xref: /linux/lib/iov_iter.c (revision fb60211f377b69acffead3147578f86d0092a7a5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <crypto/hash.h>
3 #include <linux/export.h>
4 #include <linux/bvec.h>
5 #include <linux/fault-inject-usercopy.h>
6 #include <linux/uio.h>
7 #include <linux/pagemap.h>
8 #include <linux/highmem.h>
9 #include <linux/slab.h>
10 #include <linux/vmalloc.h>
11 #include <linux/splice.h>
12 #include <linux/compat.h>
13 #include <net/checksum.h>
14 #include <linux/scatterlist.h>
15 #include <linux/instrumented.h>
16 
17 /* covers ubuf and kbuf alike */
18 #define iterate_buf(i, n, base, len, off, __p, STEP) {		\
19 	size_t __maybe_unused off = 0;				\
20 	len = n;						\
21 	base = __p + i->iov_offset;				\
22 	len -= (STEP);						\
23 	i->iov_offset += len;					\
24 	n = len;						\
25 }
26 
27 /* covers iovec and kvec alike */
28 #define iterate_iovec(i, n, base, len, off, __p, STEP) {	\
29 	size_t off = 0;						\
30 	size_t skip = i->iov_offset;				\
31 	do {							\
32 		len = min(n, __p->iov_len - skip);		\
33 		if (likely(len)) {				\
34 			base = __p->iov_base + skip;		\
35 			len -= (STEP);				\
36 			off += len;				\
37 			skip += len;				\
38 			n -= len;				\
39 			if (skip < __p->iov_len)		\
40 				break;				\
41 		}						\
42 		__p++;						\
43 		skip = 0;					\
44 	} while (n);						\
45 	i->iov_offset = skip;					\
46 	n = off;						\
47 }
48 
49 #define iterate_bvec(i, n, base, len, off, p, STEP) {		\
50 	size_t off = 0;						\
51 	unsigned skip = i->iov_offset;				\
52 	while (n) {						\
53 		unsigned offset = p->bv_offset + skip;		\
54 		unsigned left;					\
55 		void *kaddr = kmap_local_page(p->bv_page +	\
56 					offset / PAGE_SIZE);	\
57 		base = kaddr + offset % PAGE_SIZE;		\
58 		len = min(min(n, (size_t)(p->bv_len - skip)),	\
59 		     (size_t)(PAGE_SIZE - offset % PAGE_SIZE));	\
60 		left = (STEP);					\
61 		kunmap_local(kaddr);				\
62 		len -= left;					\
63 		off += len;					\
64 		skip += len;					\
65 		if (skip == p->bv_len) {			\
66 			skip = 0;				\
67 			p++;					\
68 		}						\
69 		n -= len;					\
70 		if (left)					\
71 			break;					\
72 	}							\
73 	i->iov_offset = skip;					\
74 	n = off;						\
75 }
76 
77 #define iterate_xarray(i, n, base, len, __off, STEP) {		\
78 	__label__ __out;					\
79 	size_t __off = 0;					\
80 	struct folio *folio;					\
81 	loff_t start = i->xarray_start + i->iov_offset;		\
82 	pgoff_t index = start / PAGE_SIZE;			\
83 	XA_STATE(xas, i->xarray, index);			\
84 								\
85 	len = PAGE_SIZE - offset_in_page(start);		\
86 	rcu_read_lock();					\
87 	xas_for_each(&xas, folio, ULONG_MAX) {			\
88 		unsigned left;					\
89 		size_t offset;					\
90 		if (xas_retry(&xas, folio))			\
91 			continue;				\
92 		if (WARN_ON(xa_is_value(folio)))		\
93 			break;					\
94 		if (WARN_ON(folio_test_hugetlb(folio)))		\
95 			break;					\
96 		offset = offset_in_folio(folio, start + __off);	\
97 		while (offset < folio_size(folio)) {		\
98 			base = kmap_local_folio(folio, offset);	\
99 			len = min(n, len);			\
100 			left = (STEP);				\
101 			kunmap_local(base);			\
102 			len -= left;				\
103 			__off += len;				\
104 			n -= len;				\
105 			if (left || n == 0)			\
106 				goto __out;			\
107 			offset += len;				\
108 			len = PAGE_SIZE;			\
109 		}						\
110 	}							\
111 __out:								\
112 	rcu_read_unlock();					\
113 	i->iov_offset += __off;					\
114 	n = __off;						\
115 }
116 
117 #define __iterate_and_advance(i, n, base, len, off, I, K) {	\
118 	if (unlikely(i->count < n))				\
119 		n = i->count;					\
120 	if (likely(n)) {					\
121 		if (likely(iter_is_ubuf(i))) {			\
122 			void __user *base;			\
123 			size_t len;				\
124 			iterate_buf(i, n, base, len, off,	\
125 						i->ubuf, (I)) 	\
126 		} else if (likely(iter_is_iovec(i))) {		\
127 			const struct iovec *iov = iter_iov(i);	\
128 			void __user *base;			\
129 			size_t len;				\
130 			iterate_iovec(i, n, base, len, off,	\
131 						iov, (I))	\
132 			i->nr_segs -= iov - iter_iov(i);	\
133 			i->__iov = iov;				\
134 		} else if (iov_iter_is_bvec(i)) {		\
135 			const struct bio_vec *bvec = i->bvec;	\
136 			void *base;				\
137 			size_t len;				\
138 			iterate_bvec(i, n, base, len, off,	\
139 						bvec, (K))	\
140 			i->nr_segs -= bvec - i->bvec;		\
141 			i->bvec = bvec;				\
142 		} else if (iov_iter_is_kvec(i)) {		\
143 			const struct kvec *kvec = i->kvec;	\
144 			void *base;				\
145 			size_t len;				\
146 			iterate_iovec(i, n, base, len, off,	\
147 						kvec, (K))	\
148 			i->nr_segs -= kvec - i->kvec;		\
149 			i->kvec = kvec;				\
150 		} else if (iov_iter_is_xarray(i)) {		\
151 			void *base;				\
152 			size_t len;				\
153 			iterate_xarray(i, n, base, len, off,	\
154 							(K))	\
155 		}						\
156 		i->count -= n;					\
157 	}							\
158 }
159 #define iterate_and_advance(i, n, base, len, off, I, K) \
160 	__iterate_and_advance(i, n, base, len, off, I, ((void)(K),0))
161 
162 static int copyout(void __user *to, const void *from, size_t n)
163 {
164 	if (should_fail_usercopy())
165 		return n;
166 	if (access_ok(to, n)) {
167 		instrument_copy_to_user(to, from, n);
168 		n = raw_copy_to_user(to, from, n);
169 	}
170 	return n;
171 }
172 
173 static int copyout_nofault(void __user *to, const void *from, size_t n)
174 {
175 	long res;
176 
177 	if (should_fail_usercopy())
178 		return n;
179 
180 	res = copy_to_user_nofault(to, from, n);
181 
182 	return res < 0 ? n : res;
183 }
184 
185 static int copyin(void *to, const void __user *from, size_t n)
186 {
187 	size_t res = n;
188 
189 	if (should_fail_usercopy())
190 		return n;
191 	if (access_ok(from, n)) {
192 		instrument_copy_from_user_before(to, from, n);
193 		res = raw_copy_from_user(to, from, n);
194 		instrument_copy_from_user_after(to, from, n, res);
195 	}
196 	return res;
197 }
198 
199 /*
200  * fault_in_iov_iter_readable - fault in iov iterator for reading
201  * @i: iterator
202  * @size: maximum length
203  *
204  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
205  * @size.  For each iovec, fault in each page that constitutes the iovec.
206  *
207  * Returns the number of bytes not faulted in (like copy_to_user() and
208  * copy_from_user()).
209  *
210  * Always returns 0 for non-userspace iterators.
211  */
212 size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size)
213 {
214 	if (iter_is_ubuf(i)) {
215 		size_t n = min(size, iov_iter_count(i));
216 		n -= fault_in_readable(i->ubuf + i->iov_offset, n);
217 		return size - n;
218 	} else if (iter_is_iovec(i)) {
219 		size_t count = min(size, iov_iter_count(i));
220 		const struct iovec *p;
221 		size_t skip;
222 
223 		size -= count;
224 		for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) {
225 			size_t len = min(count, p->iov_len - skip);
226 			size_t ret;
227 
228 			if (unlikely(!len))
229 				continue;
230 			ret = fault_in_readable(p->iov_base + skip, len);
231 			count -= len - ret;
232 			if (ret)
233 				break;
234 		}
235 		return count + size;
236 	}
237 	return 0;
238 }
239 EXPORT_SYMBOL(fault_in_iov_iter_readable);
240 
241 /*
242  * fault_in_iov_iter_writeable - fault in iov iterator for writing
243  * @i: iterator
244  * @size: maximum length
245  *
246  * Faults in the iterator using get_user_pages(), i.e., without triggering
247  * hardware page faults.  This is primarily useful when we already know that
248  * some or all of the pages in @i aren't in memory.
249  *
250  * Returns the number of bytes not faulted in, like copy_to_user() and
251  * copy_from_user().
252  *
253  * Always returns 0 for non-user-space iterators.
254  */
255 size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size)
256 {
257 	if (iter_is_ubuf(i)) {
258 		size_t n = min(size, iov_iter_count(i));
259 		n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n);
260 		return size - n;
261 	} else if (iter_is_iovec(i)) {
262 		size_t count = min(size, iov_iter_count(i));
263 		const struct iovec *p;
264 		size_t skip;
265 
266 		size -= count;
267 		for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) {
268 			size_t len = min(count, p->iov_len - skip);
269 			size_t ret;
270 
271 			if (unlikely(!len))
272 				continue;
273 			ret = fault_in_safe_writeable(p->iov_base + skip, len);
274 			count -= len - ret;
275 			if (ret)
276 				break;
277 		}
278 		return count + size;
279 	}
280 	return 0;
281 }
282 EXPORT_SYMBOL(fault_in_iov_iter_writeable);
283 
284 void iov_iter_init(struct iov_iter *i, unsigned int direction,
285 			const struct iovec *iov, unsigned long nr_segs,
286 			size_t count)
287 {
288 	WARN_ON(direction & ~(READ | WRITE));
289 	*i = (struct iov_iter) {
290 		.iter_type = ITER_IOVEC,
291 		.copy_mc = false,
292 		.nofault = false,
293 		.user_backed = true,
294 		.data_source = direction,
295 		.__iov = iov,
296 		.nr_segs = nr_segs,
297 		.iov_offset = 0,
298 		.count = count
299 	};
300 }
301 EXPORT_SYMBOL(iov_iter_init);
302 
303 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
304 			      __wsum sum, size_t off)
305 {
306 	__wsum next = csum_partial_copy_nocheck(from, to, len);
307 	return csum_block_add(sum, next, off);
308 }
309 
310 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
311 {
312 	if (WARN_ON_ONCE(i->data_source))
313 		return 0;
314 	if (user_backed_iter(i))
315 		might_fault();
316 	iterate_and_advance(i, bytes, base, len, off,
317 		copyout(base, addr + off, len),
318 		memcpy(base, addr + off, len)
319 	)
320 
321 	return bytes;
322 }
323 EXPORT_SYMBOL(_copy_to_iter);
324 
325 #ifdef CONFIG_ARCH_HAS_COPY_MC
326 static int copyout_mc(void __user *to, const void *from, size_t n)
327 {
328 	if (access_ok(to, n)) {
329 		instrument_copy_to_user(to, from, n);
330 		n = copy_mc_to_user((__force void *) to, from, n);
331 	}
332 	return n;
333 }
334 
335 /**
336  * _copy_mc_to_iter - copy to iter with source memory error exception handling
337  * @addr: source kernel address
338  * @bytes: total transfer length
339  * @i: destination iterator
340  *
341  * The pmem driver deploys this for the dax operation
342  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
343  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
344  * successfully copied.
345  *
346  * The main differences between this and typical _copy_to_iter().
347  *
348  * * Typical tail/residue handling after a fault retries the copy
349  *   byte-by-byte until the fault happens again. Re-triggering machine
350  *   checks is potentially fatal so the implementation uses source
351  *   alignment and poison alignment assumptions to avoid re-triggering
352  *   hardware exceptions.
353  *
354  * * ITER_KVEC and ITER_BVEC can return short copies.  Compare to
355  *   copy_to_iter() where only ITER_IOVEC attempts might return a short copy.
356  *
357  * Return: number of bytes copied (may be %0)
358  */
359 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
360 {
361 	if (WARN_ON_ONCE(i->data_source))
362 		return 0;
363 	if (user_backed_iter(i))
364 		might_fault();
365 	__iterate_and_advance(i, bytes, base, len, off,
366 		copyout_mc(base, addr + off, len),
367 		copy_mc_to_kernel(base, addr + off, len)
368 	)
369 
370 	return bytes;
371 }
372 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
373 #endif /* CONFIG_ARCH_HAS_COPY_MC */
374 
375 static void *memcpy_from_iter(struct iov_iter *i, void *to, const void *from,
376 				 size_t size)
377 {
378 	if (iov_iter_is_copy_mc(i))
379 		return (void *)copy_mc_to_kernel(to, from, size);
380 	return memcpy(to, from, size);
381 }
382 
383 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
384 {
385 	if (WARN_ON_ONCE(!i->data_source))
386 		return 0;
387 
388 	if (user_backed_iter(i))
389 		might_fault();
390 	iterate_and_advance(i, bytes, base, len, off,
391 		copyin(addr + off, base, len),
392 		memcpy_from_iter(i, addr + off, base, len)
393 	)
394 
395 	return bytes;
396 }
397 EXPORT_SYMBOL(_copy_from_iter);
398 
399 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
400 {
401 	if (WARN_ON_ONCE(!i->data_source))
402 		return 0;
403 
404 	iterate_and_advance(i, bytes, base, len, off,
405 		__copy_from_user_inatomic_nocache(addr + off, base, len),
406 		memcpy(addr + off, base, len)
407 	)
408 
409 	return bytes;
410 }
411 EXPORT_SYMBOL(_copy_from_iter_nocache);
412 
413 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
414 /**
415  * _copy_from_iter_flushcache - write destination through cpu cache
416  * @addr: destination kernel address
417  * @bytes: total transfer length
418  * @i: source iterator
419  *
420  * The pmem driver arranges for filesystem-dax to use this facility via
421  * dax_copy_from_iter() for ensuring that writes to persistent memory
422  * are flushed through the CPU cache. It is differentiated from
423  * _copy_from_iter_nocache() in that guarantees all data is flushed for
424  * all iterator types. The _copy_from_iter_nocache() only attempts to
425  * bypass the cache for the ITER_IOVEC case, and on some archs may use
426  * instructions that strand dirty-data in the cache.
427  *
428  * Return: number of bytes copied (may be %0)
429  */
430 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
431 {
432 	if (WARN_ON_ONCE(!i->data_source))
433 		return 0;
434 
435 	iterate_and_advance(i, bytes, base, len, off,
436 		__copy_from_user_flushcache(addr + off, base, len),
437 		memcpy_flushcache(addr + off, base, len)
438 	)
439 
440 	return bytes;
441 }
442 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
443 #endif
444 
445 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
446 {
447 	struct page *head;
448 	size_t v = n + offset;
449 
450 	/*
451 	 * The general case needs to access the page order in order
452 	 * to compute the page size.
453 	 * However, we mostly deal with order-0 pages and thus can
454 	 * avoid a possible cache line miss for requests that fit all
455 	 * page orders.
456 	 */
457 	if (n <= v && v <= PAGE_SIZE)
458 		return true;
459 
460 	head = compound_head(page);
461 	v += (page - head) << PAGE_SHIFT;
462 
463 	if (WARN_ON(n > v || v > page_size(head)))
464 		return false;
465 	return true;
466 }
467 
468 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
469 			 struct iov_iter *i)
470 {
471 	size_t res = 0;
472 	if (!page_copy_sane(page, offset, bytes))
473 		return 0;
474 	if (WARN_ON_ONCE(i->data_source))
475 		return 0;
476 	page += offset / PAGE_SIZE; // first subpage
477 	offset %= PAGE_SIZE;
478 	while (1) {
479 		void *kaddr = kmap_local_page(page);
480 		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
481 		n = _copy_to_iter(kaddr + offset, n, i);
482 		kunmap_local(kaddr);
483 		res += n;
484 		bytes -= n;
485 		if (!bytes || !n)
486 			break;
487 		offset += n;
488 		if (offset == PAGE_SIZE) {
489 			page++;
490 			offset = 0;
491 		}
492 	}
493 	return res;
494 }
495 EXPORT_SYMBOL(copy_page_to_iter);
496 
497 size_t copy_page_to_iter_nofault(struct page *page, unsigned offset, size_t bytes,
498 				 struct iov_iter *i)
499 {
500 	size_t res = 0;
501 
502 	if (!page_copy_sane(page, offset, bytes))
503 		return 0;
504 	if (WARN_ON_ONCE(i->data_source))
505 		return 0;
506 	page += offset / PAGE_SIZE; // first subpage
507 	offset %= PAGE_SIZE;
508 	while (1) {
509 		void *kaddr = kmap_local_page(page);
510 		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
511 
512 		iterate_and_advance(i, n, base, len, off,
513 			copyout_nofault(base, kaddr + offset + off, len),
514 			memcpy(base, kaddr + offset + off, len)
515 		)
516 		kunmap_local(kaddr);
517 		res += n;
518 		bytes -= n;
519 		if (!bytes || !n)
520 			break;
521 		offset += n;
522 		if (offset == PAGE_SIZE) {
523 			page++;
524 			offset = 0;
525 		}
526 	}
527 	return res;
528 }
529 EXPORT_SYMBOL(copy_page_to_iter_nofault);
530 
531 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
532 			 struct iov_iter *i)
533 {
534 	size_t res = 0;
535 	if (!page_copy_sane(page, offset, bytes))
536 		return 0;
537 	page += offset / PAGE_SIZE; // first subpage
538 	offset %= PAGE_SIZE;
539 	while (1) {
540 		void *kaddr = kmap_local_page(page);
541 		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
542 		n = _copy_from_iter(kaddr + offset, n, i);
543 		kunmap_local(kaddr);
544 		res += n;
545 		bytes -= n;
546 		if (!bytes || !n)
547 			break;
548 		offset += n;
549 		if (offset == PAGE_SIZE) {
550 			page++;
551 			offset = 0;
552 		}
553 	}
554 	return res;
555 }
556 EXPORT_SYMBOL(copy_page_from_iter);
557 
558 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
559 {
560 	iterate_and_advance(i, bytes, base, len, count,
561 		clear_user(base, len),
562 		memset(base, 0, len)
563 	)
564 
565 	return bytes;
566 }
567 EXPORT_SYMBOL(iov_iter_zero);
568 
569 size_t copy_page_from_iter_atomic(struct page *page, unsigned offset, size_t bytes,
570 				  struct iov_iter *i)
571 {
572 	char *kaddr = kmap_atomic(page), *p = kaddr + offset;
573 	if (!page_copy_sane(page, offset, bytes)) {
574 		kunmap_atomic(kaddr);
575 		return 0;
576 	}
577 	if (WARN_ON_ONCE(!i->data_source)) {
578 		kunmap_atomic(kaddr);
579 		return 0;
580 	}
581 	iterate_and_advance(i, bytes, base, len, off,
582 		copyin(p + off, base, len),
583 		memcpy_from_iter(i, p + off, base, len)
584 	)
585 	kunmap_atomic(kaddr);
586 	return bytes;
587 }
588 EXPORT_SYMBOL(copy_page_from_iter_atomic);
589 
590 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
591 {
592 	const struct bio_vec *bvec, *end;
593 
594 	if (!i->count)
595 		return;
596 	i->count -= size;
597 
598 	size += i->iov_offset;
599 
600 	for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) {
601 		if (likely(size < bvec->bv_len))
602 			break;
603 		size -= bvec->bv_len;
604 	}
605 	i->iov_offset = size;
606 	i->nr_segs -= bvec - i->bvec;
607 	i->bvec = bvec;
608 }
609 
610 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
611 {
612 	const struct iovec *iov, *end;
613 
614 	if (!i->count)
615 		return;
616 	i->count -= size;
617 
618 	size += i->iov_offset; // from beginning of current segment
619 	for (iov = iter_iov(i), end = iov + i->nr_segs; iov < end; iov++) {
620 		if (likely(size < iov->iov_len))
621 			break;
622 		size -= iov->iov_len;
623 	}
624 	i->iov_offset = size;
625 	i->nr_segs -= iov - iter_iov(i);
626 	i->__iov = iov;
627 }
628 
629 void iov_iter_advance(struct iov_iter *i, size_t size)
630 {
631 	if (unlikely(i->count < size))
632 		size = i->count;
633 	if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) {
634 		i->iov_offset += size;
635 		i->count -= size;
636 	} else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
637 		/* iovec and kvec have identical layouts */
638 		iov_iter_iovec_advance(i, size);
639 	} else if (iov_iter_is_bvec(i)) {
640 		iov_iter_bvec_advance(i, size);
641 	} else if (iov_iter_is_discard(i)) {
642 		i->count -= size;
643 	}
644 }
645 EXPORT_SYMBOL(iov_iter_advance);
646 
647 void iov_iter_revert(struct iov_iter *i, size_t unroll)
648 {
649 	if (!unroll)
650 		return;
651 	if (WARN_ON(unroll > MAX_RW_COUNT))
652 		return;
653 	i->count += unroll;
654 	if (unlikely(iov_iter_is_discard(i)))
655 		return;
656 	if (unroll <= i->iov_offset) {
657 		i->iov_offset -= unroll;
658 		return;
659 	}
660 	unroll -= i->iov_offset;
661 	if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) {
662 		BUG(); /* We should never go beyond the start of the specified
663 			* range since we might then be straying into pages that
664 			* aren't pinned.
665 			*/
666 	} else if (iov_iter_is_bvec(i)) {
667 		const struct bio_vec *bvec = i->bvec;
668 		while (1) {
669 			size_t n = (--bvec)->bv_len;
670 			i->nr_segs++;
671 			if (unroll <= n) {
672 				i->bvec = bvec;
673 				i->iov_offset = n - unroll;
674 				return;
675 			}
676 			unroll -= n;
677 		}
678 	} else { /* same logics for iovec and kvec */
679 		const struct iovec *iov = iter_iov(i);
680 		while (1) {
681 			size_t n = (--iov)->iov_len;
682 			i->nr_segs++;
683 			if (unroll <= n) {
684 				i->__iov = iov;
685 				i->iov_offset = n - unroll;
686 				return;
687 			}
688 			unroll -= n;
689 		}
690 	}
691 }
692 EXPORT_SYMBOL(iov_iter_revert);
693 
694 /*
695  * Return the count of just the current iov_iter segment.
696  */
697 size_t iov_iter_single_seg_count(const struct iov_iter *i)
698 {
699 	if (i->nr_segs > 1) {
700 		if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
701 			return min(i->count, iter_iov(i)->iov_len - i->iov_offset);
702 		if (iov_iter_is_bvec(i))
703 			return min(i->count, i->bvec->bv_len - i->iov_offset);
704 	}
705 	return i->count;
706 }
707 EXPORT_SYMBOL(iov_iter_single_seg_count);
708 
709 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
710 			const struct kvec *kvec, unsigned long nr_segs,
711 			size_t count)
712 {
713 	WARN_ON(direction & ~(READ | WRITE));
714 	*i = (struct iov_iter){
715 		.iter_type = ITER_KVEC,
716 		.copy_mc = false,
717 		.data_source = direction,
718 		.kvec = kvec,
719 		.nr_segs = nr_segs,
720 		.iov_offset = 0,
721 		.count = count
722 	};
723 }
724 EXPORT_SYMBOL(iov_iter_kvec);
725 
726 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
727 			const struct bio_vec *bvec, unsigned long nr_segs,
728 			size_t count)
729 {
730 	WARN_ON(direction & ~(READ | WRITE));
731 	*i = (struct iov_iter){
732 		.iter_type = ITER_BVEC,
733 		.copy_mc = false,
734 		.data_source = direction,
735 		.bvec = bvec,
736 		.nr_segs = nr_segs,
737 		.iov_offset = 0,
738 		.count = count
739 	};
740 }
741 EXPORT_SYMBOL(iov_iter_bvec);
742 
743 /**
744  * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
745  * @i: The iterator to initialise.
746  * @direction: The direction of the transfer.
747  * @xarray: The xarray to access.
748  * @start: The start file position.
749  * @count: The size of the I/O buffer in bytes.
750  *
751  * Set up an I/O iterator to either draw data out of the pages attached to an
752  * inode or to inject data into those pages.  The pages *must* be prevented
753  * from evaporation, either by taking a ref on them or locking them by the
754  * caller.
755  */
756 void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
757 		     struct xarray *xarray, loff_t start, size_t count)
758 {
759 	BUG_ON(direction & ~1);
760 	*i = (struct iov_iter) {
761 		.iter_type = ITER_XARRAY,
762 		.copy_mc = false,
763 		.data_source = direction,
764 		.xarray = xarray,
765 		.xarray_start = start,
766 		.count = count,
767 		.iov_offset = 0
768 	};
769 }
770 EXPORT_SYMBOL(iov_iter_xarray);
771 
772 /**
773  * iov_iter_discard - Initialise an I/O iterator that discards data
774  * @i: The iterator to initialise.
775  * @direction: The direction of the transfer.
776  * @count: The size of the I/O buffer in bytes.
777  *
778  * Set up an I/O iterator that just discards everything that's written to it.
779  * It's only available as a READ iterator.
780  */
781 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
782 {
783 	BUG_ON(direction != READ);
784 	*i = (struct iov_iter){
785 		.iter_type = ITER_DISCARD,
786 		.copy_mc = false,
787 		.data_source = false,
788 		.count = count,
789 		.iov_offset = 0
790 	};
791 }
792 EXPORT_SYMBOL(iov_iter_discard);
793 
794 static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask,
795 				   unsigned len_mask)
796 {
797 	size_t size = i->count;
798 	size_t skip = i->iov_offset;
799 	unsigned k;
800 
801 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
802 		const struct iovec *iov = iter_iov(i) + k;
803 		size_t len = iov->iov_len - skip;
804 
805 		if (len > size)
806 			len = size;
807 		if (len & len_mask)
808 			return false;
809 		if ((unsigned long)(iov->iov_base + skip) & addr_mask)
810 			return false;
811 
812 		size -= len;
813 		if (!size)
814 			break;
815 	}
816 	return true;
817 }
818 
819 static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask,
820 				  unsigned len_mask)
821 {
822 	size_t size = i->count;
823 	unsigned skip = i->iov_offset;
824 	unsigned k;
825 
826 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
827 		size_t len = i->bvec[k].bv_len - skip;
828 
829 		if (len > size)
830 			len = size;
831 		if (len & len_mask)
832 			return false;
833 		if ((unsigned long)(i->bvec[k].bv_offset + skip) & addr_mask)
834 			return false;
835 
836 		size -= len;
837 		if (!size)
838 			break;
839 	}
840 	return true;
841 }
842 
843 /**
844  * iov_iter_is_aligned() - Check if the addresses and lengths of each segments
845  * 	are aligned to the parameters.
846  *
847  * @i: &struct iov_iter to restore
848  * @addr_mask: bit mask to check against the iov element's addresses
849  * @len_mask: bit mask to check against the iov element's lengths
850  *
851  * Return: false if any addresses or lengths intersect with the provided masks
852  */
853 bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask,
854 			 unsigned len_mask)
855 {
856 	if (likely(iter_is_ubuf(i))) {
857 		if (i->count & len_mask)
858 			return false;
859 		if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask)
860 			return false;
861 		return true;
862 	}
863 
864 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
865 		return iov_iter_aligned_iovec(i, addr_mask, len_mask);
866 
867 	if (iov_iter_is_bvec(i))
868 		return iov_iter_aligned_bvec(i, addr_mask, len_mask);
869 
870 	if (iov_iter_is_xarray(i)) {
871 		if (i->count & len_mask)
872 			return false;
873 		if ((i->xarray_start + i->iov_offset) & addr_mask)
874 			return false;
875 	}
876 
877 	return true;
878 }
879 EXPORT_SYMBOL_GPL(iov_iter_is_aligned);
880 
881 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
882 {
883 	unsigned long res = 0;
884 	size_t size = i->count;
885 	size_t skip = i->iov_offset;
886 	unsigned k;
887 
888 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
889 		const struct iovec *iov = iter_iov(i) + k;
890 		size_t len = iov->iov_len - skip;
891 		if (len) {
892 			res |= (unsigned long)iov->iov_base + skip;
893 			if (len > size)
894 				len = size;
895 			res |= len;
896 			size -= len;
897 			if (!size)
898 				break;
899 		}
900 	}
901 	return res;
902 }
903 
904 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
905 {
906 	unsigned res = 0;
907 	size_t size = i->count;
908 	unsigned skip = i->iov_offset;
909 	unsigned k;
910 
911 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
912 		size_t len = i->bvec[k].bv_len - skip;
913 		res |= (unsigned long)i->bvec[k].bv_offset + skip;
914 		if (len > size)
915 			len = size;
916 		res |= len;
917 		size -= len;
918 		if (!size)
919 			break;
920 	}
921 	return res;
922 }
923 
924 unsigned long iov_iter_alignment(const struct iov_iter *i)
925 {
926 	if (likely(iter_is_ubuf(i))) {
927 		size_t size = i->count;
928 		if (size)
929 			return ((unsigned long)i->ubuf + i->iov_offset) | size;
930 		return 0;
931 	}
932 
933 	/* iovec and kvec have identical layouts */
934 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
935 		return iov_iter_alignment_iovec(i);
936 
937 	if (iov_iter_is_bvec(i))
938 		return iov_iter_alignment_bvec(i);
939 
940 	if (iov_iter_is_xarray(i))
941 		return (i->xarray_start + i->iov_offset) | i->count;
942 
943 	return 0;
944 }
945 EXPORT_SYMBOL(iov_iter_alignment);
946 
947 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
948 {
949 	unsigned long res = 0;
950 	unsigned long v = 0;
951 	size_t size = i->count;
952 	unsigned k;
953 
954 	if (iter_is_ubuf(i))
955 		return 0;
956 
957 	if (WARN_ON(!iter_is_iovec(i)))
958 		return ~0U;
959 
960 	for (k = 0; k < i->nr_segs; k++) {
961 		const struct iovec *iov = iter_iov(i) + k;
962 		if (iov->iov_len) {
963 			unsigned long base = (unsigned long)iov->iov_base;
964 			if (v) // if not the first one
965 				res |= base | v; // this start | previous end
966 			v = base + iov->iov_len;
967 			if (size <= iov->iov_len)
968 				break;
969 			size -= iov->iov_len;
970 		}
971 	}
972 	return res;
973 }
974 EXPORT_SYMBOL(iov_iter_gap_alignment);
975 
976 static int want_pages_array(struct page ***res, size_t size,
977 			    size_t start, unsigned int maxpages)
978 {
979 	unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE);
980 
981 	if (count > maxpages)
982 		count = maxpages;
983 	WARN_ON(!count);	// caller should've prevented that
984 	if (!*res) {
985 		*res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL);
986 		if (!*res)
987 			return 0;
988 	}
989 	return count;
990 }
991 
992 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
993 					  pgoff_t index, unsigned int nr_pages)
994 {
995 	XA_STATE(xas, xa, index);
996 	struct page *page;
997 	unsigned int ret = 0;
998 
999 	rcu_read_lock();
1000 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1001 		if (xas_retry(&xas, page))
1002 			continue;
1003 
1004 		/* Has the page moved or been split? */
1005 		if (unlikely(page != xas_reload(&xas))) {
1006 			xas_reset(&xas);
1007 			continue;
1008 		}
1009 
1010 		pages[ret] = find_subpage(page, xas.xa_index);
1011 		get_page(pages[ret]);
1012 		if (++ret == nr_pages)
1013 			break;
1014 	}
1015 	rcu_read_unlock();
1016 	return ret;
1017 }
1018 
1019 static ssize_t iter_xarray_get_pages(struct iov_iter *i,
1020 				     struct page ***pages, size_t maxsize,
1021 				     unsigned maxpages, size_t *_start_offset)
1022 {
1023 	unsigned nr, offset, count;
1024 	pgoff_t index;
1025 	loff_t pos;
1026 
1027 	pos = i->xarray_start + i->iov_offset;
1028 	index = pos >> PAGE_SHIFT;
1029 	offset = pos & ~PAGE_MASK;
1030 	*_start_offset = offset;
1031 
1032 	count = want_pages_array(pages, maxsize, offset, maxpages);
1033 	if (!count)
1034 		return -ENOMEM;
1035 	nr = iter_xarray_populate_pages(*pages, i->xarray, index, count);
1036 	if (nr == 0)
1037 		return 0;
1038 
1039 	maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1040 	i->iov_offset += maxsize;
1041 	i->count -= maxsize;
1042 	return maxsize;
1043 }
1044 
1045 /* must be done on non-empty ITER_UBUF or ITER_IOVEC one */
1046 static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size)
1047 {
1048 	size_t skip;
1049 	long k;
1050 
1051 	if (iter_is_ubuf(i))
1052 		return (unsigned long)i->ubuf + i->iov_offset;
1053 
1054 	for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
1055 		const struct iovec *iov = iter_iov(i) + k;
1056 		size_t len = iov->iov_len - skip;
1057 
1058 		if (unlikely(!len))
1059 			continue;
1060 		if (*size > len)
1061 			*size = len;
1062 		return (unsigned long)iov->iov_base + skip;
1063 	}
1064 	BUG(); // if it had been empty, we wouldn't get called
1065 }
1066 
1067 /* must be done on non-empty ITER_BVEC one */
1068 static struct page *first_bvec_segment(const struct iov_iter *i,
1069 				       size_t *size, size_t *start)
1070 {
1071 	struct page *page;
1072 	size_t skip = i->iov_offset, len;
1073 
1074 	len = i->bvec->bv_len - skip;
1075 	if (*size > len)
1076 		*size = len;
1077 	skip += i->bvec->bv_offset;
1078 	page = i->bvec->bv_page + skip / PAGE_SIZE;
1079 	*start = skip % PAGE_SIZE;
1080 	return page;
1081 }
1082 
1083 static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i,
1084 		   struct page ***pages, size_t maxsize,
1085 		   unsigned int maxpages, size_t *start)
1086 {
1087 	unsigned int n, gup_flags = 0;
1088 
1089 	if (maxsize > i->count)
1090 		maxsize = i->count;
1091 	if (!maxsize)
1092 		return 0;
1093 	if (maxsize > MAX_RW_COUNT)
1094 		maxsize = MAX_RW_COUNT;
1095 
1096 	if (likely(user_backed_iter(i))) {
1097 		unsigned long addr;
1098 		int res;
1099 
1100 		if (iov_iter_rw(i) != WRITE)
1101 			gup_flags |= FOLL_WRITE;
1102 		if (i->nofault)
1103 			gup_flags |= FOLL_NOFAULT;
1104 
1105 		addr = first_iovec_segment(i, &maxsize);
1106 		*start = addr % PAGE_SIZE;
1107 		addr &= PAGE_MASK;
1108 		n = want_pages_array(pages, maxsize, *start, maxpages);
1109 		if (!n)
1110 			return -ENOMEM;
1111 		res = get_user_pages_fast(addr, n, gup_flags, *pages);
1112 		if (unlikely(res <= 0))
1113 			return res;
1114 		maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start);
1115 		iov_iter_advance(i, maxsize);
1116 		return maxsize;
1117 	}
1118 	if (iov_iter_is_bvec(i)) {
1119 		struct page **p;
1120 		struct page *page;
1121 
1122 		page = first_bvec_segment(i, &maxsize, start);
1123 		n = want_pages_array(pages, maxsize, *start, maxpages);
1124 		if (!n)
1125 			return -ENOMEM;
1126 		p = *pages;
1127 		for (int k = 0; k < n; k++)
1128 			get_page(p[k] = page + k);
1129 		maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start);
1130 		i->count -= maxsize;
1131 		i->iov_offset += maxsize;
1132 		if (i->iov_offset == i->bvec->bv_len) {
1133 			i->iov_offset = 0;
1134 			i->bvec++;
1135 			i->nr_segs--;
1136 		}
1137 		return maxsize;
1138 	}
1139 	if (iov_iter_is_xarray(i))
1140 		return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1141 	return -EFAULT;
1142 }
1143 
1144 ssize_t iov_iter_get_pages2(struct iov_iter *i, struct page **pages,
1145 		size_t maxsize, unsigned maxpages, size_t *start)
1146 {
1147 	if (!maxpages)
1148 		return 0;
1149 	BUG_ON(!pages);
1150 
1151 	return __iov_iter_get_pages_alloc(i, &pages, maxsize, maxpages, start);
1152 }
1153 EXPORT_SYMBOL(iov_iter_get_pages2);
1154 
1155 ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i,
1156 		struct page ***pages, size_t maxsize, size_t *start)
1157 {
1158 	ssize_t len;
1159 
1160 	*pages = NULL;
1161 
1162 	len = __iov_iter_get_pages_alloc(i, pages, maxsize, ~0U, start);
1163 	if (len <= 0) {
1164 		kvfree(*pages);
1165 		*pages = NULL;
1166 	}
1167 	return len;
1168 }
1169 EXPORT_SYMBOL(iov_iter_get_pages_alloc2);
1170 
1171 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1172 			       struct iov_iter *i)
1173 {
1174 	__wsum sum, next;
1175 	sum = *csum;
1176 	if (WARN_ON_ONCE(!i->data_source))
1177 		return 0;
1178 
1179 	iterate_and_advance(i, bytes, base, len, off, ({
1180 		next = csum_and_copy_from_user(base, addr + off, len);
1181 		sum = csum_block_add(sum, next, off);
1182 		next ? 0 : len;
1183 	}), ({
1184 		sum = csum_and_memcpy(addr + off, base, len, sum, off);
1185 	})
1186 	)
1187 	*csum = sum;
1188 	return bytes;
1189 }
1190 EXPORT_SYMBOL(csum_and_copy_from_iter);
1191 
1192 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
1193 			     struct iov_iter *i)
1194 {
1195 	struct csum_state *csstate = _csstate;
1196 	__wsum sum, next;
1197 
1198 	if (WARN_ON_ONCE(i->data_source))
1199 		return 0;
1200 	if (unlikely(iov_iter_is_discard(i))) {
1201 		// can't use csum_memcpy() for that one - data is not copied
1202 		csstate->csum = csum_block_add(csstate->csum,
1203 					       csum_partial(addr, bytes, 0),
1204 					       csstate->off);
1205 		csstate->off += bytes;
1206 		return bytes;
1207 	}
1208 
1209 	sum = csum_shift(csstate->csum, csstate->off);
1210 	iterate_and_advance(i, bytes, base, len, off, ({
1211 		next = csum_and_copy_to_user(addr + off, base, len);
1212 		sum = csum_block_add(sum, next, off);
1213 		next ? 0 : len;
1214 	}), ({
1215 		sum = csum_and_memcpy(base, addr + off, len, sum, off);
1216 	})
1217 	)
1218 	csstate->csum = csum_shift(sum, csstate->off);
1219 	csstate->off += bytes;
1220 	return bytes;
1221 }
1222 EXPORT_SYMBOL(csum_and_copy_to_iter);
1223 
1224 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1225 		struct iov_iter *i)
1226 {
1227 #ifdef CONFIG_CRYPTO_HASH
1228 	struct ahash_request *hash = hashp;
1229 	struct scatterlist sg;
1230 	size_t copied;
1231 
1232 	copied = copy_to_iter(addr, bytes, i);
1233 	sg_init_one(&sg, addr, copied);
1234 	ahash_request_set_crypt(hash, &sg, NULL, copied);
1235 	crypto_ahash_update(hash);
1236 	return copied;
1237 #else
1238 	return 0;
1239 #endif
1240 }
1241 EXPORT_SYMBOL(hash_and_copy_to_iter);
1242 
1243 static int iov_npages(const struct iov_iter *i, int maxpages)
1244 {
1245 	size_t skip = i->iov_offset, size = i->count;
1246 	const struct iovec *p;
1247 	int npages = 0;
1248 
1249 	for (p = iter_iov(i); size; skip = 0, p++) {
1250 		unsigned offs = offset_in_page(p->iov_base + skip);
1251 		size_t len = min(p->iov_len - skip, size);
1252 
1253 		if (len) {
1254 			size -= len;
1255 			npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1256 			if (unlikely(npages > maxpages))
1257 				return maxpages;
1258 		}
1259 	}
1260 	return npages;
1261 }
1262 
1263 static int bvec_npages(const struct iov_iter *i, int maxpages)
1264 {
1265 	size_t skip = i->iov_offset, size = i->count;
1266 	const struct bio_vec *p;
1267 	int npages = 0;
1268 
1269 	for (p = i->bvec; size; skip = 0, p++) {
1270 		unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1271 		size_t len = min(p->bv_len - skip, size);
1272 
1273 		size -= len;
1274 		npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1275 		if (unlikely(npages > maxpages))
1276 			return maxpages;
1277 	}
1278 	return npages;
1279 }
1280 
1281 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1282 {
1283 	if (unlikely(!i->count))
1284 		return 0;
1285 	if (likely(iter_is_ubuf(i))) {
1286 		unsigned offs = offset_in_page(i->ubuf + i->iov_offset);
1287 		int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE);
1288 		return min(npages, maxpages);
1289 	}
1290 	/* iovec and kvec have identical layouts */
1291 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1292 		return iov_npages(i, maxpages);
1293 	if (iov_iter_is_bvec(i))
1294 		return bvec_npages(i, maxpages);
1295 	if (iov_iter_is_xarray(i)) {
1296 		unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1297 		int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1298 		return min(npages, maxpages);
1299 	}
1300 	return 0;
1301 }
1302 EXPORT_SYMBOL(iov_iter_npages);
1303 
1304 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1305 {
1306 	*new = *old;
1307 	if (iov_iter_is_bvec(new))
1308 		return new->bvec = kmemdup(new->bvec,
1309 				    new->nr_segs * sizeof(struct bio_vec),
1310 				    flags);
1311 	else if (iov_iter_is_kvec(new) || iter_is_iovec(new))
1312 		/* iovec and kvec have identical layout */
1313 		return new->__iov = kmemdup(new->__iov,
1314 				   new->nr_segs * sizeof(struct iovec),
1315 				   flags);
1316 	return NULL;
1317 }
1318 EXPORT_SYMBOL(dup_iter);
1319 
1320 static __noclone int copy_compat_iovec_from_user(struct iovec *iov,
1321 		const struct iovec __user *uvec, unsigned long nr_segs)
1322 {
1323 	const struct compat_iovec __user *uiov =
1324 		(const struct compat_iovec __user *)uvec;
1325 	int ret = -EFAULT, i;
1326 
1327 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1328 		return -EFAULT;
1329 
1330 	for (i = 0; i < nr_segs; i++) {
1331 		compat_uptr_t buf;
1332 		compat_ssize_t len;
1333 
1334 		unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1335 		unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1336 
1337 		/* check for compat_size_t not fitting in compat_ssize_t .. */
1338 		if (len < 0) {
1339 			ret = -EINVAL;
1340 			goto uaccess_end;
1341 		}
1342 		iov[i].iov_base = compat_ptr(buf);
1343 		iov[i].iov_len = len;
1344 	}
1345 
1346 	ret = 0;
1347 uaccess_end:
1348 	user_access_end();
1349 	return ret;
1350 }
1351 
1352 static __noclone int copy_iovec_from_user(struct iovec *iov,
1353 		const struct iovec __user *uiov, unsigned long nr_segs)
1354 {
1355 	int ret = -EFAULT;
1356 
1357 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1358 		return -EFAULT;
1359 
1360 	do {
1361 		void __user *buf;
1362 		ssize_t len;
1363 
1364 		unsafe_get_user(len, &uiov->iov_len, uaccess_end);
1365 		unsafe_get_user(buf, &uiov->iov_base, uaccess_end);
1366 
1367 		/* check for size_t not fitting in ssize_t .. */
1368 		if (unlikely(len < 0)) {
1369 			ret = -EINVAL;
1370 			goto uaccess_end;
1371 		}
1372 		iov->iov_base = buf;
1373 		iov->iov_len = len;
1374 
1375 		uiov++; iov++;
1376 	} while (--nr_segs);
1377 
1378 	ret = 0;
1379 uaccess_end:
1380 	user_access_end();
1381 	return ret;
1382 }
1383 
1384 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1385 		unsigned long nr_segs, unsigned long fast_segs,
1386 		struct iovec *fast_iov, bool compat)
1387 {
1388 	struct iovec *iov = fast_iov;
1389 	int ret;
1390 
1391 	/*
1392 	 * SuS says "The readv() function *may* fail if the iovcnt argument was
1393 	 * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1394 	 * traditionally returned zero for zero segments, so...
1395 	 */
1396 	if (nr_segs == 0)
1397 		return iov;
1398 	if (nr_segs > UIO_MAXIOV)
1399 		return ERR_PTR(-EINVAL);
1400 	if (nr_segs > fast_segs) {
1401 		iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1402 		if (!iov)
1403 			return ERR_PTR(-ENOMEM);
1404 	}
1405 
1406 	if (unlikely(compat))
1407 		ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1408 	else
1409 		ret = copy_iovec_from_user(iov, uvec, nr_segs);
1410 	if (ret) {
1411 		if (iov != fast_iov)
1412 			kfree(iov);
1413 		return ERR_PTR(ret);
1414 	}
1415 
1416 	return iov;
1417 }
1418 
1419 /*
1420  * Single segment iovec supplied by the user, import it as ITER_UBUF.
1421  */
1422 static ssize_t __import_iovec_ubuf(int type, const struct iovec __user *uvec,
1423 				   struct iovec **iovp, struct iov_iter *i,
1424 				   bool compat)
1425 {
1426 	struct iovec *iov = *iovp;
1427 	ssize_t ret;
1428 
1429 	if (compat)
1430 		ret = copy_compat_iovec_from_user(iov, uvec, 1);
1431 	else
1432 		ret = copy_iovec_from_user(iov, uvec, 1);
1433 	if (unlikely(ret))
1434 		return ret;
1435 
1436 	ret = import_ubuf(type, iov->iov_base, iov->iov_len, i);
1437 	if (unlikely(ret))
1438 		return ret;
1439 	*iovp = NULL;
1440 	return i->count;
1441 }
1442 
1443 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1444 		 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1445 		 struct iov_iter *i, bool compat)
1446 {
1447 	ssize_t total_len = 0;
1448 	unsigned long seg;
1449 	struct iovec *iov;
1450 
1451 	if (nr_segs == 1)
1452 		return __import_iovec_ubuf(type, uvec, iovp, i, compat);
1453 
1454 	iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1455 	if (IS_ERR(iov)) {
1456 		*iovp = NULL;
1457 		return PTR_ERR(iov);
1458 	}
1459 
1460 	/*
1461 	 * According to the Single Unix Specification we should return EINVAL if
1462 	 * an element length is < 0 when cast to ssize_t or if the total length
1463 	 * would overflow the ssize_t return value of the system call.
1464 	 *
1465 	 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1466 	 * overflow case.
1467 	 */
1468 	for (seg = 0; seg < nr_segs; seg++) {
1469 		ssize_t len = (ssize_t)iov[seg].iov_len;
1470 
1471 		if (!access_ok(iov[seg].iov_base, len)) {
1472 			if (iov != *iovp)
1473 				kfree(iov);
1474 			*iovp = NULL;
1475 			return -EFAULT;
1476 		}
1477 
1478 		if (len > MAX_RW_COUNT - total_len) {
1479 			len = MAX_RW_COUNT - total_len;
1480 			iov[seg].iov_len = len;
1481 		}
1482 		total_len += len;
1483 	}
1484 
1485 	iov_iter_init(i, type, iov, nr_segs, total_len);
1486 	if (iov == *iovp)
1487 		*iovp = NULL;
1488 	else
1489 		*iovp = iov;
1490 	return total_len;
1491 }
1492 
1493 /**
1494  * import_iovec() - Copy an array of &struct iovec from userspace
1495  *     into the kernel, check that it is valid, and initialize a new
1496  *     &struct iov_iter iterator to access it.
1497  *
1498  * @type: One of %READ or %WRITE.
1499  * @uvec: Pointer to the userspace array.
1500  * @nr_segs: Number of elements in userspace array.
1501  * @fast_segs: Number of elements in @iov.
1502  * @iovp: (input and output parameter) Pointer to pointer to (usually small
1503  *     on-stack) kernel array.
1504  * @i: Pointer to iterator that will be initialized on success.
1505  *
1506  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1507  * then this function places %NULL in *@iov on return. Otherwise, a new
1508  * array will be allocated and the result placed in *@iov. This means that
1509  * the caller may call kfree() on *@iov regardless of whether the small
1510  * on-stack array was used or not (and regardless of whether this function
1511  * returns an error or not).
1512  *
1513  * Return: Negative error code on error, bytes imported on success
1514  */
1515 ssize_t import_iovec(int type, const struct iovec __user *uvec,
1516 		 unsigned nr_segs, unsigned fast_segs,
1517 		 struct iovec **iovp, struct iov_iter *i)
1518 {
1519 	return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1520 			      in_compat_syscall());
1521 }
1522 EXPORT_SYMBOL(import_iovec);
1523 
1524 int import_single_range(int rw, void __user *buf, size_t len,
1525 		 struct iovec *iov, struct iov_iter *i)
1526 {
1527 	if (len > MAX_RW_COUNT)
1528 		len = MAX_RW_COUNT;
1529 	if (unlikely(!access_ok(buf, len)))
1530 		return -EFAULT;
1531 
1532 	iov_iter_ubuf(i, rw, buf, len);
1533 	return 0;
1534 }
1535 EXPORT_SYMBOL(import_single_range);
1536 
1537 int import_ubuf(int rw, void __user *buf, size_t len, struct iov_iter *i)
1538 {
1539 	if (len > MAX_RW_COUNT)
1540 		len = MAX_RW_COUNT;
1541 	if (unlikely(!access_ok(buf, len)))
1542 		return -EFAULT;
1543 
1544 	iov_iter_ubuf(i, rw, buf, len);
1545 	return 0;
1546 }
1547 
1548 /**
1549  * iov_iter_restore() - Restore a &struct iov_iter to the same state as when
1550  *     iov_iter_save_state() was called.
1551  *
1552  * @i: &struct iov_iter to restore
1553  * @state: state to restore from
1554  *
1555  * Used after iov_iter_save_state() to bring restore @i, if operations may
1556  * have advanced it.
1557  *
1558  * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC
1559  */
1560 void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state)
1561 {
1562 	if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i) &&
1563 			 !iter_is_ubuf(i)) && !iov_iter_is_kvec(i))
1564 		return;
1565 	i->iov_offset = state->iov_offset;
1566 	i->count = state->count;
1567 	if (iter_is_ubuf(i))
1568 		return;
1569 	/*
1570 	 * For the *vec iters, nr_segs + iov is constant - if we increment
1571 	 * the vec, then we also decrement the nr_segs count. Hence we don't
1572 	 * need to track both of these, just one is enough and we can deduct
1573 	 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct
1574 	 * size, so we can just increment the iov pointer as they are unionzed.
1575 	 * ITER_BVEC _may_ be the same size on some archs, but on others it is
1576 	 * not. Be safe and handle it separately.
1577 	 */
1578 	BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec));
1579 	if (iov_iter_is_bvec(i))
1580 		i->bvec -= state->nr_segs - i->nr_segs;
1581 	else
1582 		i->__iov -= state->nr_segs - i->nr_segs;
1583 	i->nr_segs = state->nr_segs;
1584 }
1585 
1586 /*
1587  * Extract a list of contiguous pages from an ITER_XARRAY iterator.  This does not
1588  * get references on the pages, nor does it get a pin on them.
1589  */
1590 static ssize_t iov_iter_extract_xarray_pages(struct iov_iter *i,
1591 					     struct page ***pages, size_t maxsize,
1592 					     unsigned int maxpages,
1593 					     iov_iter_extraction_t extraction_flags,
1594 					     size_t *offset0)
1595 {
1596 	struct page *page, **p;
1597 	unsigned int nr = 0, offset;
1598 	loff_t pos = i->xarray_start + i->iov_offset;
1599 	pgoff_t index = pos >> PAGE_SHIFT;
1600 	XA_STATE(xas, i->xarray, index);
1601 
1602 	offset = pos & ~PAGE_MASK;
1603 	*offset0 = offset;
1604 
1605 	maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1606 	if (!maxpages)
1607 		return -ENOMEM;
1608 	p = *pages;
1609 
1610 	rcu_read_lock();
1611 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1612 		if (xas_retry(&xas, page))
1613 			continue;
1614 
1615 		/* Has the page moved or been split? */
1616 		if (unlikely(page != xas_reload(&xas))) {
1617 			xas_reset(&xas);
1618 			continue;
1619 		}
1620 
1621 		p[nr++] = find_subpage(page, xas.xa_index);
1622 		if (nr == maxpages)
1623 			break;
1624 	}
1625 	rcu_read_unlock();
1626 
1627 	maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1628 	iov_iter_advance(i, maxsize);
1629 	return maxsize;
1630 }
1631 
1632 /*
1633  * Extract a list of contiguous pages from an ITER_BVEC iterator.  This does
1634  * not get references on the pages, nor does it get a pin on them.
1635  */
1636 static ssize_t iov_iter_extract_bvec_pages(struct iov_iter *i,
1637 					   struct page ***pages, size_t maxsize,
1638 					   unsigned int maxpages,
1639 					   iov_iter_extraction_t extraction_flags,
1640 					   size_t *offset0)
1641 {
1642 	struct page **p, *page;
1643 	size_t skip = i->iov_offset, offset;
1644 	int k;
1645 
1646 	for (;;) {
1647 		if (i->nr_segs == 0)
1648 			return 0;
1649 		maxsize = min(maxsize, i->bvec->bv_len - skip);
1650 		if (maxsize)
1651 			break;
1652 		i->iov_offset = 0;
1653 		i->nr_segs--;
1654 		i->bvec++;
1655 		skip = 0;
1656 	}
1657 
1658 	skip += i->bvec->bv_offset;
1659 	page = i->bvec->bv_page + skip / PAGE_SIZE;
1660 	offset = skip % PAGE_SIZE;
1661 	*offset0 = offset;
1662 
1663 	maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1664 	if (!maxpages)
1665 		return -ENOMEM;
1666 	p = *pages;
1667 	for (k = 0; k < maxpages; k++)
1668 		p[k] = page + k;
1669 
1670 	maxsize = min_t(size_t, maxsize, maxpages * PAGE_SIZE - offset);
1671 	iov_iter_advance(i, maxsize);
1672 	return maxsize;
1673 }
1674 
1675 /*
1676  * Extract a list of virtually contiguous pages from an ITER_KVEC iterator.
1677  * This does not get references on the pages, nor does it get a pin on them.
1678  */
1679 static ssize_t iov_iter_extract_kvec_pages(struct iov_iter *i,
1680 					   struct page ***pages, size_t maxsize,
1681 					   unsigned int maxpages,
1682 					   iov_iter_extraction_t extraction_flags,
1683 					   size_t *offset0)
1684 {
1685 	struct page **p, *page;
1686 	const void *kaddr;
1687 	size_t skip = i->iov_offset, offset, len;
1688 	int k;
1689 
1690 	for (;;) {
1691 		if (i->nr_segs == 0)
1692 			return 0;
1693 		maxsize = min(maxsize, i->kvec->iov_len - skip);
1694 		if (maxsize)
1695 			break;
1696 		i->iov_offset = 0;
1697 		i->nr_segs--;
1698 		i->kvec++;
1699 		skip = 0;
1700 	}
1701 
1702 	kaddr = i->kvec->iov_base + skip;
1703 	offset = (unsigned long)kaddr & ~PAGE_MASK;
1704 	*offset0 = offset;
1705 
1706 	maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1707 	if (!maxpages)
1708 		return -ENOMEM;
1709 	p = *pages;
1710 
1711 	kaddr -= offset;
1712 	len = offset + maxsize;
1713 	for (k = 0; k < maxpages; k++) {
1714 		size_t seg = min_t(size_t, len, PAGE_SIZE);
1715 
1716 		if (is_vmalloc_or_module_addr(kaddr))
1717 			page = vmalloc_to_page(kaddr);
1718 		else
1719 			page = virt_to_page(kaddr);
1720 
1721 		p[k] = page;
1722 		len -= seg;
1723 		kaddr += PAGE_SIZE;
1724 	}
1725 
1726 	maxsize = min_t(size_t, maxsize, maxpages * PAGE_SIZE - offset);
1727 	iov_iter_advance(i, maxsize);
1728 	return maxsize;
1729 }
1730 
1731 /*
1732  * Extract a list of contiguous pages from a user iterator and get a pin on
1733  * each of them.  This should only be used if the iterator is user-backed
1734  * (IOBUF/UBUF).
1735  *
1736  * It does not get refs on the pages, but the pages must be unpinned by the
1737  * caller once the transfer is complete.
1738  *
1739  * This is safe to be used where background IO/DMA *is* going to be modifying
1740  * the buffer; using a pin rather than a ref makes forces fork() to give the
1741  * child a copy of the page.
1742  */
1743 static ssize_t iov_iter_extract_user_pages(struct iov_iter *i,
1744 					   struct page ***pages,
1745 					   size_t maxsize,
1746 					   unsigned int maxpages,
1747 					   iov_iter_extraction_t extraction_flags,
1748 					   size_t *offset0)
1749 {
1750 	unsigned long addr;
1751 	unsigned int gup_flags = 0;
1752 	size_t offset;
1753 	int res;
1754 
1755 	if (i->data_source == ITER_DEST)
1756 		gup_flags |= FOLL_WRITE;
1757 	if (extraction_flags & ITER_ALLOW_P2PDMA)
1758 		gup_flags |= FOLL_PCI_P2PDMA;
1759 	if (i->nofault)
1760 		gup_flags |= FOLL_NOFAULT;
1761 
1762 	addr = first_iovec_segment(i, &maxsize);
1763 	*offset0 = offset = addr % PAGE_SIZE;
1764 	addr &= PAGE_MASK;
1765 	maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1766 	if (!maxpages)
1767 		return -ENOMEM;
1768 	res = pin_user_pages_fast(addr, maxpages, gup_flags, *pages);
1769 	if (unlikely(res <= 0))
1770 		return res;
1771 	maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - offset);
1772 	iov_iter_advance(i, maxsize);
1773 	return maxsize;
1774 }
1775 
1776 /**
1777  * iov_iter_extract_pages - Extract a list of contiguous pages from an iterator
1778  * @i: The iterator to extract from
1779  * @pages: Where to return the list of pages
1780  * @maxsize: The maximum amount of iterator to extract
1781  * @maxpages: The maximum size of the list of pages
1782  * @extraction_flags: Flags to qualify request
1783  * @offset0: Where to return the starting offset into (*@pages)[0]
1784  *
1785  * Extract a list of contiguous pages from the current point of the iterator,
1786  * advancing the iterator.  The maximum number of pages and the maximum amount
1787  * of page contents can be set.
1788  *
1789  * If *@pages is NULL, a page list will be allocated to the required size and
1790  * *@pages will be set to its base.  If *@pages is not NULL, it will be assumed
1791  * that the caller allocated a page list at least @maxpages in size and this
1792  * will be filled in.
1793  *
1794  * @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA
1795  * be allowed on the pages extracted.
1796  *
1797  * The iov_iter_extract_will_pin() function can be used to query how cleanup
1798  * should be performed.
1799  *
1800  * Extra refs or pins on the pages may be obtained as follows:
1801  *
1802  *  (*) If the iterator is user-backed (ITER_IOVEC/ITER_UBUF), pins will be
1803  *      added to the pages, but refs will not be taken.
1804  *      iov_iter_extract_will_pin() will return true.
1805  *
1806  *  (*) If the iterator is ITER_KVEC, ITER_BVEC or ITER_XARRAY, the pages are
1807  *      merely listed; no extra refs or pins are obtained.
1808  *      iov_iter_extract_will_pin() will return 0.
1809  *
1810  * Note also:
1811  *
1812  *  (*) Use with ITER_DISCARD is not supported as that has no content.
1813  *
1814  * On success, the function sets *@pages to the new pagelist, if allocated, and
1815  * sets *offset0 to the offset into the first page.
1816  *
1817  * It may also return -ENOMEM and -EFAULT.
1818  */
1819 ssize_t iov_iter_extract_pages(struct iov_iter *i,
1820 			       struct page ***pages,
1821 			       size_t maxsize,
1822 			       unsigned int maxpages,
1823 			       iov_iter_extraction_t extraction_flags,
1824 			       size_t *offset0)
1825 {
1826 	maxsize = min_t(size_t, min_t(size_t, maxsize, i->count), MAX_RW_COUNT);
1827 	if (!maxsize)
1828 		return 0;
1829 
1830 	if (likely(user_backed_iter(i)))
1831 		return iov_iter_extract_user_pages(i, pages, maxsize,
1832 						   maxpages, extraction_flags,
1833 						   offset0);
1834 	if (iov_iter_is_kvec(i))
1835 		return iov_iter_extract_kvec_pages(i, pages, maxsize,
1836 						   maxpages, extraction_flags,
1837 						   offset0);
1838 	if (iov_iter_is_bvec(i))
1839 		return iov_iter_extract_bvec_pages(i, pages, maxsize,
1840 						   maxpages, extraction_flags,
1841 						   offset0);
1842 	if (iov_iter_is_xarray(i))
1843 		return iov_iter_extract_xarray_pages(i, pages, maxsize,
1844 						     maxpages, extraction_flags,
1845 						     offset0);
1846 	return -EFAULT;
1847 }
1848 EXPORT_SYMBOL_GPL(iov_iter_extract_pages);
1849