xref: /linux/lib/iov_iter.c (revision bdce82e960d1205d118662f575cec39379984e34)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/export.h>
3 #include <linux/bvec.h>
4 #include <linux/fault-inject-usercopy.h>
5 #include <linux/uio.h>
6 #include <linux/pagemap.h>
7 #include <linux/highmem.h>
8 #include <linux/slab.h>
9 #include <linux/vmalloc.h>
10 #include <linux/splice.h>
11 #include <linux/compat.h>
12 #include <linux/scatterlist.h>
13 #include <linux/instrumented.h>
14 #include <linux/iov_iter.h>
15 
16 static __always_inline
17 size_t copy_to_user_iter(void __user *iter_to, size_t progress,
18 			 size_t len, void *from, void *priv2)
19 {
20 	if (should_fail_usercopy())
21 		return len;
22 	if (access_ok(iter_to, len)) {
23 		from += progress;
24 		instrument_copy_to_user(iter_to, from, len);
25 		len = raw_copy_to_user(iter_to, from, len);
26 	}
27 	return len;
28 }
29 
30 static __always_inline
31 size_t copy_to_user_iter_nofault(void __user *iter_to, size_t progress,
32 				 size_t len, void *from, void *priv2)
33 {
34 	ssize_t res;
35 
36 	if (should_fail_usercopy())
37 		return len;
38 
39 	from += progress;
40 	res = copy_to_user_nofault(iter_to, from, len);
41 	return res < 0 ? len : res;
42 }
43 
44 static __always_inline
45 size_t copy_from_user_iter(void __user *iter_from, size_t progress,
46 			   size_t len, void *to, void *priv2)
47 {
48 	size_t res = len;
49 
50 	if (should_fail_usercopy())
51 		return len;
52 	if (access_ok(iter_from, len)) {
53 		to += progress;
54 		instrument_copy_from_user_before(to, iter_from, len);
55 		res = raw_copy_from_user(to, iter_from, len);
56 		instrument_copy_from_user_after(to, iter_from, len, res);
57 	}
58 	return res;
59 }
60 
61 static __always_inline
62 size_t memcpy_to_iter(void *iter_to, size_t progress,
63 		      size_t len, void *from, void *priv2)
64 {
65 	memcpy(iter_to, from + progress, len);
66 	return 0;
67 }
68 
69 static __always_inline
70 size_t memcpy_from_iter(void *iter_from, size_t progress,
71 			size_t len, void *to, void *priv2)
72 {
73 	memcpy(to + progress, iter_from, len);
74 	return 0;
75 }
76 
77 /*
78  * fault_in_iov_iter_readable - fault in iov iterator for reading
79  * @i: iterator
80  * @size: maximum length
81  *
82  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
83  * @size.  For each iovec, fault in each page that constitutes the iovec.
84  *
85  * Returns the number of bytes not faulted in (like copy_to_user() and
86  * copy_from_user()).
87  *
88  * Always returns 0 for non-userspace iterators.
89  */
90 size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size)
91 {
92 	if (iter_is_ubuf(i)) {
93 		size_t n = min(size, iov_iter_count(i));
94 		n -= fault_in_readable(i->ubuf + i->iov_offset, n);
95 		return size - n;
96 	} else if (iter_is_iovec(i)) {
97 		size_t count = min(size, iov_iter_count(i));
98 		const struct iovec *p;
99 		size_t skip;
100 
101 		size -= count;
102 		for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) {
103 			size_t len = min(count, p->iov_len - skip);
104 			size_t ret;
105 
106 			if (unlikely(!len))
107 				continue;
108 			ret = fault_in_readable(p->iov_base + skip, len);
109 			count -= len - ret;
110 			if (ret)
111 				break;
112 		}
113 		return count + size;
114 	}
115 	return 0;
116 }
117 EXPORT_SYMBOL(fault_in_iov_iter_readable);
118 
119 /*
120  * fault_in_iov_iter_writeable - fault in iov iterator for writing
121  * @i: iterator
122  * @size: maximum length
123  *
124  * Faults in the iterator using get_user_pages(), i.e., without triggering
125  * hardware page faults.  This is primarily useful when we already know that
126  * some or all of the pages in @i aren't in memory.
127  *
128  * Returns the number of bytes not faulted in, like copy_to_user() and
129  * copy_from_user().
130  *
131  * Always returns 0 for non-user-space iterators.
132  */
133 size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size)
134 {
135 	if (iter_is_ubuf(i)) {
136 		size_t n = min(size, iov_iter_count(i));
137 		n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n);
138 		return size - n;
139 	} else if (iter_is_iovec(i)) {
140 		size_t count = min(size, iov_iter_count(i));
141 		const struct iovec *p;
142 		size_t skip;
143 
144 		size -= count;
145 		for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) {
146 			size_t len = min(count, p->iov_len - skip);
147 			size_t ret;
148 
149 			if (unlikely(!len))
150 				continue;
151 			ret = fault_in_safe_writeable(p->iov_base + skip, len);
152 			count -= len - ret;
153 			if (ret)
154 				break;
155 		}
156 		return count + size;
157 	}
158 	return 0;
159 }
160 EXPORT_SYMBOL(fault_in_iov_iter_writeable);
161 
162 void iov_iter_init(struct iov_iter *i, unsigned int direction,
163 			const struct iovec *iov, unsigned long nr_segs,
164 			size_t count)
165 {
166 	WARN_ON(direction & ~(READ | WRITE));
167 	*i = (struct iov_iter) {
168 		.iter_type = ITER_IOVEC,
169 		.copy_mc = false,
170 		.nofault = false,
171 		.data_source = direction,
172 		.__iov = iov,
173 		.nr_segs = nr_segs,
174 		.iov_offset = 0,
175 		.count = count
176 	};
177 }
178 EXPORT_SYMBOL(iov_iter_init);
179 
180 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
181 {
182 	if (WARN_ON_ONCE(i->data_source))
183 		return 0;
184 	if (user_backed_iter(i))
185 		might_fault();
186 	return iterate_and_advance(i, bytes, (void *)addr,
187 				   copy_to_user_iter, memcpy_to_iter);
188 }
189 EXPORT_SYMBOL(_copy_to_iter);
190 
191 #ifdef CONFIG_ARCH_HAS_COPY_MC
192 static __always_inline
193 size_t copy_to_user_iter_mc(void __user *iter_to, size_t progress,
194 			    size_t len, void *from, void *priv2)
195 {
196 	if (access_ok(iter_to, len)) {
197 		from += progress;
198 		instrument_copy_to_user(iter_to, from, len);
199 		len = copy_mc_to_user(iter_to, from, len);
200 	}
201 	return len;
202 }
203 
204 static __always_inline
205 size_t memcpy_to_iter_mc(void *iter_to, size_t progress,
206 			 size_t len, void *from, void *priv2)
207 {
208 	return copy_mc_to_kernel(iter_to, from + progress, len);
209 }
210 
211 /**
212  * _copy_mc_to_iter - copy to iter with source memory error exception handling
213  * @addr: source kernel address
214  * @bytes: total transfer length
215  * @i: destination iterator
216  *
217  * The pmem driver deploys this for the dax operation
218  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
219  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
220  * successfully copied.
221  *
222  * The main differences between this and typical _copy_to_iter().
223  *
224  * * Typical tail/residue handling after a fault retries the copy
225  *   byte-by-byte until the fault happens again. Re-triggering machine
226  *   checks is potentially fatal so the implementation uses source
227  *   alignment and poison alignment assumptions to avoid re-triggering
228  *   hardware exceptions.
229  *
230  * * ITER_KVEC and ITER_BVEC can return short copies.  Compare to
231  *   copy_to_iter() where only ITER_IOVEC attempts might return a short copy.
232  *
233  * Return: number of bytes copied (may be %0)
234  */
235 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
236 {
237 	if (WARN_ON_ONCE(i->data_source))
238 		return 0;
239 	if (user_backed_iter(i))
240 		might_fault();
241 	return iterate_and_advance(i, bytes, (void *)addr,
242 				   copy_to_user_iter_mc, memcpy_to_iter_mc);
243 }
244 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
245 #endif /* CONFIG_ARCH_HAS_COPY_MC */
246 
247 static __always_inline
248 size_t memcpy_from_iter_mc(void *iter_from, size_t progress,
249 			   size_t len, void *to, void *priv2)
250 {
251 	return copy_mc_to_kernel(to + progress, iter_from, len);
252 }
253 
254 static size_t __copy_from_iter_mc(void *addr, size_t bytes, struct iov_iter *i)
255 {
256 	if (unlikely(i->count < bytes))
257 		bytes = i->count;
258 	if (unlikely(!bytes))
259 		return 0;
260 	return iterate_bvec(i, bytes, addr, NULL, memcpy_from_iter_mc);
261 }
262 
263 static __always_inline
264 size_t __copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
265 {
266 	if (unlikely(iov_iter_is_copy_mc(i)))
267 		return __copy_from_iter_mc(addr, bytes, i);
268 	return iterate_and_advance(i, bytes, addr,
269 				   copy_from_user_iter, memcpy_from_iter);
270 }
271 
272 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
273 {
274 	if (WARN_ON_ONCE(!i->data_source))
275 		return 0;
276 
277 	if (user_backed_iter(i))
278 		might_fault();
279 	return __copy_from_iter(addr, bytes, i);
280 }
281 EXPORT_SYMBOL(_copy_from_iter);
282 
283 static __always_inline
284 size_t copy_from_user_iter_nocache(void __user *iter_from, size_t progress,
285 				   size_t len, void *to, void *priv2)
286 {
287 	return __copy_from_user_inatomic_nocache(to + progress, iter_from, len);
288 }
289 
290 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
291 {
292 	if (WARN_ON_ONCE(!i->data_source))
293 		return 0;
294 
295 	return iterate_and_advance(i, bytes, addr,
296 				   copy_from_user_iter_nocache,
297 				   memcpy_from_iter);
298 }
299 EXPORT_SYMBOL(_copy_from_iter_nocache);
300 
301 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
302 static __always_inline
303 size_t copy_from_user_iter_flushcache(void __user *iter_from, size_t progress,
304 				      size_t len, void *to, void *priv2)
305 {
306 	return __copy_from_user_flushcache(to + progress, iter_from, len);
307 }
308 
309 static __always_inline
310 size_t memcpy_from_iter_flushcache(void *iter_from, size_t progress,
311 				   size_t len, void *to, void *priv2)
312 {
313 	memcpy_flushcache(to + progress, iter_from, len);
314 	return 0;
315 }
316 
317 /**
318  * _copy_from_iter_flushcache - write destination through cpu cache
319  * @addr: destination kernel address
320  * @bytes: total transfer length
321  * @i: source iterator
322  *
323  * The pmem driver arranges for filesystem-dax to use this facility via
324  * dax_copy_from_iter() for ensuring that writes to persistent memory
325  * are flushed through the CPU cache. It is differentiated from
326  * _copy_from_iter_nocache() in that guarantees all data is flushed for
327  * all iterator types. The _copy_from_iter_nocache() only attempts to
328  * bypass the cache for the ITER_IOVEC case, and on some archs may use
329  * instructions that strand dirty-data in the cache.
330  *
331  * Return: number of bytes copied (may be %0)
332  */
333 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
334 {
335 	if (WARN_ON_ONCE(!i->data_source))
336 		return 0;
337 
338 	return iterate_and_advance(i, bytes, addr,
339 				   copy_from_user_iter_flushcache,
340 				   memcpy_from_iter_flushcache);
341 }
342 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
343 #endif
344 
345 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
346 {
347 	struct page *head;
348 	size_t v = n + offset;
349 
350 	/*
351 	 * The general case needs to access the page order in order
352 	 * to compute the page size.
353 	 * However, we mostly deal with order-0 pages and thus can
354 	 * avoid a possible cache line miss for requests that fit all
355 	 * page orders.
356 	 */
357 	if (n <= v && v <= PAGE_SIZE)
358 		return true;
359 
360 	head = compound_head(page);
361 	v += (page - head) << PAGE_SHIFT;
362 
363 	if (WARN_ON(n > v || v > page_size(head)))
364 		return false;
365 	return true;
366 }
367 
368 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
369 			 struct iov_iter *i)
370 {
371 	size_t res = 0;
372 	if (!page_copy_sane(page, offset, bytes))
373 		return 0;
374 	if (WARN_ON_ONCE(i->data_source))
375 		return 0;
376 	page += offset / PAGE_SIZE; // first subpage
377 	offset %= PAGE_SIZE;
378 	while (1) {
379 		void *kaddr = kmap_local_page(page);
380 		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
381 		n = _copy_to_iter(kaddr + offset, n, i);
382 		kunmap_local(kaddr);
383 		res += n;
384 		bytes -= n;
385 		if (!bytes || !n)
386 			break;
387 		offset += n;
388 		if (offset == PAGE_SIZE) {
389 			page++;
390 			offset = 0;
391 		}
392 	}
393 	return res;
394 }
395 EXPORT_SYMBOL(copy_page_to_iter);
396 
397 size_t copy_page_to_iter_nofault(struct page *page, unsigned offset, size_t bytes,
398 				 struct iov_iter *i)
399 {
400 	size_t res = 0;
401 
402 	if (!page_copy_sane(page, offset, bytes))
403 		return 0;
404 	if (WARN_ON_ONCE(i->data_source))
405 		return 0;
406 	page += offset / PAGE_SIZE; // first subpage
407 	offset %= PAGE_SIZE;
408 	while (1) {
409 		void *kaddr = kmap_local_page(page);
410 		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
411 
412 		n = iterate_and_advance(i, n, kaddr + offset,
413 					copy_to_user_iter_nofault,
414 					memcpy_to_iter);
415 		kunmap_local(kaddr);
416 		res += n;
417 		bytes -= n;
418 		if (!bytes || !n)
419 			break;
420 		offset += n;
421 		if (offset == PAGE_SIZE) {
422 			page++;
423 			offset = 0;
424 		}
425 	}
426 	return res;
427 }
428 EXPORT_SYMBOL(copy_page_to_iter_nofault);
429 
430 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
431 			 struct iov_iter *i)
432 {
433 	size_t res = 0;
434 	if (!page_copy_sane(page, offset, bytes))
435 		return 0;
436 	page += offset / PAGE_SIZE; // first subpage
437 	offset %= PAGE_SIZE;
438 	while (1) {
439 		void *kaddr = kmap_local_page(page);
440 		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
441 		n = _copy_from_iter(kaddr + offset, n, i);
442 		kunmap_local(kaddr);
443 		res += n;
444 		bytes -= n;
445 		if (!bytes || !n)
446 			break;
447 		offset += n;
448 		if (offset == PAGE_SIZE) {
449 			page++;
450 			offset = 0;
451 		}
452 	}
453 	return res;
454 }
455 EXPORT_SYMBOL(copy_page_from_iter);
456 
457 static __always_inline
458 size_t zero_to_user_iter(void __user *iter_to, size_t progress,
459 			 size_t len, void *priv, void *priv2)
460 {
461 	return clear_user(iter_to, len);
462 }
463 
464 static __always_inline
465 size_t zero_to_iter(void *iter_to, size_t progress,
466 		    size_t len, void *priv, void *priv2)
467 {
468 	memset(iter_to, 0, len);
469 	return 0;
470 }
471 
472 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
473 {
474 	return iterate_and_advance(i, bytes, NULL,
475 				   zero_to_user_iter, zero_to_iter);
476 }
477 EXPORT_SYMBOL(iov_iter_zero);
478 
479 size_t copy_page_from_iter_atomic(struct page *page, size_t offset,
480 		size_t bytes, struct iov_iter *i)
481 {
482 	size_t n, copied = 0;
483 
484 	if (!page_copy_sane(page, offset, bytes))
485 		return 0;
486 	if (WARN_ON_ONCE(!i->data_source))
487 		return 0;
488 
489 	do {
490 		char *p;
491 
492 		n = bytes - copied;
493 		if (PageHighMem(page)) {
494 			page += offset / PAGE_SIZE;
495 			offset %= PAGE_SIZE;
496 			n = min_t(size_t, n, PAGE_SIZE - offset);
497 		}
498 
499 		p = kmap_atomic(page) + offset;
500 		n = __copy_from_iter(p, n, i);
501 		kunmap_atomic(p);
502 		copied += n;
503 		offset += n;
504 	} while (PageHighMem(page) && copied != bytes && n > 0);
505 
506 	return copied;
507 }
508 EXPORT_SYMBOL(copy_page_from_iter_atomic);
509 
510 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
511 {
512 	const struct bio_vec *bvec, *end;
513 
514 	if (!i->count)
515 		return;
516 	i->count -= size;
517 
518 	size += i->iov_offset;
519 
520 	for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) {
521 		if (likely(size < bvec->bv_len))
522 			break;
523 		size -= bvec->bv_len;
524 	}
525 	i->iov_offset = size;
526 	i->nr_segs -= bvec - i->bvec;
527 	i->bvec = bvec;
528 }
529 
530 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
531 {
532 	const struct iovec *iov, *end;
533 
534 	if (!i->count)
535 		return;
536 	i->count -= size;
537 
538 	size += i->iov_offset; // from beginning of current segment
539 	for (iov = iter_iov(i), end = iov + i->nr_segs; iov < end; iov++) {
540 		if (likely(size < iov->iov_len))
541 			break;
542 		size -= iov->iov_len;
543 	}
544 	i->iov_offset = size;
545 	i->nr_segs -= iov - iter_iov(i);
546 	i->__iov = iov;
547 }
548 
549 void iov_iter_advance(struct iov_iter *i, size_t size)
550 {
551 	if (unlikely(i->count < size))
552 		size = i->count;
553 	if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) {
554 		i->iov_offset += size;
555 		i->count -= size;
556 	} else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
557 		/* iovec and kvec have identical layouts */
558 		iov_iter_iovec_advance(i, size);
559 	} else if (iov_iter_is_bvec(i)) {
560 		iov_iter_bvec_advance(i, size);
561 	} else if (iov_iter_is_discard(i)) {
562 		i->count -= size;
563 	}
564 }
565 EXPORT_SYMBOL(iov_iter_advance);
566 
567 void iov_iter_revert(struct iov_iter *i, size_t unroll)
568 {
569 	if (!unroll)
570 		return;
571 	if (WARN_ON(unroll > MAX_RW_COUNT))
572 		return;
573 	i->count += unroll;
574 	if (unlikely(iov_iter_is_discard(i)))
575 		return;
576 	if (unroll <= i->iov_offset) {
577 		i->iov_offset -= unroll;
578 		return;
579 	}
580 	unroll -= i->iov_offset;
581 	if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) {
582 		BUG(); /* We should never go beyond the start of the specified
583 			* range since we might then be straying into pages that
584 			* aren't pinned.
585 			*/
586 	} else if (iov_iter_is_bvec(i)) {
587 		const struct bio_vec *bvec = i->bvec;
588 		while (1) {
589 			size_t n = (--bvec)->bv_len;
590 			i->nr_segs++;
591 			if (unroll <= n) {
592 				i->bvec = bvec;
593 				i->iov_offset = n - unroll;
594 				return;
595 			}
596 			unroll -= n;
597 		}
598 	} else { /* same logics for iovec and kvec */
599 		const struct iovec *iov = iter_iov(i);
600 		while (1) {
601 			size_t n = (--iov)->iov_len;
602 			i->nr_segs++;
603 			if (unroll <= n) {
604 				i->__iov = iov;
605 				i->iov_offset = n - unroll;
606 				return;
607 			}
608 			unroll -= n;
609 		}
610 	}
611 }
612 EXPORT_SYMBOL(iov_iter_revert);
613 
614 /*
615  * Return the count of just the current iov_iter segment.
616  */
617 size_t iov_iter_single_seg_count(const struct iov_iter *i)
618 {
619 	if (i->nr_segs > 1) {
620 		if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
621 			return min(i->count, iter_iov(i)->iov_len - i->iov_offset);
622 		if (iov_iter_is_bvec(i))
623 			return min(i->count, i->bvec->bv_len - i->iov_offset);
624 	}
625 	return i->count;
626 }
627 EXPORT_SYMBOL(iov_iter_single_seg_count);
628 
629 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
630 			const struct kvec *kvec, unsigned long nr_segs,
631 			size_t count)
632 {
633 	WARN_ON(direction & ~(READ | WRITE));
634 	*i = (struct iov_iter){
635 		.iter_type = ITER_KVEC,
636 		.copy_mc = false,
637 		.data_source = direction,
638 		.kvec = kvec,
639 		.nr_segs = nr_segs,
640 		.iov_offset = 0,
641 		.count = count
642 	};
643 }
644 EXPORT_SYMBOL(iov_iter_kvec);
645 
646 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
647 			const struct bio_vec *bvec, unsigned long nr_segs,
648 			size_t count)
649 {
650 	WARN_ON(direction & ~(READ | WRITE));
651 	*i = (struct iov_iter){
652 		.iter_type = ITER_BVEC,
653 		.copy_mc = false,
654 		.data_source = direction,
655 		.bvec = bvec,
656 		.nr_segs = nr_segs,
657 		.iov_offset = 0,
658 		.count = count
659 	};
660 }
661 EXPORT_SYMBOL(iov_iter_bvec);
662 
663 /**
664  * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
665  * @i: The iterator to initialise.
666  * @direction: The direction of the transfer.
667  * @xarray: The xarray to access.
668  * @start: The start file position.
669  * @count: The size of the I/O buffer in bytes.
670  *
671  * Set up an I/O iterator to either draw data out of the pages attached to an
672  * inode or to inject data into those pages.  The pages *must* be prevented
673  * from evaporation, either by taking a ref on them or locking them by the
674  * caller.
675  */
676 void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
677 		     struct xarray *xarray, loff_t start, size_t count)
678 {
679 	BUG_ON(direction & ~1);
680 	*i = (struct iov_iter) {
681 		.iter_type = ITER_XARRAY,
682 		.copy_mc = false,
683 		.data_source = direction,
684 		.xarray = xarray,
685 		.xarray_start = start,
686 		.count = count,
687 		.iov_offset = 0
688 	};
689 }
690 EXPORT_SYMBOL(iov_iter_xarray);
691 
692 /**
693  * iov_iter_discard - Initialise an I/O iterator that discards data
694  * @i: The iterator to initialise.
695  * @direction: The direction of the transfer.
696  * @count: The size of the I/O buffer in bytes.
697  *
698  * Set up an I/O iterator that just discards everything that's written to it.
699  * It's only available as a READ iterator.
700  */
701 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
702 {
703 	BUG_ON(direction != READ);
704 	*i = (struct iov_iter){
705 		.iter_type = ITER_DISCARD,
706 		.copy_mc = false,
707 		.data_source = false,
708 		.count = count,
709 		.iov_offset = 0
710 	};
711 }
712 EXPORT_SYMBOL(iov_iter_discard);
713 
714 static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask,
715 				   unsigned len_mask)
716 {
717 	size_t size = i->count;
718 	size_t skip = i->iov_offset;
719 	unsigned k;
720 
721 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
722 		const struct iovec *iov = iter_iov(i) + k;
723 		size_t len = iov->iov_len - skip;
724 
725 		if (len > size)
726 			len = size;
727 		if (len & len_mask)
728 			return false;
729 		if ((unsigned long)(iov->iov_base + skip) & addr_mask)
730 			return false;
731 
732 		size -= len;
733 		if (!size)
734 			break;
735 	}
736 	return true;
737 }
738 
739 static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask,
740 				  unsigned len_mask)
741 {
742 	size_t size = i->count;
743 	unsigned skip = i->iov_offset;
744 	unsigned k;
745 
746 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
747 		size_t len = i->bvec[k].bv_len - skip;
748 
749 		if (len > size)
750 			len = size;
751 		if (len & len_mask)
752 			return false;
753 		if ((unsigned long)(i->bvec[k].bv_offset + skip) & addr_mask)
754 			return false;
755 
756 		size -= len;
757 		if (!size)
758 			break;
759 	}
760 	return true;
761 }
762 
763 /**
764  * iov_iter_is_aligned() - Check if the addresses and lengths of each segments
765  * 	are aligned to the parameters.
766  *
767  * @i: &struct iov_iter to restore
768  * @addr_mask: bit mask to check against the iov element's addresses
769  * @len_mask: bit mask to check against the iov element's lengths
770  *
771  * Return: false if any addresses or lengths intersect with the provided masks
772  */
773 bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask,
774 			 unsigned len_mask)
775 {
776 	if (likely(iter_is_ubuf(i))) {
777 		if (i->count & len_mask)
778 			return false;
779 		if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask)
780 			return false;
781 		return true;
782 	}
783 
784 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
785 		return iov_iter_aligned_iovec(i, addr_mask, len_mask);
786 
787 	if (iov_iter_is_bvec(i))
788 		return iov_iter_aligned_bvec(i, addr_mask, len_mask);
789 
790 	if (iov_iter_is_xarray(i)) {
791 		if (i->count & len_mask)
792 			return false;
793 		if ((i->xarray_start + i->iov_offset) & addr_mask)
794 			return false;
795 	}
796 
797 	return true;
798 }
799 EXPORT_SYMBOL_GPL(iov_iter_is_aligned);
800 
801 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
802 {
803 	unsigned long res = 0;
804 	size_t size = i->count;
805 	size_t skip = i->iov_offset;
806 	unsigned k;
807 
808 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
809 		const struct iovec *iov = iter_iov(i) + k;
810 		size_t len = iov->iov_len - skip;
811 		if (len) {
812 			res |= (unsigned long)iov->iov_base + skip;
813 			if (len > size)
814 				len = size;
815 			res |= len;
816 			size -= len;
817 			if (!size)
818 				break;
819 		}
820 	}
821 	return res;
822 }
823 
824 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
825 {
826 	unsigned res = 0;
827 	size_t size = i->count;
828 	unsigned skip = i->iov_offset;
829 	unsigned k;
830 
831 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
832 		size_t len = i->bvec[k].bv_len - skip;
833 		res |= (unsigned long)i->bvec[k].bv_offset + skip;
834 		if (len > size)
835 			len = size;
836 		res |= len;
837 		size -= len;
838 		if (!size)
839 			break;
840 	}
841 	return res;
842 }
843 
844 unsigned long iov_iter_alignment(const struct iov_iter *i)
845 {
846 	if (likely(iter_is_ubuf(i))) {
847 		size_t size = i->count;
848 		if (size)
849 			return ((unsigned long)i->ubuf + i->iov_offset) | size;
850 		return 0;
851 	}
852 
853 	/* iovec and kvec have identical layouts */
854 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
855 		return iov_iter_alignment_iovec(i);
856 
857 	if (iov_iter_is_bvec(i))
858 		return iov_iter_alignment_bvec(i);
859 
860 	if (iov_iter_is_xarray(i))
861 		return (i->xarray_start + i->iov_offset) | i->count;
862 
863 	return 0;
864 }
865 EXPORT_SYMBOL(iov_iter_alignment);
866 
867 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
868 {
869 	unsigned long res = 0;
870 	unsigned long v = 0;
871 	size_t size = i->count;
872 	unsigned k;
873 
874 	if (iter_is_ubuf(i))
875 		return 0;
876 
877 	if (WARN_ON(!iter_is_iovec(i)))
878 		return ~0U;
879 
880 	for (k = 0; k < i->nr_segs; k++) {
881 		const struct iovec *iov = iter_iov(i) + k;
882 		if (iov->iov_len) {
883 			unsigned long base = (unsigned long)iov->iov_base;
884 			if (v) // if not the first one
885 				res |= base | v; // this start | previous end
886 			v = base + iov->iov_len;
887 			if (size <= iov->iov_len)
888 				break;
889 			size -= iov->iov_len;
890 		}
891 	}
892 	return res;
893 }
894 EXPORT_SYMBOL(iov_iter_gap_alignment);
895 
896 static int want_pages_array(struct page ***res, size_t size,
897 			    size_t start, unsigned int maxpages)
898 {
899 	unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE);
900 
901 	if (count > maxpages)
902 		count = maxpages;
903 	WARN_ON(!count);	// caller should've prevented that
904 	if (!*res) {
905 		*res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL);
906 		if (!*res)
907 			return 0;
908 	}
909 	return count;
910 }
911 
912 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
913 					  pgoff_t index, unsigned int nr_pages)
914 {
915 	XA_STATE(xas, xa, index);
916 	struct page *page;
917 	unsigned int ret = 0;
918 
919 	rcu_read_lock();
920 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
921 		if (xas_retry(&xas, page))
922 			continue;
923 
924 		/* Has the page moved or been split? */
925 		if (unlikely(page != xas_reload(&xas))) {
926 			xas_reset(&xas);
927 			continue;
928 		}
929 
930 		pages[ret] = find_subpage(page, xas.xa_index);
931 		get_page(pages[ret]);
932 		if (++ret == nr_pages)
933 			break;
934 	}
935 	rcu_read_unlock();
936 	return ret;
937 }
938 
939 static ssize_t iter_xarray_get_pages(struct iov_iter *i,
940 				     struct page ***pages, size_t maxsize,
941 				     unsigned maxpages, size_t *_start_offset)
942 {
943 	unsigned nr, offset, count;
944 	pgoff_t index;
945 	loff_t pos;
946 
947 	pos = i->xarray_start + i->iov_offset;
948 	index = pos >> PAGE_SHIFT;
949 	offset = pos & ~PAGE_MASK;
950 	*_start_offset = offset;
951 
952 	count = want_pages_array(pages, maxsize, offset, maxpages);
953 	if (!count)
954 		return -ENOMEM;
955 	nr = iter_xarray_populate_pages(*pages, i->xarray, index, count);
956 	if (nr == 0)
957 		return 0;
958 
959 	maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
960 	i->iov_offset += maxsize;
961 	i->count -= maxsize;
962 	return maxsize;
963 }
964 
965 /* must be done on non-empty ITER_UBUF or ITER_IOVEC one */
966 static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size)
967 {
968 	size_t skip;
969 	long k;
970 
971 	if (iter_is_ubuf(i))
972 		return (unsigned long)i->ubuf + i->iov_offset;
973 
974 	for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
975 		const struct iovec *iov = iter_iov(i) + k;
976 		size_t len = iov->iov_len - skip;
977 
978 		if (unlikely(!len))
979 			continue;
980 		if (*size > len)
981 			*size = len;
982 		return (unsigned long)iov->iov_base + skip;
983 	}
984 	BUG(); // if it had been empty, we wouldn't get called
985 }
986 
987 /* must be done on non-empty ITER_BVEC one */
988 static struct page *first_bvec_segment(const struct iov_iter *i,
989 				       size_t *size, size_t *start)
990 {
991 	struct page *page;
992 	size_t skip = i->iov_offset, len;
993 
994 	len = i->bvec->bv_len - skip;
995 	if (*size > len)
996 		*size = len;
997 	skip += i->bvec->bv_offset;
998 	page = i->bvec->bv_page + skip / PAGE_SIZE;
999 	*start = skip % PAGE_SIZE;
1000 	return page;
1001 }
1002 
1003 static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i,
1004 		   struct page ***pages, size_t maxsize,
1005 		   unsigned int maxpages, size_t *start)
1006 {
1007 	unsigned int n, gup_flags = 0;
1008 
1009 	if (maxsize > i->count)
1010 		maxsize = i->count;
1011 	if (!maxsize)
1012 		return 0;
1013 	if (maxsize > MAX_RW_COUNT)
1014 		maxsize = MAX_RW_COUNT;
1015 
1016 	if (likely(user_backed_iter(i))) {
1017 		unsigned long addr;
1018 		int res;
1019 
1020 		if (iov_iter_rw(i) != WRITE)
1021 			gup_flags |= FOLL_WRITE;
1022 		if (i->nofault)
1023 			gup_flags |= FOLL_NOFAULT;
1024 
1025 		addr = first_iovec_segment(i, &maxsize);
1026 		*start = addr % PAGE_SIZE;
1027 		addr &= PAGE_MASK;
1028 		n = want_pages_array(pages, maxsize, *start, maxpages);
1029 		if (!n)
1030 			return -ENOMEM;
1031 		res = get_user_pages_fast(addr, n, gup_flags, *pages);
1032 		if (unlikely(res <= 0))
1033 			return res;
1034 		maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start);
1035 		iov_iter_advance(i, maxsize);
1036 		return maxsize;
1037 	}
1038 	if (iov_iter_is_bvec(i)) {
1039 		struct page **p;
1040 		struct page *page;
1041 
1042 		page = first_bvec_segment(i, &maxsize, start);
1043 		n = want_pages_array(pages, maxsize, *start, maxpages);
1044 		if (!n)
1045 			return -ENOMEM;
1046 		p = *pages;
1047 		for (int k = 0; k < n; k++)
1048 			get_page(p[k] = page + k);
1049 		maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start);
1050 		i->count -= maxsize;
1051 		i->iov_offset += maxsize;
1052 		if (i->iov_offset == i->bvec->bv_len) {
1053 			i->iov_offset = 0;
1054 			i->bvec++;
1055 			i->nr_segs--;
1056 		}
1057 		return maxsize;
1058 	}
1059 	if (iov_iter_is_xarray(i))
1060 		return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1061 	return -EFAULT;
1062 }
1063 
1064 ssize_t iov_iter_get_pages2(struct iov_iter *i, struct page **pages,
1065 		size_t maxsize, unsigned maxpages, size_t *start)
1066 {
1067 	if (!maxpages)
1068 		return 0;
1069 	BUG_ON(!pages);
1070 
1071 	return __iov_iter_get_pages_alloc(i, &pages, maxsize, maxpages, start);
1072 }
1073 EXPORT_SYMBOL(iov_iter_get_pages2);
1074 
1075 ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i,
1076 		struct page ***pages, size_t maxsize, size_t *start)
1077 {
1078 	ssize_t len;
1079 
1080 	*pages = NULL;
1081 
1082 	len = __iov_iter_get_pages_alloc(i, pages, maxsize, ~0U, start);
1083 	if (len <= 0) {
1084 		kvfree(*pages);
1085 		*pages = NULL;
1086 	}
1087 	return len;
1088 }
1089 EXPORT_SYMBOL(iov_iter_get_pages_alloc2);
1090 
1091 static int iov_npages(const struct iov_iter *i, int maxpages)
1092 {
1093 	size_t skip = i->iov_offset, size = i->count;
1094 	const struct iovec *p;
1095 	int npages = 0;
1096 
1097 	for (p = iter_iov(i); size; skip = 0, p++) {
1098 		unsigned offs = offset_in_page(p->iov_base + skip);
1099 		size_t len = min(p->iov_len - skip, size);
1100 
1101 		if (len) {
1102 			size -= len;
1103 			npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1104 			if (unlikely(npages > maxpages))
1105 				return maxpages;
1106 		}
1107 	}
1108 	return npages;
1109 }
1110 
1111 static int bvec_npages(const struct iov_iter *i, int maxpages)
1112 {
1113 	size_t skip = i->iov_offset, size = i->count;
1114 	const struct bio_vec *p;
1115 	int npages = 0;
1116 
1117 	for (p = i->bvec; size; skip = 0, p++) {
1118 		unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1119 		size_t len = min(p->bv_len - skip, size);
1120 
1121 		size -= len;
1122 		npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1123 		if (unlikely(npages > maxpages))
1124 			return maxpages;
1125 	}
1126 	return npages;
1127 }
1128 
1129 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1130 {
1131 	if (unlikely(!i->count))
1132 		return 0;
1133 	if (likely(iter_is_ubuf(i))) {
1134 		unsigned offs = offset_in_page(i->ubuf + i->iov_offset);
1135 		int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE);
1136 		return min(npages, maxpages);
1137 	}
1138 	/* iovec and kvec have identical layouts */
1139 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1140 		return iov_npages(i, maxpages);
1141 	if (iov_iter_is_bvec(i))
1142 		return bvec_npages(i, maxpages);
1143 	if (iov_iter_is_xarray(i)) {
1144 		unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1145 		int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1146 		return min(npages, maxpages);
1147 	}
1148 	return 0;
1149 }
1150 EXPORT_SYMBOL(iov_iter_npages);
1151 
1152 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1153 {
1154 	*new = *old;
1155 	if (iov_iter_is_bvec(new))
1156 		return new->bvec = kmemdup(new->bvec,
1157 				    new->nr_segs * sizeof(struct bio_vec),
1158 				    flags);
1159 	else if (iov_iter_is_kvec(new) || iter_is_iovec(new))
1160 		/* iovec and kvec have identical layout */
1161 		return new->__iov = kmemdup(new->__iov,
1162 				   new->nr_segs * sizeof(struct iovec),
1163 				   flags);
1164 	return NULL;
1165 }
1166 EXPORT_SYMBOL(dup_iter);
1167 
1168 static __noclone int copy_compat_iovec_from_user(struct iovec *iov,
1169 		const struct iovec __user *uvec, unsigned long nr_segs)
1170 {
1171 	const struct compat_iovec __user *uiov =
1172 		(const struct compat_iovec __user *)uvec;
1173 	int ret = -EFAULT, i;
1174 
1175 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1176 		return -EFAULT;
1177 
1178 	for (i = 0; i < nr_segs; i++) {
1179 		compat_uptr_t buf;
1180 		compat_ssize_t len;
1181 
1182 		unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1183 		unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1184 
1185 		/* check for compat_size_t not fitting in compat_ssize_t .. */
1186 		if (len < 0) {
1187 			ret = -EINVAL;
1188 			goto uaccess_end;
1189 		}
1190 		iov[i].iov_base = compat_ptr(buf);
1191 		iov[i].iov_len = len;
1192 	}
1193 
1194 	ret = 0;
1195 uaccess_end:
1196 	user_access_end();
1197 	return ret;
1198 }
1199 
1200 static __noclone int copy_iovec_from_user(struct iovec *iov,
1201 		const struct iovec __user *uiov, unsigned long nr_segs)
1202 {
1203 	int ret = -EFAULT;
1204 
1205 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1206 		return -EFAULT;
1207 
1208 	do {
1209 		void __user *buf;
1210 		ssize_t len;
1211 
1212 		unsafe_get_user(len, &uiov->iov_len, uaccess_end);
1213 		unsafe_get_user(buf, &uiov->iov_base, uaccess_end);
1214 
1215 		/* check for size_t not fitting in ssize_t .. */
1216 		if (unlikely(len < 0)) {
1217 			ret = -EINVAL;
1218 			goto uaccess_end;
1219 		}
1220 		iov->iov_base = buf;
1221 		iov->iov_len = len;
1222 
1223 		uiov++; iov++;
1224 	} while (--nr_segs);
1225 
1226 	ret = 0;
1227 uaccess_end:
1228 	user_access_end();
1229 	return ret;
1230 }
1231 
1232 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1233 		unsigned long nr_segs, unsigned long fast_segs,
1234 		struct iovec *fast_iov, bool compat)
1235 {
1236 	struct iovec *iov = fast_iov;
1237 	int ret;
1238 
1239 	/*
1240 	 * SuS says "The readv() function *may* fail if the iovcnt argument was
1241 	 * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1242 	 * traditionally returned zero for zero segments, so...
1243 	 */
1244 	if (nr_segs == 0)
1245 		return iov;
1246 	if (nr_segs > UIO_MAXIOV)
1247 		return ERR_PTR(-EINVAL);
1248 	if (nr_segs > fast_segs) {
1249 		iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1250 		if (!iov)
1251 			return ERR_PTR(-ENOMEM);
1252 	}
1253 
1254 	if (unlikely(compat))
1255 		ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1256 	else
1257 		ret = copy_iovec_from_user(iov, uvec, nr_segs);
1258 	if (ret) {
1259 		if (iov != fast_iov)
1260 			kfree(iov);
1261 		return ERR_PTR(ret);
1262 	}
1263 
1264 	return iov;
1265 }
1266 
1267 /*
1268  * Single segment iovec supplied by the user, import it as ITER_UBUF.
1269  */
1270 static ssize_t __import_iovec_ubuf(int type, const struct iovec __user *uvec,
1271 				   struct iovec **iovp, struct iov_iter *i,
1272 				   bool compat)
1273 {
1274 	struct iovec *iov = *iovp;
1275 	ssize_t ret;
1276 
1277 	if (compat)
1278 		ret = copy_compat_iovec_from_user(iov, uvec, 1);
1279 	else
1280 		ret = copy_iovec_from_user(iov, uvec, 1);
1281 	if (unlikely(ret))
1282 		return ret;
1283 
1284 	ret = import_ubuf(type, iov->iov_base, iov->iov_len, i);
1285 	if (unlikely(ret))
1286 		return ret;
1287 	*iovp = NULL;
1288 	return i->count;
1289 }
1290 
1291 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1292 		 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1293 		 struct iov_iter *i, bool compat)
1294 {
1295 	ssize_t total_len = 0;
1296 	unsigned long seg;
1297 	struct iovec *iov;
1298 
1299 	if (nr_segs == 1)
1300 		return __import_iovec_ubuf(type, uvec, iovp, i, compat);
1301 
1302 	iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1303 	if (IS_ERR(iov)) {
1304 		*iovp = NULL;
1305 		return PTR_ERR(iov);
1306 	}
1307 
1308 	/*
1309 	 * According to the Single Unix Specification we should return EINVAL if
1310 	 * an element length is < 0 when cast to ssize_t or if the total length
1311 	 * would overflow the ssize_t return value of the system call.
1312 	 *
1313 	 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1314 	 * overflow case.
1315 	 */
1316 	for (seg = 0; seg < nr_segs; seg++) {
1317 		ssize_t len = (ssize_t)iov[seg].iov_len;
1318 
1319 		if (!access_ok(iov[seg].iov_base, len)) {
1320 			if (iov != *iovp)
1321 				kfree(iov);
1322 			*iovp = NULL;
1323 			return -EFAULT;
1324 		}
1325 
1326 		if (len > MAX_RW_COUNT - total_len) {
1327 			len = MAX_RW_COUNT - total_len;
1328 			iov[seg].iov_len = len;
1329 		}
1330 		total_len += len;
1331 	}
1332 
1333 	iov_iter_init(i, type, iov, nr_segs, total_len);
1334 	if (iov == *iovp)
1335 		*iovp = NULL;
1336 	else
1337 		*iovp = iov;
1338 	return total_len;
1339 }
1340 
1341 /**
1342  * import_iovec() - Copy an array of &struct iovec from userspace
1343  *     into the kernel, check that it is valid, and initialize a new
1344  *     &struct iov_iter iterator to access it.
1345  *
1346  * @type: One of %READ or %WRITE.
1347  * @uvec: Pointer to the userspace array.
1348  * @nr_segs: Number of elements in userspace array.
1349  * @fast_segs: Number of elements in @iov.
1350  * @iovp: (input and output parameter) Pointer to pointer to (usually small
1351  *     on-stack) kernel array.
1352  * @i: Pointer to iterator that will be initialized on success.
1353  *
1354  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1355  * then this function places %NULL in *@iov on return. Otherwise, a new
1356  * array will be allocated and the result placed in *@iov. This means that
1357  * the caller may call kfree() on *@iov regardless of whether the small
1358  * on-stack array was used or not (and regardless of whether this function
1359  * returns an error or not).
1360  *
1361  * Return: Negative error code on error, bytes imported on success
1362  */
1363 ssize_t import_iovec(int type, const struct iovec __user *uvec,
1364 		 unsigned nr_segs, unsigned fast_segs,
1365 		 struct iovec **iovp, struct iov_iter *i)
1366 {
1367 	return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1368 			      in_compat_syscall());
1369 }
1370 EXPORT_SYMBOL(import_iovec);
1371 
1372 int import_ubuf(int rw, void __user *buf, size_t len, struct iov_iter *i)
1373 {
1374 	if (len > MAX_RW_COUNT)
1375 		len = MAX_RW_COUNT;
1376 	if (unlikely(!access_ok(buf, len)))
1377 		return -EFAULT;
1378 
1379 	iov_iter_ubuf(i, rw, buf, len);
1380 	return 0;
1381 }
1382 EXPORT_SYMBOL_GPL(import_ubuf);
1383 
1384 /**
1385  * iov_iter_restore() - Restore a &struct iov_iter to the same state as when
1386  *     iov_iter_save_state() was called.
1387  *
1388  * @i: &struct iov_iter to restore
1389  * @state: state to restore from
1390  *
1391  * Used after iov_iter_save_state() to bring restore @i, if operations may
1392  * have advanced it.
1393  *
1394  * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC
1395  */
1396 void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state)
1397 {
1398 	if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i) &&
1399 			 !iter_is_ubuf(i)) && !iov_iter_is_kvec(i))
1400 		return;
1401 	i->iov_offset = state->iov_offset;
1402 	i->count = state->count;
1403 	if (iter_is_ubuf(i))
1404 		return;
1405 	/*
1406 	 * For the *vec iters, nr_segs + iov is constant - if we increment
1407 	 * the vec, then we also decrement the nr_segs count. Hence we don't
1408 	 * need to track both of these, just one is enough and we can deduct
1409 	 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct
1410 	 * size, so we can just increment the iov pointer as they are unionzed.
1411 	 * ITER_BVEC _may_ be the same size on some archs, but on others it is
1412 	 * not. Be safe and handle it separately.
1413 	 */
1414 	BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec));
1415 	if (iov_iter_is_bvec(i))
1416 		i->bvec -= state->nr_segs - i->nr_segs;
1417 	else
1418 		i->__iov -= state->nr_segs - i->nr_segs;
1419 	i->nr_segs = state->nr_segs;
1420 }
1421 
1422 /*
1423  * Extract a list of contiguous pages from an ITER_XARRAY iterator.  This does not
1424  * get references on the pages, nor does it get a pin on them.
1425  */
1426 static ssize_t iov_iter_extract_xarray_pages(struct iov_iter *i,
1427 					     struct page ***pages, size_t maxsize,
1428 					     unsigned int maxpages,
1429 					     iov_iter_extraction_t extraction_flags,
1430 					     size_t *offset0)
1431 {
1432 	struct page *page, **p;
1433 	unsigned int nr = 0, offset;
1434 	loff_t pos = i->xarray_start + i->iov_offset;
1435 	pgoff_t index = pos >> PAGE_SHIFT;
1436 	XA_STATE(xas, i->xarray, index);
1437 
1438 	offset = pos & ~PAGE_MASK;
1439 	*offset0 = offset;
1440 
1441 	maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1442 	if (!maxpages)
1443 		return -ENOMEM;
1444 	p = *pages;
1445 
1446 	rcu_read_lock();
1447 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1448 		if (xas_retry(&xas, page))
1449 			continue;
1450 
1451 		/* Has the page moved or been split? */
1452 		if (unlikely(page != xas_reload(&xas))) {
1453 			xas_reset(&xas);
1454 			continue;
1455 		}
1456 
1457 		p[nr++] = find_subpage(page, xas.xa_index);
1458 		if (nr == maxpages)
1459 			break;
1460 	}
1461 	rcu_read_unlock();
1462 
1463 	maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1464 	iov_iter_advance(i, maxsize);
1465 	return maxsize;
1466 }
1467 
1468 /*
1469  * Extract a list of contiguous pages from an ITER_BVEC iterator.  This does
1470  * not get references on the pages, nor does it get a pin on them.
1471  */
1472 static ssize_t iov_iter_extract_bvec_pages(struct iov_iter *i,
1473 					   struct page ***pages, size_t maxsize,
1474 					   unsigned int maxpages,
1475 					   iov_iter_extraction_t extraction_flags,
1476 					   size_t *offset0)
1477 {
1478 	struct page **p, *page;
1479 	size_t skip = i->iov_offset, offset, size;
1480 	int k;
1481 
1482 	for (;;) {
1483 		if (i->nr_segs == 0)
1484 			return 0;
1485 		size = min(maxsize, i->bvec->bv_len - skip);
1486 		if (size)
1487 			break;
1488 		i->iov_offset = 0;
1489 		i->nr_segs--;
1490 		i->bvec++;
1491 		skip = 0;
1492 	}
1493 
1494 	skip += i->bvec->bv_offset;
1495 	page = i->bvec->bv_page + skip / PAGE_SIZE;
1496 	offset = skip % PAGE_SIZE;
1497 	*offset0 = offset;
1498 
1499 	maxpages = want_pages_array(pages, size, offset, maxpages);
1500 	if (!maxpages)
1501 		return -ENOMEM;
1502 	p = *pages;
1503 	for (k = 0; k < maxpages; k++)
1504 		p[k] = page + k;
1505 
1506 	size = min_t(size_t, size, maxpages * PAGE_SIZE - offset);
1507 	iov_iter_advance(i, size);
1508 	return size;
1509 }
1510 
1511 /*
1512  * Extract a list of virtually contiguous pages from an ITER_KVEC iterator.
1513  * This does not get references on the pages, nor does it get a pin on them.
1514  */
1515 static ssize_t iov_iter_extract_kvec_pages(struct iov_iter *i,
1516 					   struct page ***pages, size_t maxsize,
1517 					   unsigned int maxpages,
1518 					   iov_iter_extraction_t extraction_flags,
1519 					   size_t *offset0)
1520 {
1521 	struct page **p, *page;
1522 	const void *kaddr;
1523 	size_t skip = i->iov_offset, offset, len, size;
1524 	int k;
1525 
1526 	for (;;) {
1527 		if (i->nr_segs == 0)
1528 			return 0;
1529 		size = min(maxsize, i->kvec->iov_len - skip);
1530 		if (size)
1531 			break;
1532 		i->iov_offset = 0;
1533 		i->nr_segs--;
1534 		i->kvec++;
1535 		skip = 0;
1536 	}
1537 
1538 	kaddr = i->kvec->iov_base + skip;
1539 	offset = (unsigned long)kaddr & ~PAGE_MASK;
1540 	*offset0 = offset;
1541 
1542 	maxpages = want_pages_array(pages, size, offset, maxpages);
1543 	if (!maxpages)
1544 		return -ENOMEM;
1545 	p = *pages;
1546 
1547 	kaddr -= offset;
1548 	len = offset + size;
1549 	for (k = 0; k < maxpages; k++) {
1550 		size_t seg = min_t(size_t, len, PAGE_SIZE);
1551 
1552 		if (is_vmalloc_or_module_addr(kaddr))
1553 			page = vmalloc_to_page(kaddr);
1554 		else
1555 			page = virt_to_page(kaddr);
1556 
1557 		p[k] = page;
1558 		len -= seg;
1559 		kaddr += PAGE_SIZE;
1560 	}
1561 
1562 	size = min_t(size_t, size, maxpages * PAGE_SIZE - offset);
1563 	iov_iter_advance(i, size);
1564 	return size;
1565 }
1566 
1567 /*
1568  * Extract a list of contiguous pages from a user iterator and get a pin on
1569  * each of them.  This should only be used if the iterator is user-backed
1570  * (IOBUF/UBUF).
1571  *
1572  * It does not get refs on the pages, but the pages must be unpinned by the
1573  * caller once the transfer is complete.
1574  *
1575  * This is safe to be used where background IO/DMA *is* going to be modifying
1576  * the buffer; using a pin rather than a ref makes forces fork() to give the
1577  * child a copy of the page.
1578  */
1579 static ssize_t iov_iter_extract_user_pages(struct iov_iter *i,
1580 					   struct page ***pages,
1581 					   size_t maxsize,
1582 					   unsigned int maxpages,
1583 					   iov_iter_extraction_t extraction_flags,
1584 					   size_t *offset0)
1585 {
1586 	unsigned long addr;
1587 	unsigned int gup_flags = 0;
1588 	size_t offset;
1589 	int res;
1590 
1591 	if (i->data_source == ITER_DEST)
1592 		gup_flags |= FOLL_WRITE;
1593 	if (extraction_flags & ITER_ALLOW_P2PDMA)
1594 		gup_flags |= FOLL_PCI_P2PDMA;
1595 	if (i->nofault)
1596 		gup_flags |= FOLL_NOFAULT;
1597 
1598 	addr = first_iovec_segment(i, &maxsize);
1599 	*offset0 = offset = addr % PAGE_SIZE;
1600 	addr &= PAGE_MASK;
1601 	maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1602 	if (!maxpages)
1603 		return -ENOMEM;
1604 	res = pin_user_pages_fast(addr, maxpages, gup_flags, *pages);
1605 	if (unlikely(res <= 0))
1606 		return res;
1607 	maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - offset);
1608 	iov_iter_advance(i, maxsize);
1609 	return maxsize;
1610 }
1611 
1612 /**
1613  * iov_iter_extract_pages - Extract a list of contiguous pages from an iterator
1614  * @i: The iterator to extract from
1615  * @pages: Where to return the list of pages
1616  * @maxsize: The maximum amount of iterator to extract
1617  * @maxpages: The maximum size of the list of pages
1618  * @extraction_flags: Flags to qualify request
1619  * @offset0: Where to return the starting offset into (*@pages)[0]
1620  *
1621  * Extract a list of contiguous pages from the current point of the iterator,
1622  * advancing the iterator.  The maximum number of pages and the maximum amount
1623  * of page contents can be set.
1624  *
1625  * If *@pages is NULL, a page list will be allocated to the required size and
1626  * *@pages will be set to its base.  If *@pages is not NULL, it will be assumed
1627  * that the caller allocated a page list at least @maxpages in size and this
1628  * will be filled in.
1629  *
1630  * @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA
1631  * be allowed on the pages extracted.
1632  *
1633  * The iov_iter_extract_will_pin() function can be used to query how cleanup
1634  * should be performed.
1635  *
1636  * Extra refs or pins on the pages may be obtained as follows:
1637  *
1638  *  (*) If the iterator is user-backed (ITER_IOVEC/ITER_UBUF), pins will be
1639  *      added to the pages, but refs will not be taken.
1640  *      iov_iter_extract_will_pin() will return true.
1641  *
1642  *  (*) If the iterator is ITER_KVEC, ITER_BVEC or ITER_XARRAY, the pages are
1643  *      merely listed; no extra refs or pins are obtained.
1644  *      iov_iter_extract_will_pin() will return 0.
1645  *
1646  * Note also:
1647  *
1648  *  (*) Use with ITER_DISCARD is not supported as that has no content.
1649  *
1650  * On success, the function sets *@pages to the new pagelist, if allocated, and
1651  * sets *offset0 to the offset into the first page.
1652  *
1653  * It may also return -ENOMEM and -EFAULT.
1654  */
1655 ssize_t iov_iter_extract_pages(struct iov_iter *i,
1656 			       struct page ***pages,
1657 			       size_t maxsize,
1658 			       unsigned int maxpages,
1659 			       iov_iter_extraction_t extraction_flags,
1660 			       size_t *offset0)
1661 {
1662 	maxsize = min_t(size_t, min_t(size_t, maxsize, i->count), MAX_RW_COUNT);
1663 	if (!maxsize)
1664 		return 0;
1665 
1666 	if (likely(user_backed_iter(i)))
1667 		return iov_iter_extract_user_pages(i, pages, maxsize,
1668 						   maxpages, extraction_flags,
1669 						   offset0);
1670 	if (iov_iter_is_kvec(i))
1671 		return iov_iter_extract_kvec_pages(i, pages, maxsize,
1672 						   maxpages, extraction_flags,
1673 						   offset0);
1674 	if (iov_iter_is_bvec(i))
1675 		return iov_iter_extract_bvec_pages(i, pages, maxsize,
1676 						   maxpages, extraction_flags,
1677 						   offset0);
1678 	if (iov_iter_is_xarray(i))
1679 		return iov_iter_extract_xarray_pages(i, pages, maxsize,
1680 						     maxpages, extraction_flags,
1681 						     offset0);
1682 	return -EFAULT;
1683 }
1684 EXPORT_SYMBOL_GPL(iov_iter_extract_pages);
1685