1 #include <linux/export.h> 2 #include <linux/bvec.h> 3 #include <linux/uio.h> 4 #include <linux/pagemap.h> 5 #include <linux/slab.h> 6 #include <linux/vmalloc.h> 7 #include <linux/splice.h> 8 #include <net/checksum.h> 9 10 #define PIPE_PARANOIA /* for now */ 11 12 #define iterate_iovec(i, n, __v, __p, skip, STEP) { \ 13 size_t left; \ 14 size_t wanted = n; \ 15 __p = i->iov; \ 16 __v.iov_len = min(n, __p->iov_len - skip); \ 17 if (likely(__v.iov_len)) { \ 18 __v.iov_base = __p->iov_base + skip; \ 19 left = (STEP); \ 20 __v.iov_len -= left; \ 21 skip += __v.iov_len; \ 22 n -= __v.iov_len; \ 23 } else { \ 24 left = 0; \ 25 } \ 26 while (unlikely(!left && n)) { \ 27 __p++; \ 28 __v.iov_len = min(n, __p->iov_len); \ 29 if (unlikely(!__v.iov_len)) \ 30 continue; \ 31 __v.iov_base = __p->iov_base; \ 32 left = (STEP); \ 33 __v.iov_len -= left; \ 34 skip = __v.iov_len; \ 35 n -= __v.iov_len; \ 36 } \ 37 n = wanted - n; \ 38 } 39 40 #define iterate_kvec(i, n, __v, __p, skip, STEP) { \ 41 size_t wanted = n; \ 42 __p = i->kvec; \ 43 __v.iov_len = min(n, __p->iov_len - skip); \ 44 if (likely(__v.iov_len)) { \ 45 __v.iov_base = __p->iov_base + skip; \ 46 (void)(STEP); \ 47 skip += __v.iov_len; \ 48 n -= __v.iov_len; \ 49 } \ 50 while (unlikely(n)) { \ 51 __p++; \ 52 __v.iov_len = min(n, __p->iov_len); \ 53 if (unlikely(!__v.iov_len)) \ 54 continue; \ 55 __v.iov_base = __p->iov_base; \ 56 (void)(STEP); \ 57 skip = __v.iov_len; \ 58 n -= __v.iov_len; \ 59 } \ 60 n = wanted; \ 61 } 62 63 #define iterate_bvec(i, n, __v, __bi, skip, STEP) { \ 64 struct bvec_iter __start; \ 65 __start.bi_size = n; \ 66 __start.bi_bvec_done = skip; \ 67 __start.bi_idx = 0; \ 68 for_each_bvec(__v, i->bvec, __bi, __start) { \ 69 if (!__v.bv_len) \ 70 continue; \ 71 (void)(STEP); \ 72 } \ 73 } 74 75 #define iterate_all_kinds(i, n, v, I, B, K) { \ 76 if (likely(n)) { \ 77 size_t skip = i->iov_offset; \ 78 if (unlikely(i->type & ITER_BVEC)) { \ 79 struct bio_vec v; \ 80 struct bvec_iter __bi; \ 81 iterate_bvec(i, n, v, __bi, skip, (B)) \ 82 } else if (unlikely(i->type & ITER_KVEC)) { \ 83 const struct kvec *kvec; \ 84 struct kvec v; \ 85 iterate_kvec(i, n, v, kvec, skip, (K)) \ 86 } else { \ 87 const struct iovec *iov; \ 88 struct iovec v; \ 89 iterate_iovec(i, n, v, iov, skip, (I)) \ 90 } \ 91 } \ 92 } 93 94 #define iterate_and_advance(i, n, v, I, B, K) { \ 95 if (unlikely(i->count < n)) \ 96 n = i->count; \ 97 if (i->count) { \ 98 size_t skip = i->iov_offset; \ 99 if (unlikely(i->type & ITER_BVEC)) { \ 100 const struct bio_vec *bvec = i->bvec; \ 101 struct bio_vec v; \ 102 struct bvec_iter __bi; \ 103 iterate_bvec(i, n, v, __bi, skip, (B)) \ 104 i->bvec = __bvec_iter_bvec(i->bvec, __bi); \ 105 i->nr_segs -= i->bvec - bvec; \ 106 skip = __bi.bi_bvec_done; \ 107 } else if (unlikely(i->type & ITER_KVEC)) { \ 108 const struct kvec *kvec; \ 109 struct kvec v; \ 110 iterate_kvec(i, n, v, kvec, skip, (K)) \ 111 if (skip == kvec->iov_len) { \ 112 kvec++; \ 113 skip = 0; \ 114 } \ 115 i->nr_segs -= kvec - i->kvec; \ 116 i->kvec = kvec; \ 117 } else { \ 118 const struct iovec *iov; \ 119 struct iovec v; \ 120 iterate_iovec(i, n, v, iov, skip, (I)) \ 121 if (skip == iov->iov_len) { \ 122 iov++; \ 123 skip = 0; \ 124 } \ 125 i->nr_segs -= iov - i->iov; \ 126 i->iov = iov; \ 127 } \ 128 i->count -= n; \ 129 i->iov_offset = skip; \ 130 } \ 131 } 132 133 static int copyout(void __user *to, const void *from, size_t n) 134 { 135 if (access_ok(VERIFY_WRITE, to, n)) { 136 kasan_check_read(from, n); 137 n = raw_copy_to_user(to, from, n); 138 } 139 return n; 140 } 141 142 static int copyin(void *to, const void __user *from, size_t n) 143 { 144 if (access_ok(VERIFY_READ, from, n)) { 145 kasan_check_write(to, n); 146 n = raw_copy_from_user(to, from, n); 147 } 148 return n; 149 } 150 151 static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes, 152 struct iov_iter *i) 153 { 154 size_t skip, copy, left, wanted; 155 const struct iovec *iov; 156 char __user *buf; 157 void *kaddr, *from; 158 159 if (unlikely(bytes > i->count)) 160 bytes = i->count; 161 162 if (unlikely(!bytes)) 163 return 0; 164 165 might_fault(); 166 wanted = bytes; 167 iov = i->iov; 168 skip = i->iov_offset; 169 buf = iov->iov_base + skip; 170 copy = min(bytes, iov->iov_len - skip); 171 172 if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_writeable(buf, copy)) { 173 kaddr = kmap_atomic(page); 174 from = kaddr + offset; 175 176 /* first chunk, usually the only one */ 177 left = copyout(buf, from, copy); 178 copy -= left; 179 skip += copy; 180 from += copy; 181 bytes -= copy; 182 183 while (unlikely(!left && bytes)) { 184 iov++; 185 buf = iov->iov_base; 186 copy = min(bytes, iov->iov_len); 187 left = copyout(buf, from, copy); 188 copy -= left; 189 skip = copy; 190 from += copy; 191 bytes -= copy; 192 } 193 if (likely(!bytes)) { 194 kunmap_atomic(kaddr); 195 goto done; 196 } 197 offset = from - kaddr; 198 buf += copy; 199 kunmap_atomic(kaddr); 200 copy = min(bytes, iov->iov_len - skip); 201 } 202 /* Too bad - revert to non-atomic kmap */ 203 204 kaddr = kmap(page); 205 from = kaddr + offset; 206 left = copyout(buf, from, copy); 207 copy -= left; 208 skip += copy; 209 from += copy; 210 bytes -= copy; 211 while (unlikely(!left && bytes)) { 212 iov++; 213 buf = iov->iov_base; 214 copy = min(bytes, iov->iov_len); 215 left = copyout(buf, from, copy); 216 copy -= left; 217 skip = copy; 218 from += copy; 219 bytes -= copy; 220 } 221 kunmap(page); 222 223 done: 224 if (skip == iov->iov_len) { 225 iov++; 226 skip = 0; 227 } 228 i->count -= wanted - bytes; 229 i->nr_segs -= iov - i->iov; 230 i->iov = iov; 231 i->iov_offset = skip; 232 return wanted - bytes; 233 } 234 235 static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes, 236 struct iov_iter *i) 237 { 238 size_t skip, copy, left, wanted; 239 const struct iovec *iov; 240 char __user *buf; 241 void *kaddr, *to; 242 243 if (unlikely(bytes > i->count)) 244 bytes = i->count; 245 246 if (unlikely(!bytes)) 247 return 0; 248 249 might_fault(); 250 wanted = bytes; 251 iov = i->iov; 252 skip = i->iov_offset; 253 buf = iov->iov_base + skip; 254 copy = min(bytes, iov->iov_len - skip); 255 256 if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_readable(buf, copy)) { 257 kaddr = kmap_atomic(page); 258 to = kaddr + offset; 259 260 /* first chunk, usually the only one */ 261 left = copyin(to, buf, copy); 262 copy -= left; 263 skip += copy; 264 to += copy; 265 bytes -= copy; 266 267 while (unlikely(!left && bytes)) { 268 iov++; 269 buf = iov->iov_base; 270 copy = min(bytes, iov->iov_len); 271 left = copyin(to, buf, copy); 272 copy -= left; 273 skip = copy; 274 to += copy; 275 bytes -= copy; 276 } 277 if (likely(!bytes)) { 278 kunmap_atomic(kaddr); 279 goto done; 280 } 281 offset = to - kaddr; 282 buf += copy; 283 kunmap_atomic(kaddr); 284 copy = min(bytes, iov->iov_len - skip); 285 } 286 /* Too bad - revert to non-atomic kmap */ 287 288 kaddr = kmap(page); 289 to = kaddr + offset; 290 left = copyin(to, buf, copy); 291 copy -= left; 292 skip += copy; 293 to += copy; 294 bytes -= copy; 295 while (unlikely(!left && bytes)) { 296 iov++; 297 buf = iov->iov_base; 298 copy = min(bytes, iov->iov_len); 299 left = copyin(to, buf, copy); 300 copy -= left; 301 skip = copy; 302 to += copy; 303 bytes -= copy; 304 } 305 kunmap(page); 306 307 done: 308 if (skip == iov->iov_len) { 309 iov++; 310 skip = 0; 311 } 312 i->count -= wanted - bytes; 313 i->nr_segs -= iov - i->iov; 314 i->iov = iov; 315 i->iov_offset = skip; 316 return wanted - bytes; 317 } 318 319 #ifdef PIPE_PARANOIA 320 static bool sanity(const struct iov_iter *i) 321 { 322 struct pipe_inode_info *pipe = i->pipe; 323 int idx = i->idx; 324 int next = pipe->curbuf + pipe->nrbufs; 325 if (i->iov_offset) { 326 struct pipe_buffer *p; 327 if (unlikely(!pipe->nrbufs)) 328 goto Bad; // pipe must be non-empty 329 if (unlikely(idx != ((next - 1) & (pipe->buffers - 1)))) 330 goto Bad; // must be at the last buffer... 331 332 p = &pipe->bufs[idx]; 333 if (unlikely(p->offset + p->len != i->iov_offset)) 334 goto Bad; // ... at the end of segment 335 } else { 336 if (idx != (next & (pipe->buffers - 1))) 337 goto Bad; // must be right after the last buffer 338 } 339 return true; 340 Bad: 341 printk(KERN_ERR "idx = %d, offset = %zd\n", i->idx, i->iov_offset); 342 printk(KERN_ERR "curbuf = %d, nrbufs = %d, buffers = %d\n", 343 pipe->curbuf, pipe->nrbufs, pipe->buffers); 344 for (idx = 0; idx < pipe->buffers; idx++) 345 printk(KERN_ERR "[%p %p %d %d]\n", 346 pipe->bufs[idx].ops, 347 pipe->bufs[idx].page, 348 pipe->bufs[idx].offset, 349 pipe->bufs[idx].len); 350 WARN_ON(1); 351 return false; 352 } 353 #else 354 #define sanity(i) true 355 #endif 356 357 static inline int next_idx(int idx, struct pipe_inode_info *pipe) 358 { 359 return (idx + 1) & (pipe->buffers - 1); 360 } 361 362 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes, 363 struct iov_iter *i) 364 { 365 struct pipe_inode_info *pipe = i->pipe; 366 struct pipe_buffer *buf; 367 size_t off; 368 int idx; 369 370 if (unlikely(bytes > i->count)) 371 bytes = i->count; 372 373 if (unlikely(!bytes)) 374 return 0; 375 376 if (!sanity(i)) 377 return 0; 378 379 off = i->iov_offset; 380 idx = i->idx; 381 buf = &pipe->bufs[idx]; 382 if (off) { 383 if (offset == off && buf->page == page) { 384 /* merge with the last one */ 385 buf->len += bytes; 386 i->iov_offset += bytes; 387 goto out; 388 } 389 idx = next_idx(idx, pipe); 390 buf = &pipe->bufs[idx]; 391 } 392 if (idx == pipe->curbuf && pipe->nrbufs) 393 return 0; 394 pipe->nrbufs++; 395 buf->ops = &page_cache_pipe_buf_ops; 396 get_page(buf->page = page); 397 buf->offset = offset; 398 buf->len = bytes; 399 i->iov_offset = offset + bytes; 400 i->idx = idx; 401 out: 402 i->count -= bytes; 403 return bytes; 404 } 405 406 /* 407 * Fault in one or more iovecs of the given iov_iter, to a maximum length of 408 * bytes. For each iovec, fault in each page that constitutes the iovec. 409 * 410 * Return 0 on success, or non-zero if the memory could not be accessed (i.e. 411 * because it is an invalid address). 412 */ 413 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes) 414 { 415 size_t skip = i->iov_offset; 416 const struct iovec *iov; 417 int err; 418 struct iovec v; 419 420 if (!(i->type & (ITER_BVEC|ITER_KVEC))) { 421 iterate_iovec(i, bytes, v, iov, skip, ({ 422 err = fault_in_pages_readable(v.iov_base, v.iov_len); 423 if (unlikely(err)) 424 return err; 425 0;})) 426 } 427 return 0; 428 } 429 EXPORT_SYMBOL(iov_iter_fault_in_readable); 430 431 void iov_iter_init(struct iov_iter *i, int direction, 432 const struct iovec *iov, unsigned long nr_segs, 433 size_t count) 434 { 435 /* It will get better. Eventually... */ 436 if (uaccess_kernel()) { 437 direction |= ITER_KVEC; 438 i->type = direction; 439 i->kvec = (struct kvec *)iov; 440 } else { 441 i->type = direction; 442 i->iov = iov; 443 } 444 i->nr_segs = nr_segs; 445 i->iov_offset = 0; 446 i->count = count; 447 } 448 EXPORT_SYMBOL(iov_iter_init); 449 450 static void memcpy_from_page(char *to, struct page *page, size_t offset, size_t len) 451 { 452 char *from = kmap_atomic(page); 453 memcpy(to, from + offset, len); 454 kunmap_atomic(from); 455 } 456 457 static void memcpy_to_page(struct page *page, size_t offset, const char *from, size_t len) 458 { 459 char *to = kmap_atomic(page); 460 memcpy(to + offset, from, len); 461 kunmap_atomic(to); 462 } 463 464 static void memzero_page(struct page *page, size_t offset, size_t len) 465 { 466 char *addr = kmap_atomic(page); 467 memset(addr + offset, 0, len); 468 kunmap_atomic(addr); 469 } 470 471 static inline bool allocated(struct pipe_buffer *buf) 472 { 473 return buf->ops == &default_pipe_buf_ops; 474 } 475 476 static inline void data_start(const struct iov_iter *i, int *idxp, size_t *offp) 477 { 478 size_t off = i->iov_offset; 479 int idx = i->idx; 480 if (off && (!allocated(&i->pipe->bufs[idx]) || off == PAGE_SIZE)) { 481 idx = next_idx(idx, i->pipe); 482 off = 0; 483 } 484 *idxp = idx; 485 *offp = off; 486 } 487 488 static size_t push_pipe(struct iov_iter *i, size_t size, 489 int *idxp, size_t *offp) 490 { 491 struct pipe_inode_info *pipe = i->pipe; 492 size_t off; 493 int idx; 494 ssize_t left; 495 496 if (unlikely(size > i->count)) 497 size = i->count; 498 if (unlikely(!size)) 499 return 0; 500 501 left = size; 502 data_start(i, &idx, &off); 503 *idxp = idx; 504 *offp = off; 505 if (off) { 506 left -= PAGE_SIZE - off; 507 if (left <= 0) { 508 pipe->bufs[idx].len += size; 509 return size; 510 } 511 pipe->bufs[idx].len = PAGE_SIZE; 512 idx = next_idx(idx, pipe); 513 } 514 while (idx != pipe->curbuf || !pipe->nrbufs) { 515 struct page *page = alloc_page(GFP_USER); 516 if (!page) 517 break; 518 pipe->nrbufs++; 519 pipe->bufs[idx].ops = &default_pipe_buf_ops; 520 pipe->bufs[idx].page = page; 521 pipe->bufs[idx].offset = 0; 522 if (left <= PAGE_SIZE) { 523 pipe->bufs[idx].len = left; 524 return size; 525 } 526 pipe->bufs[idx].len = PAGE_SIZE; 527 left -= PAGE_SIZE; 528 idx = next_idx(idx, pipe); 529 } 530 return size - left; 531 } 532 533 static size_t copy_pipe_to_iter(const void *addr, size_t bytes, 534 struct iov_iter *i) 535 { 536 struct pipe_inode_info *pipe = i->pipe; 537 size_t n, off; 538 int idx; 539 540 if (!sanity(i)) 541 return 0; 542 543 bytes = n = push_pipe(i, bytes, &idx, &off); 544 if (unlikely(!n)) 545 return 0; 546 for ( ; n; idx = next_idx(idx, pipe), off = 0) { 547 size_t chunk = min_t(size_t, n, PAGE_SIZE - off); 548 memcpy_to_page(pipe->bufs[idx].page, off, addr, chunk); 549 i->idx = idx; 550 i->iov_offset = off + chunk; 551 n -= chunk; 552 addr += chunk; 553 } 554 i->count -= bytes; 555 return bytes; 556 } 557 558 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i) 559 { 560 const char *from = addr; 561 if (unlikely(i->type & ITER_PIPE)) 562 return copy_pipe_to_iter(addr, bytes, i); 563 if (iter_is_iovec(i)) 564 might_fault(); 565 iterate_and_advance(i, bytes, v, 566 copyout(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len), 567 memcpy_to_page(v.bv_page, v.bv_offset, 568 (from += v.bv_len) - v.bv_len, v.bv_len), 569 memcpy(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len) 570 ) 571 572 return bytes; 573 } 574 EXPORT_SYMBOL(_copy_to_iter); 575 576 #ifdef CONFIG_ARCH_HAS_UACCESS_MCSAFE 577 static int copyout_mcsafe(void __user *to, const void *from, size_t n) 578 { 579 if (access_ok(VERIFY_WRITE, to, n)) { 580 kasan_check_read(from, n); 581 n = copy_to_user_mcsafe((__force void *) to, from, n); 582 } 583 return n; 584 } 585 586 static unsigned long memcpy_mcsafe_to_page(struct page *page, size_t offset, 587 const char *from, size_t len) 588 { 589 unsigned long ret; 590 char *to; 591 592 to = kmap_atomic(page); 593 ret = memcpy_mcsafe(to + offset, from, len); 594 kunmap_atomic(to); 595 596 return ret; 597 } 598 599 static size_t copy_pipe_to_iter_mcsafe(const void *addr, size_t bytes, 600 struct iov_iter *i) 601 { 602 struct pipe_inode_info *pipe = i->pipe; 603 size_t n, off, xfer = 0; 604 int idx; 605 606 if (!sanity(i)) 607 return 0; 608 609 bytes = n = push_pipe(i, bytes, &idx, &off); 610 if (unlikely(!n)) 611 return 0; 612 for ( ; n; idx = next_idx(idx, pipe), off = 0) { 613 size_t chunk = min_t(size_t, n, PAGE_SIZE - off); 614 unsigned long rem; 615 616 rem = memcpy_mcsafe_to_page(pipe->bufs[idx].page, off, addr, 617 chunk); 618 i->idx = idx; 619 i->iov_offset = off + chunk - rem; 620 xfer += chunk - rem; 621 if (rem) 622 break; 623 n -= chunk; 624 addr += chunk; 625 } 626 i->count -= xfer; 627 return xfer; 628 } 629 630 /** 631 * _copy_to_iter_mcsafe - copy to user with source-read error exception handling 632 * @addr: source kernel address 633 * @bytes: total transfer length 634 * @iter: destination iterator 635 * 636 * The pmem driver arranges for filesystem-dax to use this facility via 637 * dax_copy_to_iter() for protecting read/write to persistent memory. 638 * Unless / until an architecture can guarantee identical performance 639 * between _copy_to_iter_mcsafe() and _copy_to_iter() it would be a 640 * performance regression to switch more users to the mcsafe version. 641 * 642 * Otherwise, the main differences between this and typical _copy_to_iter(). 643 * 644 * * Typical tail/residue handling after a fault retries the copy 645 * byte-by-byte until the fault happens again. Re-triggering machine 646 * checks is potentially fatal so the implementation uses source 647 * alignment and poison alignment assumptions to avoid re-triggering 648 * hardware exceptions. 649 * 650 * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies. 651 * Compare to copy_to_iter() where only ITER_IOVEC attempts might return 652 * a short copy. 653 * 654 * See MCSAFE_TEST for self-test. 655 */ 656 size_t _copy_to_iter_mcsafe(const void *addr, size_t bytes, struct iov_iter *i) 657 { 658 const char *from = addr; 659 unsigned long rem, curr_addr, s_addr = (unsigned long) addr; 660 661 if (unlikely(i->type & ITER_PIPE)) 662 return copy_pipe_to_iter_mcsafe(addr, bytes, i); 663 if (iter_is_iovec(i)) 664 might_fault(); 665 iterate_and_advance(i, bytes, v, 666 copyout_mcsafe(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len), 667 ({ 668 rem = memcpy_mcsafe_to_page(v.bv_page, v.bv_offset, 669 (from += v.bv_len) - v.bv_len, v.bv_len); 670 if (rem) { 671 curr_addr = (unsigned long) from; 672 bytes = curr_addr - s_addr - rem; 673 return bytes; 674 } 675 }), 676 ({ 677 rem = memcpy_mcsafe(v.iov_base, (from += v.iov_len) - v.iov_len, 678 v.iov_len); 679 if (rem) { 680 curr_addr = (unsigned long) from; 681 bytes = curr_addr - s_addr - rem; 682 return bytes; 683 } 684 }) 685 ) 686 687 return bytes; 688 } 689 EXPORT_SYMBOL_GPL(_copy_to_iter_mcsafe); 690 #endif /* CONFIG_ARCH_HAS_UACCESS_MCSAFE */ 691 692 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i) 693 { 694 char *to = addr; 695 if (unlikely(i->type & ITER_PIPE)) { 696 WARN_ON(1); 697 return 0; 698 } 699 if (iter_is_iovec(i)) 700 might_fault(); 701 iterate_and_advance(i, bytes, v, 702 copyin((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len), 703 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page, 704 v.bv_offset, v.bv_len), 705 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len) 706 ) 707 708 return bytes; 709 } 710 EXPORT_SYMBOL(_copy_from_iter); 711 712 bool _copy_from_iter_full(void *addr, size_t bytes, struct iov_iter *i) 713 { 714 char *to = addr; 715 if (unlikely(i->type & ITER_PIPE)) { 716 WARN_ON(1); 717 return false; 718 } 719 if (unlikely(i->count < bytes)) 720 return false; 721 722 if (iter_is_iovec(i)) 723 might_fault(); 724 iterate_all_kinds(i, bytes, v, ({ 725 if (copyin((to += v.iov_len) - v.iov_len, 726 v.iov_base, v.iov_len)) 727 return false; 728 0;}), 729 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page, 730 v.bv_offset, v.bv_len), 731 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len) 732 ) 733 734 iov_iter_advance(i, bytes); 735 return true; 736 } 737 EXPORT_SYMBOL(_copy_from_iter_full); 738 739 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i) 740 { 741 char *to = addr; 742 if (unlikely(i->type & ITER_PIPE)) { 743 WARN_ON(1); 744 return 0; 745 } 746 iterate_and_advance(i, bytes, v, 747 __copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len, 748 v.iov_base, v.iov_len), 749 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page, 750 v.bv_offset, v.bv_len), 751 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len) 752 ) 753 754 return bytes; 755 } 756 EXPORT_SYMBOL(_copy_from_iter_nocache); 757 758 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE 759 /** 760 * _copy_from_iter_flushcache - write destination through cpu cache 761 * @addr: destination kernel address 762 * @bytes: total transfer length 763 * @iter: source iterator 764 * 765 * The pmem driver arranges for filesystem-dax to use this facility via 766 * dax_copy_from_iter() for ensuring that writes to persistent memory 767 * are flushed through the CPU cache. It is differentiated from 768 * _copy_from_iter_nocache() in that guarantees all data is flushed for 769 * all iterator types. The _copy_from_iter_nocache() only attempts to 770 * bypass the cache for the ITER_IOVEC case, and on some archs may use 771 * instructions that strand dirty-data in the cache. 772 */ 773 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i) 774 { 775 char *to = addr; 776 if (unlikely(i->type & ITER_PIPE)) { 777 WARN_ON(1); 778 return 0; 779 } 780 iterate_and_advance(i, bytes, v, 781 __copy_from_user_flushcache((to += v.iov_len) - v.iov_len, 782 v.iov_base, v.iov_len), 783 memcpy_page_flushcache((to += v.bv_len) - v.bv_len, v.bv_page, 784 v.bv_offset, v.bv_len), 785 memcpy_flushcache((to += v.iov_len) - v.iov_len, v.iov_base, 786 v.iov_len) 787 ) 788 789 return bytes; 790 } 791 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache); 792 #endif 793 794 bool _copy_from_iter_full_nocache(void *addr, size_t bytes, struct iov_iter *i) 795 { 796 char *to = addr; 797 if (unlikely(i->type & ITER_PIPE)) { 798 WARN_ON(1); 799 return false; 800 } 801 if (unlikely(i->count < bytes)) 802 return false; 803 iterate_all_kinds(i, bytes, v, ({ 804 if (__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len, 805 v.iov_base, v.iov_len)) 806 return false; 807 0;}), 808 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page, 809 v.bv_offset, v.bv_len), 810 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len) 811 ) 812 813 iov_iter_advance(i, bytes); 814 return true; 815 } 816 EXPORT_SYMBOL(_copy_from_iter_full_nocache); 817 818 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n) 819 { 820 struct page *head = compound_head(page); 821 size_t v = n + offset + page_address(page) - page_address(head); 822 823 if (likely(n <= v && v <= (PAGE_SIZE << compound_order(head)))) 824 return true; 825 WARN_ON(1); 826 return false; 827 } 828 829 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes, 830 struct iov_iter *i) 831 { 832 if (unlikely(!page_copy_sane(page, offset, bytes))) 833 return 0; 834 if (i->type & (ITER_BVEC|ITER_KVEC)) { 835 void *kaddr = kmap_atomic(page); 836 size_t wanted = copy_to_iter(kaddr + offset, bytes, i); 837 kunmap_atomic(kaddr); 838 return wanted; 839 } else if (likely(!(i->type & ITER_PIPE))) 840 return copy_page_to_iter_iovec(page, offset, bytes, i); 841 else 842 return copy_page_to_iter_pipe(page, offset, bytes, i); 843 } 844 EXPORT_SYMBOL(copy_page_to_iter); 845 846 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes, 847 struct iov_iter *i) 848 { 849 if (unlikely(!page_copy_sane(page, offset, bytes))) 850 return 0; 851 if (unlikely(i->type & ITER_PIPE)) { 852 WARN_ON(1); 853 return 0; 854 } 855 if (i->type & (ITER_BVEC|ITER_KVEC)) { 856 void *kaddr = kmap_atomic(page); 857 size_t wanted = _copy_from_iter(kaddr + offset, bytes, i); 858 kunmap_atomic(kaddr); 859 return wanted; 860 } else 861 return copy_page_from_iter_iovec(page, offset, bytes, i); 862 } 863 EXPORT_SYMBOL(copy_page_from_iter); 864 865 static size_t pipe_zero(size_t bytes, struct iov_iter *i) 866 { 867 struct pipe_inode_info *pipe = i->pipe; 868 size_t n, off; 869 int idx; 870 871 if (!sanity(i)) 872 return 0; 873 874 bytes = n = push_pipe(i, bytes, &idx, &off); 875 if (unlikely(!n)) 876 return 0; 877 878 for ( ; n; idx = next_idx(idx, pipe), off = 0) { 879 size_t chunk = min_t(size_t, n, PAGE_SIZE - off); 880 memzero_page(pipe->bufs[idx].page, off, chunk); 881 i->idx = idx; 882 i->iov_offset = off + chunk; 883 n -= chunk; 884 } 885 i->count -= bytes; 886 return bytes; 887 } 888 889 size_t iov_iter_zero(size_t bytes, struct iov_iter *i) 890 { 891 if (unlikely(i->type & ITER_PIPE)) 892 return pipe_zero(bytes, i); 893 iterate_and_advance(i, bytes, v, 894 clear_user(v.iov_base, v.iov_len), 895 memzero_page(v.bv_page, v.bv_offset, v.bv_len), 896 memset(v.iov_base, 0, v.iov_len) 897 ) 898 899 return bytes; 900 } 901 EXPORT_SYMBOL(iov_iter_zero); 902 903 size_t iov_iter_copy_from_user_atomic(struct page *page, 904 struct iov_iter *i, unsigned long offset, size_t bytes) 905 { 906 char *kaddr = kmap_atomic(page), *p = kaddr + offset; 907 if (unlikely(!page_copy_sane(page, offset, bytes))) { 908 kunmap_atomic(kaddr); 909 return 0; 910 } 911 if (unlikely(i->type & ITER_PIPE)) { 912 kunmap_atomic(kaddr); 913 WARN_ON(1); 914 return 0; 915 } 916 iterate_all_kinds(i, bytes, v, 917 copyin((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len), 918 memcpy_from_page((p += v.bv_len) - v.bv_len, v.bv_page, 919 v.bv_offset, v.bv_len), 920 memcpy((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len) 921 ) 922 kunmap_atomic(kaddr); 923 return bytes; 924 } 925 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic); 926 927 static inline void pipe_truncate(struct iov_iter *i) 928 { 929 struct pipe_inode_info *pipe = i->pipe; 930 if (pipe->nrbufs) { 931 size_t off = i->iov_offset; 932 int idx = i->idx; 933 int nrbufs = (idx - pipe->curbuf) & (pipe->buffers - 1); 934 if (off) { 935 pipe->bufs[idx].len = off - pipe->bufs[idx].offset; 936 idx = next_idx(idx, pipe); 937 nrbufs++; 938 } 939 while (pipe->nrbufs > nrbufs) { 940 pipe_buf_release(pipe, &pipe->bufs[idx]); 941 idx = next_idx(idx, pipe); 942 pipe->nrbufs--; 943 } 944 } 945 } 946 947 static void pipe_advance(struct iov_iter *i, size_t size) 948 { 949 struct pipe_inode_info *pipe = i->pipe; 950 if (unlikely(i->count < size)) 951 size = i->count; 952 if (size) { 953 struct pipe_buffer *buf; 954 size_t off = i->iov_offset, left = size; 955 int idx = i->idx; 956 if (off) /* make it relative to the beginning of buffer */ 957 left += off - pipe->bufs[idx].offset; 958 while (1) { 959 buf = &pipe->bufs[idx]; 960 if (left <= buf->len) 961 break; 962 left -= buf->len; 963 idx = next_idx(idx, pipe); 964 } 965 i->idx = idx; 966 i->iov_offset = buf->offset + left; 967 } 968 i->count -= size; 969 /* ... and discard everything past that point */ 970 pipe_truncate(i); 971 } 972 973 void iov_iter_advance(struct iov_iter *i, size_t size) 974 { 975 if (unlikely(i->type & ITER_PIPE)) { 976 pipe_advance(i, size); 977 return; 978 } 979 iterate_and_advance(i, size, v, 0, 0, 0) 980 } 981 EXPORT_SYMBOL(iov_iter_advance); 982 983 void iov_iter_revert(struct iov_iter *i, size_t unroll) 984 { 985 if (!unroll) 986 return; 987 if (WARN_ON(unroll > MAX_RW_COUNT)) 988 return; 989 i->count += unroll; 990 if (unlikely(i->type & ITER_PIPE)) { 991 struct pipe_inode_info *pipe = i->pipe; 992 int idx = i->idx; 993 size_t off = i->iov_offset; 994 while (1) { 995 size_t n = off - pipe->bufs[idx].offset; 996 if (unroll < n) { 997 off -= unroll; 998 break; 999 } 1000 unroll -= n; 1001 if (!unroll && idx == i->start_idx) { 1002 off = 0; 1003 break; 1004 } 1005 if (!idx--) 1006 idx = pipe->buffers - 1; 1007 off = pipe->bufs[idx].offset + pipe->bufs[idx].len; 1008 } 1009 i->iov_offset = off; 1010 i->idx = idx; 1011 pipe_truncate(i); 1012 return; 1013 } 1014 if (unroll <= i->iov_offset) { 1015 i->iov_offset -= unroll; 1016 return; 1017 } 1018 unroll -= i->iov_offset; 1019 if (i->type & ITER_BVEC) { 1020 const struct bio_vec *bvec = i->bvec; 1021 while (1) { 1022 size_t n = (--bvec)->bv_len; 1023 i->nr_segs++; 1024 if (unroll <= n) { 1025 i->bvec = bvec; 1026 i->iov_offset = n - unroll; 1027 return; 1028 } 1029 unroll -= n; 1030 } 1031 } else { /* same logics for iovec and kvec */ 1032 const struct iovec *iov = i->iov; 1033 while (1) { 1034 size_t n = (--iov)->iov_len; 1035 i->nr_segs++; 1036 if (unroll <= n) { 1037 i->iov = iov; 1038 i->iov_offset = n - unroll; 1039 return; 1040 } 1041 unroll -= n; 1042 } 1043 } 1044 } 1045 EXPORT_SYMBOL(iov_iter_revert); 1046 1047 /* 1048 * Return the count of just the current iov_iter segment. 1049 */ 1050 size_t iov_iter_single_seg_count(const struct iov_iter *i) 1051 { 1052 if (unlikely(i->type & ITER_PIPE)) 1053 return i->count; // it is a silly place, anyway 1054 if (i->nr_segs == 1) 1055 return i->count; 1056 else if (i->type & ITER_BVEC) 1057 return min(i->count, i->bvec->bv_len - i->iov_offset); 1058 else 1059 return min(i->count, i->iov->iov_len - i->iov_offset); 1060 } 1061 EXPORT_SYMBOL(iov_iter_single_seg_count); 1062 1063 void iov_iter_kvec(struct iov_iter *i, int direction, 1064 const struct kvec *kvec, unsigned long nr_segs, 1065 size_t count) 1066 { 1067 BUG_ON(!(direction & ITER_KVEC)); 1068 i->type = direction; 1069 i->kvec = kvec; 1070 i->nr_segs = nr_segs; 1071 i->iov_offset = 0; 1072 i->count = count; 1073 } 1074 EXPORT_SYMBOL(iov_iter_kvec); 1075 1076 void iov_iter_bvec(struct iov_iter *i, int direction, 1077 const struct bio_vec *bvec, unsigned long nr_segs, 1078 size_t count) 1079 { 1080 BUG_ON(!(direction & ITER_BVEC)); 1081 i->type = direction; 1082 i->bvec = bvec; 1083 i->nr_segs = nr_segs; 1084 i->iov_offset = 0; 1085 i->count = count; 1086 } 1087 EXPORT_SYMBOL(iov_iter_bvec); 1088 1089 void iov_iter_pipe(struct iov_iter *i, int direction, 1090 struct pipe_inode_info *pipe, 1091 size_t count) 1092 { 1093 BUG_ON(direction != ITER_PIPE); 1094 WARN_ON(pipe->nrbufs == pipe->buffers); 1095 i->type = direction; 1096 i->pipe = pipe; 1097 i->idx = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1); 1098 i->iov_offset = 0; 1099 i->count = count; 1100 i->start_idx = i->idx; 1101 } 1102 EXPORT_SYMBOL(iov_iter_pipe); 1103 1104 unsigned long iov_iter_alignment(const struct iov_iter *i) 1105 { 1106 unsigned long res = 0; 1107 size_t size = i->count; 1108 1109 if (unlikely(i->type & ITER_PIPE)) { 1110 if (size && i->iov_offset && allocated(&i->pipe->bufs[i->idx])) 1111 return size | i->iov_offset; 1112 return size; 1113 } 1114 iterate_all_kinds(i, size, v, 1115 (res |= (unsigned long)v.iov_base | v.iov_len, 0), 1116 res |= v.bv_offset | v.bv_len, 1117 res |= (unsigned long)v.iov_base | v.iov_len 1118 ) 1119 return res; 1120 } 1121 EXPORT_SYMBOL(iov_iter_alignment); 1122 1123 unsigned long iov_iter_gap_alignment(const struct iov_iter *i) 1124 { 1125 unsigned long res = 0; 1126 size_t size = i->count; 1127 1128 if (unlikely(i->type & ITER_PIPE)) { 1129 WARN_ON(1); 1130 return ~0U; 1131 } 1132 1133 iterate_all_kinds(i, size, v, 1134 (res |= (!res ? 0 : (unsigned long)v.iov_base) | 1135 (size != v.iov_len ? size : 0), 0), 1136 (res |= (!res ? 0 : (unsigned long)v.bv_offset) | 1137 (size != v.bv_len ? size : 0)), 1138 (res |= (!res ? 0 : (unsigned long)v.iov_base) | 1139 (size != v.iov_len ? size : 0)) 1140 ); 1141 return res; 1142 } 1143 EXPORT_SYMBOL(iov_iter_gap_alignment); 1144 1145 static inline ssize_t __pipe_get_pages(struct iov_iter *i, 1146 size_t maxsize, 1147 struct page **pages, 1148 int idx, 1149 size_t *start) 1150 { 1151 struct pipe_inode_info *pipe = i->pipe; 1152 ssize_t n = push_pipe(i, maxsize, &idx, start); 1153 if (!n) 1154 return -EFAULT; 1155 1156 maxsize = n; 1157 n += *start; 1158 while (n > 0) { 1159 get_page(*pages++ = pipe->bufs[idx].page); 1160 idx = next_idx(idx, pipe); 1161 n -= PAGE_SIZE; 1162 } 1163 1164 return maxsize; 1165 } 1166 1167 static ssize_t pipe_get_pages(struct iov_iter *i, 1168 struct page **pages, size_t maxsize, unsigned maxpages, 1169 size_t *start) 1170 { 1171 unsigned npages; 1172 size_t capacity; 1173 int idx; 1174 1175 if (!maxsize) 1176 return 0; 1177 1178 if (!sanity(i)) 1179 return -EFAULT; 1180 1181 data_start(i, &idx, start); 1182 /* some of this one + all after this one */ 1183 npages = ((i->pipe->curbuf - idx - 1) & (i->pipe->buffers - 1)) + 1; 1184 capacity = min(npages,maxpages) * PAGE_SIZE - *start; 1185 1186 return __pipe_get_pages(i, min(maxsize, capacity), pages, idx, start); 1187 } 1188 1189 ssize_t iov_iter_get_pages(struct iov_iter *i, 1190 struct page **pages, size_t maxsize, unsigned maxpages, 1191 size_t *start) 1192 { 1193 if (maxsize > i->count) 1194 maxsize = i->count; 1195 1196 if (unlikely(i->type & ITER_PIPE)) 1197 return pipe_get_pages(i, pages, maxsize, maxpages, start); 1198 iterate_all_kinds(i, maxsize, v, ({ 1199 unsigned long addr = (unsigned long)v.iov_base; 1200 size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1)); 1201 int n; 1202 int res; 1203 1204 if (len > maxpages * PAGE_SIZE) 1205 len = maxpages * PAGE_SIZE; 1206 addr &= ~(PAGE_SIZE - 1); 1207 n = DIV_ROUND_UP(len, PAGE_SIZE); 1208 res = get_user_pages_fast(addr, n, (i->type & WRITE) != WRITE, pages); 1209 if (unlikely(res < 0)) 1210 return res; 1211 return (res == n ? len : res * PAGE_SIZE) - *start; 1212 0;}),({ 1213 /* can't be more than PAGE_SIZE */ 1214 *start = v.bv_offset; 1215 get_page(*pages = v.bv_page); 1216 return v.bv_len; 1217 }),({ 1218 return -EFAULT; 1219 }) 1220 ) 1221 return 0; 1222 } 1223 EXPORT_SYMBOL(iov_iter_get_pages); 1224 1225 static struct page **get_pages_array(size_t n) 1226 { 1227 return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL); 1228 } 1229 1230 static ssize_t pipe_get_pages_alloc(struct iov_iter *i, 1231 struct page ***pages, size_t maxsize, 1232 size_t *start) 1233 { 1234 struct page **p; 1235 ssize_t n; 1236 int idx; 1237 int npages; 1238 1239 if (!maxsize) 1240 return 0; 1241 1242 if (!sanity(i)) 1243 return -EFAULT; 1244 1245 data_start(i, &idx, start); 1246 /* some of this one + all after this one */ 1247 npages = ((i->pipe->curbuf - idx - 1) & (i->pipe->buffers - 1)) + 1; 1248 n = npages * PAGE_SIZE - *start; 1249 if (maxsize > n) 1250 maxsize = n; 1251 else 1252 npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE); 1253 p = get_pages_array(npages); 1254 if (!p) 1255 return -ENOMEM; 1256 n = __pipe_get_pages(i, maxsize, p, idx, start); 1257 if (n > 0) 1258 *pages = p; 1259 else 1260 kvfree(p); 1261 return n; 1262 } 1263 1264 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i, 1265 struct page ***pages, size_t maxsize, 1266 size_t *start) 1267 { 1268 struct page **p; 1269 1270 if (maxsize > i->count) 1271 maxsize = i->count; 1272 1273 if (unlikely(i->type & ITER_PIPE)) 1274 return pipe_get_pages_alloc(i, pages, maxsize, start); 1275 iterate_all_kinds(i, maxsize, v, ({ 1276 unsigned long addr = (unsigned long)v.iov_base; 1277 size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1)); 1278 int n; 1279 int res; 1280 1281 addr &= ~(PAGE_SIZE - 1); 1282 n = DIV_ROUND_UP(len, PAGE_SIZE); 1283 p = get_pages_array(n); 1284 if (!p) 1285 return -ENOMEM; 1286 res = get_user_pages_fast(addr, n, (i->type & WRITE) != WRITE, p); 1287 if (unlikely(res < 0)) { 1288 kvfree(p); 1289 return res; 1290 } 1291 *pages = p; 1292 return (res == n ? len : res * PAGE_SIZE) - *start; 1293 0;}),({ 1294 /* can't be more than PAGE_SIZE */ 1295 *start = v.bv_offset; 1296 *pages = p = get_pages_array(1); 1297 if (!p) 1298 return -ENOMEM; 1299 get_page(*p = v.bv_page); 1300 return v.bv_len; 1301 }),({ 1302 return -EFAULT; 1303 }) 1304 ) 1305 return 0; 1306 } 1307 EXPORT_SYMBOL(iov_iter_get_pages_alloc); 1308 1309 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum, 1310 struct iov_iter *i) 1311 { 1312 char *to = addr; 1313 __wsum sum, next; 1314 size_t off = 0; 1315 sum = *csum; 1316 if (unlikely(i->type & ITER_PIPE)) { 1317 WARN_ON(1); 1318 return 0; 1319 } 1320 iterate_and_advance(i, bytes, v, ({ 1321 int err = 0; 1322 next = csum_and_copy_from_user(v.iov_base, 1323 (to += v.iov_len) - v.iov_len, 1324 v.iov_len, 0, &err); 1325 if (!err) { 1326 sum = csum_block_add(sum, next, off); 1327 off += v.iov_len; 1328 } 1329 err ? v.iov_len : 0; 1330 }), ({ 1331 char *p = kmap_atomic(v.bv_page); 1332 next = csum_partial_copy_nocheck(p + v.bv_offset, 1333 (to += v.bv_len) - v.bv_len, 1334 v.bv_len, 0); 1335 kunmap_atomic(p); 1336 sum = csum_block_add(sum, next, off); 1337 off += v.bv_len; 1338 }),({ 1339 next = csum_partial_copy_nocheck(v.iov_base, 1340 (to += v.iov_len) - v.iov_len, 1341 v.iov_len, 0); 1342 sum = csum_block_add(sum, next, off); 1343 off += v.iov_len; 1344 }) 1345 ) 1346 *csum = sum; 1347 return bytes; 1348 } 1349 EXPORT_SYMBOL(csum_and_copy_from_iter); 1350 1351 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, 1352 struct iov_iter *i) 1353 { 1354 char *to = addr; 1355 __wsum sum, next; 1356 size_t off = 0; 1357 sum = *csum; 1358 if (unlikely(i->type & ITER_PIPE)) { 1359 WARN_ON(1); 1360 return false; 1361 } 1362 if (unlikely(i->count < bytes)) 1363 return false; 1364 iterate_all_kinds(i, bytes, v, ({ 1365 int err = 0; 1366 next = csum_and_copy_from_user(v.iov_base, 1367 (to += v.iov_len) - v.iov_len, 1368 v.iov_len, 0, &err); 1369 if (err) 1370 return false; 1371 sum = csum_block_add(sum, next, off); 1372 off += v.iov_len; 1373 0; 1374 }), ({ 1375 char *p = kmap_atomic(v.bv_page); 1376 next = csum_partial_copy_nocheck(p + v.bv_offset, 1377 (to += v.bv_len) - v.bv_len, 1378 v.bv_len, 0); 1379 kunmap_atomic(p); 1380 sum = csum_block_add(sum, next, off); 1381 off += v.bv_len; 1382 }),({ 1383 next = csum_partial_copy_nocheck(v.iov_base, 1384 (to += v.iov_len) - v.iov_len, 1385 v.iov_len, 0); 1386 sum = csum_block_add(sum, next, off); 1387 off += v.iov_len; 1388 }) 1389 ) 1390 *csum = sum; 1391 iov_iter_advance(i, bytes); 1392 return true; 1393 } 1394 EXPORT_SYMBOL(csum_and_copy_from_iter_full); 1395 1396 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, __wsum *csum, 1397 struct iov_iter *i) 1398 { 1399 const char *from = addr; 1400 __wsum sum, next; 1401 size_t off = 0; 1402 sum = *csum; 1403 if (unlikely(i->type & ITER_PIPE)) { 1404 WARN_ON(1); /* for now */ 1405 return 0; 1406 } 1407 iterate_and_advance(i, bytes, v, ({ 1408 int err = 0; 1409 next = csum_and_copy_to_user((from += v.iov_len) - v.iov_len, 1410 v.iov_base, 1411 v.iov_len, 0, &err); 1412 if (!err) { 1413 sum = csum_block_add(sum, next, off); 1414 off += v.iov_len; 1415 } 1416 err ? v.iov_len : 0; 1417 }), ({ 1418 char *p = kmap_atomic(v.bv_page); 1419 next = csum_partial_copy_nocheck((from += v.bv_len) - v.bv_len, 1420 p + v.bv_offset, 1421 v.bv_len, 0); 1422 kunmap_atomic(p); 1423 sum = csum_block_add(sum, next, off); 1424 off += v.bv_len; 1425 }),({ 1426 next = csum_partial_copy_nocheck((from += v.iov_len) - v.iov_len, 1427 v.iov_base, 1428 v.iov_len, 0); 1429 sum = csum_block_add(sum, next, off); 1430 off += v.iov_len; 1431 }) 1432 ) 1433 *csum = sum; 1434 return bytes; 1435 } 1436 EXPORT_SYMBOL(csum_and_copy_to_iter); 1437 1438 int iov_iter_npages(const struct iov_iter *i, int maxpages) 1439 { 1440 size_t size = i->count; 1441 int npages = 0; 1442 1443 if (!size) 1444 return 0; 1445 1446 if (unlikely(i->type & ITER_PIPE)) { 1447 struct pipe_inode_info *pipe = i->pipe; 1448 size_t off; 1449 int idx; 1450 1451 if (!sanity(i)) 1452 return 0; 1453 1454 data_start(i, &idx, &off); 1455 /* some of this one + all after this one */ 1456 npages = ((pipe->curbuf - idx - 1) & (pipe->buffers - 1)) + 1; 1457 if (npages >= maxpages) 1458 return maxpages; 1459 } else iterate_all_kinds(i, size, v, ({ 1460 unsigned long p = (unsigned long)v.iov_base; 1461 npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE) 1462 - p / PAGE_SIZE; 1463 if (npages >= maxpages) 1464 return maxpages; 1465 0;}),({ 1466 npages++; 1467 if (npages >= maxpages) 1468 return maxpages; 1469 }),({ 1470 unsigned long p = (unsigned long)v.iov_base; 1471 npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE) 1472 - p / PAGE_SIZE; 1473 if (npages >= maxpages) 1474 return maxpages; 1475 }) 1476 ) 1477 return npages; 1478 } 1479 EXPORT_SYMBOL(iov_iter_npages); 1480 1481 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags) 1482 { 1483 *new = *old; 1484 if (unlikely(new->type & ITER_PIPE)) { 1485 WARN_ON(1); 1486 return NULL; 1487 } 1488 if (new->type & ITER_BVEC) 1489 return new->bvec = kmemdup(new->bvec, 1490 new->nr_segs * sizeof(struct bio_vec), 1491 flags); 1492 else 1493 /* iovec and kvec have identical layout */ 1494 return new->iov = kmemdup(new->iov, 1495 new->nr_segs * sizeof(struct iovec), 1496 flags); 1497 } 1498 EXPORT_SYMBOL(dup_iter); 1499 1500 /** 1501 * import_iovec() - Copy an array of &struct iovec from userspace 1502 * into the kernel, check that it is valid, and initialize a new 1503 * &struct iov_iter iterator to access it. 1504 * 1505 * @type: One of %READ or %WRITE. 1506 * @uvector: Pointer to the userspace array. 1507 * @nr_segs: Number of elements in userspace array. 1508 * @fast_segs: Number of elements in @iov. 1509 * @iov: (input and output parameter) Pointer to pointer to (usually small 1510 * on-stack) kernel array. 1511 * @i: Pointer to iterator that will be initialized on success. 1512 * 1513 * If the array pointed to by *@iov is large enough to hold all @nr_segs, 1514 * then this function places %NULL in *@iov on return. Otherwise, a new 1515 * array will be allocated and the result placed in *@iov. This means that 1516 * the caller may call kfree() on *@iov regardless of whether the small 1517 * on-stack array was used or not (and regardless of whether this function 1518 * returns an error or not). 1519 * 1520 * Return: 0 on success or negative error code on error. 1521 */ 1522 int import_iovec(int type, const struct iovec __user * uvector, 1523 unsigned nr_segs, unsigned fast_segs, 1524 struct iovec **iov, struct iov_iter *i) 1525 { 1526 ssize_t n; 1527 struct iovec *p; 1528 n = rw_copy_check_uvector(type, uvector, nr_segs, fast_segs, 1529 *iov, &p); 1530 if (n < 0) { 1531 if (p != *iov) 1532 kfree(p); 1533 *iov = NULL; 1534 return n; 1535 } 1536 iov_iter_init(i, type, p, nr_segs, n); 1537 *iov = p == *iov ? NULL : p; 1538 return 0; 1539 } 1540 EXPORT_SYMBOL(import_iovec); 1541 1542 #ifdef CONFIG_COMPAT 1543 #include <linux/compat.h> 1544 1545 int compat_import_iovec(int type, const struct compat_iovec __user * uvector, 1546 unsigned nr_segs, unsigned fast_segs, 1547 struct iovec **iov, struct iov_iter *i) 1548 { 1549 ssize_t n; 1550 struct iovec *p; 1551 n = compat_rw_copy_check_uvector(type, uvector, nr_segs, fast_segs, 1552 *iov, &p); 1553 if (n < 0) { 1554 if (p != *iov) 1555 kfree(p); 1556 *iov = NULL; 1557 return n; 1558 } 1559 iov_iter_init(i, type, p, nr_segs, n); 1560 *iov = p == *iov ? NULL : p; 1561 return 0; 1562 } 1563 #endif 1564 1565 int import_single_range(int rw, void __user *buf, size_t len, 1566 struct iovec *iov, struct iov_iter *i) 1567 { 1568 if (len > MAX_RW_COUNT) 1569 len = MAX_RW_COUNT; 1570 if (unlikely(!access_ok(!rw, buf, len))) 1571 return -EFAULT; 1572 1573 iov->iov_base = buf; 1574 iov->iov_len = len; 1575 iov_iter_init(i, rw, iov, 1, len); 1576 return 0; 1577 } 1578 EXPORT_SYMBOL(import_single_range); 1579 1580 int iov_iter_for_each_range(struct iov_iter *i, size_t bytes, 1581 int (*f)(struct kvec *vec, void *context), 1582 void *context) 1583 { 1584 struct kvec w; 1585 int err = -EINVAL; 1586 if (!bytes) 1587 return 0; 1588 1589 iterate_all_kinds(i, bytes, v, -EINVAL, ({ 1590 w.iov_base = kmap(v.bv_page) + v.bv_offset; 1591 w.iov_len = v.bv_len; 1592 err = f(&w, context); 1593 kunmap(v.bv_page); 1594 err;}), ({ 1595 w = v; 1596 err = f(&w, context);}) 1597 ) 1598 return err; 1599 } 1600 EXPORT_SYMBOL(iov_iter_for_each_range); 1601