xref: /linux/lib/iov_iter.c (revision b9b77222d4ff6b5bb8f5d87fca20de0910618bb9)
1 #include <linux/export.h>
2 #include <linux/bvec.h>
3 #include <linux/uio.h>
4 #include <linux/pagemap.h>
5 #include <linux/slab.h>
6 #include <linux/vmalloc.h>
7 #include <linux/splice.h>
8 #include <net/checksum.h>
9 
10 #define PIPE_PARANOIA /* for now */
11 
12 #define iterate_iovec(i, n, __v, __p, skip, STEP) {	\
13 	size_t left;					\
14 	size_t wanted = n;				\
15 	__p = i->iov;					\
16 	__v.iov_len = min(n, __p->iov_len - skip);	\
17 	if (likely(__v.iov_len)) {			\
18 		__v.iov_base = __p->iov_base + skip;	\
19 		left = (STEP);				\
20 		__v.iov_len -= left;			\
21 		skip += __v.iov_len;			\
22 		n -= __v.iov_len;			\
23 	} else {					\
24 		left = 0;				\
25 	}						\
26 	while (unlikely(!left && n)) {			\
27 		__p++;					\
28 		__v.iov_len = min(n, __p->iov_len);	\
29 		if (unlikely(!__v.iov_len))		\
30 			continue;			\
31 		__v.iov_base = __p->iov_base;		\
32 		left = (STEP);				\
33 		__v.iov_len -= left;			\
34 		skip = __v.iov_len;			\
35 		n -= __v.iov_len;			\
36 	}						\
37 	n = wanted - n;					\
38 }
39 
40 #define iterate_kvec(i, n, __v, __p, skip, STEP) {	\
41 	size_t wanted = n;				\
42 	__p = i->kvec;					\
43 	__v.iov_len = min(n, __p->iov_len - skip);	\
44 	if (likely(__v.iov_len)) {			\
45 		__v.iov_base = __p->iov_base + skip;	\
46 		(void)(STEP);				\
47 		skip += __v.iov_len;			\
48 		n -= __v.iov_len;			\
49 	}						\
50 	while (unlikely(n)) {				\
51 		__p++;					\
52 		__v.iov_len = min(n, __p->iov_len);	\
53 		if (unlikely(!__v.iov_len))		\
54 			continue;			\
55 		__v.iov_base = __p->iov_base;		\
56 		(void)(STEP);				\
57 		skip = __v.iov_len;			\
58 		n -= __v.iov_len;			\
59 	}						\
60 	n = wanted;					\
61 }
62 
63 #define iterate_bvec(i, n, __v, __bi, skip, STEP) {	\
64 	struct bvec_iter __start;			\
65 	__start.bi_size = n;				\
66 	__start.bi_bvec_done = skip;			\
67 	__start.bi_idx = 0;				\
68 	for_each_bvec(__v, i->bvec, __bi, __start) {	\
69 		if (!__v.bv_len)			\
70 			continue;			\
71 		(void)(STEP);				\
72 	}						\
73 }
74 
75 #define iterate_all_kinds(i, n, v, I, B, K) {			\
76 	if (likely(n)) {					\
77 		size_t skip = i->iov_offset;			\
78 		if (unlikely(i->type & ITER_BVEC)) {		\
79 			struct bio_vec v;			\
80 			struct bvec_iter __bi;			\
81 			iterate_bvec(i, n, v, __bi, skip, (B))	\
82 		} else if (unlikely(i->type & ITER_KVEC)) {	\
83 			const struct kvec *kvec;		\
84 			struct kvec v;				\
85 			iterate_kvec(i, n, v, kvec, skip, (K))	\
86 		} else {					\
87 			const struct iovec *iov;		\
88 			struct iovec v;				\
89 			iterate_iovec(i, n, v, iov, skip, (I))	\
90 		}						\
91 	}							\
92 }
93 
94 #define iterate_and_advance(i, n, v, I, B, K) {			\
95 	if (unlikely(i->count < n))				\
96 		n = i->count;					\
97 	if (i->count) {						\
98 		size_t skip = i->iov_offset;			\
99 		if (unlikely(i->type & ITER_BVEC)) {		\
100 			const struct bio_vec *bvec = i->bvec;	\
101 			struct bio_vec v;			\
102 			struct bvec_iter __bi;			\
103 			iterate_bvec(i, n, v, __bi, skip, (B))	\
104 			i->bvec = __bvec_iter_bvec(i->bvec, __bi);	\
105 			i->nr_segs -= i->bvec - bvec;		\
106 			skip = __bi.bi_bvec_done;		\
107 		} else if (unlikely(i->type & ITER_KVEC)) {	\
108 			const struct kvec *kvec;		\
109 			struct kvec v;				\
110 			iterate_kvec(i, n, v, kvec, skip, (K))	\
111 			if (skip == kvec->iov_len) {		\
112 				kvec++;				\
113 				skip = 0;			\
114 			}					\
115 			i->nr_segs -= kvec - i->kvec;		\
116 			i->kvec = kvec;				\
117 		} else {					\
118 			const struct iovec *iov;		\
119 			struct iovec v;				\
120 			iterate_iovec(i, n, v, iov, skip, (I))	\
121 			if (skip == iov->iov_len) {		\
122 				iov++;				\
123 				skip = 0;			\
124 			}					\
125 			i->nr_segs -= iov - i->iov;		\
126 			i->iov = iov;				\
127 		}						\
128 		i->count -= n;					\
129 		i->iov_offset = skip;				\
130 	}							\
131 }
132 
133 static int copyout(void __user *to, const void *from, size_t n)
134 {
135 	if (access_ok(VERIFY_WRITE, to, n)) {
136 		kasan_check_read(from, n);
137 		n = raw_copy_to_user(to, from, n);
138 	}
139 	return n;
140 }
141 
142 static int copyin(void *to, const void __user *from, size_t n)
143 {
144 	if (access_ok(VERIFY_READ, from, n)) {
145 		kasan_check_write(to, n);
146 		n = raw_copy_from_user(to, from, n);
147 	}
148 	return n;
149 }
150 
151 static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes,
152 			 struct iov_iter *i)
153 {
154 	size_t skip, copy, left, wanted;
155 	const struct iovec *iov;
156 	char __user *buf;
157 	void *kaddr, *from;
158 
159 	if (unlikely(bytes > i->count))
160 		bytes = i->count;
161 
162 	if (unlikely(!bytes))
163 		return 0;
164 
165 	might_fault();
166 	wanted = bytes;
167 	iov = i->iov;
168 	skip = i->iov_offset;
169 	buf = iov->iov_base + skip;
170 	copy = min(bytes, iov->iov_len - skip);
171 
172 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_writeable(buf, copy)) {
173 		kaddr = kmap_atomic(page);
174 		from = kaddr + offset;
175 
176 		/* first chunk, usually the only one */
177 		left = copyout(buf, from, copy);
178 		copy -= left;
179 		skip += copy;
180 		from += copy;
181 		bytes -= copy;
182 
183 		while (unlikely(!left && bytes)) {
184 			iov++;
185 			buf = iov->iov_base;
186 			copy = min(bytes, iov->iov_len);
187 			left = copyout(buf, from, copy);
188 			copy -= left;
189 			skip = copy;
190 			from += copy;
191 			bytes -= copy;
192 		}
193 		if (likely(!bytes)) {
194 			kunmap_atomic(kaddr);
195 			goto done;
196 		}
197 		offset = from - kaddr;
198 		buf += copy;
199 		kunmap_atomic(kaddr);
200 		copy = min(bytes, iov->iov_len - skip);
201 	}
202 	/* Too bad - revert to non-atomic kmap */
203 
204 	kaddr = kmap(page);
205 	from = kaddr + offset;
206 	left = copyout(buf, from, copy);
207 	copy -= left;
208 	skip += copy;
209 	from += copy;
210 	bytes -= copy;
211 	while (unlikely(!left && bytes)) {
212 		iov++;
213 		buf = iov->iov_base;
214 		copy = min(bytes, iov->iov_len);
215 		left = copyout(buf, from, copy);
216 		copy -= left;
217 		skip = copy;
218 		from += copy;
219 		bytes -= copy;
220 	}
221 	kunmap(page);
222 
223 done:
224 	if (skip == iov->iov_len) {
225 		iov++;
226 		skip = 0;
227 	}
228 	i->count -= wanted - bytes;
229 	i->nr_segs -= iov - i->iov;
230 	i->iov = iov;
231 	i->iov_offset = skip;
232 	return wanted - bytes;
233 }
234 
235 static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes,
236 			 struct iov_iter *i)
237 {
238 	size_t skip, copy, left, wanted;
239 	const struct iovec *iov;
240 	char __user *buf;
241 	void *kaddr, *to;
242 
243 	if (unlikely(bytes > i->count))
244 		bytes = i->count;
245 
246 	if (unlikely(!bytes))
247 		return 0;
248 
249 	might_fault();
250 	wanted = bytes;
251 	iov = i->iov;
252 	skip = i->iov_offset;
253 	buf = iov->iov_base + skip;
254 	copy = min(bytes, iov->iov_len - skip);
255 
256 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_readable(buf, copy)) {
257 		kaddr = kmap_atomic(page);
258 		to = kaddr + offset;
259 
260 		/* first chunk, usually the only one */
261 		left = copyin(to, buf, copy);
262 		copy -= left;
263 		skip += copy;
264 		to += copy;
265 		bytes -= copy;
266 
267 		while (unlikely(!left && bytes)) {
268 			iov++;
269 			buf = iov->iov_base;
270 			copy = min(bytes, iov->iov_len);
271 			left = copyin(to, buf, copy);
272 			copy -= left;
273 			skip = copy;
274 			to += copy;
275 			bytes -= copy;
276 		}
277 		if (likely(!bytes)) {
278 			kunmap_atomic(kaddr);
279 			goto done;
280 		}
281 		offset = to - kaddr;
282 		buf += copy;
283 		kunmap_atomic(kaddr);
284 		copy = min(bytes, iov->iov_len - skip);
285 	}
286 	/* Too bad - revert to non-atomic kmap */
287 
288 	kaddr = kmap(page);
289 	to = kaddr + offset;
290 	left = copyin(to, buf, copy);
291 	copy -= left;
292 	skip += copy;
293 	to += copy;
294 	bytes -= copy;
295 	while (unlikely(!left && bytes)) {
296 		iov++;
297 		buf = iov->iov_base;
298 		copy = min(bytes, iov->iov_len);
299 		left = copyin(to, buf, copy);
300 		copy -= left;
301 		skip = copy;
302 		to += copy;
303 		bytes -= copy;
304 	}
305 	kunmap(page);
306 
307 done:
308 	if (skip == iov->iov_len) {
309 		iov++;
310 		skip = 0;
311 	}
312 	i->count -= wanted - bytes;
313 	i->nr_segs -= iov - i->iov;
314 	i->iov = iov;
315 	i->iov_offset = skip;
316 	return wanted - bytes;
317 }
318 
319 #ifdef PIPE_PARANOIA
320 static bool sanity(const struct iov_iter *i)
321 {
322 	struct pipe_inode_info *pipe = i->pipe;
323 	int idx = i->idx;
324 	int next = pipe->curbuf + pipe->nrbufs;
325 	if (i->iov_offset) {
326 		struct pipe_buffer *p;
327 		if (unlikely(!pipe->nrbufs))
328 			goto Bad;	// pipe must be non-empty
329 		if (unlikely(idx != ((next - 1) & (pipe->buffers - 1))))
330 			goto Bad;	// must be at the last buffer...
331 
332 		p = &pipe->bufs[idx];
333 		if (unlikely(p->offset + p->len != i->iov_offset))
334 			goto Bad;	// ... at the end of segment
335 	} else {
336 		if (idx != (next & (pipe->buffers - 1)))
337 			goto Bad;	// must be right after the last buffer
338 	}
339 	return true;
340 Bad:
341 	printk(KERN_ERR "idx = %d, offset = %zd\n", i->idx, i->iov_offset);
342 	printk(KERN_ERR "curbuf = %d, nrbufs = %d, buffers = %d\n",
343 			pipe->curbuf, pipe->nrbufs, pipe->buffers);
344 	for (idx = 0; idx < pipe->buffers; idx++)
345 		printk(KERN_ERR "[%p %p %d %d]\n",
346 			pipe->bufs[idx].ops,
347 			pipe->bufs[idx].page,
348 			pipe->bufs[idx].offset,
349 			pipe->bufs[idx].len);
350 	WARN_ON(1);
351 	return false;
352 }
353 #else
354 #define sanity(i) true
355 #endif
356 
357 static inline int next_idx(int idx, struct pipe_inode_info *pipe)
358 {
359 	return (idx + 1) & (pipe->buffers - 1);
360 }
361 
362 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
363 			 struct iov_iter *i)
364 {
365 	struct pipe_inode_info *pipe = i->pipe;
366 	struct pipe_buffer *buf;
367 	size_t off;
368 	int idx;
369 
370 	if (unlikely(bytes > i->count))
371 		bytes = i->count;
372 
373 	if (unlikely(!bytes))
374 		return 0;
375 
376 	if (!sanity(i))
377 		return 0;
378 
379 	off = i->iov_offset;
380 	idx = i->idx;
381 	buf = &pipe->bufs[idx];
382 	if (off) {
383 		if (offset == off && buf->page == page) {
384 			/* merge with the last one */
385 			buf->len += bytes;
386 			i->iov_offset += bytes;
387 			goto out;
388 		}
389 		idx = next_idx(idx, pipe);
390 		buf = &pipe->bufs[idx];
391 	}
392 	if (idx == pipe->curbuf && pipe->nrbufs)
393 		return 0;
394 	pipe->nrbufs++;
395 	buf->ops = &page_cache_pipe_buf_ops;
396 	get_page(buf->page = page);
397 	buf->offset = offset;
398 	buf->len = bytes;
399 	i->iov_offset = offset + bytes;
400 	i->idx = idx;
401 out:
402 	i->count -= bytes;
403 	return bytes;
404 }
405 
406 /*
407  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
408  * bytes.  For each iovec, fault in each page that constitutes the iovec.
409  *
410  * Return 0 on success, or non-zero if the memory could not be accessed (i.e.
411  * because it is an invalid address).
412  */
413 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
414 {
415 	size_t skip = i->iov_offset;
416 	const struct iovec *iov;
417 	int err;
418 	struct iovec v;
419 
420 	if (!(i->type & (ITER_BVEC|ITER_KVEC))) {
421 		iterate_iovec(i, bytes, v, iov, skip, ({
422 			err = fault_in_pages_readable(v.iov_base, v.iov_len);
423 			if (unlikely(err))
424 			return err;
425 		0;}))
426 	}
427 	return 0;
428 }
429 EXPORT_SYMBOL(iov_iter_fault_in_readable);
430 
431 void iov_iter_init(struct iov_iter *i, int direction,
432 			const struct iovec *iov, unsigned long nr_segs,
433 			size_t count)
434 {
435 	/* It will get better.  Eventually... */
436 	if (uaccess_kernel()) {
437 		direction |= ITER_KVEC;
438 		i->type = direction;
439 		i->kvec = (struct kvec *)iov;
440 	} else {
441 		i->type = direction;
442 		i->iov = iov;
443 	}
444 	i->nr_segs = nr_segs;
445 	i->iov_offset = 0;
446 	i->count = count;
447 }
448 EXPORT_SYMBOL(iov_iter_init);
449 
450 static void memcpy_from_page(char *to, struct page *page, size_t offset, size_t len)
451 {
452 	char *from = kmap_atomic(page);
453 	memcpy(to, from + offset, len);
454 	kunmap_atomic(from);
455 }
456 
457 static void memcpy_to_page(struct page *page, size_t offset, const char *from, size_t len)
458 {
459 	char *to = kmap_atomic(page);
460 	memcpy(to + offset, from, len);
461 	kunmap_atomic(to);
462 }
463 
464 static void memzero_page(struct page *page, size_t offset, size_t len)
465 {
466 	char *addr = kmap_atomic(page);
467 	memset(addr + offset, 0, len);
468 	kunmap_atomic(addr);
469 }
470 
471 static inline bool allocated(struct pipe_buffer *buf)
472 {
473 	return buf->ops == &default_pipe_buf_ops;
474 }
475 
476 static inline void data_start(const struct iov_iter *i, int *idxp, size_t *offp)
477 {
478 	size_t off = i->iov_offset;
479 	int idx = i->idx;
480 	if (off && (!allocated(&i->pipe->bufs[idx]) || off == PAGE_SIZE)) {
481 		idx = next_idx(idx, i->pipe);
482 		off = 0;
483 	}
484 	*idxp = idx;
485 	*offp = off;
486 }
487 
488 static size_t push_pipe(struct iov_iter *i, size_t size,
489 			int *idxp, size_t *offp)
490 {
491 	struct pipe_inode_info *pipe = i->pipe;
492 	size_t off;
493 	int idx;
494 	ssize_t left;
495 
496 	if (unlikely(size > i->count))
497 		size = i->count;
498 	if (unlikely(!size))
499 		return 0;
500 
501 	left = size;
502 	data_start(i, &idx, &off);
503 	*idxp = idx;
504 	*offp = off;
505 	if (off) {
506 		left -= PAGE_SIZE - off;
507 		if (left <= 0) {
508 			pipe->bufs[idx].len += size;
509 			return size;
510 		}
511 		pipe->bufs[idx].len = PAGE_SIZE;
512 		idx = next_idx(idx, pipe);
513 	}
514 	while (idx != pipe->curbuf || !pipe->nrbufs) {
515 		struct page *page = alloc_page(GFP_USER);
516 		if (!page)
517 			break;
518 		pipe->nrbufs++;
519 		pipe->bufs[idx].ops = &default_pipe_buf_ops;
520 		pipe->bufs[idx].page = page;
521 		pipe->bufs[idx].offset = 0;
522 		if (left <= PAGE_SIZE) {
523 			pipe->bufs[idx].len = left;
524 			return size;
525 		}
526 		pipe->bufs[idx].len = PAGE_SIZE;
527 		left -= PAGE_SIZE;
528 		idx = next_idx(idx, pipe);
529 	}
530 	return size - left;
531 }
532 
533 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
534 				struct iov_iter *i)
535 {
536 	struct pipe_inode_info *pipe = i->pipe;
537 	size_t n, off;
538 	int idx;
539 
540 	if (!sanity(i))
541 		return 0;
542 
543 	bytes = n = push_pipe(i, bytes, &idx, &off);
544 	if (unlikely(!n))
545 		return 0;
546 	for ( ; n; idx = next_idx(idx, pipe), off = 0) {
547 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
548 		memcpy_to_page(pipe->bufs[idx].page, off, addr, chunk);
549 		i->idx = idx;
550 		i->iov_offset = off + chunk;
551 		n -= chunk;
552 		addr += chunk;
553 	}
554 	i->count -= bytes;
555 	return bytes;
556 }
557 
558 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
559 {
560 	const char *from = addr;
561 	if (unlikely(i->type & ITER_PIPE))
562 		return copy_pipe_to_iter(addr, bytes, i);
563 	if (iter_is_iovec(i))
564 		might_fault();
565 	iterate_and_advance(i, bytes, v,
566 		copyout(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len),
567 		memcpy_to_page(v.bv_page, v.bv_offset,
568 			       (from += v.bv_len) - v.bv_len, v.bv_len),
569 		memcpy(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len)
570 	)
571 
572 	return bytes;
573 }
574 EXPORT_SYMBOL(_copy_to_iter);
575 
576 #ifdef CONFIG_ARCH_HAS_UACCESS_MCSAFE
577 static int copyout_mcsafe(void __user *to, const void *from, size_t n)
578 {
579 	if (access_ok(VERIFY_WRITE, to, n)) {
580 		kasan_check_read(from, n);
581 		n = copy_to_user_mcsafe((__force void *) to, from, n);
582 	}
583 	return n;
584 }
585 
586 static unsigned long memcpy_mcsafe_to_page(struct page *page, size_t offset,
587 		const char *from, size_t len)
588 {
589 	unsigned long ret;
590 	char *to;
591 
592 	to = kmap_atomic(page);
593 	ret = memcpy_mcsafe(to + offset, from, len);
594 	kunmap_atomic(to);
595 
596 	return ret;
597 }
598 
599 static size_t copy_pipe_to_iter_mcsafe(const void *addr, size_t bytes,
600 				struct iov_iter *i)
601 {
602 	struct pipe_inode_info *pipe = i->pipe;
603 	size_t n, off, xfer = 0;
604 	int idx;
605 
606 	if (!sanity(i))
607 		return 0;
608 
609 	bytes = n = push_pipe(i, bytes, &idx, &off);
610 	if (unlikely(!n))
611 		return 0;
612 	for ( ; n; idx = next_idx(idx, pipe), off = 0) {
613 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
614 		unsigned long rem;
615 
616 		rem = memcpy_mcsafe_to_page(pipe->bufs[idx].page, off, addr,
617 				chunk);
618 		i->idx = idx;
619 		i->iov_offset = off + chunk - rem;
620 		xfer += chunk - rem;
621 		if (rem)
622 			break;
623 		n -= chunk;
624 		addr += chunk;
625 	}
626 	i->count -= xfer;
627 	return xfer;
628 }
629 
630 /**
631  * _copy_to_iter_mcsafe - copy to user with source-read error exception handling
632  * @addr: source kernel address
633  * @bytes: total transfer length
634  * @iter: destination iterator
635  *
636  * The pmem driver arranges for filesystem-dax to use this facility via
637  * dax_copy_to_iter() for protecting read/write to persistent memory.
638  * Unless / until an architecture can guarantee identical performance
639  * between _copy_to_iter_mcsafe() and _copy_to_iter() it would be a
640  * performance regression to switch more users to the mcsafe version.
641  *
642  * Otherwise, the main differences between this and typical _copy_to_iter().
643  *
644  * * Typical tail/residue handling after a fault retries the copy
645  *   byte-by-byte until the fault happens again. Re-triggering machine
646  *   checks is potentially fatal so the implementation uses source
647  *   alignment and poison alignment assumptions to avoid re-triggering
648  *   hardware exceptions.
649  *
650  * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
651  *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
652  *   a short copy.
653  *
654  * See MCSAFE_TEST for self-test.
655  */
656 size_t _copy_to_iter_mcsafe(const void *addr, size_t bytes, struct iov_iter *i)
657 {
658 	const char *from = addr;
659 	unsigned long rem, curr_addr, s_addr = (unsigned long) addr;
660 
661 	if (unlikely(i->type & ITER_PIPE))
662 		return copy_pipe_to_iter_mcsafe(addr, bytes, i);
663 	if (iter_is_iovec(i))
664 		might_fault();
665 	iterate_and_advance(i, bytes, v,
666 		copyout_mcsafe(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len),
667 		({
668 		rem = memcpy_mcsafe_to_page(v.bv_page, v.bv_offset,
669                                (from += v.bv_len) - v.bv_len, v.bv_len);
670 		if (rem) {
671 			curr_addr = (unsigned long) from;
672 			bytes = curr_addr - s_addr - rem;
673 			return bytes;
674 		}
675 		}),
676 		({
677 		rem = memcpy_mcsafe(v.iov_base, (from += v.iov_len) - v.iov_len,
678 				v.iov_len);
679 		if (rem) {
680 			curr_addr = (unsigned long) from;
681 			bytes = curr_addr - s_addr - rem;
682 			return bytes;
683 		}
684 		})
685 	)
686 
687 	return bytes;
688 }
689 EXPORT_SYMBOL_GPL(_copy_to_iter_mcsafe);
690 #endif /* CONFIG_ARCH_HAS_UACCESS_MCSAFE */
691 
692 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
693 {
694 	char *to = addr;
695 	if (unlikely(i->type & ITER_PIPE)) {
696 		WARN_ON(1);
697 		return 0;
698 	}
699 	if (iter_is_iovec(i))
700 		might_fault();
701 	iterate_and_advance(i, bytes, v,
702 		copyin((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
703 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
704 				 v.bv_offset, v.bv_len),
705 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
706 	)
707 
708 	return bytes;
709 }
710 EXPORT_SYMBOL(_copy_from_iter);
711 
712 bool _copy_from_iter_full(void *addr, size_t bytes, struct iov_iter *i)
713 {
714 	char *to = addr;
715 	if (unlikely(i->type & ITER_PIPE)) {
716 		WARN_ON(1);
717 		return false;
718 	}
719 	if (unlikely(i->count < bytes))
720 		return false;
721 
722 	if (iter_is_iovec(i))
723 		might_fault();
724 	iterate_all_kinds(i, bytes, v, ({
725 		if (copyin((to += v.iov_len) - v.iov_len,
726 				      v.iov_base, v.iov_len))
727 			return false;
728 		0;}),
729 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
730 				 v.bv_offset, v.bv_len),
731 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
732 	)
733 
734 	iov_iter_advance(i, bytes);
735 	return true;
736 }
737 EXPORT_SYMBOL(_copy_from_iter_full);
738 
739 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
740 {
741 	char *to = addr;
742 	if (unlikely(i->type & ITER_PIPE)) {
743 		WARN_ON(1);
744 		return 0;
745 	}
746 	iterate_and_advance(i, bytes, v,
747 		__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
748 					 v.iov_base, v.iov_len),
749 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
750 				 v.bv_offset, v.bv_len),
751 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
752 	)
753 
754 	return bytes;
755 }
756 EXPORT_SYMBOL(_copy_from_iter_nocache);
757 
758 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
759 /**
760  * _copy_from_iter_flushcache - write destination through cpu cache
761  * @addr: destination kernel address
762  * @bytes: total transfer length
763  * @iter: source iterator
764  *
765  * The pmem driver arranges for filesystem-dax to use this facility via
766  * dax_copy_from_iter() for ensuring that writes to persistent memory
767  * are flushed through the CPU cache. It is differentiated from
768  * _copy_from_iter_nocache() in that guarantees all data is flushed for
769  * all iterator types. The _copy_from_iter_nocache() only attempts to
770  * bypass the cache for the ITER_IOVEC case, and on some archs may use
771  * instructions that strand dirty-data in the cache.
772  */
773 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
774 {
775 	char *to = addr;
776 	if (unlikely(i->type & ITER_PIPE)) {
777 		WARN_ON(1);
778 		return 0;
779 	}
780 	iterate_and_advance(i, bytes, v,
781 		__copy_from_user_flushcache((to += v.iov_len) - v.iov_len,
782 					 v.iov_base, v.iov_len),
783 		memcpy_page_flushcache((to += v.bv_len) - v.bv_len, v.bv_page,
784 				 v.bv_offset, v.bv_len),
785 		memcpy_flushcache((to += v.iov_len) - v.iov_len, v.iov_base,
786 			v.iov_len)
787 	)
788 
789 	return bytes;
790 }
791 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
792 #endif
793 
794 bool _copy_from_iter_full_nocache(void *addr, size_t bytes, struct iov_iter *i)
795 {
796 	char *to = addr;
797 	if (unlikely(i->type & ITER_PIPE)) {
798 		WARN_ON(1);
799 		return false;
800 	}
801 	if (unlikely(i->count < bytes))
802 		return false;
803 	iterate_all_kinds(i, bytes, v, ({
804 		if (__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
805 					     v.iov_base, v.iov_len))
806 			return false;
807 		0;}),
808 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
809 				 v.bv_offset, v.bv_len),
810 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
811 	)
812 
813 	iov_iter_advance(i, bytes);
814 	return true;
815 }
816 EXPORT_SYMBOL(_copy_from_iter_full_nocache);
817 
818 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
819 {
820 	struct page *head = compound_head(page);
821 	size_t v = n + offset + page_address(page) - page_address(head);
822 
823 	if (likely(n <= v && v <= (PAGE_SIZE << compound_order(head))))
824 		return true;
825 	WARN_ON(1);
826 	return false;
827 }
828 
829 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
830 			 struct iov_iter *i)
831 {
832 	if (unlikely(!page_copy_sane(page, offset, bytes)))
833 		return 0;
834 	if (i->type & (ITER_BVEC|ITER_KVEC)) {
835 		void *kaddr = kmap_atomic(page);
836 		size_t wanted = copy_to_iter(kaddr + offset, bytes, i);
837 		kunmap_atomic(kaddr);
838 		return wanted;
839 	} else if (likely(!(i->type & ITER_PIPE)))
840 		return copy_page_to_iter_iovec(page, offset, bytes, i);
841 	else
842 		return copy_page_to_iter_pipe(page, offset, bytes, i);
843 }
844 EXPORT_SYMBOL(copy_page_to_iter);
845 
846 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
847 			 struct iov_iter *i)
848 {
849 	if (unlikely(!page_copy_sane(page, offset, bytes)))
850 		return 0;
851 	if (unlikely(i->type & ITER_PIPE)) {
852 		WARN_ON(1);
853 		return 0;
854 	}
855 	if (i->type & (ITER_BVEC|ITER_KVEC)) {
856 		void *kaddr = kmap_atomic(page);
857 		size_t wanted = _copy_from_iter(kaddr + offset, bytes, i);
858 		kunmap_atomic(kaddr);
859 		return wanted;
860 	} else
861 		return copy_page_from_iter_iovec(page, offset, bytes, i);
862 }
863 EXPORT_SYMBOL(copy_page_from_iter);
864 
865 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
866 {
867 	struct pipe_inode_info *pipe = i->pipe;
868 	size_t n, off;
869 	int idx;
870 
871 	if (!sanity(i))
872 		return 0;
873 
874 	bytes = n = push_pipe(i, bytes, &idx, &off);
875 	if (unlikely(!n))
876 		return 0;
877 
878 	for ( ; n; idx = next_idx(idx, pipe), off = 0) {
879 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
880 		memzero_page(pipe->bufs[idx].page, off, chunk);
881 		i->idx = idx;
882 		i->iov_offset = off + chunk;
883 		n -= chunk;
884 	}
885 	i->count -= bytes;
886 	return bytes;
887 }
888 
889 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
890 {
891 	if (unlikely(i->type & ITER_PIPE))
892 		return pipe_zero(bytes, i);
893 	iterate_and_advance(i, bytes, v,
894 		clear_user(v.iov_base, v.iov_len),
895 		memzero_page(v.bv_page, v.bv_offset, v.bv_len),
896 		memset(v.iov_base, 0, v.iov_len)
897 	)
898 
899 	return bytes;
900 }
901 EXPORT_SYMBOL(iov_iter_zero);
902 
903 size_t iov_iter_copy_from_user_atomic(struct page *page,
904 		struct iov_iter *i, unsigned long offset, size_t bytes)
905 {
906 	char *kaddr = kmap_atomic(page), *p = kaddr + offset;
907 	if (unlikely(!page_copy_sane(page, offset, bytes))) {
908 		kunmap_atomic(kaddr);
909 		return 0;
910 	}
911 	if (unlikely(i->type & ITER_PIPE)) {
912 		kunmap_atomic(kaddr);
913 		WARN_ON(1);
914 		return 0;
915 	}
916 	iterate_all_kinds(i, bytes, v,
917 		copyin((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
918 		memcpy_from_page((p += v.bv_len) - v.bv_len, v.bv_page,
919 				 v.bv_offset, v.bv_len),
920 		memcpy((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
921 	)
922 	kunmap_atomic(kaddr);
923 	return bytes;
924 }
925 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
926 
927 static inline void pipe_truncate(struct iov_iter *i)
928 {
929 	struct pipe_inode_info *pipe = i->pipe;
930 	if (pipe->nrbufs) {
931 		size_t off = i->iov_offset;
932 		int idx = i->idx;
933 		int nrbufs = (idx - pipe->curbuf) & (pipe->buffers - 1);
934 		if (off) {
935 			pipe->bufs[idx].len = off - pipe->bufs[idx].offset;
936 			idx = next_idx(idx, pipe);
937 			nrbufs++;
938 		}
939 		while (pipe->nrbufs > nrbufs) {
940 			pipe_buf_release(pipe, &pipe->bufs[idx]);
941 			idx = next_idx(idx, pipe);
942 			pipe->nrbufs--;
943 		}
944 	}
945 }
946 
947 static void pipe_advance(struct iov_iter *i, size_t size)
948 {
949 	struct pipe_inode_info *pipe = i->pipe;
950 	if (unlikely(i->count < size))
951 		size = i->count;
952 	if (size) {
953 		struct pipe_buffer *buf;
954 		size_t off = i->iov_offset, left = size;
955 		int idx = i->idx;
956 		if (off) /* make it relative to the beginning of buffer */
957 			left += off - pipe->bufs[idx].offset;
958 		while (1) {
959 			buf = &pipe->bufs[idx];
960 			if (left <= buf->len)
961 				break;
962 			left -= buf->len;
963 			idx = next_idx(idx, pipe);
964 		}
965 		i->idx = idx;
966 		i->iov_offset = buf->offset + left;
967 	}
968 	i->count -= size;
969 	/* ... and discard everything past that point */
970 	pipe_truncate(i);
971 }
972 
973 void iov_iter_advance(struct iov_iter *i, size_t size)
974 {
975 	if (unlikely(i->type & ITER_PIPE)) {
976 		pipe_advance(i, size);
977 		return;
978 	}
979 	iterate_and_advance(i, size, v, 0, 0, 0)
980 }
981 EXPORT_SYMBOL(iov_iter_advance);
982 
983 void iov_iter_revert(struct iov_iter *i, size_t unroll)
984 {
985 	if (!unroll)
986 		return;
987 	if (WARN_ON(unroll > MAX_RW_COUNT))
988 		return;
989 	i->count += unroll;
990 	if (unlikely(i->type & ITER_PIPE)) {
991 		struct pipe_inode_info *pipe = i->pipe;
992 		int idx = i->idx;
993 		size_t off = i->iov_offset;
994 		while (1) {
995 			size_t n = off - pipe->bufs[idx].offset;
996 			if (unroll < n) {
997 				off -= unroll;
998 				break;
999 			}
1000 			unroll -= n;
1001 			if (!unroll && idx == i->start_idx) {
1002 				off = 0;
1003 				break;
1004 			}
1005 			if (!idx--)
1006 				idx = pipe->buffers - 1;
1007 			off = pipe->bufs[idx].offset + pipe->bufs[idx].len;
1008 		}
1009 		i->iov_offset = off;
1010 		i->idx = idx;
1011 		pipe_truncate(i);
1012 		return;
1013 	}
1014 	if (unroll <= i->iov_offset) {
1015 		i->iov_offset -= unroll;
1016 		return;
1017 	}
1018 	unroll -= i->iov_offset;
1019 	if (i->type & ITER_BVEC) {
1020 		const struct bio_vec *bvec = i->bvec;
1021 		while (1) {
1022 			size_t n = (--bvec)->bv_len;
1023 			i->nr_segs++;
1024 			if (unroll <= n) {
1025 				i->bvec = bvec;
1026 				i->iov_offset = n - unroll;
1027 				return;
1028 			}
1029 			unroll -= n;
1030 		}
1031 	} else { /* same logics for iovec and kvec */
1032 		const struct iovec *iov = i->iov;
1033 		while (1) {
1034 			size_t n = (--iov)->iov_len;
1035 			i->nr_segs++;
1036 			if (unroll <= n) {
1037 				i->iov = iov;
1038 				i->iov_offset = n - unroll;
1039 				return;
1040 			}
1041 			unroll -= n;
1042 		}
1043 	}
1044 }
1045 EXPORT_SYMBOL(iov_iter_revert);
1046 
1047 /*
1048  * Return the count of just the current iov_iter segment.
1049  */
1050 size_t iov_iter_single_seg_count(const struct iov_iter *i)
1051 {
1052 	if (unlikely(i->type & ITER_PIPE))
1053 		return i->count;	// it is a silly place, anyway
1054 	if (i->nr_segs == 1)
1055 		return i->count;
1056 	else if (i->type & ITER_BVEC)
1057 		return min(i->count, i->bvec->bv_len - i->iov_offset);
1058 	else
1059 		return min(i->count, i->iov->iov_len - i->iov_offset);
1060 }
1061 EXPORT_SYMBOL(iov_iter_single_seg_count);
1062 
1063 void iov_iter_kvec(struct iov_iter *i, int direction,
1064 			const struct kvec *kvec, unsigned long nr_segs,
1065 			size_t count)
1066 {
1067 	BUG_ON(!(direction & ITER_KVEC));
1068 	i->type = direction;
1069 	i->kvec = kvec;
1070 	i->nr_segs = nr_segs;
1071 	i->iov_offset = 0;
1072 	i->count = count;
1073 }
1074 EXPORT_SYMBOL(iov_iter_kvec);
1075 
1076 void iov_iter_bvec(struct iov_iter *i, int direction,
1077 			const struct bio_vec *bvec, unsigned long nr_segs,
1078 			size_t count)
1079 {
1080 	BUG_ON(!(direction & ITER_BVEC));
1081 	i->type = direction;
1082 	i->bvec = bvec;
1083 	i->nr_segs = nr_segs;
1084 	i->iov_offset = 0;
1085 	i->count = count;
1086 }
1087 EXPORT_SYMBOL(iov_iter_bvec);
1088 
1089 void iov_iter_pipe(struct iov_iter *i, int direction,
1090 			struct pipe_inode_info *pipe,
1091 			size_t count)
1092 {
1093 	BUG_ON(direction != ITER_PIPE);
1094 	WARN_ON(pipe->nrbufs == pipe->buffers);
1095 	i->type = direction;
1096 	i->pipe = pipe;
1097 	i->idx = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
1098 	i->iov_offset = 0;
1099 	i->count = count;
1100 	i->start_idx = i->idx;
1101 }
1102 EXPORT_SYMBOL(iov_iter_pipe);
1103 
1104 unsigned long iov_iter_alignment(const struct iov_iter *i)
1105 {
1106 	unsigned long res = 0;
1107 	size_t size = i->count;
1108 
1109 	if (unlikely(i->type & ITER_PIPE)) {
1110 		if (size && i->iov_offset && allocated(&i->pipe->bufs[i->idx]))
1111 			return size | i->iov_offset;
1112 		return size;
1113 	}
1114 	iterate_all_kinds(i, size, v,
1115 		(res |= (unsigned long)v.iov_base | v.iov_len, 0),
1116 		res |= v.bv_offset | v.bv_len,
1117 		res |= (unsigned long)v.iov_base | v.iov_len
1118 	)
1119 	return res;
1120 }
1121 EXPORT_SYMBOL(iov_iter_alignment);
1122 
1123 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1124 {
1125 	unsigned long res = 0;
1126 	size_t size = i->count;
1127 
1128 	if (unlikely(i->type & ITER_PIPE)) {
1129 		WARN_ON(1);
1130 		return ~0U;
1131 	}
1132 
1133 	iterate_all_kinds(i, size, v,
1134 		(res |= (!res ? 0 : (unsigned long)v.iov_base) |
1135 			(size != v.iov_len ? size : 0), 0),
1136 		(res |= (!res ? 0 : (unsigned long)v.bv_offset) |
1137 			(size != v.bv_len ? size : 0)),
1138 		(res |= (!res ? 0 : (unsigned long)v.iov_base) |
1139 			(size != v.iov_len ? size : 0))
1140 		);
1141 	return res;
1142 }
1143 EXPORT_SYMBOL(iov_iter_gap_alignment);
1144 
1145 static inline ssize_t __pipe_get_pages(struct iov_iter *i,
1146 				size_t maxsize,
1147 				struct page **pages,
1148 				int idx,
1149 				size_t *start)
1150 {
1151 	struct pipe_inode_info *pipe = i->pipe;
1152 	ssize_t n = push_pipe(i, maxsize, &idx, start);
1153 	if (!n)
1154 		return -EFAULT;
1155 
1156 	maxsize = n;
1157 	n += *start;
1158 	while (n > 0) {
1159 		get_page(*pages++ = pipe->bufs[idx].page);
1160 		idx = next_idx(idx, pipe);
1161 		n -= PAGE_SIZE;
1162 	}
1163 
1164 	return maxsize;
1165 }
1166 
1167 static ssize_t pipe_get_pages(struct iov_iter *i,
1168 		   struct page **pages, size_t maxsize, unsigned maxpages,
1169 		   size_t *start)
1170 {
1171 	unsigned npages;
1172 	size_t capacity;
1173 	int idx;
1174 
1175 	if (!maxsize)
1176 		return 0;
1177 
1178 	if (!sanity(i))
1179 		return -EFAULT;
1180 
1181 	data_start(i, &idx, start);
1182 	/* some of this one + all after this one */
1183 	npages = ((i->pipe->curbuf - idx - 1) & (i->pipe->buffers - 1)) + 1;
1184 	capacity = min(npages,maxpages) * PAGE_SIZE - *start;
1185 
1186 	return __pipe_get_pages(i, min(maxsize, capacity), pages, idx, start);
1187 }
1188 
1189 ssize_t iov_iter_get_pages(struct iov_iter *i,
1190 		   struct page **pages, size_t maxsize, unsigned maxpages,
1191 		   size_t *start)
1192 {
1193 	if (maxsize > i->count)
1194 		maxsize = i->count;
1195 
1196 	if (unlikely(i->type & ITER_PIPE))
1197 		return pipe_get_pages(i, pages, maxsize, maxpages, start);
1198 	iterate_all_kinds(i, maxsize, v, ({
1199 		unsigned long addr = (unsigned long)v.iov_base;
1200 		size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1201 		int n;
1202 		int res;
1203 
1204 		if (len > maxpages * PAGE_SIZE)
1205 			len = maxpages * PAGE_SIZE;
1206 		addr &= ~(PAGE_SIZE - 1);
1207 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1208 		res = get_user_pages_fast(addr, n, (i->type & WRITE) != WRITE, pages);
1209 		if (unlikely(res < 0))
1210 			return res;
1211 		return (res == n ? len : res * PAGE_SIZE) - *start;
1212 	0;}),({
1213 		/* can't be more than PAGE_SIZE */
1214 		*start = v.bv_offset;
1215 		get_page(*pages = v.bv_page);
1216 		return v.bv_len;
1217 	}),({
1218 		return -EFAULT;
1219 	})
1220 	)
1221 	return 0;
1222 }
1223 EXPORT_SYMBOL(iov_iter_get_pages);
1224 
1225 static struct page **get_pages_array(size_t n)
1226 {
1227 	return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
1228 }
1229 
1230 static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
1231 		   struct page ***pages, size_t maxsize,
1232 		   size_t *start)
1233 {
1234 	struct page **p;
1235 	ssize_t n;
1236 	int idx;
1237 	int npages;
1238 
1239 	if (!maxsize)
1240 		return 0;
1241 
1242 	if (!sanity(i))
1243 		return -EFAULT;
1244 
1245 	data_start(i, &idx, start);
1246 	/* some of this one + all after this one */
1247 	npages = ((i->pipe->curbuf - idx - 1) & (i->pipe->buffers - 1)) + 1;
1248 	n = npages * PAGE_SIZE - *start;
1249 	if (maxsize > n)
1250 		maxsize = n;
1251 	else
1252 		npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1253 	p = get_pages_array(npages);
1254 	if (!p)
1255 		return -ENOMEM;
1256 	n = __pipe_get_pages(i, maxsize, p, idx, start);
1257 	if (n > 0)
1258 		*pages = p;
1259 	else
1260 		kvfree(p);
1261 	return n;
1262 }
1263 
1264 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1265 		   struct page ***pages, size_t maxsize,
1266 		   size_t *start)
1267 {
1268 	struct page **p;
1269 
1270 	if (maxsize > i->count)
1271 		maxsize = i->count;
1272 
1273 	if (unlikely(i->type & ITER_PIPE))
1274 		return pipe_get_pages_alloc(i, pages, maxsize, start);
1275 	iterate_all_kinds(i, maxsize, v, ({
1276 		unsigned long addr = (unsigned long)v.iov_base;
1277 		size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1278 		int n;
1279 		int res;
1280 
1281 		addr &= ~(PAGE_SIZE - 1);
1282 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1283 		p = get_pages_array(n);
1284 		if (!p)
1285 			return -ENOMEM;
1286 		res = get_user_pages_fast(addr, n, (i->type & WRITE) != WRITE, p);
1287 		if (unlikely(res < 0)) {
1288 			kvfree(p);
1289 			return res;
1290 		}
1291 		*pages = p;
1292 		return (res == n ? len : res * PAGE_SIZE) - *start;
1293 	0;}),({
1294 		/* can't be more than PAGE_SIZE */
1295 		*start = v.bv_offset;
1296 		*pages = p = get_pages_array(1);
1297 		if (!p)
1298 			return -ENOMEM;
1299 		get_page(*p = v.bv_page);
1300 		return v.bv_len;
1301 	}),({
1302 		return -EFAULT;
1303 	})
1304 	)
1305 	return 0;
1306 }
1307 EXPORT_SYMBOL(iov_iter_get_pages_alloc);
1308 
1309 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1310 			       struct iov_iter *i)
1311 {
1312 	char *to = addr;
1313 	__wsum sum, next;
1314 	size_t off = 0;
1315 	sum = *csum;
1316 	if (unlikely(i->type & ITER_PIPE)) {
1317 		WARN_ON(1);
1318 		return 0;
1319 	}
1320 	iterate_and_advance(i, bytes, v, ({
1321 		int err = 0;
1322 		next = csum_and_copy_from_user(v.iov_base,
1323 					       (to += v.iov_len) - v.iov_len,
1324 					       v.iov_len, 0, &err);
1325 		if (!err) {
1326 			sum = csum_block_add(sum, next, off);
1327 			off += v.iov_len;
1328 		}
1329 		err ? v.iov_len : 0;
1330 	}), ({
1331 		char *p = kmap_atomic(v.bv_page);
1332 		next = csum_partial_copy_nocheck(p + v.bv_offset,
1333 						 (to += v.bv_len) - v.bv_len,
1334 						 v.bv_len, 0);
1335 		kunmap_atomic(p);
1336 		sum = csum_block_add(sum, next, off);
1337 		off += v.bv_len;
1338 	}),({
1339 		next = csum_partial_copy_nocheck(v.iov_base,
1340 						 (to += v.iov_len) - v.iov_len,
1341 						 v.iov_len, 0);
1342 		sum = csum_block_add(sum, next, off);
1343 		off += v.iov_len;
1344 	})
1345 	)
1346 	*csum = sum;
1347 	return bytes;
1348 }
1349 EXPORT_SYMBOL(csum_and_copy_from_iter);
1350 
1351 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum,
1352 			       struct iov_iter *i)
1353 {
1354 	char *to = addr;
1355 	__wsum sum, next;
1356 	size_t off = 0;
1357 	sum = *csum;
1358 	if (unlikely(i->type & ITER_PIPE)) {
1359 		WARN_ON(1);
1360 		return false;
1361 	}
1362 	if (unlikely(i->count < bytes))
1363 		return false;
1364 	iterate_all_kinds(i, bytes, v, ({
1365 		int err = 0;
1366 		next = csum_and_copy_from_user(v.iov_base,
1367 					       (to += v.iov_len) - v.iov_len,
1368 					       v.iov_len, 0, &err);
1369 		if (err)
1370 			return false;
1371 		sum = csum_block_add(sum, next, off);
1372 		off += v.iov_len;
1373 		0;
1374 	}), ({
1375 		char *p = kmap_atomic(v.bv_page);
1376 		next = csum_partial_copy_nocheck(p + v.bv_offset,
1377 						 (to += v.bv_len) - v.bv_len,
1378 						 v.bv_len, 0);
1379 		kunmap_atomic(p);
1380 		sum = csum_block_add(sum, next, off);
1381 		off += v.bv_len;
1382 	}),({
1383 		next = csum_partial_copy_nocheck(v.iov_base,
1384 						 (to += v.iov_len) - v.iov_len,
1385 						 v.iov_len, 0);
1386 		sum = csum_block_add(sum, next, off);
1387 		off += v.iov_len;
1388 	})
1389 	)
1390 	*csum = sum;
1391 	iov_iter_advance(i, bytes);
1392 	return true;
1393 }
1394 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
1395 
1396 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, __wsum *csum,
1397 			     struct iov_iter *i)
1398 {
1399 	const char *from = addr;
1400 	__wsum sum, next;
1401 	size_t off = 0;
1402 	sum = *csum;
1403 	if (unlikely(i->type & ITER_PIPE)) {
1404 		WARN_ON(1);	/* for now */
1405 		return 0;
1406 	}
1407 	iterate_and_advance(i, bytes, v, ({
1408 		int err = 0;
1409 		next = csum_and_copy_to_user((from += v.iov_len) - v.iov_len,
1410 					     v.iov_base,
1411 					     v.iov_len, 0, &err);
1412 		if (!err) {
1413 			sum = csum_block_add(sum, next, off);
1414 			off += v.iov_len;
1415 		}
1416 		err ? v.iov_len : 0;
1417 	}), ({
1418 		char *p = kmap_atomic(v.bv_page);
1419 		next = csum_partial_copy_nocheck((from += v.bv_len) - v.bv_len,
1420 						 p + v.bv_offset,
1421 						 v.bv_len, 0);
1422 		kunmap_atomic(p);
1423 		sum = csum_block_add(sum, next, off);
1424 		off += v.bv_len;
1425 	}),({
1426 		next = csum_partial_copy_nocheck((from += v.iov_len) - v.iov_len,
1427 						 v.iov_base,
1428 						 v.iov_len, 0);
1429 		sum = csum_block_add(sum, next, off);
1430 		off += v.iov_len;
1431 	})
1432 	)
1433 	*csum = sum;
1434 	return bytes;
1435 }
1436 EXPORT_SYMBOL(csum_and_copy_to_iter);
1437 
1438 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1439 {
1440 	size_t size = i->count;
1441 	int npages = 0;
1442 
1443 	if (!size)
1444 		return 0;
1445 
1446 	if (unlikely(i->type & ITER_PIPE)) {
1447 		struct pipe_inode_info *pipe = i->pipe;
1448 		size_t off;
1449 		int idx;
1450 
1451 		if (!sanity(i))
1452 			return 0;
1453 
1454 		data_start(i, &idx, &off);
1455 		/* some of this one + all after this one */
1456 		npages = ((pipe->curbuf - idx - 1) & (pipe->buffers - 1)) + 1;
1457 		if (npages >= maxpages)
1458 			return maxpages;
1459 	} else iterate_all_kinds(i, size, v, ({
1460 		unsigned long p = (unsigned long)v.iov_base;
1461 		npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1462 			- p / PAGE_SIZE;
1463 		if (npages >= maxpages)
1464 			return maxpages;
1465 	0;}),({
1466 		npages++;
1467 		if (npages >= maxpages)
1468 			return maxpages;
1469 	}),({
1470 		unsigned long p = (unsigned long)v.iov_base;
1471 		npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1472 			- p / PAGE_SIZE;
1473 		if (npages >= maxpages)
1474 			return maxpages;
1475 	})
1476 	)
1477 	return npages;
1478 }
1479 EXPORT_SYMBOL(iov_iter_npages);
1480 
1481 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1482 {
1483 	*new = *old;
1484 	if (unlikely(new->type & ITER_PIPE)) {
1485 		WARN_ON(1);
1486 		return NULL;
1487 	}
1488 	if (new->type & ITER_BVEC)
1489 		return new->bvec = kmemdup(new->bvec,
1490 				    new->nr_segs * sizeof(struct bio_vec),
1491 				    flags);
1492 	else
1493 		/* iovec and kvec have identical layout */
1494 		return new->iov = kmemdup(new->iov,
1495 				   new->nr_segs * sizeof(struct iovec),
1496 				   flags);
1497 }
1498 EXPORT_SYMBOL(dup_iter);
1499 
1500 /**
1501  * import_iovec() - Copy an array of &struct iovec from userspace
1502  *     into the kernel, check that it is valid, and initialize a new
1503  *     &struct iov_iter iterator to access it.
1504  *
1505  * @type: One of %READ or %WRITE.
1506  * @uvector: Pointer to the userspace array.
1507  * @nr_segs: Number of elements in userspace array.
1508  * @fast_segs: Number of elements in @iov.
1509  * @iov: (input and output parameter) Pointer to pointer to (usually small
1510  *     on-stack) kernel array.
1511  * @i: Pointer to iterator that will be initialized on success.
1512  *
1513  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1514  * then this function places %NULL in *@iov on return. Otherwise, a new
1515  * array will be allocated and the result placed in *@iov. This means that
1516  * the caller may call kfree() on *@iov regardless of whether the small
1517  * on-stack array was used or not (and regardless of whether this function
1518  * returns an error or not).
1519  *
1520  * Return: 0 on success or negative error code on error.
1521  */
1522 int import_iovec(int type, const struct iovec __user * uvector,
1523 		 unsigned nr_segs, unsigned fast_segs,
1524 		 struct iovec **iov, struct iov_iter *i)
1525 {
1526 	ssize_t n;
1527 	struct iovec *p;
1528 	n = rw_copy_check_uvector(type, uvector, nr_segs, fast_segs,
1529 				  *iov, &p);
1530 	if (n < 0) {
1531 		if (p != *iov)
1532 			kfree(p);
1533 		*iov = NULL;
1534 		return n;
1535 	}
1536 	iov_iter_init(i, type, p, nr_segs, n);
1537 	*iov = p == *iov ? NULL : p;
1538 	return 0;
1539 }
1540 EXPORT_SYMBOL(import_iovec);
1541 
1542 #ifdef CONFIG_COMPAT
1543 #include <linux/compat.h>
1544 
1545 int compat_import_iovec(int type, const struct compat_iovec __user * uvector,
1546 		 unsigned nr_segs, unsigned fast_segs,
1547 		 struct iovec **iov, struct iov_iter *i)
1548 {
1549 	ssize_t n;
1550 	struct iovec *p;
1551 	n = compat_rw_copy_check_uvector(type, uvector, nr_segs, fast_segs,
1552 				  *iov, &p);
1553 	if (n < 0) {
1554 		if (p != *iov)
1555 			kfree(p);
1556 		*iov = NULL;
1557 		return n;
1558 	}
1559 	iov_iter_init(i, type, p, nr_segs, n);
1560 	*iov = p == *iov ? NULL : p;
1561 	return 0;
1562 }
1563 #endif
1564 
1565 int import_single_range(int rw, void __user *buf, size_t len,
1566 		 struct iovec *iov, struct iov_iter *i)
1567 {
1568 	if (len > MAX_RW_COUNT)
1569 		len = MAX_RW_COUNT;
1570 	if (unlikely(!access_ok(!rw, buf, len)))
1571 		return -EFAULT;
1572 
1573 	iov->iov_base = buf;
1574 	iov->iov_len = len;
1575 	iov_iter_init(i, rw, iov, 1, len);
1576 	return 0;
1577 }
1578 EXPORT_SYMBOL(import_single_range);
1579 
1580 int iov_iter_for_each_range(struct iov_iter *i, size_t bytes,
1581 			    int (*f)(struct kvec *vec, void *context),
1582 			    void *context)
1583 {
1584 	struct kvec w;
1585 	int err = -EINVAL;
1586 	if (!bytes)
1587 		return 0;
1588 
1589 	iterate_all_kinds(i, bytes, v, -EINVAL, ({
1590 		w.iov_base = kmap(v.bv_page) + v.bv_offset;
1591 		w.iov_len = v.bv_len;
1592 		err = f(&w, context);
1593 		kunmap(v.bv_page);
1594 		err;}), ({
1595 		w = v;
1596 		err = f(&w, context);})
1597 	)
1598 	return err;
1599 }
1600 EXPORT_SYMBOL(iov_iter_for_each_range);
1601