1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/export.h> 3 #include <linux/bvec.h> 4 #include <linux/fault-inject-usercopy.h> 5 #include <linux/uio.h> 6 #include <linux/pagemap.h> 7 #include <linux/highmem.h> 8 #include <linux/slab.h> 9 #include <linux/vmalloc.h> 10 #include <linux/splice.h> 11 #include <linux/compat.h> 12 #include <linux/scatterlist.h> 13 #include <linux/instrumented.h> 14 #include <linux/iov_iter.h> 15 16 static __always_inline 17 size_t copy_to_user_iter(void __user *iter_to, size_t progress, 18 size_t len, void *from, void *priv2) 19 { 20 if (should_fail_usercopy()) 21 return len; 22 if (access_ok(iter_to, len)) { 23 from += progress; 24 instrument_copy_to_user(iter_to, from, len); 25 len = raw_copy_to_user(iter_to, from, len); 26 } 27 return len; 28 } 29 30 static __always_inline 31 size_t copy_to_user_iter_nofault(void __user *iter_to, size_t progress, 32 size_t len, void *from, void *priv2) 33 { 34 ssize_t res; 35 36 if (should_fail_usercopy()) 37 return len; 38 39 from += progress; 40 res = copy_to_user_nofault(iter_to, from, len); 41 return res < 0 ? len : res; 42 } 43 44 static __always_inline 45 size_t copy_from_user_iter(void __user *iter_from, size_t progress, 46 size_t len, void *to, void *priv2) 47 { 48 size_t res = len; 49 50 if (should_fail_usercopy()) 51 return len; 52 if (access_ok(iter_from, len)) { 53 to += progress; 54 instrument_copy_from_user_before(to, iter_from, len); 55 res = raw_copy_from_user(to, iter_from, len); 56 instrument_copy_from_user_after(to, iter_from, len, res); 57 } 58 return res; 59 } 60 61 static __always_inline 62 size_t memcpy_to_iter(void *iter_to, size_t progress, 63 size_t len, void *from, void *priv2) 64 { 65 memcpy(iter_to, from + progress, len); 66 return 0; 67 } 68 69 static __always_inline 70 size_t memcpy_from_iter(void *iter_from, size_t progress, 71 size_t len, void *to, void *priv2) 72 { 73 memcpy(to + progress, iter_from, len); 74 return 0; 75 } 76 77 /* 78 * fault_in_iov_iter_readable - fault in iov iterator for reading 79 * @i: iterator 80 * @size: maximum length 81 * 82 * Fault in one or more iovecs of the given iov_iter, to a maximum length of 83 * @size. For each iovec, fault in each page that constitutes the iovec. 84 * 85 * Returns the number of bytes not faulted in (like copy_to_user() and 86 * copy_from_user()). 87 * 88 * Always returns 0 for non-userspace iterators. 89 */ 90 size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size) 91 { 92 if (iter_is_ubuf(i)) { 93 size_t n = min(size, iov_iter_count(i)); 94 n -= fault_in_readable(i->ubuf + i->iov_offset, n); 95 return size - n; 96 } else if (iter_is_iovec(i)) { 97 size_t count = min(size, iov_iter_count(i)); 98 const struct iovec *p; 99 size_t skip; 100 101 size -= count; 102 for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) { 103 size_t len = min(count, p->iov_len - skip); 104 size_t ret; 105 106 if (unlikely(!len)) 107 continue; 108 ret = fault_in_readable(p->iov_base + skip, len); 109 count -= len - ret; 110 if (ret) 111 break; 112 } 113 return count + size; 114 } 115 return 0; 116 } 117 EXPORT_SYMBOL(fault_in_iov_iter_readable); 118 119 /* 120 * fault_in_iov_iter_writeable - fault in iov iterator for writing 121 * @i: iterator 122 * @size: maximum length 123 * 124 * Faults in the iterator using get_user_pages(), i.e., without triggering 125 * hardware page faults. This is primarily useful when we already know that 126 * some or all of the pages in @i aren't in memory. 127 * 128 * Returns the number of bytes not faulted in, like copy_to_user() and 129 * copy_from_user(). 130 * 131 * Always returns 0 for non-user-space iterators. 132 */ 133 size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size) 134 { 135 if (iter_is_ubuf(i)) { 136 size_t n = min(size, iov_iter_count(i)); 137 n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n); 138 return size - n; 139 } else if (iter_is_iovec(i)) { 140 size_t count = min(size, iov_iter_count(i)); 141 const struct iovec *p; 142 size_t skip; 143 144 size -= count; 145 for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) { 146 size_t len = min(count, p->iov_len - skip); 147 size_t ret; 148 149 if (unlikely(!len)) 150 continue; 151 ret = fault_in_safe_writeable(p->iov_base + skip, len); 152 count -= len - ret; 153 if (ret) 154 break; 155 } 156 return count + size; 157 } 158 return 0; 159 } 160 EXPORT_SYMBOL(fault_in_iov_iter_writeable); 161 162 void iov_iter_init(struct iov_iter *i, unsigned int direction, 163 const struct iovec *iov, unsigned long nr_segs, 164 size_t count) 165 { 166 WARN_ON(direction & ~(READ | WRITE)); 167 *i = (struct iov_iter) { 168 .iter_type = ITER_IOVEC, 169 .nofault = false, 170 .data_source = direction, 171 .__iov = iov, 172 .nr_segs = nr_segs, 173 .iov_offset = 0, 174 .count = count 175 }; 176 } 177 EXPORT_SYMBOL(iov_iter_init); 178 179 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i) 180 { 181 if (WARN_ON_ONCE(i->data_source)) 182 return 0; 183 if (user_backed_iter(i)) 184 might_fault(); 185 return iterate_and_advance(i, bytes, (void *)addr, 186 copy_to_user_iter, memcpy_to_iter); 187 } 188 EXPORT_SYMBOL(_copy_to_iter); 189 190 #ifdef CONFIG_ARCH_HAS_COPY_MC 191 static __always_inline 192 size_t copy_to_user_iter_mc(void __user *iter_to, size_t progress, 193 size_t len, void *from, void *priv2) 194 { 195 if (access_ok(iter_to, len)) { 196 from += progress; 197 instrument_copy_to_user(iter_to, from, len); 198 len = copy_mc_to_user(iter_to, from, len); 199 } 200 return len; 201 } 202 203 static __always_inline 204 size_t memcpy_to_iter_mc(void *iter_to, size_t progress, 205 size_t len, void *from, void *priv2) 206 { 207 return copy_mc_to_kernel(iter_to, from + progress, len); 208 } 209 210 /** 211 * _copy_mc_to_iter - copy to iter with source memory error exception handling 212 * @addr: source kernel address 213 * @bytes: total transfer length 214 * @i: destination iterator 215 * 216 * The pmem driver deploys this for the dax operation 217 * (dax_copy_to_iter()) for dax reads (bypass page-cache and the 218 * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes 219 * successfully copied. 220 * 221 * The main differences between this and typical _copy_to_iter(). 222 * 223 * * Typical tail/residue handling after a fault retries the copy 224 * byte-by-byte until the fault happens again. Re-triggering machine 225 * checks is potentially fatal so the implementation uses source 226 * alignment and poison alignment assumptions to avoid re-triggering 227 * hardware exceptions. 228 * 229 * * ITER_KVEC and ITER_BVEC can return short copies. Compare to 230 * copy_to_iter() where only ITER_IOVEC attempts might return a short copy. 231 * 232 * Return: number of bytes copied (may be %0) 233 */ 234 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i) 235 { 236 if (WARN_ON_ONCE(i->data_source)) 237 return 0; 238 if (user_backed_iter(i)) 239 might_fault(); 240 return iterate_and_advance(i, bytes, (void *)addr, 241 copy_to_user_iter_mc, memcpy_to_iter_mc); 242 } 243 EXPORT_SYMBOL_GPL(_copy_mc_to_iter); 244 #endif /* CONFIG_ARCH_HAS_COPY_MC */ 245 246 static __always_inline 247 size_t __copy_from_iter(void *addr, size_t bytes, struct iov_iter *i) 248 { 249 return iterate_and_advance(i, bytes, addr, 250 copy_from_user_iter, memcpy_from_iter); 251 } 252 253 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i) 254 { 255 if (WARN_ON_ONCE(!i->data_source)) 256 return 0; 257 258 if (user_backed_iter(i)) 259 might_fault(); 260 return __copy_from_iter(addr, bytes, i); 261 } 262 EXPORT_SYMBOL(_copy_from_iter); 263 264 static __always_inline 265 size_t copy_from_user_iter_nocache(void __user *iter_from, size_t progress, 266 size_t len, void *to, void *priv2) 267 { 268 return __copy_from_user_inatomic_nocache(to + progress, iter_from, len); 269 } 270 271 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i) 272 { 273 if (WARN_ON_ONCE(!i->data_source)) 274 return 0; 275 276 return iterate_and_advance(i, bytes, addr, 277 copy_from_user_iter_nocache, 278 memcpy_from_iter); 279 } 280 EXPORT_SYMBOL(_copy_from_iter_nocache); 281 282 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE 283 static __always_inline 284 size_t copy_from_user_iter_flushcache(void __user *iter_from, size_t progress, 285 size_t len, void *to, void *priv2) 286 { 287 return __copy_from_user_flushcache(to + progress, iter_from, len); 288 } 289 290 static __always_inline 291 size_t memcpy_from_iter_flushcache(void *iter_from, size_t progress, 292 size_t len, void *to, void *priv2) 293 { 294 memcpy_flushcache(to + progress, iter_from, len); 295 return 0; 296 } 297 298 /** 299 * _copy_from_iter_flushcache - write destination through cpu cache 300 * @addr: destination kernel address 301 * @bytes: total transfer length 302 * @i: source iterator 303 * 304 * The pmem driver arranges for filesystem-dax to use this facility via 305 * dax_copy_from_iter() for ensuring that writes to persistent memory 306 * are flushed through the CPU cache. It is differentiated from 307 * _copy_from_iter_nocache() in that guarantees all data is flushed for 308 * all iterator types. The _copy_from_iter_nocache() only attempts to 309 * bypass the cache for the ITER_IOVEC case, and on some archs may use 310 * instructions that strand dirty-data in the cache. 311 * 312 * Return: number of bytes copied (may be %0) 313 */ 314 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i) 315 { 316 if (WARN_ON_ONCE(!i->data_source)) 317 return 0; 318 319 return iterate_and_advance(i, bytes, addr, 320 copy_from_user_iter_flushcache, 321 memcpy_from_iter_flushcache); 322 } 323 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache); 324 #endif 325 326 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n) 327 { 328 struct page *head; 329 size_t v = n + offset; 330 331 /* 332 * The general case needs to access the page order in order 333 * to compute the page size. 334 * However, we mostly deal with order-0 pages and thus can 335 * avoid a possible cache line miss for requests that fit all 336 * page orders. 337 */ 338 if (n <= v && v <= PAGE_SIZE) 339 return true; 340 341 head = compound_head(page); 342 v += (page - head) << PAGE_SHIFT; 343 344 if (WARN_ON(n > v || v > page_size(head))) 345 return false; 346 return true; 347 } 348 349 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes, 350 struct iov_iter *i) 351 { 352 size_t res = 0; 353 if (!page_copy_sane(page, offset, bytes)) 354 return 0; 355 if (WARN_ON_ONCE(i->data_source)) 356 return 0; 357 page += offset / PAGE_SIZE; // first subpage 358 offset %= PAGE_SIZE; 359 while (1) { 360 void *kaddr = kmap_local_page(page); 361 size_t n = min(bytes, (size_t)PAGE_SIZE - offset); 362 n = _copy_to_iter(kaddr + offset, n, i); 363 kunmap_local(kaddr); 364 res += n; 365 bytes -= n; 366 if (!bytes || !n) 367 break; 368 offset += n; 369 if (offset == PAGE_SIZE) { 370 page++; 371 offset = 0; 372 } 373 } 374 return res; 375 } 376 EXPORT_SYMBOL(copy_page_to_iter); 377 378 size_t copy_page_to_iter_nofault(struct page *page, unsigned offset, size_t bytes, 379 struct iov_iter *i) 380 { 381 size_t res = 0; 382 383 if (!page_copy_sane(page, offset, bytes)) 384 return 0; 385 if (WARN_ON_ONCE(i->data_source)) 386 return 0; 387 page += offset / PAGE_SIZE; // first subpage 388 offset %= PAGE_SIZE; 389 while (1) { 390 void *kaddr = kmap_local_page(page); 391 size_t n = min(bytes, (size_t)PAGE_SIZE - offset); 392 393 n = iterate_and_advance(i, n, kaddr + offset, 394 copy_to_user_iter_nofault, 395 memcpy_to_iter); 396 kunmap_local(kaddr); 397 res += n; 398 bytes -= n; 399 if (!bytes || !n) 400 break; 401 offset += n; 402 if (offset == PAGE_SIZE) { 403 page++; 404 offset = 0; 405 } 406 } 407 return res; 408 } 409 EXPORT_SYMBOL(copy_page_to_iter_nofault); 410 411 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes, 412 struct iov_iter *i) 413 { 414 size_t res = 0; 415 if (!page_copy_sane(page, offset, bytes)) 416 return 0; 417 page += offset / PAGE_SIZE; // first subpage 418 offset %= PAGE_SIZE; 419 while (1) { 420 void *kaddr = kmap_local_page(page); 421 size_t n = min(bytes, (size_t)PAGE_SIZE - offset); 422 n = _copy_from_iter(kaddr + offset, n, i); 423 kunmap_local(kaddr); 424 res += n; 425 bytes -= n; 426 if (!bytes || !n) 427 break; 428 offset += n; 429 if (offset == PAGE_SIZE) { 430 page++; 431 offset = 0; 432 } 433 } 434 return res; 435 } 436 EXPORT_SYMBOL(copy_page_from_iter); 437 438 static __always_inline 439 size_t zero_to_user_iter(void __user *iter_to, size_t progress, 440 size_t len, void *priv, void *priv2) 441 { 442 return clear_user(iter_to, len); 443 } 444 445 static __always_inline 446 size_t zero_to_iter(void *iter_to, size_t progress, 447 size_t len, void *priv, void *priv2) 448 { 449 memset(iter_to, 0, len); 450 return 0; 451 } 452 453 size_t iov_iter_zero(size_t bytes, struct iov_iter *i) 454 { 455 return iterate_and_advance(i, bytes, NULL, 456 zero_to_user_iter, zero_to_iter); 457 } 458 EXPORT_SYMBOL(iov_iter_zero); 459 460 size_t copy_page_from_iter_atomic(struct page *page, size_t offset, 461 size_t bytes, struct iov_iter *i) 462 { 463 size_t n, copied = 0; 464 465 if (!page_copy_sane(page, offset, bytes)) 466 return 0; 467 if (WARN_ON_ONCE(!i->data_source)) 468 return 0; 469 470 do { 471 char *p; 472 473 n = bytes - copied; 474 if (PageHighMem(page)) { 475 page += offset / PAGE_SIZE; 476 offset %= PAGE_SIZE; 477 n = min_t(size_t, n, PAGE_SIZE - offset); 478 } 479 480 p = kmap_atomic(page) + offset; 481 n = __copy_from_iter(p, n, i); 482 kunmap_atomic(p); 483 copied += n; 484 offset += n; 485 } while (PageHighMem(page) && copied != bytes && n > 0); 486 487 return copied; 488 } 489 EXPORT_SYMBOL(copy_page_from_iter_atomic); 490 491 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size) 492 { 493 const struct bio_vec *bvec, *end; 494 495 if (!i->count) 496 return; 497 i->count -= size; 498 499 size += i->iov_offset; 500 501 for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) { 502 if (likely(size < bvec->bv_len)) 503 break; 504 size -= bvec->bv_len; 505 } 506 i->iov_offset = size; 507 i->nr_segs -= bvec - i->bvec; 508 i->bvec = bvec; 509 } 510 511 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size) 512 { 513 const struct iovec *iov, *end; 514 515 if (!i->count) 516 return; 517 i->count -= size; 518 519 size += i->iov_offset; // from beginning of current segment 520 for (iov = iter_iov(i), end = iov + i->nr_segs; iov < end; iov++) { 521 if (likely(size < iov->iov_len)) 522 break; 523 size -= iov->iov_len; 524 } 525 i->iov_offset = size; 526 i->nr_segs -= iov - iter_iov(i); 527 i->__iov = iov; 528 } 529 530 void iov_iter_advance(struct iov_iter *i, size_t size) 531 { 532 if (unlikely(i->count < size)) 533 size = i->count; 534 if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) { 535 i->iov_offset += size; 536 i->count -= size; 537 } else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) { 538 /* iovec and kvec have identical layouts */ 539 iov_iter_iovec_advance(i, size); 540 } else if (iov_iter_is_bvec(i)) { 541 iov_iter_bvec_advance(i, size); 542 } else if (iov_iter_is_discard(i)) { 543 i->count -= size; 544 } 545 } 546 EXPORT_SYMBOL(iov_iter_advance); 547 548 void iov_iter_revert(struct iov_iter *i, size_t unroll) 549 { 550 if (!unroll) 551 return; 552 if (WARN_ON(unroll > MAX_RW_COUNT)) 553 return; 554 i->count += unroll; 555 if (unlikely(iov_iter_is_discard(i))) 556 return; 557 if (unroll <= i->iov_offset) { 558 i->iov_offset -= unroll; 559 return; 560 } 561 unroll -= i->iov_offset; 562 if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) { 563 BUG(); /* We should never go beyond the start of the specified 564 * range since we might then be straying into pages that 565 * aren't pinned. 566 */ 567 } else if (iov_iter_is_bvec(i)) { 568 const struct bio_vec *bvec = i->bvec; 569 while (1) { 570 size_t n = (--bvec)->bv_len; 571 i->nr_segs++; 572 if (unroll <= n) { 573 i->bvec = bvec; 574 i->iov_offset = n - unroll; 575 return; 576 } 577 unroll -= n; 578 } 579 } else { /* same logics for iovec and kvec */ 580 const struct iovec *iov = iter_iov(i); 581 while (1) { 582 size_t n = (--iov)->iov_len; 583 i->nr_segs++; 584 if (unroll <= n) { 585 i->__iov = iov; 586 i->iov_offset = n - unroll; 587 return; 588 } 589 unroll -= n; 590 } 591 } 592 } 593 EXPORT_SYMBOL(iov_iter_revert); 594 595 /* 596 * Return the count of just the current iov_iter segment. 597 */ 598 size_t iov_iter_single_seg_count(const struct iov_iter *i) 599 { 600 if (i->nr_segs > 1) { 601 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) 602 return min(i->count, iter_iov(i)->iov_len - i->iov_offset); 603 if (iov_iter_is_bvec(i)) 604 return min(i->count, i->bvec->bv_len - i->iov_offset); 605 } 606 return i->count; 607 } 608 EXPORT_SYMBOL(iov_iter_single_seg_count); 609 610 void iov_iter_kvec(struct iov_iter *i, unsigned int direction, 611 const struct kvec *kvec, unsigned long nr_segs, 612 size_t count) 613 { 614 WARN_ON(direction & ~(READ | WRITE)); 615 *i = (struct iov_iter){ 616 .iter_type = ITER_KVEC, 617 .data_source = direction, 618 .kvec = kvec, 619 .nr_segs = nr_segs, 620 .iov_offset = 0, 621 .count = count 622 }; 623 } 624 EXPORT_SYMBOL(iov_iter_kvec); 625 626 void iov_iter_bvec(struct iov_iter *i, unsigned int direction, 627 const struct bio_vec *bvec, unsigned long nr_segs, 628 size_t count) 629 { 630 WARN_ON(direction & ~(READ | WRITE)); 631 *i = (struct iov_iter){ 632 .iter_type = ITER_BVEC, 633 .data_source = direction, 634 .bvec = bvec, 635 .nr_segs = nr_segs, 636 .iov_offset = 0, 637 .count = count 638 }; 639 } 640 EXPORT_SYMBOL(iov_iter_bvec); 641 642 /** 643 * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray 644 * @i: The iterator to initialise. 645 * @direction: The direction of the transfer. 646 * @xarray: The xarray to access. 647 * @start: The start file position. 648 * @count: The size of the I/O buffer in bytes. 649 * 650 * Set up an I/O iterator to either draw data out of the pages attached to an 651 * inode or to inject data into those pages. The pages *must* be prevented 652 * from evaporation, either by taking a ref on them or locking them by the 653 * caller. 654 */ 655 void iov_iter_xarray(struct iov_iter *i, unsigned int direction, 656 struct xarray *xarray, loff_t start, size_t count) 657 { 658 BUG_ON(direction & ~1); 659 *i = (struct iov_iter) { 660 .iter_type = ITER_XARRAY, 661 .data_source = direction, 662 .xarray = xarray, 663 .xarray_start = start, 664 .count = count, 665 .iov_offset = 0 666 }; 667 } 668 EXPORT_SYMBOL(iov_iter_xarray); 669 670 /** 671 * iov_iter_discard - Initialise an I/O iterator that discards data 672 * @i: The iterator to initialise. 673 * @direction: The direction of the transfer. 674 * @count: The size of the I/O buffer in bytes. 675 * 676 * Set up an I/O iterator that just discards everything that's written to it. 677 * It's only available as a READ iterator. 678 */ 679 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count) 680 { 681 BUG_ON(direction != READ); 682 *i = (struct iov_iter){ 683 .iter_type = ITER_DISCARD, 684 .data_source = false, 685 .count = count, 686 .iov_offset = 0 687 }; 688 } 689 EXPORT_SYMBOL(iov_iter_discard); 690 691 static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask, 692 unsigned len_mask) 693 { 694 size_t size = i->count; 695 size_t skip = i->iov_offset; 696 unsigned k; 697 698 for (k = 0; k < i->nr_segs; k++, skip = 0) { 699 const struct iovec *iov = iter_iov(i) + k; 700 size_t len = iov->iov_len - skip; 701 702 if (len > size) 703 len = size; 704 if (len & len_mask) 705 return false; 706 if ((unsigned long)(iov->iov_base + skip) & addr_mask) 707 return false; 708 709 size -= len; 710 if (!size) 711 break; 712 } 713 return true; 714 } 715 716 static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask, 717 unsigned len_mask) 718 { 719 size_t size = i->count; 720 unsigned skip = i->iov_offset; 721 unsigned k; 722 723 for (k = 0; k < i->nr_segs; k++, skip = 0) { 724 size_t len = i->bvec[k].bv_len - skip; 725 726 if (len > size) 727 len = size; 728 if (len & len_mask) 729 return false; 730 if ((unsigned long)(i->bvec[k].bv_offset + skip) & addr_mask) 731 return false; 732 733 size -= len; 734 if (!size) 735 break; 736 } 737 return true; 738 } 739 740 /** 741 * iov_iter_is_aligned() - Check if the addresses and lengths of each segments 742 * are aligned to the parameters. 743 * 744 * @i: &struct iov_iter to restore 745 * @addr_mask: bit mask to check against the iov element's addresses 746 * @len_mask: bit mask to check against the iov element's lengths 747 * 748 * Return: false if any addresses or lengths intersect with the provided masks 749 */ 750 bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask, 751 unsigned len_mask) 752 { 753 if (likely(iter_is_ubuf(i))) { 754 if (i->count & len_mask) 755 return false; 756 if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask) 757 return false; 758 return true; 759 } 760 761 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) 762 return iov_iter_aligned_iovec(i, addr_mask, len_mask); 763 764 if (iov_iter_is_bvec(i)) 765 return iov_iter_aligned_bvec(i, addr_mask, len_mask); 766 767 if (iov_iter_is_xarray(i)) { 768 if (i->count & len_mask) 769 return false; 770 if ((i->xarray_start + i->iov_offset) & addr_mask) 771 return false; 772 } 773 774 return true; 775 } 776 EXPORT_SYMBOL_GPL(iov_iter_is_aligned); 777 778 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i) 779 { 780 unsigned long res = 0; 781 size_t size = i->count; 782 size_t skip = i->iov_offset; 783 unsigned k; 784 785 for (k = 0; k < i->nr_segs; k++, skip = 0) { 786 const struct iovec *iov = iter_iov(i) + k; 787 size_t len = iov->iov_len - skip; 788 if (len) { 789 res |= (unsigned long)iov->iov_base + skip; 790 if (len > size) 791 len = size; 792 res |= len; 793 size -= len; 794 if (!size) 795 break; 796 } 797 } 798 return res; 799 } 800 801 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i) 802 { 803 unsigned res = 0; 804 size_t size = i->count; 805 unsigned skip = i->iov_offset; 806 unsigned k; 807 808 for (k = 0; k < i->nr_segs; k++, skip = 0) { 809 size_t len = i->bvec[k].bv_len - skip; 810 res |= (unsigned long)i->bvec[k].bv_offset + skip; 811 if (len > size) 812 len = size; 813 res |= len; 814 size -= len; 815 if (!size) 816 break; 817 } 818 return res; 819 } 820 821 unsigned long iov_iter_alignment(const struct iov_iter *i) 822 { 823 if (likely(iter_is_ubuf(i))) { 824 size_t size = i->count; 825 if (size) 826 return ((unsigned long)i->ubuf + i->iov_offset) | size; 827 return 0; 828 } 829 830 /* iovec and kvec have identical layouts */ 831 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) 832 return iov_iter_alignment_iovec(i); 833 834 if (iov_iter_is_bvec(i)) 835 return iov_iter_alignment_bvec(i); 836 837 if (iov_iter_is_xarray(i)) 838 return (i->xarray_start + i->iov_offset) | i->count; 839 840 return 0; 841 } 842 EXPORT_SYMBOL(iov_iter_alignment); 843 844 unsigned long iov_iter_gap_alignment(const struct iov_iter *i) 845 { 846 unsigned long res = 0; 847 unsigned long v = 0; 848 size_t size = i->count; 849 unsigned k; 850 851 if (iter_is_ubuf(i)) 852 return 0; 853 854 if (WARN_ON(!iter_is_iovec(i))) 855 return ~0U; 856 857 for (k = 0; k < i->nr_segs; k++) { 858 const struct iovec *iov = iter_iov(i) + k; 859 if (iov->iov_len) { 860 unsigned long base = (unsigned long)iov->iov_base; 861 if (v) // if not the first one 862 res |= base | v; // this start | previous end 863 v = base + iov->iov_len; 864 if (size <= iov->iov_len) 865 break; 866 size -= iov->iov_len; 867 } 868 } 869 return res; 870 } 871 EXPORT_SYMBOL(iov_iter_gap_alignment); 872 873 static int want_pages_array(struct page ***res, size_t size, 874 size_t start, unsigned int maxpages) 875 { 876 unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE); 877 878 if (count > maxpages) 879 count = maxpages; 880 WARN_ON(!count); // caller should've prevented that 881 if (!*res) { 882 *res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL); 883 if (!*res) 884 return 0; 885 } 886 return count; 887 } 888 889 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa, 890 pgoff_t index, unsigned int nr_pages) 891 { 892 XA_STATE(xas, xa, index); 893 struct page *page; 894 unsigned int ret = 0; 895 896 rcu_read_lock(); 897 for (page = xas_load(&xas); page; page = xas_next(&xas)) { 898 if (xas_retry(&xas, page)) 899 continue; 900 901 /* Has the page moved or been split? */ 902 if (unlikely(page != xas_reload(&xas))) { 903 xas_reset(&xas); 904 continue; 905 } 906 907 pages[ret] = find_subpage(page, xas.xa_index); 908 get_page(pages[ret]); 909 if (++ret == nr_pages) 910 break; 911 } 912 rcu_read_unlock(); 913 return ret; 914 } 915 916 static ssize_t iter_xarray_get_pages(struct iov_iter *i, 917 struct page ***pages, size_t maxsize, 918 unsigned maxpages, size_t *_start_offset) 919 { 920 unsigned nr, offset, count; 921 pgoff_t index; 922 loff_t pos; 923 924 pos = i->xarray_start + i->iov_offset; 925 index = pos >> PAGE_SHIFT; 926 offset = pos & ~PAGE_MASK; 927 *_start_offset = offset; 928 929 count = want_pages_array(pages, maxsize, offset, maxpages); 930 if (!count) 931 return -ENOMEM; 932 nr = iter_xarray_populate_pages(*pages, i->xarray, index, count); 933 if (nr == 0) 934 return 0; 935 936 maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize); 937 i->iov_offset += maxsize; 938 i->count -= maxsize; 939 return maxsize; 940 } 941 942 /* must be done on non-empty ITER_UBUF or ITER_IOVEC one */ 943 static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size) 944 { 945 size_t skip; 946 long k; 947 948 if (iter_is_ubuf(i)) 949 return (unsigned long)i->ubuf + i->iov_offset; 950 951 for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) { 952 const struct iovec *iov = iter_iov(i) + k; 953 size_t len = iov->iov_len - skip; 954 955 if (unlikely(!len)) 956 continue; 957 if (*size > len) 958 *size = len; 959 return (unsigned long)iov->iov_base + skip; 960 } 961 BUG(); // if it had been empty, we wouldn't get called 962 } 963 964 /* must be done on non-empty ITER_BVEC one */ 965 static struct page *first_bvec_segment(const struct iov_iter *i, 966 size_t *size, size_t *start) 967 { 968 struct page *page; 969 size_t skip = i->iov_offset, len; 970 971 len = i->bvec->bv_len - skip; 972 if (*size > len) 973 *size = len; 974 skip += i->bvec->bv_offset; 975 page = i->bvec->bv_page + skip / PAGE_SIZE; 976 *start = skip % PAGE_SIZE; 977 return page; 978 } 979 980 static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i, 981 struct page ***pages, size_t maxsize, 982 unsigned int maxpages, size_t *start) 983 { 984 unsigned int n, gup_flags = 0; 985 986 if (maxsize > i->count) 987 maxsize = i->count; 988 if (!maxsize) 989 return 0; 990 if (maxsize > MAX_RW_COUNT) 991 maxsize = MAX_RW_COUNT; 992 993 if (likely(user_backed_iter(i))) { 994 unsigned long addr; 995 int res; 996 997 if (iov_iter_rw(i) != WRITE) 998 gup_flags |= FOLL_WRITE; 999 if (i->nofault) 1000 gup_flags |= FOLL_NOFAULT; 1001 1002 addr = first_iovec_segment(i, &maxsize); 1003 *start = addr % PAGE_SIZE; 1004 addr &= PAGE_MASK; 1005 n = want_pages_array(pages, maxsize, *start, maxpages); 1006 if (!n) 1007 return -ENOMEM; 1008 res = get_user_pages_fast(addr, n, gup_flags, *pages); 1009 if (unlikely(res <= 0)) 1010 return res; 1011 maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start); 1012 iov_iter_advance(i, maxsize); 1013 return maxsize; 1014 } 1015 if (iov_iter_is_bvec(i)) { 1016 struct page **p; 1017 struct page *page; 1018 1019 page = first_bvec_segment(i, &maxsize, start); 1020 n = want_pages_array(pages, maxsize, *start, maxpages); 1021 if (!n) 1022 return -ENOMEM; 1023 p = *pages; 1024 for (int k = 0; k < n; k++) 1025 get_page(p[k] = page + k); 1026 maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start); 1027 i->count -= maxsize; 1028 i->iov_offset += maxsize; 1029 if (i->iov_offset == i->bvec->bv_len) { 1030 i->iov_offset = 0; 1031 i->bvec++; 1032 i->nr_segs--; 1033 } 1034 return maxsize; 1035 } 1036 if (iov_iter_is_xarray(i)) 1037 return iter_xarray_get_pages(i, pages, maxsize, maxpages, start); 1038 return -EFAULT; 1039 } 1040 1041 ssize_t iov_iter_get_pages2(struct iov_iter *i, struct page **pages, 1042 size_t maxsize, unsigned maxpages, size_t *start) 1043 { 1044 if (!maxpages) 1045 return 0; 1046 BUG_ON(!pages); 1047 1048 return __iov_iter_get_pages_alloc(i, &pages, maxsize, maxpages, start); 1049 } 1050 EXPORT_SYMBOL(iov_iter_get_pages2); 1051 1052 ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i, 1053 struct page ***pages, size_t maxsize, size_t *start) 1054 { 1055 ssize_t len; 1056 1057 *pages = NULL; 1058 1059 len = __iov_iter_get_pages_alloc(i, pages, maxsize, ~0U, start); 1060 if (len <= 0) { 1061 kvfree(*pages); 1062 *pages = NULL; 1063 } 1064 return len; 1065 } 1066 EXPORT_SYMBOL(iov_iter_get_pages_alloc2); 1067 1068 static int iov_npages(const struct iov_iter *i, int maxpages) 1069 { 1070 size_t skip = i->iov_offset, size = i->count; 1071 const struct iovec *p; 1072 int npages = 0; 1073 1074 for (p = iter_iov(i); size; skip = 0, p++) { 1075 unsigned offs = offset_in_page(p->iov_base + skip); 1076 size_t len = min(p->iov_len - skip, size); 1077 1078 if (len) { 1079 size -= len; 1080 npages += DIV_ROUND_UP(offs + len, PAGE_SIZE); 1081 if (unlikely(npages > maxpages)) 1082 return maxpages; 1083 } 1084 } 1085 return npages; 1086 } 1087 1088 static int bvec_npages(const struct iov_iter *i, int maxpages) 1089 { 1090 size_t skip = i->iov_offset, size = i->count; 1091 const struct bio_vec *p; 1092 int npages = 0; 1093 1094 for (p = i->bvec; size; skip = 0, p++) { 1095 unsigned offs = (p->bv_offset + skip) % PAGE_SIZE; 1096 size_t len = min(p->bv_len - skip, size); 1097 1098 size -= len; 1099 npages += DIV_ROUND_UP(offs + len, PAGE_SIZE); 1100 if (unlikely(npages > maxpages)) 1101 return maxpages; 1102 } 1103 return npages; 1104 } 1105 1106 int iov_iter_npages(const struct iov_iter *i, int maxpages) 1107 { 1108 if (unlikely(!i->count)) 1109 return 0; 1110 if (likely(iter_is_ubuf(i))) { 1111 unsigned offs = offset_in_page(i->ubuf + i->iov_offset); 1112 int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE); 1113 return min(npages, maxpages); 1114 } 1115 /* iovec and kvec have identical layouts */ 1116 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) 1117 return iov_npages(i, maxpages); 1118 if (iov_iter_is_bvec(i)) 1119 return bvec_npages(i, maxpages); 1120 if (iov_iter_is_xarray(i)) { 1121 unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE; 1122 int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE); 1123 return min(npages, maxpages); 1124 } 1125 return 0; 1126 } 1127 EXPORT_SYMBOL(iov_iter_npages); 1128 1129 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags) 1130 { 1131 *new = *old; 1132 if (iov_iter_is_bvec(new)) 1133 return new->bvec = kmemdup(new->bvec, 1134 new->nr_segs * sizeof(struct bio_vec), 1135 flags); 1136 else if (iov_iter_is_kvec(new) || iter_is_iovec(new)) 1137 /* iovec and kvec have identical layout */ 1138 return new->__iov = kmemdup(new->__iov, 1139 new->nr_segs * sizeof(struct iovec), 1140 flags); 1141 return NULL; 1142 } 1143 EXPORT_SYMBOL(dup_iter); 1144 1145 static __noclone int copy_compat_iovec_from_user(struct iovec *iov, 1146 const struct iovec __user *uvec, unsigned long nr_segs) 1147 { 1148 const struct compat_iovec __user *uiov = 1149 (const struct compat_iovec __user *)uvec; 1150 int ret = -EFAULT, i; 1151 1152 if (!user_access_begin(uiov, nr_segs * sizeof(*uiov))) 1153 return -EFAULT; 1154 1155 for (i = 0; i < nr_segs; i++) { 1156 compat_uptr_t buf; 1157 compat_ssize_t len; 1158 1159 unsafe_get_user(len, &uiov[i].iov_len, uaccess_end); 1160 unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end); 1161 1162 /* check for compat_size_t not fitting in compat_ssize_t .. */ 1163 if (len < 0) { 1164 ret = -EINVAL; 1165 goto uaccess_end; 1166 } 1167 iov[i].iov_base = compat_ptr(buf); 1168 iov[i].iov_len = len; 1169 } 1170 1171 ret = 0; 1172 uaccess_end: 1173 user_access_end(); 1174 return ret; 1175 } 1176 1177 static __noclone int copy_iovec_from_user(struct iovec *iov, 1178 const struct iovec __user *uiov, unsigned long nr_segs) 1179 { 1180 int ret = -EFAULT; 1181 1182 if (!user_access_begin(uiov, nr_segs * sizeof(*uiov))) 1183 return -EFAULT; 1184 1185 do { 1186 void __user *buf; 1187 ssize_t len; 1188 1189 unsafe_get_user(len, &uiov->iov_len, uaccess_end); 1190 unsafe_get_user(buf, &uiov->iov_base, uaccess_end); 1191 1192 /* check for size_t not fitting in ssize_t .. */ 1193 if (unlikely(len < 0)) { 1194 ret = -EINVAL; 1195 goto uaccess_end; 1196 } 1197 iov->iov_base = buf; 1198 iov->iov_len = len; 1199 1200 uiov++; iov++; 1201 } while (--nr_segs); 1202 1203 ret = 0; 1204 uaccess_end: 1205 user_access_end(); 1206 return ret; 1207 } 1208 1209 struct iovec *iovec_from_user(const struct iovec __user *uvec, 1210 unsigned long nr_segs, unsigned long fast_segs, 1211 struct iovec *fast_iov, bool compat) 1212 { 1213 struct iovec *iov = fast_iov; 1214 int ret; 1215 1216 /* 1217 * SuS says "The readv() function *may* fail if the iovcnt argument was 1218 * less than or equal to 0, or greater than {IOV_MAX}. Linux has 1219 * traditionally returned zero for zero segments, so... 1220 */ 1221 if (nr_segs == 0) 1222 return iov; 1223 if (nr_segs > UIO_MAXIOV) 1224 return ERR_PTR(-EINVAL); 1225 if (nr_segs > fast_segs) { 1226 iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL); 1227 if (!iov) 1228 return ERR_PTR(-ENOMEM); 1229 } 1230 1231 if (unlikely(compat)) 1232 ret = copy_compat_iovec_from_user(iov, uvec, nr_segs); 1233 else 1234 ret = copy_iovec_from_user(iov, uvec, nr_segs); 1235 if (ret) { 1236 if (iov != fast_iov) 1237 kfree(iov); 1238 return ERR_PTR(ret); 1239 } 1240 1241 return iov; 1242 } 1243 1244 /* 1245 * Single segment iovec supplied by the user, import it as ITER_UBUF. 1246 */ 1247 static ssize_t __import_iovec_ubuf(int type, const struct iovec __user *uvec, 1248 struct iovec **iovp, struct iov_iter *i, 1249 bool compat) 1250 { 1251 struct iovec *iov = *iovp; 1252 ssize_t ret; 1253 1254 if (compat) 1255 ret = copy_compat_iovec_from_user(iov, uvec, 1); 1256 else 1257 ret = copy_iovec_from_user(iov, uvec, 1); 1258 if (unlikely(ret)) 1259 return ret; 1260 1261 ret = import_ubuf(type, iov->iov_base, iov->iov_len, i); 1262 if (unlikely(ret)) 1263 return ret; 1264 *iovp = NULL; 1265 return i->count; 1266 } 1267 1268 ssize_t __import_iovec(int type, const struct iovec __user *uvec, 1269 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp, 1270 struct iov_iter *i, bool compat) 1271 { 1272 ssize_t total_len = 0; 1273 unsigned long seg; 1274 struct iovec *iov; 1275 1276 if (nr_segs == 1) 1277 return __import_iovec_ubuf(type, uvec, iovp, i, compat); 1278 1279 iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat); 1280 if (IS_ERR(iov)) { 1281 *iovp = NULL; 1282 return PTR_ERR(iov); 1283 } 1284 1285 /* 1286 * According to the Single Unix Specification we should return EINVAL if 1287 * an element length is < 0 when cast to ssize_t or if the total length 1288 * would overflow the ssize_t return value of the system call. 1289 * 1290 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the 1291 * overflow case. 1292 */ 1293 for (seg = 0; seg < nr_segs; seg++) { 1294 ssize_t len = (ssize_t)iov[seg].iov_len; 1295 1296 if (!access_ok(iov[seg].iov_base, len)) { 1297 if (iov != *iovp) 1298 kfree(iov); 1299 *iovp = NULL; 1300 return -EFAULT; 1301 } 1302 1303 if (len > MAX_RW_COUNT - total_len) { 1304 len = MAX_RW_COUNT - total_len; 1305 iov[seg].iov_len = len; 1306 } 1307 total_len += len; 1308 } 1309 1310 iov_iter_init(i, type, iov, nr_segs, total_len); 1311 if (iov == *iovp) 1312 *iovp = NULL; 1313 else 1314 *iovp = iov; 1315 return total_len; 1316 } 1317 1318 /** 1319 * import_iovec() - Copy an array of &struct iovec from userspace 1320 * into the kernel, check that it is valid, and initialize a new 1321 * &struct iov_iter iterator to access it. 1322 * 1323 * @type: One of %READ or %WRITE. 1324 * @uvec: Pointer to the userspace array. 1325 * @nr_segs: Number of elements in userspace array. 1326 * @fast_segs: Number of elements in @iov. 1327 * @iovp: (input and output parameter) Pointer to pointer to (usually small 1328 * on-stack) kernel array. 1329 * @i: Pointer to iterator that will be initialized on success. 1330 * 1331 * If the array pointed to by *@iov is large enough to hold all @nr_segs, 1332 * then this function places %NULL in *@iov on return. Otherwise, a new 1333 * array will be allocated and the result placed in *@iov. This means that 1334 * the caller may call kfree() on *@iov regardless of whether the small 1335 * on-stack array was used or not (and regardless of whether this function 1336 * returns an error or not). 1337 * 1338 * Return: Negative error code on error, bytes imported on success 1339 */ 1340 ssize_t import_iovec(int type, const struct iovec __user *uvec, 1341 unsigned nr_segs, unsigned fast_segs, 1342 struct iovec **iovp, struct iov_iter *i) 1343 { 1344 return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i, 1345 in_compat_syscall()); 1346 } 1347 EXPORT_SYMBOL(import_iovec); 1348 1349 int import_ubuf(int rw, void __user *buf, size_t len, struct iov_iter *i) 1350 { 1351 if (len > MAX_RW_COUNT) 1352 len = MAX_RW_COUNT; 1353 if (unlikely(!access_ok(buf, len))) 1354 return -EFAULT; 1355 1356 iov_iter_ubuf(i, rw, buf, len); 1357 return 0; 1358 } 1359 EXPORT_SYMBOL_GPL(import_ubuf); 1360 1361 /** 1362 * iov_iter_restore() - Restore a &struct iov_iter to the same state as when 1363 * iov_iter_save_state() was called. 1364 * 1365 * @i: &struct iov_iter to restore 1366 * @state: state to restore from 1367 * 1368 * Used after iov_iter_save_state() to bring restore @i, if operations may 1369 * have advanced it. 1370 * 1371 * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC 1372 */ 1373 void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state) 1374 { 1375 if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i) && 1376 !iter_is_ubuf(i)) && !iov_iter_is_kvec(i)) 1377 return; 1378 i->iov_offset = state->iov_offset; 1379 i->count = state->count; 1380 if (iter_is_ubuf(i)) 1381 return; 1382 /* 1383 * For the *vec iters, nr_segs + iov is constant - if we increment 1384 * the vec, then we also decrement the nr_segs count. Hence we don't 1385 * need to track both of these, just one is enough and we can deduct 1386 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct 1387 * size, so we can just increment the iov pointer as they are unionzed. 1388 * ITER_BVEC _may_ be the same size on some archs, but on others it is 1389 * not. Be safe and handle it separately. 1390 */ 1391 BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec)); 1392 if (iov_iter_is_bvec(i)) 1393 i->bvec -= state->nr_segs - i->nr_segs; 1394 else 1395 i->__iov -= state->nr_segs - i->nr_segs; 1396 i->nr_segs = state->nr_segs; 1397 } 1398 1399 /* 1400 * Extract a list of contiguous pages from an ITER_XARRAY iterator. This does not 1401 * get references on the pages, nor does it get a pin on them. 1402 */ 1403 static ssize_t iov_iter_extract_xarray_pages(struct iov_iter *i, 1404 struct page ***pages, size_t maxsize, 1405 unsigned int maxpages, 1406 iov_iter_extraction_t extraction_flags, 1407 size_t *offset0) 1408 { 1409 struct page *page, **p; 1410 unsigned int nr = 0, offset; 1411 loff_t pos = i->xarray_start + i->iov_offset; 1412 pgoff_t index = pos >> PAGE_SHIFT; 1413 XA_STATE(xas, i->xarray, index); 1414 1415 offset = pos & ~PAGE_MASK; 1416 *offset0 = offset; 1417 1418 maxpages = want_pages_array(pages, maxsize, offset, maxpages); 1419 if (!maxpages) 1420 return -ENOMEM; 1421 p = *pages; 1422 1423 rcu_read_lock(); 1424 for (page = xas_load(&xas); page; page = xas_next(&xas)) { 1425 if (xas_retry(&xas, page)) 1426 continue; 1427 1428 /* Has the page moved or been split? */ 1429 if (unlikely(page != xas_reload(&xas))) { 1430 xas_reset(&xas); 1431 continue; 1432 } 1433 1434 p[nr++] = find_subpage(page, xas.xa_index); 1435 if (nr == maxpages) 1436 break; 1437 } 1438 rcu_read_unlock(); 1439 1440 maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize); 1441 iov_iter_advance(i, maxsize); 1442 return maxsize; 1443 } 1444 1445 /* 1446 * Extract a list of contiguous pages from an ITER_BVEC iterator. This does 1447 * not get references on the pages, nor does it get a pin on them. 1448 */ 1449 static ssize_t iov_iter_extract_bvec_pages(struct iov_iter *i, 1450 struct page ***pages, size_t maxsize, 1451 unsigned int maxpages, 1452 iov_iter_extraction_t extraction_flags, 1453 size_t *offset0) 1454 { 1455 struct page **p, *page; 1456 size_t skip = i->iov_offset, offset, size; 1457 int k; 1458 1459 for (;;) { 1460 if (i->nr_segs == 0) 1461 return 0; 1462 size = min(maxsize, i->bvec->bv_len - skip); 1463 if (size) 1464 break; 1465 i->iov_offset = 0; 1466 i->nr_segs--; 1467 i->bvec++; 1468 skip = 0; 1469 } 1470 1471 skip += i->bvec->bv_offset; 1472 page = i->bvec->bv_page + skip / PAGE_SIZE; 1473 offset = skip % PAGE_SIZE; 1474 *offset0 = offset; 1475 1476 maxpages = want_pages_array(pages, size, offset, maxpages); 1477 if (!maxpages) 1478 return -ENOMEM; 1479 p = *pages; 1480 for (k = 0; k < maxpages; k++) 1481 p[k] = page + k; 1482 1483 size = min_t(size_t, size, maxpages * PAGE_SIZE - offset); 1484 iov_iter_advance(i, size); 1485 return size; 1486 } 1487 1488 /* 1489 * Extract a list of virtually contiguous pages from an ITER_KVEC iterator. 1490 * This does not get references on the pages, nor does it get a pin on them. 1491 */ 1492 static ssize_t iov_iter_extract_kvec_pages(struct iov_iter *i, 1493 struct page ***pages, size_t maxsize, 1494 unsigned int maxpages, 1495 iov_iter_extraction_t extraction_flags, 1496 size_t *offset0) 1497 { 1498 struct page **p, *page; 1499 const void *kaddr; 1500 size_t skip = i->iov_offset, offset, len, size; 1501 int k; 1502 1503 for (;;) { 1504 if (i->nr_segs == 0) 1505 return 0; 1506 size = min(maxsize, i->kvec->iov_len - skip); 1507 if (size) 1508 break; 1509 i->iov_offset = 0; 1510 i->nr_segs--; 1511 i->kvec++; 1512 skip = 0; 1513 } 1514 1515 kaddr = i->kvec->iov_base + skip; 1516 offset = (unsigned long)kaddr & ~PAGE_MASK; 1517 *offset0 = offset; 1518 1519 maxpages = want_pages_array(pages, size, offset, maxpages); 1520 if (!maxpages) 1521 return -ENOMEM; 1522 p = *pages; 1523 1524 kaddr -= offset; 1525 len = offset + size; 1526 for (k = 0; k < maxpages; k++) { 1527 size_t seg = min_t(size_t, len, PAGE_SIZE); 1528 1529 if (is_vmalloc_or_module_addr(kaddr)) 1530 page = vmalloc_to_page(kaddr); 1531 else 1532 page = virt_to_page(kaddr); 1533 1534 p[k] = page; 1535 len -= seg; 1536 kaddr += PAGE_SIZE; 1537 } 1538 1539 size = min_t(size_t, size, maxpages * PAGE_SIZE - offset); 1540 iov_iter_advance(i, size); 1541 return size; 1542 } 1543 1544 /* 1545 * Extract a list of contiguous pages from a user iterator and get a pin on 1546 * each of them. This should only be used if the iterator is user-backed 1547 * (IOBUF/UBUF). 1548 * 1549 * It does not get refs on the pages, but the pages must be unpinned by the 1550 * caller once the transfer is complete. 1551 * 1552 * This is safe to be used where background IO/DMA *is* going to be modifying 1553 * the buffer; using a pin rather than a ref makes forces fork() to give the 1554 * child a copy of the page. 1555 */ 1556 static ssize_t iov_iter_extract_user_pages(struct iov_iter *i, 1557 struct page ***pages, 1558 size_t maxsize, 1559 unsigned int maxpages, 1560 iov_iter_extraction_t extraction_flags, 1561 size_t *offset0) 1562 { 1563 unsigned long addr; 1564 unsigned int gup_flags = 0; 1565 size_t offset; 1566 int res; 1567 1568 if (i->data_source == ITER_DEST) 1569 gup_flags |= FOLL_WRITE; 1570 if (extraction_flags & ITER_ALLOW_P2PDMA) 1571 gup_flags |= FOLL_PCI_P2PDMA; 1572 if (i->nofault) 1573 gup_flags |= FOLL_NOFAULT; 1574 1575 addr = first_iovec_segment(i, &maxsize); 1576 *offset0 = offset = addr % PAGE_SIZE; 1577 addr &= PAGE_MASK; 1578 maxpages = want_pages_array(pages, maxsize, offset, maxpages); 1579 if (!maxpages) 1580 return -ENOMEM; 1581 res = pin_user_pages_fast(addr, maxpages, gup_flags, *pages); 1582 if (unlikely(res <= 0)) 1583 return res; 1584 maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - offset); 1585 iov_iter_advance(i, maxsize); 1586 return maxsize; 1587 } 1588 1589 /** 1590 * iov_iter_extract_pages - Extract a list of contiguous pages from an iterator 1591 * @i: The iterator to extract from 1592 * @pages: Where to return the list of pages 1593 * @maxsize: The maximum amount of iterator to extract 1594 * @maxpages: The maximum size of the list of pages 1595 * @extraction_flags: Flags to qualify request 1596 * @offset0: Where to return the starting offset into (*@pages)[0] 1597 * 1598 * Extract a list of contiguous pages from the current point of the iterator, 1599 * advancing the iterator. The maximum number of pages and the maximum amount 1600 * of page contents can be set. 1601 * 1602 * If *@pages is NULL, a page list will be allocated to the required size and 1603 * *@pages will be set to its base. If *@pages is not NULL, it will be assumed 1604 * that the caller allocated a page list at least @maxpages in size and this 1605 * will be filled in. 1606 * 1607 * @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA 1608 * be allowed on the pages extracted. 1609 * 1610 * The iov_iter_extract_will_pin() function can be used to query how cleanup 1611 * should be performed. 1612 * 1613 * Extra refs or pins on the pages may be obtained as follows: 1614 * 1615 * (*) If the iterator is user-backed (ITER_IOVEC/ITER_UBUF), pins will be 1616 * added to the pages, but refs will not be taken. 1617 * iov_iter_extract_will_pin() will return true. 1618 * 1619 * (*) If the iterator is ITER_KVEC, ITER_BVEC or ITER_XARRAY, the pages are 1620 * merely listed; no extra refs or pins are obtained. 1621 * iov_iter_extract_will_pin() will return 0. 1622 * 1623 * Note also: 1624 * 1625 * (*) Use with ITER_DISCARD is not supported as that has no content. 1626 * 1627 * On success, the function sets *@pages to the new pagelist, if allocated, and 1628 * sets *offset0 to the offset into the first page. 1629 * 1630 * It may also return -ENOMEM and -EFAULT. 1631 */ 1632 ssize_t iov_iter_extract_pages(struct iov_iter *i, 1633 struct page ***pages, 1634 size_t maxsize, 1635 unsigned int maxpages, 1636 iov_iter_extraction_t extraction_flags, 1637 size_t *offset0) 1638 { 1639 maxsize = min_t(size_t, min_t(size_t, maxsize, i->count), MAX_RW_COUNT); 1640 if (!maxsize) 1641 return 0; 1642 1643 if (likely(user_backed_iter(i))) 1644 return iov_iter_extract_user_pages(i, pages, maxsize, 1645 maxpages, extraction_flags, 1646 offset0); 1647 if (iov_iter_is_kvec(i)) 1648 return iov_iter_extract_kvec_pages(i, pages, maxsize, 1649 maxpages, extraction_flags, 1650 offset0); 1651 if (iov_iter_is_bvec(i)) 1652 return iov_iter_extract_bvec_pages(i, pages, maxsize, 1653 maxpages, extraction_flags, 1654 offset0); 1655 if (iov_iter_is_xarray(i)) 1656 return iov_iter_extract_xarray_pages(i, pages, maxsize, 1657 maxpages, extraction_flags, 1658 offset0); 1659 return -EFAULT; 1660 } 1661 EXPORT_SYMBOL_GPL(iov_iter_extract_pages); 1662