * @new_mas: The maple state of new tree.
6666 * @gfp: The GFP_FLAGS to use for allocations.
6667 *
6668 * This function allocates child nodes for @new_mas->node during the duplication
6669 * process. If memory allocation fails, @mas is set to -ENOMEM.
6670 */
mas_dup_alloc(struct ma_state * mas,struct ma_state * new_mas,gfp_t gfp)6671 static inline void mas_dup_alloc(struct ma_state *mas, struct ma_state *new_mas,
6672 gfp_t gfp)
6673 {
6674 struct maple_node *node = mte_to_node(mas->node);
6675 struct maple_node *new_node = mte_to_node(new_mas->node);
6676 enum maple_type type;
6677 unsigned char request, count, i;
6678 void __rcu **slots;
6679 void __rcu **new_slots;
6680 unsigned long val;
6681
6682 /* Allocate memory for child nodes. */
6683 type = mte_node_type(mas->node);
6684 new_slots = ma_slots(new_node, type);
6685 request = mas_data_end(mas) + 1;
6686 count = mt_alloc_bulk(gfp, request, (void **)new_slots);
6687 if (unlikely(count < request)) {
6688 memset(new_slots, 0, request * sizeof(void *));
6689 mas_set_err(mas, -ENOMEM);
6690 return;
6691 }
6692
6693 /* Restore node type information in slots. */
6694 slots = ma_slots(node, type);
6695 for (i = 0; i < count; i++) {
6696 val = (unsigned long)mt_slot_locked(mas->tree, slots, i);
6697 val &= MAPLE_NODE_MASK;
6698 ((unsigned long *)new_slots)[i] |= val;
6699 }
6700 }
6701
6702 /*
6703 * mas_dup_build() - Build a new maple tree from a source tree
6704 * @mas: The maple state of source tree, need to be in MAS_START state.
6705 * @new_mas: The maple state of new tree, need to be in MAS_START state.
6706 * @gfp: The GFP_FLAGS to use for allocations.
6707 *
6708 * This function builds a new tree in DFS preorder. If the memory allocation
6709 * fails, the error code -ENOMEM will be set in @mas, and @new_mas points to the
6710 * last node. mas_dup_free() will free the incomplete duplication of a tree.
6711 *
6712 * Note that the attributes of the two trees need to be exactly the same, and the
6713 * new tree needs to be empty, otherwise -EINVAL will be set in @mas.
6714 */
mas_dup_build(struct ma_state * mas,struct ma_state * new_mas,gfp_t gfp)6715 static inline void mas_dup_build(struct ma_state *mas, struct ma_state *new_mas,
6716 gfp_t gfp)
6717 {
6718 struct maple_node *node;
6719 struct maple_pnode *parent = NULL;
6720 struct maple_enode *root;
6721 enum maple_type type;
6722
6723 if (unlikely(mt_attr(mas->tree) != mt_attr(new_mas->tree)) ||
6724 unlikely(!mtree_empty(new_mas->tree))) {
6725 mas_set_err(mas, -EINVAL);
6726 return;
6727 }
6728
6729 root = mas_start(mas);
6730 if (mas_is_ptr(mas) || mas_is_none(mas))
6731 goto set_new_tree;
6732
6733 node = mt_alloc_one(gfp);
6734 if (!node) {
6735 new_mas->status = ma_none;
6736 mas_set_err(mas, -ENOMEM);
6737 return;
6738 }
6739
6740 type = mte_node_type(mas->node);
6741 root = mt_mk_node(node, type);
6742 new_mas->node = root;
6743 new_mas->min = 0;
6744 new_mas->max = ULONG_MAX;
6745 root = mte_mk_root(root);
6746 while (1) {
6747 mas_copy_node(mas, new_mas, parent);
6748 if (!mte_is_leaf(mas->node)) {
6749 /* Only allocate child nodes for non-leaf nodes. */
6750 mas_dup_alloc(mas, new_mas, gfp);
6751 if (unlikely(mas_is_err(mas)))
6752 return;
6753 } else {
6754 /*
6755 * This is the last leaf node and duplication is
6756 * completed.
6757 */
6758 if (mas->max == ULONG_MAX)
6759 goto done;
6760
6761 /* This is not the last leaf node and needs to go up. */
6762 do {
6763 mas_ascend(mas);
6764 mas_ascend(new_mas);
6765 } while (mas->offset == mas_data_end(mas));
6766
6767 /* Move to the next subtree. */
6768 mas->offset++;
6769 new_mas->offset++;
6770 }
6771
6772 mas_descend(mas);
6773 parent = ma_parent_ptr(mte_to_node(new_mas->node));
6774 mas_descend(new_mas);
6775 mas->offset = 0;
6776 new_mas->offset = 0;
6777 }
6778 done:
6779 /* Specially handle the parent of the root node. */
6780 mte_to_node(root)->parent = ma_parent_ptr(mas_tree_parent(new_mas));
6781 set_new_tree:
6782 /* Make them the same height */
6783 new_mas->tree->ma_flags = mas->tree->ma_flags;
6784 rcu_assign_pointer(new_mas->tree->ma_root, root);
6785 }
6786
6787 /**
6788 * __mt_dup(): Duplicate an entire maple tree
6789 * @mt: The source maple tree
6790 * @new: The new maple tree
6791 * @gfp: The GFP_FLAGS to use for allocations
6792 *
6793 * This function duplicates a maple tree in Depth-First Search (DFS) pre-order
6794 * traversal. It uses memcpy() to copy nodes in the source tree and allocate
6795 * new child nodes in non-leaf nodes. The new node is exactly the same as the
6796 * source node except for all the addresses stored in it. It will be faster than
6797 * traversing all elements in the source tree and inserting them one by one into
6798 * the new tree.
6799 * The user needs to ensure that the attributes of the source tree and the new
6800 * tree are the same, and the new tree needs to be an empty tree, otherwise
6801 * -EINVAL will be returned.
6802 * Note that the user needs to manually lock the source tree and the new tree.
6803 *
6804 * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If
6805 * the attributes of the two trees are different or the new tree is not an empty
6806 * tree.
6807 */
__mt_dup(struct maple_tree * mt,struct maple_tree * new,gfp_t gfp)6808 int __mt_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp)
6809 {
6810 int ret = 0;
6811 MA_STATE(mas, mt, 0, 0);
6812 MA_STATE(new_mas, new, 0, 0);
6813
6814 mas_dup_build(&mas, &new_mas, gfp);
6815 if (unlikely(mas_is_err(&mas))) {
6816 ret = xa_err(mas.node);
6817 if (ret == -ENOMEM)
6818 mas_dup_free(&new_mas);
6819 }
6820
6821 return ret;
6822 }
6823 EXPORT_SYMBOL(__mt_dup);
6824
6825 /**
6826 * mtree_dup(): Duplicate an entire maple tree
6827 * @mt: The source maple tree
6828 * @new: The new maple tree
6829 * @gfp: The GFP_FLAGS to use for allocations
6830 *
6831 * This function duplicates a maple tree in Depth-First Search (DFS) pre-order
6832 * traversal. It uses memcpy() to copy nodes in the source tree and allocate
6833 * new child nodes in non-leaf nodes. The new node is exactly the same as the
6834 * source node except for all the addresses stored in it. It will be faster than
6835 * traversing all elements in the source tree and inserting them one by one into
6836 * the new tree.
6837 * The user needs to ensure that the attributes of the source tree and the new
6838 * tree are the same, and the new tree needs to be an empty tree, otherwise
6839 * -EINVAL will be returned.
6840 *
6841 * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If
6842 * the attributes of the two trees are different or the new tree is not an empty
6843 * tree.
6844 */
mtree_dup(struct maple_tree * mt,struct maple_tree * new,gfp_t gfp)6845 int mtree_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp)
6846 {
6847 int ret = 0;
6848 MA_STATE(mas, mt, 0, 0);
6849 MA_STATE(new_mas, new, 0, 0);
6850
6851 mas_lock(&new_mas);
6852 mas_lock_nested(&mas, SINGLE_DEPTH_NESTING);
6853 mas_dup_build(&mas, &new_mas, gfp);
6854 mas_unlock(&mas);
6855 if (unlikely(mas_is_err(&mas))) {
6856 ret = xa_err(mas.node);
6857 if (ret == -ENOMEM)
6858 mas_dup_free(&new_mas);
6859 }
6860
6861 mas_unlock(&new_mas);
6862 return ret;
6863 }
6864 EXPORT_SYMBOL(mtree_dup);
6865
6866 /**
6867 * __mt_destroy() - Walk and free all nodes of a locked maple tree.
6868 * @mt: The maple tree
6869 *
6870 * Note: Does not handle locking.
6871 */
__mt_destroy(struct maple_tree * mt)6872 void __mt_destroy(struct maple_tree *mt)
6873 {
6874 void *root = mt_root_locked(mt);
6875
6876 rcu_assign_pointer(mt->ma_root, NULL);
6877 if (xa_is_node(root))
6878 mte_destroy_walk(root, mt);
6879
6880 mt->ma_flags = mt_attr(mt);
6881 }
6882 EXPORT_SYMBOL_GPL(__mt_destroy);
6883
6884 /**
6885 * mtree_destroy() - Destroy a maple tree
6886 * @mt: The maple tree
6887 *
6888 * Frees all resources used by the tree. Handles locking.
6889 */
mtree_destroy(struct maple_tree * mt)6890 void mtree_destroy(struct maple_tree *mt)
6891 {
6892 mtree_lock(mt);
6893 __mt_destroy(mt);
6894 mtree_unlock(mt);
6895 }
6896 EXPORT_SYMBOL(mtree_destroy);
6897
6898 /**
6899 * mt_find() - Search from the start up until an entry is found.
6900 * @mt: The maple tree
6901 * @index: Pointer which contains the start location of the search
6902 * @max: The maximum value of the search range
6903 *
6904 * Takes RCU read lock internally to protect the search, which does not
6905 * protect the returned pointer after dropping RCU read lock.
6906 * See also: Documentation/core-api/maple_tree.rst
6907 *
6908 * In case that an entry is found @index is updated to point to the next
6909 * possible entry independent whether the found entry is occupying a
6910 * single index or a range if indices.
6911 *
6912 * Return: The entry at or after the @index or %NULL
6913 */
mt_find(struct maple_tree * mt,unsigned long * index,unsigned long max)6914 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
6915 {
6916 MA_STATE(mas, mt, *index, *index);
6917 void *entry;
6918 #ifdef CONFIG_DEBUG_MAPLE_TREE
6919 unsigned long copy = *index;
6920 #endif
6921
6922 trace_ma_read(__func__, &mas);
6923
6924 if ((*index) > max)
6925 return NULL;
6926
6927 rcu_read_lock();
6928 retry:
6929 entry = mas_state_walk(&mas);
6930 if (mas_is_start(&mas))
6931 goto retry;
6932
6933 if (unlikely(xa_is_zero(entry)))
6934 entry = NULL;
6935
6936 if (entry)
6937 goto unlock;
6938
6939 while (mas_is_active(&mas) && (mas.last < max)) {
6940 entry = mas_next_entry(&mas, max);
6941 if (likely(entry && !xa_is_zero(entry)))
6942 break;
6943 }
6944
6945 if (unlikely(xa_is_zero(entry)))
6946 entry = NULL;
6947 unlock:
6948 rcu_read_unlock();
6949 if (likely(entry)) {
6950 *index = mas.last + 1;
6951 #ifdef CONFIG_DEBUG_MAPLE_TREE
6952 if (MT_WARN_ON(mt, (*index) && ((*index) <= copy)))
6953 pr_err("index not increased! %lx <= %lx\n",
6954 *index, copy);
6955 #endif
6956 }
6957
6958 return entry;
6959 }
6960 EXPORT_SYMBOL(mt_find);
6961
6962 /**
6963 * mt_find_after() - Search from the start up until an entry is found.
6964 * @mt: The maple tree
6965 * @index: Pointer which contains the start location of the search
6966 * @max: The maximum value to check
6967 *
6968 * Same as mt_find() except that it checks @index for 0 before
6969 * searching. If @index == 0, the search is aborted. This covers a wrap
6970 * around of @index to 0 in an iterator loop.
6971 *
6972 * Return: The entry at or after the @index or %NULL
6973 */
mt_find_after(struct maple_tree * mt,unsigned long * index,unsigned long max)6974 void *mt_find_after(struct maple_tree *mt, unsigned long *index,
6975 unsigned long max)
6976 {
6977 if (!(*index))
6978 return NULL;
6979
6980 return mt_find(mt, index, max);
6981 }
6982 EXPORT_SYMBOL(mt_find_after);
6983
6984 #ifdef CONFIG_DEBUG_MAPLE_TREE
6985 atomic_t maple_tree_tests_run;
6986 EXPORT_SYMBOL_GPL(maple_tree_tests_run);
6987 atomic_t maple_tree_tests_passed;
6988 EXPORT_SYMBOL_GPL(maple_tree_tests_passed);
6989
6990 #ifndef __KERNEL__
6991 extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
mt_set_non_kernel(unsigned int val)6992 void mt_set_non_kernel(unsigned int val)
6993 {
6994 kmem_cache_set_non_kernel(maple_node_cache, val);
6995 }
6996
6997 extern void kmem_cache_set_callback(struct kmem_cache *cachep,
6998 void (*callback)(void *));
mt_set_callback(void (* callback)(void *))6999 void mt_set_callback(void (*callback)(void *))
7000 {
7001 kmem_cache_set_callback(maple_node_cache, callback);
7002 }
7003
7004 extern void kmem_cache_set_private(struct kmem_cache *cachep, void *private);
mt_set_private(void * private)7005 void mt_set_private(void *private)
7006 {
7007 kmem_cache_set_private(maple_node_cache, private);
7008 }
7009
7010 extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
mt_get_alloc_size(void)7011 unsigned long mt_get_alloc_size(void)
7012 {
7013 return kmem_cache_get_alloc(maple_node_cache);
7014 }
7015
7016 extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
mt_zero_nr_tallocated(void)7017 void mt_zero_nr_tallocated(void)
7018 {
7019 kmem_cache_zero_nr_tallocated(maple_node_cache);
7020 }
7021
7022 extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
mt_nr_tallocated(void)7023 unsigned int mt_nr_tallocated(void)
7024 {
7025 return kmem_cache_nr_tallocated(maple_node_cache);
7026 }
7027
7028 extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
mt_nr_allocated(void)7029 unsigned int mt_nr_allocated(void)
7030 {
7031 return kmem_cache_nr_allocated(maple_node_cache);
7032 }
7033
mt_cache_shrink(void)7034 void mt_cache_shrink(void)
7035 {
7036 }
7037 #else
7038 /*
7039 * mt_cache_shrink() - For testing, don't use this.
7040 *
7041 * Certain testcases can trigger an OOM when combined with other memory
7042 * debugging configuration options. This function is used to reduce the
7043 * possibility of an out of memory even due to kmem_cache objects remaining
7044 * around for longer than usual.
7045 */
mt_cache_shrink(void)7046 void mt_cache_shrink(void)
7047 {
7048 kmem_cache_shrink(maple_node_cache);
7049
7050 }
7051 EXPORT_SYMBOL_GPL(mt_cache_shrink);
7052
7053 #endif /* not defined __KERNEL__ */
7054 /*
7055 * mas_get_slot() - Get the entry in the maple state node stored at @offset.
7056 * @mas: The maple state
7057 * @offset: The offset into the slot array to fetch.
7058 *
7059 * Return: The entry stored at @offset.
7060 */
mas_get_slot(struct ma_state * mas,unsigned char offset)7061 static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
7062 unsigned char offset)
7063 {
7064 return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)),
7065 offset);
7066 }
7067
7068 /* Depth first search, post-order */
mas_dfs_postorder(struct ma_state * mas,unsigned long max)7069 static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
7070 {
7071
7072 struct maple_enode *p, *mn = mas->node;
7073 unsigned long p_min, p_max;
7074
7075 mas_next_node(mas, mas_mn(mas), max);
7076 if (!mas_is_overflow(mas))
7077 return;
7078
7079 if (mte_is_root(mn))
7080 return;
7081
7082 mas->node = mn;
7083 mas_ascend(mas);
7084 do {
7085 p = mas->node;
7086 p_min = mas->min;
7087 p_max = mas->max;
7088 mas_prev_node(mas, 0);
7089 } while (!mas_is_underflow(mas));
7090
7091 mas->node = p;
7092 mas->max = p_max;
7093 mas->min = p_min;
7094 }
7095
7096 /* Tree validations */
7097 static void mt_dump_node(const struct maple_tree *mt, void *entry,
7098 unsigned long min, unsigned long max, unsigned int depth,
7099 enum mt_dump_format format);
mt_dump_range(unsigned long min,unsigned long max,unsigned int depth,enum mt_dump_format format)7100 static void mt_dump_range(unsigned long min, unsigned long max,
7101 unsigned int depth, enum mt_dump_format format)
7102 {
7103 static const char spaces[] = " ";
7104
7105 switch(format) {
7106 case mt_dump_hex:
7107 if (min == max)
7108 pr_info("%.*s%lx: ", depth * 2, spaces, min);
7109 else
7110 pr_info("%.*s%lx-%lx: ", depth * 2, spaces, min, max);
7111 break;
7112 case mt_dump_dec:
7113 if (min == max)
7114 pr_info("%.*s%lu: ", depth * 2, spaces, min);
7115 else
7116 pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max);
7117 }
7118 }
7119
mt_dump_entry(void * entry,unsigned long min,unsigned long max,unsigned int depth,enum mt_dump_format format)7120 static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
7121 unsigned int depth, enum mt_dump_format format)
7122 {
7123 mt_dump_range(min, max, depth, format);
7124
7125 if (xa_is_value(entry))
7126 pr_cont("value %ld (0x%lx) [" PTR_FMT "]\n", xa_to_value(entry),
7127 xa_to_value(entry), entry);
7128 else if (xa_is_zero(entry))
7129 pr_cont("zero (%ld)\n", xa_to_internal(entry));
7130 else if (mt_is_reserved(entry))
7131 pr_cont("UNKNOWN ENTRY (" PTR_FMT ")\n", entry);
7132 else
7133 pr_cont(PTR_FMT "\n", entry);
7134 }
7135
mt_dump_range64(const struct maple_tree * mt,void * entry,unsigned long min,unsigned long max,unsigned int depth,enum mt_dump_format format)7136 static void mt_dump_range64(const struct maple_tree *mt, void *entry,
7137 unsigned long min, unsigned long max, unsigned int depth,
7138 enum mt_dump_format format)
7139 {
7140 struct maple_range_64 *node = &mte_to_node(entry)->mr64;
7141 bool leaf = mte_is_leaf(entry);
7142 unsigned long first = min;
7143 int i;
7144
7145 pr_cont(" contents: ");
7146 for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++) {
7147 switch(format) {
7148 case mt_dump_hex:
7149 pr_cont(PTR_FMT " %lX ", node->slot[i], node->pivot[i]);
7150 break;
7151 case mt_dump_dec:
7152 pr_cont(PTR_FMT " %lu ", node->slot[i], node->pivot[i]);
7153 }
7154 }
7155 pr_cont(PTR_FMT "\n", node->slot[i]);
7156 for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) {
7157 unsigned long last = max;
7158
7159 if (i < (MAPLE_RANGE64_SLOTS - 1))
7160 last = node->pivot[i];
7161 else if (!node->slot[i] && max != mt_node_max(entry))
7162 break;
7163 if (last == 0 && i > 0)
7164 break;
7165 if (leaf)
7166 mt_dump_entry(mt_slot(mt, node->slot, i),
7167 first, last, depth + 1, format);
7168 else if (node->slot[i])
7169 mt_dump_node(mt, mt_slot(mt, node->slot, i),
7170 first, last, depth + 1, format);
7171
7172 if (last == max)
7173 break;
7174 if (last > max) {
7175 switch(format) {
7176 case mt_dump_hex:
7177 pr_err("node " PTR_FMT " last (%lx) > max (%lx) at pivot %d!\n",
7178 node, last, max, i);
7179 break;
7180 case mt_dump_dec:
7181 pr_err("node " PTR_FMT " last (%lu) > max (%lu) at pivot %d!\n",
7182 node, last, max, i);
7183 }
7184 }
7185 first = last + 1;
7186 }
7187 }
7188
mt_dump_arange64(const struct maple_tree * mt,void * entry,unsigned long min,unsigned long max,unsigned int depth,enum mt_dump_format format)7189 static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
7190 unsigned long min, unsigned long max, unsigned int depth,
7191 enum mt_dump_format format)
7192 {
7193 struct maple_arange_64 *node = &mte_to_node(entry)->ma64;
7194 unsigned long first = min;
7195 int i;
7196
7197 pr_cont(" contents: ");
7198 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
7199 switch (format) {
7200 case mt_dump_hex:
7201 pr_cont("%lx ", node->gap[i]);
7202 break;
7203 case mt_dump_dec:
7204 pr_cont("%lu ", node->gap[i]);
7205 }
7206 }
7207 pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap);
7208 for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++) {
7209 switch (format) {
7210 case mt_dump_hex:
7211 pr_cont(PTR_FMT " %lX ", node->slot[i], node->pivot[i]);
7212 break;
7213 case mt_dump_dec:
7214 pr_cont(PTR_FMT " %lu ", node->slot[i], node->pivot[i]);
7215 }
7216 }
7217 pr_cont(PTR_FMT "\n", node->slot[i]);
7218 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
7219 unsigned long last = max;
7220
7221 if (i < (MAPLE_ARANGE64_SLOTS - 1))
7222 last = node->pivot[i];
7223 else if (!node->slot[i])
7224 break;
7225 if (last == 0 && i > 0)
7226 break;
7227 if (node->slot[i])
7228 mt_dump_node(mt, mt_slot(mt, node->slot, i),
7229 first, last, depth + 1, format);
7230
7231 if (last == max)
7232 break;
7233 if (last > max) {
7234 switch(format) {
7235 case mt_dump_hex:
7236 pr_err("node " PTR_FMT " last (%lx) > max (%lx) at pivot %d!\n",
7237 node, last, max, i);
7238 break;
7239 case mt_dump_dec:
7240 pr_err("node " PTR_FMT " last (%lu) > max (%lu) at pivot %d!\n",
7241 node, last, max, i);
7242 }
7243 }
7244 first = last + 1;
7245 }
7246 }
7247
mt_dump_node(const struct maple_tree * mt,void * entry,unsigned long min,unsigned long max,unsigned int depth,enum mt_dump_format format)7248 static void mt_dump_node(const struct maple_tree *mt, void *entry,
7249 unsigned long min, unsigned long max, unsigned int depth,
7250 enum mt_dump_format format)
7251 {
7252 struct maple_node *node = mte_to_node(entry);
7253 unsigned int type = mte_node_type(entry);
7254 unsigned int i;
7255
7256 mt_dump_range(min, max, depth, format);
7257
7258 pr_cont("node " PTR_FMT " depth %d type %d parent " PTR_FMT, node,
7259 depth, type, node ? node->parent : NULL);
7260 switch (type) {
7261 case maple_dense:
7262 pr_cont("\n");
7263 for (i = 0; i < MAPLE_NODE_SLOTS; i++) {
7264 if (min + i > max)
7265 pr_cont("OUT OF RANGE: ");
7266 mt_dump_entry(mt_slot(mt, node->slot, i),
7267 min + i, min + i, depth, format);
7268 }
7269 break;
7270 case maple_leaf_64:
7271 case maple_range_64:
7272 mt_dump_range64(mt, entry, min, max, depth, format);
7273 break;
7274 case maple_arange_64:
7275 mt_dump_arange64(mt, entry, min, max, depth, format);
7276 break;
7277
7278 default:
7279 pr_cont(" UNKNOWN TYPE\n");
7280 }
7281 }
7282
mt_dump(const struct maple_tree * mt,enum mt_dump_format format)7283 void mt_dump(const struct maple_tree *mt, enum mt_dump_format format)
7284 {
7285 void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt));
7286
7287 pr_info("maple_tree(" PTR_FMT ") flags %X, height %u root " PTR_FMT "\n",
7288 mt, mt->ma_flags, mt_height(mt), entry);
7289 if (xa_is_node(entry))
7290 mt_dump_node(mt, entry, 0, mt_node_max(entry), 0, format);
7291 else if (entry)
7292 mt_dump_entry(entry, 0, 0, 0, format);
7293 else
7294 pr_info("(empty)\n");
7295 }
7296 EXPORT_SYMBOL_GPL(mt_dump);
7297
7298 /*
7299 * Calculate the maximum gap in a node and check if that's what is reported in
7300 * the parent (unless root).
7301 */
mas_validate_gaps(struct ma_state * mas)7302 static void mas_validate_gaps(struct ma_state *mas)
7303 {
7304 struct maple_enode *mte = mas->node;
7305 struct maple_node *p_mn, *node = mte_to_node(mte);
7306 enum maple_type mt = mte_node_type(mas->node);
7307 unsigned long gap = 0, max_gap = 0;
7308 unsigned long p_end, p_start = mas->min;
7309 unsigned char p_slot, offset;
7310 unsigned long *gaps = NULL;
7311 unsigned long *pivots = ma_pivots(node, mt);
7312 unsigned int i;
7313
7314 if (ma_is_dense(mt)) {
7315 for (i = 0; i < mt_slot_count(mte); i++) {
7316 if (mas_get_slot(mas, i)) {
7317 if (gap > max_gap)
7318 max_gap = gap;
7319 gap = 0;
7320 continue;
7321 }
7322 gap++;
7323 }
7324 goto counted;
7325 }
7326
7327 gaps = ma_gaps(node, mt);
7328 for (i = 0; i < mt_slot_count(mte); i++) {
7329 p_end = mas_safe_pivot(mas, pivots, i, mt);
7330
7331 if (!gaps) {
7332 if (!mas_get_slot(mas, i))
7333 gap = p_end - p_start + 1;
7334 } else {
7335 void *entry = mas_get_slot(mas, i);
7336
7337 gap = gaps[i];
7338 MT_BUG_ON(mas->tree, !entry);
7339
7340 if (gap > p_end - p_start + 1) {
7341 pr_err(PTR_FMT "[%u] %lu >= %lu - %lu + 1 (%lu)\n",
7342 mas_mn(mas), i, gap, p_end, p_start,
7343 p_end - p_start + 1);
7344 MT_BUG_ON(mas->tree, gap > p_end - p_start + 1);
7345 }
7346 }
7347
7348 if (gap > max_gap)
7349 max_gap = gap;
7350
7351 p_start = p_end + 1;
7352 if (p_end >= mas->max)
7353 break;
7354 }
7355
7356 counted:
7357 if (mt == maple_arange_64) {
7358 MT_BUG_ON(mas->tree, !gaps);
7359 offset = ma_meta_gap(node);
7360 if (offset > i) {
7361 pr_err("gap offset " PTR_FMT "[%u] is invalid\n", node, offset);
7362 MT_BUG_ON(mas->tree, 1);
7363 }
7364
7365 if (gaps[offset] != max_gap) {
7366 pr_err("gap " PTR_FMT "[%u] is not the largest gap %lu\n",
7367 node, offset, max_gap);
7368 MT_BUG_ON(mas->tree, 1);
7369 }
7370
7371 for (i++ ; i < mt_slot_count(mte); i++) {
7372 if (gaps[i] != 0) {
7373 pr_err("gap " PTR_FMT "[%u] beyond node limit != 0\n",
7374 node, i);
7375 MT_BUG_ON(mas->tree, 1);
7376 }
7377 }
7378 }
7379
7380 if (mte_is_root(mte))
7381 return;
7382
7383 p_slot = mte_parent_slot(mas->node);
7384 p_mn = mte_parent(mte);
7385 MT_BUG_ON(mas->tree, max_gap > mas->max);
7386 if (ma_gaps(p_mn, mas_parent_type(mas, mte))[p_slot] != max_gap) {
7387 pr_err("gap " PTR_FMT "[%u] != %lu\n", p_mn, p_slot, max_gap);
7388 mt_dump(mas->tree, mt_dump_hex);
7389 MT_BUG_ON(mas->tree, 1);
7390 }
7391 }
7392
mas_validate_parent_slot(struct ma_state * mas)7393 static void mas_validate_parent_slot(struct ma_state *mas)
7394 {
7395 struct maple_node *parent;
7396 struct maple_enode *node;
7397 enum maple_type p_type;
7398 unsigned char p_slot;
7399 void __rcu **slots;
7400 int i;
7401
7402 if (mte_is_root(mas->node))
7403 return;
7404
7405 p_slot = mte_parent_slot(mas->node);
7406 p_type = mas_parent_type(mas, mas->node);
7407 parent = mte_parent(mas->node);
7408 slots = ma_slots(parent, p_type);
7409 MT_BUG_ON(mas->tree, mas_mn(mas) == parent);
7410
7411 /* Check prev/next parent slot for duplicate node entry */
7412
7413 for (i = 0; i < mt_slots[p_type]; i++) {
7414 node = mas_slot(mas, slots, i);
7415 if (i == p_slot) {
7416 if (node != mas->node)
7417 pr_err("parent " PTR_FMT "[%u] does not have " PTR_FMT "\n",
7418 parent, i, mas_mn(mas));
7419 MT_BUG_ON(mas->tree, node != mas->node);
7420 } else if (node == mas->node) {
7421 pr_err("Invalid child " PTR_FMT " at parent " PTR_FMT "[%u] p_slot %u\n",
7422 mas_mn(mas), parent, i, p_slot);
7423 MT_BUG_ON(mas->tree, node == mas->node);
7424 }
7425 }
7426 }
7427
mas_validate_child_slot(struct ma_state * mas)7428 static void mas_validate_child_slot(struct ma_state *mas)
7429 {
7430 enum maple_type type = mte_node_type(mas->node);
7431 void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7432 unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type);
7433 struct maple_enode *child;
7434 unsigned char i;
7435
7436 if (mte_is_leaf(mas->node))
7437 return;
7438
7439 for (i = 0; i < mt_slots[type]; i++) {
7440 child = mas_slot(mas, slots, i);
7441
7442 if (!child) {
7443 pr_err("Non-leaf node lacks child at " PTR_FMT "[%u]\n",
7444 mas_mn(mas), i);
7445 MT_BUG_ON(mas->tree, 1);
7446 }
7447
7448 if (mte_parent_slot(child) != i) {
7449 pr_err("Slot error at " PTR_FMT "[%u]: child " PTR_FMT " has pslot %u\n",
7450 mas_mn(mas), i, mte_to_node(child),
7451 mte_parent_slot(child));
7452 MT_BUG_ON(mas->tree, 1);
7453 }
7454
7455 if (mte_parent(child) != mte_to_node(mas->node)) {
7456 pr_err("child " PTR_FMT " has parent " PTR_FMT " not " PTR_FMT "\n",
7457 mte_to_node(child), mte_parent(child),
7458 mte_to_node(mas->node));
7459 MT_BUG_ON(mas->tree, 1);
7460 }
7461
7462 if (i < mt_pivots[type] && pivots[i] == mas->max)
7463 break;
7464 }
7465 }
7466
7467 /*
7468 * Validate all pivots are within mas->min and mas->max, check metadata ends
7469 * where the maximum ends and ensure there is no slots or pivots set outside of
7470 * the end of the data.
7471 */
mas_validate_limits(struct ma_state * mas)7472 static void mas_validate_limits(struct ma_state *mas)
7473 {
7474 int i;
7475 unsigned long prev_piv = 0;
7476 enum maple_type type = mte_node_type(mas->node);
7477 void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7478 unsigned long *pivots = ma_pivots(mas_mn(mas), type);
7479
7480 for (i = 0; i < mt_slots[type]; i++) {
7481 unsigned long piv;
7482
7483 piv = mas_safe_pivot(mas, pivots, i, type);
7484
7485 if (!piv && (i != 0)) {
7486 pr_err("Missing node limit pivot at " PTR_FMT "[%u]",
7487 mas_mn(mas), i);
7488 MAS_WARN_ON(mas, 1);
7489 }
7490
7491 if (prev_piv > piv) {
7492 pr_err(PTR_FMT "[%u] piv %lu < prev_piv %lu\n",
7493 mas_mn(mas), i, piv, prev_piv);
7494 MAS_WARN_ON(mas, piv < prev_piv);
7495 }
7496
7497 if (piv < mas->min) {
7498 pr_err(PTR_FMT "[%u] %lu < %lu\n", mas_mn(mas), i,
7499 piv, mas->min);
7500 MAS_WARN_ON(mas, piv < mas->min);
7501 }
7502 if (piv > mas->max) {
7503 pr_err(PTR_FMT "[%u] %lu > %lu\n", mas_mn(mas), i,
7504 piv, mas->max);
7505 MAS_WARN_ON(mas, piv > mas->max);
7506 }
7507 prev_piv = piv;
7508 if (piv == mas->max)
7509 break;
7510 }
7511
7512 if (mas_data_end(mas) != i) {
7513 pr_err("node" PTR_FMT ": data_end %u != the last slot offset %u\n",
7514 mas_mn(mas), mas_data_end(mas), i);
7515 MT_BUG_ON(mas->tree, 1);
7516 }
7517
7518 for (i += 1; i < mt_slots[type]; i++) {
7519 void *entry = mas_slot(mas, slots, i);
7520
7521 if (entry && (i != mt_slots[type] - 1)) {
7522 pr_err(PTR_FMT "[%u] should not have entry " PTR_FMT "\n",
7523 mas_mn(mas), i, entry);
7524 MT_BUG_ON(mas->tree, entry != NULL);
7525 }
7526
7527 if (i < mt_pivots[type]) {
7528 unsigned long piv = pivots[i];
7529
7530 if (!piv)
7531 continue;
7532
7533 pr_err(PTR_FMT "[%u] should not have piv %lu\n",
7534 mas_mn(mas), i, piv);
7535 MAS_WARN_ON(mas, i < mt_pivots[type] - 1);
7536 }
7537 }
7538 }
7539
mt_validate_nulls(struct maple_tree * mt)7540 static void mt_validate_nulls(struct maple_tree *mt)
7541 {
7542 void *entry, *last = (void *)1;
7543 unsigned char offset = 0;
7544 void __rcu **slots;
7545 MA_STATE(mas, mt, 0, 0);
7546
7547 mas_start(&mas);
7548 if (mas_is_none(&mas) || (mas_is_ptr(&mas)))
7549 return;
7550
7551 while (!mte_is_leaf(mas.node))
7552 mas_descend(&mas);
7553
7554 slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node));
7555 do {
7556 entry = mas_slot(&mas, slots, offset);
7557 if (!last && !entry) {
7558 pr_err("Sequential nulls end at " PTR_FMT "[%u]\n",
7559 mas_mn(&mas), offset);
7560 }
7561 MT_BUG_ON(mt, !last && !entry);
7562 last = entry;
7563 if (offset == mas_data_end(&mas)) {
7564 mas_next_node(&mas, mas_mn(&mas), ULONG_MAX);
7565 if (mas_is_overflow(&mas))
7566 return;
7567 offset = 0;
7568 slots = ma_slots(mte_to_node(mas.node),
7569 mte_node_type(mas.node));
7570 } else {
7571 offset++;
7572 }
7573
7574 } while (!mas_is_overflow(&mas));
7575 }
7576
7577 /*
7578 * validate a maple tree by checking:
7579 * 1. The limits (pivots are within mas->min to mas->max)
7580 * 2. The gap is correctly set in the parents
7581 */
mt_validate(struct maple_tree * mt)7582 void mt_validate(struct maple_tree *mt)
7583 __must_hold(mas->tree->ma_lock)
7584 {
7585 unsigned char end;
7586
7587 MA_STATE(mas, mt, 0, 0);
7588 mas_start(&mas);
7589 if (!mas_is_active(&mas))
7590 return;
7591
7592 while (!mte_is_leaf(mas.node))
7593 mas_descend(&mas);
7594
7595 while (!mas_is_overflow(&mas)) {
7596 MAS_WARN_ON(&mas, mte_dead_node(mas.node));
7597 end = mas_data_end(&mas);
7598 if (MAS_WARN_ON(&mas, (end < mt_min_slot_count(mas.node)) &&
7599 (mas.max != ULONG_MAX))) {
7600 pr_err("Invalid size %u of " PTR_FMT "\n",
7601 end, mas_mn(&mas));
7602 }
7603
7604 mas_validate_parent_slot(&mas);
7605 mas_validate_limits(&mas);
7606 mas_validate_child_slot(&mas);
7607 if (mt_is_alloc(mt))
7608 mas_validate_gaps(&mas);
7609 mas_dfs_postorder(&mas, ULONG_MAX);
7610 }
7611 mt_validate_nulls(mt);
7612 }
7613 EXPORT_SYMBOL_GPL(mt_validate);
7614
mas_dump(const struct ma_state * mas)7615 void mas_dump(const struct ma_state *mas)
7616 {
7617 pr_err("MAS: tree=" PTR_FMT " enode=" PTR_FMT " ",
7618 mas->tree, mas->node);
7619 switch (mas->status) {
7620 case ma_active:
7621 pr_err("(ma_active)");
7622 break;
7623 case ma_none:
7624 pr_err("(ma_none)");
7625 break;
7626 case ma_root:
7627 pr_err("(ma_root)");
7628 break;
7629 case ma_start:
7630 pr_err("(ma_start) ");
7631 break;
7632 case ma_pause:
7633 pr_err("(ma_pause) ");
7634 break;
7635 case ma_overflow:
7636 pr_err("(ma_overflow) ");
7637 break;
7638 case ma_underflow:
7639 pr_err("(ma_underflow) ");
7640 break;
7641 case ma_error:
7642 pr_err("(ma_error) ");
7643 break;
7644 }
7645
7646 pr_err("Store Type: ");
7647 switch (mas->store_type) {
7648 case wr_invalid:
7649 pr_err("invalid store type\n");
7650 break;
7651 case wr_new_root:
7652 pr_err("new_root\n");
7653 break;
7654 case wr_store_root:
7655 pr_err("store_root\n");
7656 break;
7657 case wr_exact_fit:
7658 pr_err("exact_fit\n");
7659 break;
7660 case wr_split_store:
7661 pr_err("split_store\n");
7662 break;
7663 case wr_slot_store:
7664 pr_err("slot_store\n");
7665 break;
7666 case wr_append:
7667 pr_err("append\n");
7668 break;
7669 case wr_node_store:
7670 pr_err("node_store\n");
7671 break;
7672 case wr_spanning_store:
7673 pr_err("spanning_store\n");
7674 break;
7675 case wr_rebalance:
7676 pr_err("rebalance\n");
7677 break;
7678 }
7679
7680 pr_err("[%u/%u] index=%lx last=%lx\n", mas->offset, mas->end,
7681 mas->index, mas->last);
7682 pr_err(" min=%lx max=%lx alloc=" PTR_FMT ", depth=%u, flags=%x\n",
7683 mas->min, mas->max, mas->alloc, mas->depth, mas->mas_flags);
7684 if (mas->index > mas->last)
7685 pr_err("Check index & last\n");
7686 }
7687 EXPORT_SYMBOL_GPL(mas_dump);
7688
mas_wr_dump(const struct ma_wr_state * wr_mas)7689 void mas_wr_dump(const struct ma_wr_state *wr_mas)
7690 {
7691 pr_err("WR_MAS: node=" PTR_FMT " r_min=%lx r_max=%lx\n",
7692 wr_mas->node, wr_mas->r_min, wr_mas->r_max);
7693 pr_err(" type=%u off_end=%u, node_end=%u, end_piv=%lx\n",
7694 wr_mas->type, wr_mas->offset_end, wr_mas->mas->end,
7695 wr_mas->end_piv);
7696 }
7697 EXPORT_SYMBOL_GPL(mas_wr_dump);
7698
7699 #endif /* CONFIG_DEBUG_MAPLE_TREE */
7700