xref: /linux/lib/iov_iter.c (revision c01044cc819160323f3ca4acd44fca487c4432e6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <crypto/hash.h>
3 #include <linux/export.h>
4 #include <linux/bvec.h>
5 #include <linux/uio.h>
6 #include <linux/pagemap.h>
7 #include <linux/slab.h>
8 #include <linux/vmalloc.h>
9 #include <linux/splice.h>
10 #include <linux/compat.h>
11 #include <net/checksum.h>
12 #include <linux/scatterlist.h>
13 #include <linux/instrumented.h>
14 
15 #define PIPE_PARANOIA /* for now */
16 
17 #define iterate_iovec(i, n, __v, __p, skip, STEP) {	\
18 	size_t left;					\
19 	size_t wanted = n;				\
20 	__p = i->iov;					\
21 	__v.iov_len = min(n, __p->iov_len - skip);	\
22 	if (likely(__v.iov_len)) {			\
23 		__v.iov_base = __p->iov_base + skip;	\
24 		left = (STEP);				\
25 		__v.iov_len -= left;			\
26 		skip += __v.iov_len;			\
27 		n -= __v.iov_len;			\
28 	} else {					\
29 		left = 0;				\
30 	}						\
31 	while (unlikely(!left && n)) {			\
32 		__p++;					\
33 		__v.iov_len = min(n, __p->iov_len);	\
34 		if (unlikely(!__v.iov_len))		\
35 			continue;			\
36 		__v.iov_base = __p->iov_base;		\
37 		left = (STEP);				\
38 		__v.iov_len -= left;			\
39 		skip = __v.iov_len;			\
40 		n -= __v.iov_len;			\
41 	}						\
42 	n = wanted - n;					\
43 }
44 
45 #define iterate_kvec(i, n, __v, __p, skip, STEP) {	\
46 	size_t wanted = n;				\
47 	__p = i->kvec;					\
48 	__v.iov_len = min(n, __p->iov_len - skip);	\
49 	if (likely(__v.iov_len)) {			\
50 		__v.iov_base = __p->iov_base + skip;	\
51 		(void)(STEP);				\
52 		skip += __v.iov_len;			\
53 		n -= __v.iov_len;			\
54 	}						\
55 	while (unlikely(n)) {				\
56 		__p++;					\
57 		__v.iov_len = min(n, __p->iov_len);	\
58 		if (unlikely(!__v.iov_len))		\
59 			continue;			\
60 		__v.iov_base = __p->iov_base;		\
61 		(void)(STEP);				\
62 		skip = __v.iov_len;			\
63 		n -= __v.iov_len;			\
64 	}						\
65 	n = wanted;					\
66 }
67 
68 #define iterate_bvec(i, n, __v, __bi, skip, STEP) {	\
69 	struct bvec_iter __start;			\
70 	__start.bi_size = n;				\
71 	__start.bi_bvec_done = skip;			\
72 	__start.bi_idx = 0;				\
73 	for_each_bvec(__v, i->bvec, __bi, __start) {	\
74 		if (!__v.bv_len)			\
75 			continue;			\
76 		(void)(STEP);				\
77 	}						\
78 }
79 
80 #define iterate_all_kinds(i, n, v, I, B, K) {			\
81 	if (likely(n)) {					\
82 		size_t skip = i->iov_offset;			\
83 		if (unlikely(i->type & ITER_BVEC)) {		\
84 			struct bio_vec v;			\
85 			struct bvec_iter __bi;			\
86 			iterate_bvec(i, n, v, __bi, skip, (B))	\
87 		} else if (unlikely(i->type & ITER_KVEC)) {	\
88 			const struct kvec *kvec;		\
89 			struct kvec v;				\
90 			iterate_kvec(i, n, v, kvec, skip, (K))	\
91 		} else if (unlikely(i->type & ITER_DISCARD)) {	\
92 		} else {					\
93 			const struct iovec *iov;		\
94 			struct iovec v;				\
95 			iterate_iovec(i, n, v, iov, skip, (I))	\
96 		}						\
97 	}							\
98 }
99 
100 #define iterate_and_advance(i, n, v, I, B, K) {			\
101 	if (unlikely(i->count < n))				\
102 		n = i->count;					\
103 	if (i->count) {						\
104 		size_t skip = i->iov_offset;			\
105 		if (unlikely(i->type & ITER_BVEC)) {		\
106 			const struct bio_vec *bvec = i->bvec;	\
107 			struct bio_vec v;			\
108 			struct bvec_iter __bi;			\
109 			iterate_bvec(i, n, v, __bi, skip, (B))	\
110 			i->bvec = __bvec_iter_bvec(i->bvec, __bi);	\
111 			i->nr_segs -= i->bvec - bvec;		\
112 			skip = __bi.bi_bvec_done;		\
113 		} else if (unlikely(i->type & ITER_KVEC)) {	\
114 			const struct kvec *kvec;		\
115 			struct kvec v;				\
116 			iterate_kvec(i, n, v, kvec, skip, (K))	\
117 			if (skip == kvec->iov_len) {		\
118 				kvec++;				\
119 				skip = 0;			\
120 			}					\
121 			i->nr_segs -= kvec - i->kvec;		\
122 			i->kvec = kvec;				\
123 		} else if (unlikely(i->type & ITER_DISCARD)) {	\
124 			skip += n;				\
125 		} else {					\
126 			const struct iovec *iov;		\
127 			struct iovec v;				\
128 			iterate_iovec(i, n, v, iov, skip, (I))	\
129 			if (skip == iov->iov_len) {		\
130 				iov++;				\
131 				skip = 0;			\
132 			}					\
133 			i->nr_segs -= iov - i->iov;		\
134 			i->iov = iov;				\
135 		}						\
136 		i->count -= n;					\
137 		i->iov_offset = skip;				\
138 	}							\
139 }
140 
141 static int copyout(void __user *to, const void *from, size_t n)
142 {
143 	if (access_ok(to, n)) {
144 		instrument_copy_to_user(to, from, n);
145 		n = raw_copy_to_user(to, from, n);
146 	}
147 	return n;
148 }
149 
150 static int copyin(void *to, const void __user *from, size_t n)
151 {
152 	if (access_ok(from, n)) {
153 		instrument_copy_from_user(to, from, n);
154 		n = raw_copy_from_user(to, from, n);
155 	}
156 	return n;
157 }
158 
159 static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes,
160 			 struct iov_iter *i)
161 {
162 	size_t skip, copy, left, wanted;
163 	const struct iovec *iov;
164 	char __user *buf;
165 	void *kaddr, *from;
166 
167 	if (unlikely(bytes > i->count))
168 		bytes = i->count;
169 
170 	if (unlikely(!bytes))
171 		return 0;
172 
173 	might_fault();
174 	wanted = bytes;
175 	iov = i->iov;
176 	skip = i->iov_offset;
177 	buf = iov->iov_base + skip;
178 	copy = min(bytes, iov->iov_len - skip);
179 
180 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_writeable(buf, copy)) {
181 		kaddr = kmap_atomic(page);
182 		from = kaddr + offset;
183 
184 		/* first chunk, usually the only one */
185 		left = copyout(buf, from, copy);
186 		copy -= left;
187 		skip += copy;
188 		from += copy;
189 		bytes -= copy;
190 
191 		while (unlikely(!left && bytes)) {
192 			iov++;
193 			buf = iov->iov_base;
194 			copy = min(bytes, iov->iov_len);
195 			left = copyout(buf, from, copy);
196 			copy -= left;
197 			skip = copy;
198 			from += copy;
199 			bytes -= copy;
200 		}
201 		if (likely(!bytes)) {
202 			kunmap_atomic(kaddr);
203 			goto done;
204 		}
205 		offset = from - kaddr;
206 		buf += copy;
207 		kunmap_atomic(kaddr);
208 		copy = min(bytes, iov->iov_len - skip);
209 	}
210 	/* Too bad - revert to non-atomic kmap */
211 
212 	kaddr = kmap(page);
213 	from = kaddr + offset;
214 	left = copyout(buf, from, copy);
215 	copy -= left;
216 	skip += copy;
217 	from += copy;
218 	bytes -= copy;
219 	while (unlikely(!left && bytes)) {
220 		iov++;
221 		buf = iov->iov_base;
222 		copy = min(bytes, iov->iov_len);
223 		left = copyout(buf, from, copy);
224 		copy -= left;
225 		skip = copy;
226 		from += copy;
227 		bytes -= copy;
228 	}
229 	kunmap(page);
230 
231 done:
232 	if (skip == iov->iov_len) {
233 		iov++;
234 		skip = 0;
235 	}
236 	i->count -= wanted - bytes;
237 	i->nr_segs -= iov - i->iov;
238 	i->iov = iov;
239 	i->iov_offset = skip;
240 	return wanted - bytes;
241 }
242 
243 static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes,
244 			 struct iov_iter *i)
245 {
246 	size_t skip, copy, left, wanted;
247 	const struct iovec *iov;
248 	char __user *buf;
249 	void *kaddr, *to;
250 
251 	if (unlikely(bytes > i->count))
252 		bytes = i->count;
253 
254 	if (unlikely(!bytes))
255 		return 0;
256 
257 	might_fault();
258 	wanted = bytes;
259 	iov = i->iov;
260 	skip = i->iov_offset;
261 	buf = iov->iov_base + skip;
262 	copy = min(bytes, iov->iov_len - skip);
263 
264 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_readable(buf, copy)) {
265 		kaddr = kmap_atomic(page);
266 		to = kaddr + offset;
267 
268 		/* first chunk, usually the only one */
269 		left = copyin(to, buf, copy);
270 		copy -= left;
271 		skip += copy;
272 		to += copy;
273 		bytes -= copy;
274 
275 		while (unlikely(!left && bytes)) {
276 			iov++;
277 			buf = iov->iov_base;
278 			copy = min(bytes, iov->iov_len);
279 			left = copyin(to, buf, copy);
280 			copy -= left;
281 			skip = copy;
282 			to += copy;
283 			bytes -= copy;
284 		}
285 		if (likely(!bytes)) {
286 			kunmap_atomic(kaddr);
287 			goto done;
288 		}
289 		offset = to - kaddr;
290 		buf += copy;
291 		kunmap_atomic(kaddr);
292 		copy = min(bytes, iov->iov_len - skip);
293 	}
294 	/* Too bad - revert to non-atomic kmap */
295 
296 	kaddr = kmap(page);
297 	to = kaddr + offset;
298 	left = copyin(to, buf, copy);
299 	copy -= left;
300 	skip += copy;
301 	to += copy;
302 	bytes -= copy;
303 	while (unlikely(!left && bytes)) {
304 		iov++;
305 		buf = iov->iov_base;
306 		copy = min(bytes, iov->iov_len);
307 		left = copyin(to, buf, copy);
308 		copy -= left;
309 		skip = copy;
310 		to += copy;
311 		bytes -= copy;
312 	}
313 	kunmap(page);
314 
315 done:
316 	if (skip == iov->iov_len) {
317 		iov++;
318 		skip = 0;
319 	}
320 	i->count -= wanted - bytes;
321 	i->nr_segs -= iov - i->iov;
322 	i->iov = iov;
323 	i->iov_offset = skip;
324 	return wanted - bytes;
325 }
326 
327 #ifdef PIPE_PARANOIA
328 static bool sanity(const struct iov_iter *i)
329 {
330 	struct pipe_inode_info *pipe = i->pipe;
331 	unsigned int p_head = pipe->head;
332 	unsigned int p_tail = pipe->tail;
333 	unsigned int p_mask = pipe->ring_size - 1;
334 	unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
335 	unsigned int i_head = i->head;
336 	unsigned int idx;
337 
338 	if (i->iov_offset) {
339 		struct pipe_buffer *p;
340 		if (unlikely(p_occupancy == 0))
341 			goto Bad;	// pipe must be non-empty
342 		if (unlikely(i_head != p_head - 1))
343 			goto Bad;	// must be at the last buffer...
344 
345 		p = &pipe->bufs[i_head & p_mask];
346 		if (unlikely(p->offset + p->len != i->iov_offset))
347 			goto Bad;	// ... at the end of segment
348 	} else {
349 		if (i_head != p_head)
350 			goto Bad;	// must be right after the last buffer
351 	}
352 	return true;
353 Bad:
354 	printk(KERN_ERR "idx = %d, offset = %zd\n", i_head, i->iov_offset);
355 	printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
356 			p_head, p_tail, pipe->ring_size);
357 	for (idx = 0; idx < pipe->ring_size; idx++)
358 		printk(KERN_ERR "[%p %p %d %d]\n",
359 			pipe->bufs[idx].ops,
360 			pipe->bufs[idx].page,
361 			pipe->bufs[idx].offset,
362 			pipe->bufs[idx].len);
363 	WARN_ON(1);
364 	return false;
365 }
366 #else
367 #define sanity(i) true
368 #endif
369 
370 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
371 			 struct iov_iter *i)
372 {
373 	struct pipe_inode_info *pipe = i->pipe;
374 	struct pipe_buffer *buf;
375 	unsigned int p_tail = pipe->tail;
376 	unsigned int p_mask = pipe->ring_size - 1;
377 	unsigned int i_head = i->head;
378 	size_t off;
379 
380 	if (unlikely(bytes > i->count))
381 		bytes = i->count;
382 
383 	if (unlikely(!bytes))
384 		return 0;
385 
386 	if (!sanity(i))
387 		return 0;
388 
389 	off = i->iov_offset;
390 	buf = &pipe->bufs[i_head & p_mask];
391 	if (off) {
392 		if (offset == off && buf->page == page) {
393 			/* merge with the last one */
394 			buf->len += bytes;
395 			i->iov_offset += bytes;
396 			goto out;
397 		}
398 		i_head++;
399 		buf = &pipe->bufs[i_head & p_mask];
400 	}
401 	if (pipe_full(i_head, p_tail, pipe->max_usage))
402 		return 0;
403 
404 	buf->ops = &page_cache_pipe_buf_ops;
405 	get_page(page);
406 	buf->page = page;
407 	buf->offset = offset;
408 	buf->len = bytes;
409 
410 	pipe->head = i_head + 1;
411 	i->iov_offset = offset + bytes;
412 	i->head = i_head;
413 out:
414 	i->count -= bytes;
415 	return bytes;
416 }
417 
418 /*
419  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
420  * bytes.  For each iovec, fault in each page that constitutes the iovec.
421  *
422  * Return 0 on success, or non-zero if the memory could not be accessed (i.e.
423  * because it is an invalid address).
424  */
425 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
426 {
427 	size_t skip = i->iov_offset;
428 	const struct iovec *iov;
429 	int err;
430 	struct iovec v;
431 
432 	if (!(i->type & (ITER_BVEC|ITER_KVEC))) {
433 		iterate_iovec(i, bytes, v, iov, skip, ({
434 			err = fault_in_pages_readable(v.iov_base, v.iov_len);
435 			if (unlikely(err))
436 			return err;
437 		0;}))
438 	}
439 	return 0;
440 }
441 EXPORT_SYMBOL(iov_iter_fault_in_readable);
442 
443 void iov_iter_init(struct iov_iter *i, unsigned int direction,
444 			const struct iovec *iov, unsigned long nr_segs,
445 			size_t count)
446 {
447 	WARN_ON(direction & ~(READ | WRITE));
448 	direction &= READ | WRITE;
449 
450 	/* It will get better.  Eventually... */
451 	if (uaccess_kernel()) {
452 		i->type = ITER_KVEC | direction;
453 		i->kvec = (struct kvec *)iov;
454 	} else {
455 		i->type = ITER_IOVEC | direction;
456 		i->iov = iov;
457 	}
458 	i->nr_segs = nr_segs;
459 	i->iov_offset = 0;
460 	i->count = count;
461 }
462 EXPORT_SYMBOL(iov_iter_init);
463 
464 static void memcpy_from_page(char *to, struct page *page, size_t offset, size_t len)
465 {
466 	char *from = kmap_atomic(page);
467 	memcpy(to, from + offset, len);
468 	kunmap_atomic(from);
469 }
470 
471 static void memcpy_to_page(struct page *page, size_t offset, const char *from, size_t len)
472 {
473 	char *to = kmap_atomic(page);
474 	memcpy(to + offset, from, len);
475 	kunmap_atomic(to);
476 }
477 
478 static void memzero_page(struct page *page, size_t offset, size_t len)
479 {
480 	char *addr = kmap_atomic(page);
481 	memset(addr + offset, 0, len);
482 	kunmap_atomic(addr);
483 }
484 
485 static inline bool allocated(struct pipe_buffer *buf)
486 {
487 	return buf->ops == &default_pipe_buf_ops;
488 }
489 
490 static inline void data_start(const struct iov_iter *i,
491 			      unsigned int *iter_headp, size_t *offp)
492 {
493 	unsigned int p_mask = i->pipe->ring_size - 1;
494 	unsigned int iter_head = i->head;
495 	size_t off = i->iov_offset;
496 
497 	if (off && (!allocated(&i->pipe->bufs[iter_head & p_mask]) ||
498 		    off == PAGE_SIZE)) {
499 		iter_head++;
500 		off = 0;
501 	}
502 	*iter_headp = iter_head;
503 	*offp = off;
504 }
505 
506 static size_t push_pipe(struct iov_iter *i, size_t size,
507 			int *iter_headp, size_t *offp)
508 {
509 	struct pipe_inode_info *pipe = i->pipe;
510 	unsigned int p_tail = pipe->tail;
511 	unsigned int p_mask = pipe->ring_size - 1;
512 	unsigned int iter_head;
513 	size_t off;
514 	ssize_t left;
515 
516 	if (unlikely(size > i->count))
517 		size = i->count;
518 	if (unlikely(!size))
519 		return 0;
520 
521 	left = size;
522 	data_start(i, &iter_head, &off);
523 	*iter_headp = iter_head;
524 	*offp = off;
525 	if (off) {
526 		left -= PAGE_SIZE - off;
527 		if (left <= 0) {
528 			pipe->bufs[iter_head & p_mask].len += size;
529 			return size;
530 		}
531 		pipe->bufs[iter_head & p_mask].len = PAGE_SIZE;
532 		iter_head++;
533 	}
534 	while (!pipe_full(iter_head, p_tail, pipe->max_usage)) {
535 		struct pipe_buffer *buf = &pipe->bufs[iter_head & p_mask];
536 		struct page *page = alloc_page(GFP_USER);
537 		if (!page)
538 			break;
539 
540 		buf->ops = &default_pipe_buf_ops;
541 		buf->page = page;
542 		buf->offset = 0;
543 		buf->len = min_t(ssize_t, left, PAGE_SIZE);
544 		left -= buf->len;
545 		iter_head++;
546 		pipe->head = iter_head;
547 
548 		if (left == 0)
549 			return size;
550 	}
551 	return size - left;
552 }
553 
554 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
555 				struct iov_iter *i)
556 {
557 	struct pipe_inode_info *pipe = i->pipe;
558 	unsigned int p_mask = pipe->ring_size - 1;
559 	unsigned int i_head;
560 	size_t n, off;
561 
562 	if (!sanity(i))
563 		return 0;
564 
565 	bytes = n = push_pipe(i, bytes, &i_head, &off);
566 	if (unlikely(!n))
567 		return 0;
568 	do {
569 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
570 		memcpy_to_page(pipe->bufs[i_head & p_mask].page, off, addr, chunk);
571 		i->head = i_head;
572 		i->iov_offset = off + chunk;
573 		n -= chunk;
574 		addr += chunk;
575 		off = 0;
576 		i_head++;
577 	} while (n);
578 	i->count -= bytes;
579 	return bytes;
580 }
581 
582 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
583 			      __wsum sum, size_t off)
584 {
585 	__wsum next = csum_partial_copy_nocheck(from, to, len);
586 	return csum_block_add(sum, next, off);
587 }
588 
589 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
590 				__wsum *csum, struct iov_iter *i)
591 {
592 	struct pipe_inode_info *pipe = i->pipe;
593 	unsigned int p_mask = pipe->ring_size - 1;
594 	unsigned int i_head;
595 	size_t n, r;
596 	size_t off = 0;
597 	__wsum sum = *csum;
598 
599 	if (!sanity(i))
600 		return 0;
601 
602 	bytes = n = push_pipe(i, bytes, &i_head, &r);
603 	if (unlikely(!n))
604 		return 0;
605 	do {
606 		size_t chunk = min_t(size_t, n, PAGE_SIZE - r);
607 		char *p = kmap_atomic(pipe->bufs[i_head & p_mask].page);
608 		sum = csum_and_memcpy(p + r, addr, chunk, sum, off);
609 		kunmap_atomic(p);
610 		i->head = i_head;
611 		i->iov_offset = r + chunk;
612 		n -= chunk;
613 		off += chunk;
614 		addr += chunk;
615 		r = 0;
616 		i_head++;
617 	} while (n);
618 	i->count -= bytes;
619 	*csum = sum;
620 	return bytes;
621 }
622 
623 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
624 {
625 	const char *from = addr;
626 	if (unlikely(iov_iter_is_pipe(i)))
627 		return copy_pipe_to_iter(addr, bytes, i);
628 	if (iter_is_iovec(i))
629 		might_fault();
630 	iterate_and_advance(i, bytes, v,
631 		copyout(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len),
632 		memcpy_to_page(v.bv_page, v.bv_offset,
633 			       (from += v.bv_len) - v.bv_len, v.bv_len),
634 		memcpy(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len)
635 	)
636 
637 	return bytes;
638 }
639 EXPORT_SYMBOL(_copy_to_iter);
640 
641 #ifdef CONFIG_ARCH_HAS_COPY_MC
642 static int copyout_mc(void __user *to, const void *from, size_t n)
643 {
644 	if (access_ok(to, n)) {
645 		instrument_copy_to_user(to, from, n);
646 		n = copy_mc_to_user((__force void *) to, from, n);
647 	}
648 	return n;
649 }
650 
651 static unsigned long copy_mc_to_page(struct page *page, size_t offset,
652 		const char *from, size_t len)
653 {
654 	unsigned long ret;
655 	char *to;
656 
657 	to = kmap_atomic(page);
658 	ret = copy_mc_to_kernel(to + offset, from, len);
659 	kunmap_atomic(to);
660 
661 	return ret;
662 }
663 
664 static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
665 				struct iov_iter *i)
666 {
667 	struct pipe_inode_info *pipe = i->pipe;
668 	unsigned int p_mask = pipe->ring_size - 1;
669 	unsigned int i_head;
670 	size_t n, off, xfer = 0;
671 
672 	if (!sanity(i))
673 		return 0;
674 
675 	bytes = n = push_pipe(i, bytes, &i_head, &off);
676 	if (unlikely(!n))
677 		return 0;
678 	do {
679 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
680 		unsigned long rem;
681 
682 		rem = copy_mc_to_page(pipe->bufs[i_head & p_mask].page,
683 					    off, addr, chunk);
684 		i->head = i_head;
685 		i->iov_offset = off + chunk - rem;
686 		xfer += chunk - rem;
687 		if (rem)
688 			break;
689 		n -= chunk;
690 		addr += chunk;
691 		off = 0;
692 		i_head++;
693 	} while (n);
694 	i->count -= xfer;
695 	return xfer;
696 }
697 
698 /**
699  * _copy_mc_to_iter - copy to iter with source memory error exception handling
700  * @addr: source kernel address
701  * @bytes: total transfer length
702  * @iter: destination iterator
703  *
704  * The pmem driver deploys this for the dax operation
705  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
706  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
707  * successfully copied.
708  *
709  * The main differences between this and typical _copy_to_iter().
710  *
711  * * Typical tail/residue handling after a fault retries the copy
712  *   byte-by-byte until the fault happens again. Re-triggering machine
713  *   checks is potentially fatal so the implementation uses source
714  *   alignment and poison alignment assumptions to avoid re-triggering
715  *   hardware exceptions.
716  *
717  * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
718  *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
719  *   a short copy.
720  */
721 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
722 {
723 	const char *from = addr;
724 	unsigned long rem, curr_addr, s_addr = (unsigned long) addr;
725 
726 	if (unlikely(iov_iter_is_pipe(i)))
727 		return copy_mc_pipe_to_iter(addr, bytes, i);
728 	if (iter_is_iovec(i))
729 		might_fault();
730 	iterate_and_advance(i, bytes, v,
731 		copyout_mc(v.iov_base, (from += v.iov_len) - v.iov_len,
732 			   v.iov_len),
733 		({
734 		rem = copy_mc_to_page(v.bv_page, v.bv_offset,
735 				      (from += v.bv_len) - v.bv_len, v.bv_len);
736 		if (rem) {
737 			curr_addr = (unsigned long) from;
738 			bytes = curr_addr - s_addr - rem;
739 			return bytes;
740 		}
741 		}),
742 		({
743 		rem = copy_mc_to_kernel(v.iov_base, (from += v.iov_len)
744 					- v.iov_len, v.iov_len);
745 		if (rem) {
746 			curr_addr = (unsigned long) from;
747 			bytes = curr_addr - s_addr - rem;
748 			return bytes;
749 		}
750 		})
751 	)
752 
753 	return bytes;
754 }
755 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
756 #endif /* CONFIG_ARCH_HAS_COPY_MC */
757 
758 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
759 {
760 	char *to = addr;
761 	if (unlikely(iov_iter_is_pipe(i))) {
762 		WARN_ON(1);
763 		return 0;
764 	}
765 	if (iter_is_iovec(i))
766 		might_fault();
767 	iterate_and_advance(i, bytes, v,
768 		copyin((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
769 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
770 				 v.bv_offset, v.bv_len),
771 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
772 	)
773 
774 	return bytes;
775 }
776 EXPORT_SYMBOL(_copy_from_iter);
777 
778 bool _copy_from_iter_full(void *addr, size_t bytes, struct iov_iter *i)
779 {
780 	char *to = addr;
781 	if (unlikely(iov_iter_is_pipe(i))) {
782 		WARN_ON(1);
783 		return false;
784 	}
785 	if (unlikely(i->count < bytes))
786 		return false;
787 
788 	if (iter_is_iovec(i))
789 		might_fault();
790 	iterate_all_kinds(i, bytes, v, ({
791 		if (copyin((to += v.iov_len) - v.iov_len,
792 				      v.iov_base, v.iov_len))
793 			return false;
794 		0;}),
795 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
796 				 v.bv_offset, v.bv_len),
797 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
798 	)
799 
800 	iov_iter_advance(i, bytes);
801 	return true;
802 }
803 EXPORT_SYMBOL(_copy_from_iter_full);
804 
805 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
806 {
807 	char *to = addr;
808 	if (unlikely(iov_iter_is_pipe(i))) {
809 		WARN_ON(1);
810 		return 0;
811 	}
812 	iterate_and_advance(i, bytes, v,
813 		__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
814 					 v.iov_base, v.iov_len),
815 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
816 				 v.bv_offset, v.bv_len),
817 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
818 	)
819 
820 	return bytes;
821 }
822 EXPORT_SYMBOL(_copy_from_iter_nocache);
823 
824 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
825 /**
826  * _copy_from_iter_flushcache - write destination through cpu cache
827  * @addr: destination kernel address
828  * @bytes: total transfer length
829  * @iter: source iterator
830  *
831  * The pmem driver arranges for filesystem-dax to use this facility via
832  * dax_copy_from_iter() for ensuring that writes to persistent memory
833  * are flushed through the CPU cache. It is differentiated from
834  * _copy_from_iter_nocache() in that guarantees all data is flushed for
835  * all iterator types. The _copy_from_iter_nocache() only attempts to
836  * bypass the cache for the ITER_IOVEC case, and on some archs may use
837  * instructions that strand dirty-data in the cache.
838  */
839 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
840 {
841 	char *to = addr;
842 	if (unlikely(iov_iter_is_pipe(i))) {
843 		WARN_ON(1);
844 		return 0;
845 	}
846 	iterate_and_advance(i, bytes, v,
847 		__copy_from_user_flushcache((to += v.iov_len) - v.iov_len,
848 					 v.iov_base, v.iov_len),
849 		memcpy_page_flushcache((to += v.bv_len) - v.bv_len, v.bv_page,
850 				 v.bv_offset, v.bv_len),
851 		memcpy_flushcache((to += v.iov_len) - v.iov_len, v.iov_base,
852 			v.iov_len)
853 	)
854 
855 	return bytes;
856 }
857 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
858 #endif
859 
860 bool _copy_from_iter_full_nocache(void *addr, size_t bytes, struct iov_iter *i)
861 {
862 	char *to = addr;
863 	if (unlikely(iov_iter_is_pipe(i))) {
864 		WARN_ON(1);
865 		return false;
866 	}
867 	if (unlikely(i->count < bytes))
868 		return false;
869 	iterate_all_kinds(i, bytes, v, ({
870 		if (__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
871 					     v.iov_base, v.iov_len))
872 			return false;
873 		0;}),
874 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
875 				 v.bv_offset, v.bv_len),
876 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
877 	)
878 
879 	iov_iter_advance(i, bytes);
880 	return true;
881 }
882 EXPORT_SYMBOL(_copy_from_iter_full_nocache);
883 
884 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
885 {
886 	struct page *head;
887 	size_t v = n + offset;
888 
889 	/*
890 	 * The general case needs to access the page order in order
891 	 * to compute the page size.
892 	 * However, we mostly deal with order-0 pages and thus can
893 	 * avoid a possible cache line miss for requests that fit all
894 	 * page orders.
895 	 */
896 	if (n <= v && v <= PAGE_SIZE)
897 		return true;
898 
899 	head = compound_head(page);
900 	v += (page - head) << PAGE_SHIFT;
901 
902 	if (likely(n <= v && v <= (page_size(head))))
903 		return true;
904 	WARN_ON(1);
905 	return false;
906 }
907 
908 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
909 			 struct iov_iter *i)
910 {
911 	if (unlikely(!page_copy_sane(page, offset, bytes)))
912 		return 0;
913 	if (i->type & (ITER_BVEC|ITER_KVEC)) {
914 		void *kaddr = kmap_atomic(page);
915 		size_t wanted = copy_to_iter(kaddr + offset, bytes, i);
916 		kunmap_atomic(kaddr);
917 		return wanted;
918 	} else if (unlikely(iov_iter_is_discard(i)))
919 		return bytes;
920 	else if (likely(!iov_iter_is_pipe(i)))
921 		return copy_page_to_iter_iovec(page, offset, bytes, i);
922 	else
923 		return copy_page_to_iter_pipe(page, offset, bytes, i);
924 }
925 EXPORT_SYMBOL(copy_page_to_iter);
926 
927 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
928 			 struct iov_iter *i)
929 {
930 	if (unlikely(!page_copy_sane(page, offset, bytes)))
931 		return 0;
932 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
933 		WARN_ON(1);
934 		return 0;
935 	}
936 	if (i->type & (ITER_BVEC|ITER_KVEC)) {
937 		void *kaddr = kmap_atomic(page);
938 		size_t wanted = _copy_from_iter(kaddr + offset, bytes, i);
939 		kunmap_atomic(kaddr);
940 		return wanted;
941 	} else
942 		return copy_page_from_iter_iovec(page, offset, bytes, i);
943 }
944 EXPORT_SYMBOL(copy_page_from_iter);
945 
946 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
947 {
948 	struct pipe_inode_info *pipe = i->pipe;
949 	unsigned int p_mask = pipe->ring_size - 1;
950 	unsigned int i_head;
951 	size_t n, off;
952 
953 	if (!sanity(i))
954 		return 0;
955 
956 	bytes = n = push_pipe(i, bytes, &i_head, &off);
957 	if (unlikely(!n))
958 		return 0;
959 
960 	do {
961 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
962 		memzero_page(pipe->bufs[i_head & p_mask].page, off, chunk);
963 		i->head = i_head;
964 		i->iov_offset = off + chunk;
965 		n -= chunk;
966 		off = 0;
967 		i_head++;
968 	} while (n);
969 	i->count -= bytes;
970 	return bytes;
971 }
972 
973 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
974 {
975 	if (unlikely(iov_iter_is_pipe(i)))
976 		return pipe_zero(bytes, i);
977 	iterate_and_advance(i, bytes, v,
978 		clear_user(v.iov_base, v.iov_len),
979 		memzero_page(v.bv_page, v.bv_offset, v.bv_len),
980 		memset(v.iov_base, 0, v.iov_len)
981 	)
982 
983 	return bytes;
984 }
985 EXPORT_SYMBOL(iov_iter_zero);
986 
987 size_t iov_iter_copy_from_user_atomic(struct page *page,
988 		struct iov_iter *i, unsigned long offset, size_t bytes)
989 {
990 	char *kaddr = kmap_atomic(page), *p = kaddr + offset;
991 	if (unlikely(!page_copy_sane(page, offset, bytes))) {
992 		kunmap_atomic(kaddr);
993 		return 0;
994 	}
995 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
996 		kunmap_atomic(kaddr);
997 		WARN_ON(1);
998 		return 0;
999 	}
1000 	iterate_all_kinds(i, bytes, v,
1001 		copyin((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
1002 		memcpy_from_page((p += v.bv_len) - v.bv_len, v.bv_page,
1003 				 v.bv_offset, v.bv_len),
1004 		memcpy((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
1005 	)
1006 	kunmap_atomic(kaddr);
1007 	return bytes;
1008 }
1009 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1010 
1011 static inline void pipe_truncate(struct iov_iter *i)
1012 {
1013 	struct pipe_inode_info *pipe = i->pipe;
1014 	unsigned int p_tail = pipe->tail;
1015 	unsigned int p_head = pipe->head;
1016 	unsigned int p_mask = pipe->ring_size - 1;
1017 
1018 	if (!pipe_empty(p_head, p_tail)) {
1019 		struct pipe_buffer *buf;
1020 		unsigned int i_head = i->head;
1021 		size_t off = i->iov_offset;
1022 
1023 		if (off) {
1024 			buf = &pipe->bufs[i_head & p_mask];
1025 			buf->len = off - buf->offset;
1026 			i_head++;
1027 		}
1028 		while (p_head != i_head) {
1029 			p_head--;
1030 			pipe_buf_release(pipe, &pipe->bufs[p_head & p_mask]);
1031 		}
1032 
1033 		pipe->head = p_head;
1034 	}
1035 }
1036 
1037 static void pipe_advance(struct iov_iter *i, size_t size)
1038 {
1039 	struct pipe_inode_info *pipe = i->pipe;
1040 	if (unlikely(i->count < size))
1041 		size = i->count;
1042 	if (size) {
1043 		struct pipe_buffer *buf;
1044 		unsigned int p_mask = pipe->ring_size - 1;
1045 		unsigned int i_head = i->head;
1046 		size_t off = i->iov_offset, left = size;
1047 
1048 		if (off) /* make it relative to the beginning of buffer */
1049 			left += off - pipe->bufs[i_head & p_mask].offset;
1050 		while (1) {
1051 			buf = &pipe->bufs[i_head & p_mask];
1052 			if (left <= buf->len)
1053 				break;
1054 			left -= buf->len;
1055 			i_head++;
1056 		}
1057 		i->head = i_head;
1058 		i->iov_offset = buf->offset + left;
1059 	}
1060 	i->count -= size;
1061 	/* ... and discard everything past that point */
1062 	pipe_truncate(i);
1063 }
1064 
1065 void iov_iter_advance(struct iov_iter *i, size_t size)
1066 {
1067 	if (unlikely(iov_iter_is_pipe(i))) {
1068 		pipe_advance(i, size);
1069 		return;
1070 	}
1071 	if (unlikely(iov_iter_is_discard(i))) {
1072 		i->count -= size;
1073 		return;
1074 	}
1075 	iterate_and_advance(i, size, v, 0, 0, 0)
1076 }
1077 EXPORT_SYMBOL(iov_iter_advance);
1078 
1079 void iov_iter_revert(struct iov_iter *i, size_t unroll)
1080 {
1081 	if (!unroll)
1082 		return;
1083 	if (WARN_ON(unroll > MAX_RW_COUNT))
1084 		return;
1085 	i->count += unroll;
1086 	if (unlikely(iov_iter_is_pipe(i))) {
1087 		struct pipe_inode_info *pipe = i->pipe;
1088 		unsigned int p_mask = pipe->ring_size - 1;
1089 		unsigned int i_head = i->head;
1090 		size_t off = i->iov_offset;
1091 		while (1) {
1092 			struct pipe_buffer *b = &pipe->bufs[i_head & p_mask];
1093 			size_t n = off - b->offset;
1094 			if (unroll < n) {
1095 				off -= unroll;
1096 				break;
1097 			}
1098 			unroll -= n;
1099 			if (!unroll && i_head == i->start_head) {
1100 				off = 0;
1101 				break;
1102 			}
1103 			i_head--;
1104 			b = &pipe->bufs[i_head & p_mask];
1105 			off = b->offset + b->len;
1106 		}
1107 		i->iov_offset = off;
1108 		i->head = i_head;
1109 		pipe_truncate(i);
1110 		return;
1111 	}
1112 	if (unlikely(iov_iter_is_discard(i)))
1113 		return;
1114 	if (unroll <= i->iov_offset) {
1115 		i->iov_offset -= unroll;
1116 		return;
1117 	}
1118 	unroll -= i->iov_offset;
1119 	if (iov_iter_is_bvec(i)) {
1120 		const struct bio_vec *bvec = i->bvec;
1121 		while (1) {
1122 			size_t n = (--bvec)->bv_len;
1123 			i->nr_segs++;
1124 			if (unroll <= n) {
1125 				i->bvec = bvec;
1126 				i->iov_offset = n - unroll;
1127 				return;
1128 			}
1129 			unroll -= n;
1130 		}
1131 	} else { /* same logics for iovec and kvec */
1132 		const struct iovec *iov = i->iov;
1133 		while (1) {
1134 			size_t n = (--iov)->iov_len;
1135 			i->nr_segs++;
1136 			if (unroll <= n) {
1137 				i->iov = iov;
1138 				i->iov_offset = n - unroll;
1139 				return;
1140 			}
1141 			unroll -= n;
1142 		}
1143 	}
1144 }
1145 EXPORT_SYMBOL(iov_iter_revert);
1146 
1147 /*
1148  * Return the count of just the current iov_iter segment.
1149  */
1150 size_t iov_iter_single_seg_count(const struct iov_iter *i)
1151 {
1152 	if (unlikely(iov_iter_is_pipe(i)))
1153 		return i->count;	// it is a silly place, anyway
1154 	if (i->nr_segs == 1)
1155 		return i->count;
1156 	if (unlikely(iov_iter_is_discard(i)))
1157 		return i->count;
1158 	else if (iov_iter_is_bvec(i))
1159 		return min(i->count, i->bvec->bv_len - i->iov_offset);
1160 	else
1161 		return min(i->count, i->iov->iov_len - i->iov_offset);
1162 }
1163 EXPORT_SYMBOL(iov_iter_single_seg_count);
1164 
1165 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
1166 			const struct kvec *kvec, unsigned long nr_segs,
1167 			size_t count)
1168 {
1169 	WARN_ON(direction & ~(READ | WRITE));
1170 	i->type = ITER_KVEC | (direction & (READ | WRITE));
1171 	i->kvec = kvec;
1172 	i->nr_segs = nr_segs;
1173 	i->iov_offset = 0;
1174 	i->count = count;
1175 }
1176 EXPORT_SYMBOL(iov_iter_kvec);
1177 
1178 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1179 			const struct bio_vec *bvec, unsigned long nr_segs,
1180 			size_t count)
1181 {
1182 	WARN_ON(direction & ~(READ | WRITE));
1183 	i->type = ITER_BVEC | (direction & (READ | WRITE));
1184 	i->bvec = bvec;
1185 	i->nr_segs = nr_segs;
1186 	i->iov_offset = 0;
1187 	i->count = count;
1188 }
1189 EXPORT_SYMBOL(iov_iter_bvec);
1190 
1191 void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1192 			struct pipe_inode_info *pipe,
1193 			size_t count)
1194 {
1195 	BUG_ON(direction != READ);
1196 	WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
1197 	i->type = ITER_PIPE | READ;
1198 	i->pipe = pipe;
1199 	i->head = pipe->head;
1200 	i->iov_offset = 0;
1201 	i->count = count;
1202 	i->start_head = i->head;
1203 }
1204 EXPORT_SYMBOL(iov_iter_pipe);
1205 
1206 /**
1207  * iov_iter_discard - Initialise an I/O iterator that discards data
1208  * @i: The iterator to initialise.
1209  * @direction: The direction of the transfer.
1210  * @count: The size of the I/O buffer in bytes.
1211  *
1212  * Set up an I/O iterator that just discards everything that's written to it.
1213  * It's only available as a READ iterator.
1214  */
1215 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1216 {
1217 	BUG_ON(direction != READ);
1218 	i->type = ITER_DISCARD | READ;
1219 	i->count = count;
1220 	i->iov_offset = 0;
1221 }
1222 EXPORT_SYMBOL(iov_iter_discard);
1223 
1224 unsigned long iov_iter_alignment(const struct iov_iter *i)
1225 {
1226 	unsigned long res = 0;
1227 	size_t size = i->count;
1228 
1229 	if (unlikely(iov_iter_is_pipe(i))) {
1230 		unsigned int p_mask = i->pipe->ring_size - 1;
1231 
1232 		if (size && i->iov_offset && allocated(&i->pipe->bufs[i->head & p_mask]))
1233 			return size | i->iov_offset;
1234 		return size;
1235 	}
1236 	iterate_all_kinds(i, size, v,
1237 		(res |= (unsigned long)v.iov_base | v.iov_len, 0),
1238 		res |= v.bv_offset | v.bv_len,
1239 		res |= (unsigned long)v.iov_base | v.iov_len
1240 	)
1241 	return res;
1242 }
1243 EXPORT_SYMBOL(iov_iter_alignment);
1244 
1245 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1246 {
1247 	unsigned long res = 0;
1248 	size_t size = i->count;
1249 
1250 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1251 		WARN_ON(1);
1252 		return ~0U;
1253 	}
1254 
1255 	iterate_all_kinds(i, size, v,
1256 		(res |= (!res ? 0 : (unsigned long)v.iov_base) |
1257 			(size != v.iov_len ? size : 0), 0),
1258 		(res |= (!res ? 0 : (unsigned long)v.bv_offset) |
1259 			(size != v.bv_len ? size : 0)),
1260 		(res |= (!res ? 0 : (unsigned long)v.iov_base) |
1261 			(size != v.iov_len ? size : 0))
1262 		);
1263 	return res;
1264 }
1265 EXPORT_SYMBOL(iov_iter_gap_alignment);
1266 
1267 static inline ssize_t __pipe_get_pages(struct iov_iter *i,
1268 				size_t maxsize,
1269 				struct page **pages,
1270 				int iter_head,
1271 				size_t *start)
1272 {
1273 	struct pipe_inode_info *pipe = i->pipe;
1274 	unsigned int p_mask = pipe->ring_size - 1;
1275 	ssize_t n = push_pipe(i, maxsize, &iter_head, start);
1276 	if (!n)
1277 		return -EFAULT;
1278 
1279 	maxsize = n;
1280 	n += *start;
1281 	while (n > 0) {
1282 		get_page(*pages++ = pipe->bufs[iter_head & p_mask].page);
1283 		iter_head++;
1284 		n -= PAGE_SIZE;
1285 	}
1286 
1287 	return maxsize;
1288 }
1289 
1290 static ssize_t pipe_get_pages(struct iov_iter *i,
1291 		   struct page **pages, size_t maxsize, unsigned maxpages,
1292 		   size_t *start)
1293 {
1294 	unsigned int iter_head, npages;
1295 	size_t capacity;
1296 
1297 	if (!maxsize)
1298 		return 0;
1299 
1300 	if (!sanity(i))
1301 		return -EFAULT;
1302 
1303 	data_start(i, &iter_head, start);
1304 	/* Amount of free space: some of this one + all after this one */
1305 	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1306 	capacity = min(npages, maxpages) * PAGE_SIZE - *start;
1307 
1308 	return __pipe_get_pages(i, min(maxsize, capacity), pages, iter_head, start);
1309 }
1310 
1311 ssize_t iov_iter_get_pages(struct iov_iter *i,
1312 		   struct page **pages, size_t maxsize, unsigned maxpages,
1313 		   size_t *start)
1314 {
1315 	if (maxsize > i->count)
1316 		maxsize = i->count;
1317 
1318 	if (unlikely(iov_iter_is_pipe(i)))
1319 		return pipe_get_pages(i, pages, maxsize, maxpages, start);
1320 	if (unlikely(iov_iter_is_discard(i)))
1321 		return -EFAULT;
1322 
1323 	iterate_all_kinds(i, maxsize, v, ({
1324 		unsigned long addr = (unsigned long)v.iov_base;
1325 		size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1326 		int n;
1327 		int res;
1328 
1329 		if (len > maxpages * PAGE_SIZE)
1330 			len = maxpages * PAGE_SIZE;
1331 		addr &= ~(PAGE_SIZE - 1);
1332 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1333 		res = get_user_pages_fast(addr, n,
1334 				iov_iter_rw(i) != WRITE ?  FOLL_WRITE : 0,
1335 				pages);
1336 		if (unlikely(res < 0))
1337 			return res;
1338 		return (res == n ? len : res * PAGE_SIZE) - *start;
1339 	0;}),({
1340 		/* can't be more than PAGE_SIZE */
1341 		*start = v.bv_offset;
1342 		get_page(*pages = v.bv_page);
1343 		return v.bv_len;
1344 	}),({
1345 		return -EFAULT;
1346 	})
1347 	)
1348 	return 0;
1349 }
1350 EXPORT_SYMBOL(iov_iter_get_pages);
1351 
1352 static struct page **get_pages_array(size_t n)
1353 {
1354 	return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
1355 }
1356 
1357 static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
1358 		   struct page ***pages, size_t maxsize,
1359 		   size_t *start)
1360 {
1361 	struct page **p;
1362 	unsigned int iter_head, npages;
1363 	ssize_t n;
1364 
1365 	if (!maxsize)
1366 		return 0;
1367 
1368 	if (!sanity(i))
1369 		return -EFAULT;
1370 
1371 	data_start(i, &iter_head, start);
1372 	/* Amount of free space: some of this one + all after this one */
1373 	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1374 	n = npages * PAGE_SIZE - *start;
1375 	if (maxsize > n)
1376 		maxsize = n;
1377 	else
1378 		npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1379 	p = get_pages_array(npages);
1380 	if (!p)
1381 		return -ENOMEM;
1382 	n = __pipe_get_pages(i, maxsize, p, iter_head, start);
1383 	if (n > 0)
1384 		*pages = p;
1385 	else
1386 		kvfree(p);
1387 	return n;
1388 }
1389 
1390 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1391 		   struct page ***pages, size_t maxsize,
1392 		   size_t *start)
1393 {
1394 	struct page **p;
1395 
1396 	if (maxsize > i->count)
1397 		maxsize = i->count;
1398 
1399 	if (unlikely(iov_iter_is_pipe(i)))
1400 		return pipe_get_pages_alloc(i, pages, maxsize, start);
1401 	if (unlikely(iov_iter_is_discard(i)))
1402 		return -EFAULT;
1403 
1404 	iterate_all_kinds(i, maxsize, v, ({
1405 		unsigned long addr = (unsigned long)v.iov_base;
1406 		size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1407 		int n;
1408 		int res;
1409 
1410 		addr &= ~(PAGE_SIZE - 1);
1411 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1412 		p = get_pages_array(n);
1413 		if (!p)
1414 			return -ENOMEM;
1415 		res = get_user_pages_fast(addr, n,
1416 				iov_iter_rw(i) != WRITE ?  FOLL_WRITE : 0, p);
1417 		if (unlikely(res < 0)) {
1418 			kvfree(p);
1419 			return res;
1420 		}
1421 		*pages = p;
1422 		return (res == n ? len : res * PAGE_SIZE) - *start;
1423 	0;}),({
1424 		/* can't be more than PAGE_SIZE */
1425 		*start = v.bv_offset;
1426 		*pages = p = get_pages_array(1);
1427 		if (!p)
1428 			return -ENOMEM;
1429 		get_page(*p = v.bv_page);
1430 		return v.bv_len;
1431 	}),({
1432 		return -EFAULT;
1433 	})
1434 	)
1435 	return 0;
1436 }
1437 EXPORT_SYMBOL(iov_iter_get_pages_alloc);
1438 
1439 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1440 			       struct iov_iter *i)
1441 {
1442 	char *to = addr;
1443 	__wsum sum, next;
1444 	size_t off = 0;
1445 	sum = *csum;
1446 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1447 		WARN_ON(1);
1448 		return 0;
1449 	}
1450 	iterate_and_advance(i, bytes, v, ({
1451 		next = csum_and_copy_from_user(v.iov_base,
1452 					       (to += v.iov_len) - v.iov_len,
1453 					       v.iov_len);
1454 		if (next) {
1455 			sum = csum_block_add(sum, next, off);
1456 			off += v.iov_len;
1457 		}
1458 		next ? 0 : v.iov_len;
1459 	}), ({
1460 		char *p = kmap_atomic(v.bv_page);
1461 		sum = csum_and_memcpy((to += v.bv_len) - v.bv_len,
1462 				      p + v.bv_offset, v.bv_len,
1463 				      sum, off);
1464 		kunmap_atomic(p);
1465 		off += v.bv_len;
1466 	}),({
1467 		sum = csum_and_memcpy((to += v.iov_len) - v.iov_len,
1468 				      v.iov_base, v.iov_len,
1469 				      sum, off);
1470 		off += v.iov_len;
1471 	})
1472 	)
1473 	*csum = sum;
1474 	return bytes;
1475 }
1476 EXPORT_SYMBOL(csum_and_copy_from_iter);
1477 
1478 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum,
1479 			       struct iov_iter *i)
1480 {
1481 	char *to = addr;
1482 	__wsum sum, next;
1483 	size_t off = 0;
1484 	sum = *csum;
1485 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1486 		WARN_ON(1);
1487 		return false;
1488 	}
1489 	if (unlikely(i->count < bytes))
1490 		return false;
1491 	iterate_all_kinds(i, bytes, v, ({
1492 		next = csum_and_copy_from_user(v.iov_base,
1493 					       (to += v.iov_len) - v.iov_len,
1494 					       v.iov_len);
1495 		if (!next)
1496 			return false;
1497 		sum = csum_block_add(sum, next, off);
1498 		off += v.iov_len;
1499 		0;
1500 	}), ({
1501 		char *p = kmap_atomic(v.bv_page);
1502 		sum = csum_and_memcpy((to += v.bv_len) - v.bv_len,
1503 				      p + v.bv_offset, v.bv_len,
1504 				      sum, off);
1505 		kunmap_atomic(p);
1506 		off += v.bv_len;
1507 	}),({
1508 		sum = csum_and_memcpy((to += v.iov_len) - v.iov_len,
1509 				      v.iov_base, v.iov_len,
1510 				      sum, off);
1511 		off += v.iov_len;
1512 	})
1513 	)
1514 	*csum = sum;
1515 	iov_iter_advance(i, bytes);
1516 	return true;
1517 }
1518 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
1519 
1520 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *csump,
1521 			     struct iov_iter *i)
1522 {
1523 	const char *from = addr;
1524 	__wsum *csum = csump;
1525 	__wsum sum, next;
1526 	size_t off = 0;
1527 
1528 	if (unlikely(iov_iter_is_pipe(i)))
1529 		return csum_and_copy_to_pipe_iter(addr, bytes, csum, i);
1530 
1531 	sum = *csum;
1532 	if (unlikely(iov_iter_is_discard(i))) {
1533 		WARN_ON(1);	/* for now */
1534 		return 0;
1535 	}
1536 	iterate_and_advance(i, bytes, v, ({
1537 		next = csum_and_copy_to_user((from += v.iov_len) - v.iov_len,
1538 					     v.iov_base,
1539 					     v.iov_len);
1540 		if (next) {
1541 			sum = csum_block_add(sum, next, off);
1542 			off += v.iov_len;
1543 		}
1544 		next ? 0 : v.iov_len;
1545 	}), ({
1546 		char *p = kmap_atomic(v.bv_page);
1547 		sum = csum_and_memcpy(p + v.bv_offset,
1548 				      (from += v.bv_len) - v.bv_len,
1549 				      v.bv_len, sum, off);
1550 		kunmap_atomic(p);
1551 		off += v.bv_len;
1552 	}),({
1553 		sum = csum_and_memcpy(v.iov_base,
1554 				     (from += v.iov_len) - v.iov_len,
1555 				     v.iov_len, sum, off);
1556 		off += v.iov_len;
1557 	})
1558 	)
1559 	*csum = sum;
1560 	return bytes;
1561 }
1562 EXPORT_SYMBOL(csum_and_copy_to_iter);
1563 
1564 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1565 		struct iov_iter *i)
1566 {
1567 #ifdef CONFIG_CRYPTO_HASH
1568 	struct ahash_request *hash = hashp;
1569 	struct scatterlist sg;
1570 	size_t copied;
1571 
1572 	copied = copy_to_iter(addr, bytes, i);
1573 	sg_init_one(&sg, addr, copied);
1574 	ahash_request_set_crypt(hash, &sg, NULL, copied);
1575 	crypto_ahash_update(hash);
1576 	return copied;
1577 #else
1578 	return 0;
1579 #endif
1580 }
1581 EXPORT_SYMBOL(hash_and_copy_to_iter);
1582 
1583 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1584 {
1585 	size_t size = i->count;
1586 	int npages = 0;
1587 
1588 	if (!size)
1589 		return 0;
1590 	if (unlikely(iov_iter_is_discard(i)))
1591 		return 0;
1592 
1593 	if (unlikely(iov_iter_is_pipe(i))) {
1594 		struct pipe_inode_info *pipe = i->pipe;
1595 		unsigned int iter_head;
1596 		size_t off;
1597 
1598 		if (!sanity(i))
1599 			return 0;
1600 
1601 		data_start(i, &iter_head, &off);
1602 		/* some of this one + all after this one */
1603 		npages = pipe_space_for_user(iter_head, pipe->tail, pipe);
1604 		if (npages >= maxpages)
1605 			return maxpages;
1606 	} else iterate_all_kinds(i, size, v, ({
1607 		unsigned long p = (unsigned long)v.iov_base;
1608 		npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1609 			- p / PAGE_SIZE;
1610 		if (npages >= maxpages)
1611 			return maxpages;
1612 	0;}),({
1613 		npages++;
1614 		if (npages >= maxpages)
1615 			return maxpages;
1616 	}),({
1617 		unsigned long p = (unsigned long)v.iov_base;
1618 		npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1619 			- p / PAGE_SIZE;
1620 		if (npages >= maxpages)
1621 			return maxpages;
1622 	})
1623 	)
1624 	return npages;
1625 }
1626 EXPORT_SYMBOL(iov_iter_npages);
1627 
1628 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1629 {
1630 	*new = *old;
1631 	if (unlikely(iov_iter_is_pipe(new))) {
1632 		WARN_ON(1);
1633 		return NULL;
1634 	}
1635 	if (unlikely(iov_iter_is_discard(new)))
1636 		return NULL;
1637 	if (iov_iter_is_bvec(new))
1638 		return new->bvec = kmemdup(new->bvec,
1639 				    new->nr_segs * sizeof(struct bio_vec),
1640 				    flags);
1641 	else
1642 		/* iovec and kvec have identical layout */
1643 		return new->iov = kmemdup(new->iov,
1644 				   new->nr_segs * sizeof(struct iovec),
1645 				   flags);
1646 }
1647 EXPORT_SYMBOL(dup_iter);
1648 
1649 static int copy_compat_iovec_from_user(struct iovec *iov,
1650 		const struct iovec __user *uvec, unsigned long nr_segs)
1651 {
1652 	const struct compat_iovec __user *uiov =
1653 		(const struct compat_iovec __user *)uvec;
1654 	int ret = -EFAULT, i;
1655 
1656 	if (!user_access_begin(uvec, nr_segs * sizeof(*uvec)))
1657 		return -EFAULT;
1658 
1659 	for (i = 0; i < nr_segs; i++) {
1660 		compat_uptr_t buf;
1661 		compat_ssize_t len;
1662 
1663 		unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1664 		unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1665 
1666 		/* check for compat_size_t not fitting in compat_ssize_t .. */
1667 		if (len < 0) {
1668 			ret = -EINVAL;
1669 			goto uaccess_end;
1670 		}
1671 		iov[i].iov_base = compat_ptr(buf);
1672 		iov[i].iov_len = len;
1673 	}
1674 
1675 	ret = 0;
1676 uaccess_end:
1677 	user_access_end();
1678 	return ret;
1679 }
1680 
1681 static int copy_iovec_from_user(struct iovec *iov,
1682 		const struct iovec __user *uvec, unsigned long nr_segs)
1683 {
1684 	unsigned long seg;
1685 
1686 	if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec)))
1687 		return -EFAULT;
1688 	for (seg = 0; seg < nr_segs; seg++) {
1689 		if ((ssize_t)iov[seg].iov_len < 0)
1690 			return -EINVAL;
1691 	}
1692 
1693 	return 0;
1694 }
1695 
1696 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1697 		unsigned long nr_segs, unsigned long fast_segs,
1698 		struct iovec *fast_iov, bool compat)
1699 {
1700 	struct iovec *iov = fast_iov;
1701 	int ret;
1702 
1703 	/*
1704 	 * SuS says "The readv() function *may* fail if the iovcnt argument was
1705 	 * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1706 	 * traditionally returned zero for zero segments, so...
1707 	 */
1708 	if (nr_segs == 0)
1709 		return iov;
1710 	if (nr_segs > UIO_MAXIOV)
1711 		return ERR_PTR(-EINVAL);
1712 	if (nr_segs > fast_segs) {
1713 		iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1714 		if (!iov)
1715 			return ERR_PTR(-ENOMEM);
1716 	}
1717 
1718 	if (compat)
1719 		ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1720 	else
1721 		ret = copy_iovec_from_user(iov, uvec, nr_segs);
1722 	if (ret) {
1723 		if (iov != fast_iov)
1724 			kfree(iov);
1725 		return ERR_PTR(ret);
1726 	}
1727 
1728 	return iov;
1729 }
1730 
1731 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1732 		 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1733 		 struct iov_iter *i, bool compat)
1734 {
1735 	ssize_t total_len = 0;
1736 	unsigned long seg;
1737 	struct iovec *iov;
1738 
1739 	iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1740 	if (IS_ERR(iov)) {
1741 		*iovp = NULL;
1742 		return PTR_ERR(iov);
1743 	}
1744 
1745 	/*
1746 	 * According to the Single Unix Specification we should return EINVAL if
1747 	 * an element length is < 0 when cast to ssize_t or if the total length
1748 	 * would overflow the ssize_t return value of the system call.
1749 	 *
1750 	 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1751 	 * overflow case.
1752 	 */
1753 	for (seg = 0; seg < nr_segs; seg++) {
1754 		ssize_t len = (ssize_t)iov[seg].iov_len;
1755 
1756 		if (!access_ok(iov[seg].iov_base, len)) {
1757 			if (iov != *iovp)
1758 				kfree(iov);
1759 			*iovp = NULL;
1760 			return -EFAULT;
1761 		}
1762 
1763 		if (len > MAX_RW_COUNT - total_len) {
1764 			len = MAX_RW_COUNT - total_len;
1765 			iov[seg].iov_len = len;
1766 		}
1767 		total_len += len;
1768 	}
1769 
1770 	iov_iter_init(i, type, iov, nr_segs, total_len);
1771 	if (iov == *iovp)
1772 		*iovp = NULL;
1773 	else
1774 		*iovp = iov;
1775 	return total_len;
1776 }
1777 
1778 /**
1779  * import_iovec() - Copy an array of &struct iovec from userspace
1780  *     into the kernel, check that it is valid, and initialize a new
1781  *     &struct iov_iter iterator to access it.
1782  *
1783  * @type: One of %READ or %WRITE.
1784  * @uvec: Pointer to the userspace array.
1785  * @nr_segs: Number of elements in userspace array.
1786  * @fast_segs: Number of elements in @iov.
1787  * @iovp: (input and output parameter) Pointer to pointer to (usually small
1788  *     on-stack) kernel array.
1789  * @i: Pointer to iterator that will be initialized on success.
1790  *
1791  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1792  * then this function places %NULL in *@iov on return. Otherwise, a new
1793  * array will be allocated and the result placed in *@iov. This means that
1794  * the caller may call kfree() on *@iov regardless of whether the small
1795  * on-stack array was used or not (and regardless of whether this function
1796  * returns an error or not).
1797  *
1798  * Return: Negative error code on error, bytes imported on success
1799  */
1800 ssize_t import_iovec(int type, const struct iovec __user *uvec,
1801 		 unsigned nr_segs, unsigned fast_segs,
1802 		 struct iovec **iovp, struct iov_iter *i)
1803 {
1804 	return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1805 			      in_compat_syscall());
1806 }
1807 EXPORT_SYMBOL(import_iovec);
1808 
1809 int import_single_range(int rw, void __user *buf, size_t len,
1810 		 struct iovec *iov, struct iov_iter *i)
1811 {
1812 	if (len > MAX_RW_COUNT)
1813 		len = MAX_RW_COUNT;
1814 	if (unlikely(!access_ok(buf, len)))
1815 		return -EFAULT;
1816 
1817 	iov->iov_base = buf;
1818 	iov->iov_len = len;
1819 	iov_iter_init(i, rw, iov, 1, len);
1820 	return 0;
1821 }
1822 EXPORT_SYMBOL(import_single_range);
1823 
1824 int iov_iter_for_each_range(struct iov_iter *i, size_t bytes,
1825 			    int (*f)(struct kvec *vec, void *context),
1826 			    void *context)
1827 {
1828 	struct kvec w;
1829 	int err = -EINVAL;
1830 	if (!bytes)
1831 		return 0;
1832 
1833 	iterate_all_kinds(i, bytes, v, -EINVAL, ({
1834 		w.iov_base = kmap(v.bv_page) + v.bv_offset;
1835 		w.iov_len = v.bv_len;
1836 		err = f(&w, context);
1837 		kunmap(v.bv_page);
1838 		err;}), ({
1839 		w = v;
1840 		err = f(&w, context);})
1841 	)
1842 	return err;
1843 }
1844 EXPORT_SYMBOL(iov_iter_for_each_range);
1845