xref: /linux/lib/iov_iter.c (revision a97f9c8fcc6ed16f956346368fde3b1198163f6c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/export.h>
3 #include <linux/bvec.h>
4 #include <linux/fault-inject-usercopy.h>
5 #include <linux/uio.h>
6 #include <linux/pagemap.h>
7 #include <linux/highmem.h>
8 #include <linux/slab.h>
9 #include <linux/vmalloc.h>
10 #include <linux/splice.h>
11 #include <linux/compat.h>
12 #include <linux/scatterlist.h>
13 #include <linux/instrumented.h>
14 #include <linux/iov_iter.h>
15 
16 static __always_inline
17 size_t copy_to_user_iter(void __user *iter_to, size_t progress,
18 			 size_t len, void *from, void *priv2)
19 {
20 	if (should_fail_usercopy())
21 		return len;
22 	if (access_ok(iter_to, len)) {
23 		from += progress;
24 		instrument_copy_to_user(iter_to, from, len);
25 		len = raw_copy_to_user(iter_to, from, len);
26 	}
27 	return len;
28 }
29 
30 static __always_inline
31 size_t copy_to_user_iter_nofault(void __user *iter_to, size_t progress,
32 				 size_t len, void *from, void *priv2)
33 {
34 	ssize_t res;
35 
36 	if (should_fail_usercopy())
37 		return len;
38 
39 	from += progress;
40 	res = copy_to_user_nofault(iter_to, from, len);
41 	return res < 0 ? len : res;
42 }
43 
44 static __always_inline
45 size_t copy_from_user_iter(void __user *iter_from, size_t progress,
46 			   size_t len, void *to, void *priv2)
47 {
48 	size_t res = len;
49 
50 	if (should_fail_usercopy())
51 		return len;
52 	if (access_ok(iter_from, len)) {
53 		to += progress;
54 		instrument_copy_from_user_before(to, iter_from, len);
55 		res = raw_copy_from_user(to, iter_from, len);
56 		instrument_copy_from_user_after(to, iter_from, len, res);
57 	}
58 	return res;
59 }
60 
61 static __always_inline
62 size_t memcpy_to_iter(void *iter_to, size_t progress,
63 		      size_t len, void *from, void *priv2)
64 {
65 	memcpy(iter_to, from + progress, len);
66 	return 0;
67 }
68 
69 static __always_inline
70 size_t memcpy_from_iter(void *iter_from, size_t progress,
71 			size_t len, void *to, void *priv2)
72 {
73 	memcpy(to + progress, iter_from, len);
74 	return 0;
75 }
76 
77 /*
78  * fault_in_iov_iter_readable - fault in iov iterator for reading
79  * @i: iterator
80  * @size: maximum length
81  *
82  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
83  * @size.  For each iovec, fault in each page that constitutes the iovec.
84  *
85  * Returns the number of bytes not faulted in (like copy_to_user() and
86  * copy_from_user()).
87  *
88  * Always returns 0 for non-userspace iterators.
89  */
90 size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size)
91 {
92 	if (iter_is_ubuf(i)) {
93 		size_t n = min(size, iov_iter_count(i));
94 		n -= fault_in_readable(i->ubuf + i->iov_offset, n);
95 		return size - n;
96 	} else if (iter_is_iovec(i)) {
97 		size_t count = min(size, iov_iter_count(i));
98 		const struct iovec *p;
99 		size_t skip;
100 
101 		size -= count;
102 		for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) {
103 			size_t len = min(count, p->iov_len - skip);
104 			size_t ret;
105 
106 			if (unlikely(!len))
107 				continue;
108 			ret = fault_in_readable(p->iov_base + skip, len);
109 			count -= len - ret;
110 			if (ret)
111 				break;
112 		}
113 		return count + size;
114 	}
115 	return 0;
116 }
117 EXPORT_SYMBOL(fault_in_iov_iter_readable);
118 
119 /*
120  * fault_in_iov_iter_writeable - fault in iov iterator for writing
121  * @i: iterator
122  * @size: maximum length
123  *
124  * Faults in the iterator using get_user_pages(), i.e., without triggering
125  * hardware page faults.  This is primarily useful when we already know that
126  * some or all of the pages in @i aren't in memory.
127  *
128  * Returns the number of bytes not faulted in, like copy_to_user() and
129  * copy_from_user().
130  *
131  * Always returns 0 for non-user-space iterators.
132  */
133 size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size)
134 {
135 	if (iter_is_ubuf(i)) {
136 		size_t n = min(size, iov_iter_count(i));
137 		n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n);
138 		return size - n;
139 	} else if (iter_is_iovec(i)) {
140 		size_t count = min(size, iov_iter_count(i));
141 		const struct iovec *p;
142 		size_t skip;
143 
144 		size -= count;
145 		for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) {
146 			size_t len = min(count, p->iov_len - skip);
147 			size_t ret;
148 
149 			if (unlikely(!len))
150 				continue;
151 			ret = fault_in_safe_writeable(p->iov_base + skip, len);
152 			count -= len - ret;
153 			if (ret)
154 				break;
155 		}
156 		return count + size;
157 	}
158 	return 0;
159 }
160 EXPORT_SYMBOL(fault_in_iov_iter_writeable);
161 
162 void iov_iter_init(struct iov_iter *i, unsigned int direction,
163 			const struct iovec *iov, unsigned long nr_segs,
164 			size_t count)
165 {
166 	WARN_ON(direction & ~(READ | WRITE));
167 	*i = (struct iov_iter) {
168 		.iter_type = ITER_IOVEC,
169 		.nofault = false,
170 		.data_source = direction,
171 		.__iov = iov,
172 		.nr_segs = nr_segs,
173 		.iov_offset = 0,
174 		.count = count
175 	};
176 }
177 EXPORT_SYMBOL(iov_iter_init);
178 
179 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
180 {
181 	if (WARN_ON_ONCE(i->data_source))
182 		return 0;
183 	if (user_backed_iter(i))
184 		might_fault();
185 	return iterate_and_advance(i, bytes, (void *)addr,
186 				   copy_to_user_iter, memcpy_to_iter);
187 }
188 EXPORT_SYMBOL(_copy_to_iter);
189 
190 #ifdef CONFIG_ARCH_HAS_COPY_MC
191 static __always_inline
192 size_t copy_to_user_iter_mc(void __user *iter_to, size_t progress,
193 			    size_t len, void *from, void *priv2)
194 {
195 	if (access_ok(iter_to, len)) {
196 		from += progress;
197 		instrument_copy_to_user(iter_to, from, len);
198 		len = copy_mc_to_user(iter_to, from, len);
199 	}
200 	return len;
201 }
202 
203 static __always_inline
204 size_t memcpy_to_iter_mc(void *iter_to, size_t progress,
205 			 size_t len, void *from, void *priv2)
206 {
207 	return copy_mc_to_kernel(iter_to, from + progress, len);
208 }
209 
210 /**
211  * _copy_mc_to_iter - copy to iter with source memory error exception handling
212  * @addr: source kernel address
213  * @bytes: total transfer length
214  * @i: destination iterator
215  *
216  * The pmem driver deploys this for the dax operation
217  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
218  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
219  * successfully copied.
220  *
221  * The main differences between this and typical _copy_to_iter().
222  *
223  * * Typical tail/residue handling after a fault retries the copy
224  *   byte-by-byte until the fault happens again. Re-triggering machine
225  *   checks is potentially fatal so the implementation uses source
226  *   alignment and poison alignment assumptions to avoid re-triggering
227  *   hardware exceptions.
228  *
229  * * ITER_KVEC and ITER_BVEC can return short copies.  Compare to
230  *   copy_to_iter() where only ITER_IOVEC attempts might return a short copy.
231  *
232  * Return: number of bytes copied (may be %0)
233  */
234 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
235 {
236 	if (WARN_ON_ONCE(i->data_source))
237 		return 0;
238 	if (user_backed_iter(i))
239 		might_fault();
240 	return iterate_and_advance(i, bytes, (void *)addr,
241 				   copy_to_user_iter_mc, memcpy_to_iter_mc);
242 }
243 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
244 #endif /* CONFIG_ARCH_HAS_COPY_MC */
245 
246 static __always_inline
247 size_t __copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
248 {
249 	return iterate_and_advance(i, bytes, addr,
250 				   copy_from_user_iter, memcpy_from_iter);
251 }
252 
253 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
254 {
255 	if (WARN_ON_ONCE(!i->data_source))
256 		return 0;
257 
258 	if (user_backed_iter(i))
259 		might_fault();
260 	return __copy_from_iter(addr, bytes, i);
261 }
262 EXPORT_SYMBOL(_copy_from_iter);
263 
264 static __always_inline
265 size_t copy_from_user_iter_nocache(void __user *iter_from, size_t progress,
266 				   size_t len, void *to, void *priv2)
267 {
268 	return __copy_from_user_inatomic_nocache(to + progress, iter_from, len);
269 }
270 
271 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
272 {
273 	if (WARN_ON_ONCE(!i->data_source))
274 		return 0;
275 
276 	return iterate_and_advance(i, bytes, addr,
277 				   copy_from_user_iter_nocache,
278 				   memcpy_from_iter);
279 }
280 EXPORT_SYMBOL(_copy_from_iter_nocache);
281 
282 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
283 static __always_inline
284 size_t copy_from_user_iter_flushcache(void __user *iter_from, size_t progress,
285 				      size_t len, void *to, void *priv2)
286 {
287 	return __copy_from_user_flushcache(to + progress, iter_from, len);
288 }
289 
290 static __always_inline
291 size_t memcpy_from_iter_flushcache(void *iter_from, size_t progress,
292 				   size_t len, void *to, void *priv2)
293 {
294 	memcpy_flushcache(to + progress, iter_from, len);
295 	return 0;
296 }
297 
298 /**
299  * _copy_from_iter_flushcache - write destination through cpu cache
300  * @addr: destination kernel address
301  * @bytes: total transfer length
302  * @i: source iterator
303  *
304  * The pmem driver arranges for filesystem-dax to use this facility via
305  * dax_copy_from_iter() for ensuring that writes to persistent memory
306  * are flushed through the CPU cache. It is differentiated from
307  * _copy_from_iter_nocache() in that guarantees all data is flushed for
308  * all iterator types. The _copy_from_iter_nocache() only attempts to
309  * bypass the cache for the ITER_IOVEC case, and on some archs may use
310  * instructions that strand dirty-data in the cache.
311  *
312  * Return: number of bytes copied (may be %0)
313  */
314 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
315 {
316 	if (WARN_ON_ONCE(!i->data_source))
317 		return 0;
318 
319 	return iterate_and_advance(i, bytes, addr,
320 				   copy_from_user_iter_flushcache,
321 				   memcpy_from_iter_flushcache);
322 }
323 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
324 #endif
325 
326 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
327 {
328 	struct page *head;
329 	size_t v = n + offset;
330 
331 	/*
332 	 * The general case needs to access the page order in order
333 	 * to compute the page size.
334 	 * However, we mostly deal with order-0 pages and thus can
335 	 * avoid a possible cache line miss for requests that fit all
336 	 * page orders.
337 	 */
338 	if (n <= v && v <= PAGE_SIZE)
339 		return true;
340 
341 	head = compound_head(page);
342 	v += (page - head) << PAGE_SHIFT;
343 
344 	if (WARN_ON(n > v || v > page_size(head)))
345 		return false;
346 	return true;
347 }
348 
349 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
350 			 struct iov_iter *i)
351 {
352 	size_t res = 0;
353 	if (!page_copy_sane(page, offset, bytes))
354 		return 0;
355 	if (WARN_ON_ONCE(i->data_source))
356 		return 0;
357 	page += offset / PAGE_SIZE; // first subpage
358 	offset %= PAGE_SIZE;
359 	while (1) {
360 		void *kaddr = kmap_local_page(page);
361 		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
362 		n = _copy_to_iter(kaddr + offset, n, i);
363 		kunmap_local(kaddr);
364 		res += n;
365 		bytes -= n;
366 		if (!bytes || !n)
367 			break;
368 		offset += n;
369 		if (offset == PAGE_SIZE) {
370 			page++;
371 			offset = 0;
372 		}
373 	}
374 	return res;
375 }
376 EXPORT_SYMBOL(copy_page_to_iter);
377 
378 size_t copy_page_to_iter_nofault(struct page *page, unsigned offset, size_t bytes,
379 				 struct iov_iter *i)
380 {
381 	size_t res = 0;
382 
383 	if (!page_copy_sane(page, offset, bytes))
384 		return 0;
385 	if (WARN_ON_ONCE(i->data_source))
386 		return 0;
387 	page += offset / PAGE_SIZE; // first subpage
388 	offset %= PAGE_SIZE;
389 	while (1) {
390 		void *kaddr = kmap_local_page(page);
391 		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
392 
393 		n = iterate_and_advance(i, n, kaddr + offset,
394 					copy_to_user_iter_nofault,
395 					memcpy_to_iter);
396 		kunmap_local(kaddr);
397 		res += n;
398 		bytes -= n;
399 		if (!bytes || !n)
400 			break;
401 		offset += n;
402 		if (offset == PAGE_SIZE) {
403 			page++;
404 			offset = 0;
405 		}
406 	}
407 	return res;
408 }
409 EXPORT_SYMBOL(copy_page_to_iter_nofault);
410 
411 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
412 			 struct iov_iter *i)
413 {
414 	size_t res = 0;
415 	if (!page_copy_sane(page, offset, bytes))
416 		return 0;
417 	page += offset / PAGE_SIZE; // first subpage
418 	offset %= PAGE_SIZE;
419 	while (1) {
420 		void *kaddr = kmap_local_page(page);
421 		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
422 		n = _copy_from_iter(kaddr + offset, n, i);
423 		kunmap_local(kaddr);
424 		res += n;
425 		bytes -= n;
426 		if (!bytes || !n)
427 			break;
428 		offset += n;
429 		if (offset == PAGE_SIZE) {
430 			page++;
431 			offset = 0;
432 		}
433 	}
434 	return res;
435 }
436 EXPORT_SYMBOL(copy_page_from_iter);
437 
438 static __always_inline
439 size_t zero_to_user_iter(void __user *iter_to, size_t progress,
440 			 size_t len, void *priv, void *priv2)
441 {
442 	return clear_user(iter_to, len);
443 }
444 
445 static __always_inline
446 size_t zero_to_iter(void *iter_to, size_t progress,
447 		    size_t len, void *priv, void *priv2)
448 {
449 	memset(iter_to, 0, len);
450 	return 0;
451 }
452 
453 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
454 {
455 	return iterate_and_advance(i, bytes, NULL,
456 				   zero_to_user_iter, zero_to_iter);
457 }
458 EXPORT_SYMBOL(iov_iter_zero);
459 
460 size_t copy_page_from_iter_atomic(struct page *page, size_t offset,
461 		size_t bytes, struct iov_iter *i)
462 {
463 	size_t n, copied = 0;
464 
465 	if (!page_copy_sane(page, offset, bytes))
466 		return 0;
467 	if (WARN_ON_ONCE(!i->data_source))
468 		return 0;
469 
470 	do {
471 		char *p;
472 
473 		n = bytes - copied;
474 		if (PageHighMem(page)) {
475 			page += offset / PAGE_SIZE;
476 			offset %= PAGE_SIZE;
477 			n = min_t(size_t, n, PAGE_SIZE - offset);
478 		}
479 
480 		p = kmap_atomic(page) + offset;
481 		n = __copy_from_iter(p, n, i);
482 		kunmap_atomic(p);
483 		copied += n;
484 		offset += n;
485 	} while (PageHighMem(page) && copied != bytes && n > 0);
486 
487 	return copied;
488 }
489 EXPORT_SYMBOL(copy_page_from_iter_atomic);
490 
491 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
492 {
493 	const struct bio_vec *bvec, *end;
494 
495 	if (!i->count)
496 		return;
497 	i->count -= size;
498 
499 	size += i->iov_offset;
500 
501 	for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) {
502 		if (likely(size < bvec->bv_len))
503 			break;
504 		size -= bvec->bv_len;
505 	}
506 	i->iov_offset = size;
507 	i->nr_segs -= bvec - i->bvec;
508 	i->bvec = bvec;
509 }
510 
511 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
512 {
513 	const struct iovec *iov, *end;
514 
515 	if (!i->count)
516 		return;
517 	i->count -= size;
518 
519 	size += i->iov_offset; // from beginning of current segment
520 	for (iov = iter_iov(i), end = iov + i->nr_segs; iov < end; iov++) {
521 		if (likely(size < iov->iov_len))
522 			break;
523 		size -= iov->iov_len;
524 	}
525 	i->iov_offset = size;
526 	i->nr_segs -= iov - iter_iov(i);
527 	i->__iov = iov;
528 }
529 
530 void iov_iter_advance(struct iov_iter *i, size_t size)
531 {
532 	if (unlikely(i->count < size))
533 		size = i->count;
534 	if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) {
535 		i->iov_offset += size;
536 		i->count -= size;
537 	} else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
538 		/* iovec and kvec have identical layouts */
539 		iov_iter_iovec_advance(i, size);
540 	} else if (iov_iter_is_bvec(i)) {
541 		iov_iter_bvec_advance(i, size);
542 	} else if (iov_iter_is_discard(i)) {
543 		i->count -= size;
544 	}
545 }
546 EXPORT_SYMBOL(iov_iter_advance);
547 
548 void iov_iter_revert(struct iov_iter *i, size_t unroll)
549 {
550 	if (!unroll)
551 		return;
552 	if (WARN_ON(unroll > MAX_RW_COUNT))
553 		return;
554 	i->count += unroll;
555 	if (unlikely(iov_iter_is_discard(i)))
556 		return;
557 	if (unroll <= i->iov_offset) {
558 		i->iov_offset -= unroll;
559 		return;
560 	}
561 	unroll -= i->iov_offset;
562 	if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) {
563 		BUG(); /* We should never go beyond the start of the specified
564 			* range since we might then be straying into pages that
565 			* aren't pinned.
566 			*/
567 	} else if (iov_iter_is_bvec(i)) {
568 		const struct bio_vec *bvec = i->bvec;
569 		while (1) {
570 			size_t n = (--bvec)->bv_len;
571 			i->nr_segs++;
572 			if (unroll <= n) {
573 				i->bvec = bvec;
574 				i->iov_offset = n - unroll;
575 				return;
576 			}
577 			unroll -= n;
578 		}
579 	} else { /* same logics for iovec and kvec */
580 		const struct iovec *iov = iter_iov(i);
581 		while (1) {
582 			size_t n = (--iov)->iov_len;
583 			i->nr_segs++;
584 			if (unroll <= n) {
585 				i->__iov = iov;
586 				i->iov_offset = n - unroll;
587 				return;
588 			}
589 			unroll -= n;
590 		}
591 	}
592 }
593 EXPORT_SYMBOL(iov_iter_revert);
594 
595 /*
596  * Return the count of just the current iov_iter segment.
597  */
598 size_t iov_iter_single_seg_count(const struct iov_iter *i)
599 {
600 	if (i->nr_segs > 1) {
601 		if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
602 			return min(i->count, iter_iov(i)->iov_len - i->iov_offset);
603 		if (iov_iter_is_bvec(i))
604 			return min(i->count, i->bvec->bv_len - i->iov_offset);
605 	}
606 	return i->count;
607 }
608 EXPORT_SYMBOL(iov_iter_single_seg_count);
609 
610 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
611 			const struct kvec *kvec, unsigned long nr_segs,
612 			size_t count)
613 {
614 	WARN_ON(direction & ~(READ | WRITE));
615 	*i = (struct iov_iter){
616 		.iter_type = ITER_KVEC,
617 		.data_source = direction,
618 		.kvec = kvec,
619 		.nr_segs = nr_segs,
620 		.iov_offset = 0,
621 		.count = count
622 	};
623 }
624 EXPORT_SYMBOL(iov_iter_kvec);
625 
626 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
627 			const struct bio_vec *bvec, unsigned long nr_segs,
628 			size_t count)
629 {
630 	WARN_ON(direction & ~(READ | WRITE));
631 	*i = (struct iov_iter){
632 		.iter_type = ITER_BVEC,
633 		.data_source = direction,
634 		.bvec = bvec,
635 		.nr_segs = nr_segs,
636 		.iov_offset = 0,
637 		.count = count
638 	};
639 }
640 EXPORT_SYMBOL(iov_iter_bvec);
641 
642 /**
643  * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
644  * @i: The iterator to initialise.
645  * @direction: The direction of the transfer.
646  * @xarray: The xarray to access.
647  * @start: The start file position.
648  * @count: The size of the I/O buffer in bytes.
649  *
650  * Set up an I/O iterator to either draw data out of the pages attached to an
651  * inode or to inject data into those pages.  The pages *must* be prevented
652  * from evaporation, either by taking a ref on them or locking them by the
653  * caller.
654  */
655 void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
656 		     struct xarray *xarray, loff_t start, size_t count)
657 {
658 	BUG_ON(direction & ~1);
659 	*i = (struct iov_iter) {
660 		.iter_type = ITER_XARRAY,
661 		.data_source = direction,
662 		.xarray = xarray,
663 		.xarray_start = start,
664 		.count = count,
665 		.iov_offset = 0
666 	};
667 }
668 EXPORT_SYMBOL(iov_iter_xarray);
669 
670 /**
671  * iov_iter_discard - Initialise an I/O iterator that discards data
672  * @i: The iterator to initialise.
673  * @direction: The direction of the transfer.
674  * @count: The size of the I/O buffer in bytes.
675  *
676  * Set up an I/O iterator that just discards everything that's written to it.
677  * It's only available as a READ iterator.
678  */
679 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
680 {
681 	BUG_ON(direction != READ);
682 	*i = (struct iov_iter){
683 		.iter_type = ITER_DISCARD,
684 		.data_source = false,
685 		.count = count,
686 		.iov_offset = 0
687 	};
688 }
689 EXPORT_SYMBOL(iov_iter_discard);
690 
691 static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask,
692 				   unsigned len_mask)
693 {
694 	size_t size = i->count;
695 	size_t skip = i->iov_offset;
696 	unsigned k;
697 
698 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
699 		const struct iovec *iov = iter_iov(i) + k;
700 		size_t len = iov->iov_len - skip;
701 
702 		if (len > size)
703 			len = size;
704 		if (len & len_mask)
705 			return false;
706 		if ((unsigned long)(iov->iov_base + skip) & addr_mask)
707 			return false;
708 
709 		size -= len;
710 		if (!size)
711 			break;
712 	}
713 	return true;
714 }
715 
716 static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask,
717 				  unsigned len_mask)
718 {
719 	size_t size = i->count;
720 	unsigned skip = i->iov_offset;
721 	unsigned k;
722 
723 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
724 		size_t len = i->bvec[k].bv_len - skip;
725 
726 		if (len > size)
727 			len = size;
728 		if (len & len_mask)
729 			return false;
730 		if ((unsigned long)(i->bvec[k].bv_offset + skip) & addr_mask)
731 			return false;
732 
733 		size -= len;
734 		if (!size)
735 			break;
736 	}
737 	return true;
738 }
739 
740 /**
741  * iov_iter_is_aligned() - Check if the addresses and lengths of each segments
742  * 	are aligned to the parameters.
743  *
744  * @i: &struct iov_iter to restore
745  * @addr_mask: bit mask to check against the iov element's addresses
746  * @len_mask: bit mask to check against the iov element's lengths
747  *
748  * Return: false if any addresses or lengths intersect with the provided masks
749  */
750 bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask,
751 			 unsigned len_mask)
752 {
753 	if (likely(iter_is_ubuf(i))) {
754 		if (i->count & len_mask)
755 			return false;
756 		if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask)
757 			return false;
758 		return true;
759 	}
760 
761 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
762 		return iov_iter_aligned_iovec(i, addr_mask, len_mask);
763 
764 	if (iov_iter_is_bvec(i))
765 		return iov_iter_aligned_bvec(i, addr_mask, len_mask);
766 
767 	if (iov_iter_is_xarray(i)) {
768 		if (i->count & len_mask)
769 			return false;
770 		if ((i->xarray_start + i->iov_offset) & addr_mask)
771 			return false;
772 	}
773 
774 	return true;
775 }
776 EXPORT_SYMBOL_GPL(iov_iter_is_aligned);
777 
778 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
779 {
780 	unsigned long res = 0;
781 	size_t size = i->count;
782 	size_t skip = i->iov_offset;
783 	unsigned k;
784 
785 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
786 		const struct iovec *iov = iter_iov(i) + k;
787 		size_t len = iov->iov_len - skip;
788 		if (len) {
789 			res |= (unsigned long)iov->iov_base + skip;
790 			if (len > size)
791 				len = size;
792 			res |= len;
793 			size -= len;
794 			if (!size)
795 				break;
796 		}
797 	}
798 	return res;
799 }
800 
801 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
802 {
803 	unsigned res = 0;
804 	size_t size = i->count;
805 	unsigned skip = i->iov_offset;
806 	unsigned k;
807 
808 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
809 		size_t len = i->bvec[k].bv_len - skip;
810 		res |= (unsigned long)i->bvec[k].bv_offset + skip;
811 		if (len > size)
812 			len = size;
813 		res |= len;
814 		size -= len;
815 		if (!size)
816 			break;
817 	}
818 	return res;
819 }
820 
821 unsigned long iov_iter_alignment(const struct iov_iter *i)
822 {
823 	if (likely(iter_is_ubuf(i))) {
824 		size_t size = i->count;
825 		if (size)
826 			return ((unsigned long)i->ubuf + i->iov_offset) | size;
827 		return 0;
828 	}
829 
830 	/* iovec and kvec have identical layouts */
831 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
832 		return iov_iter_alignment_iovec(i);
833 
834 	if (iov_iter_is_bvec(i))
835 		return iov_iter_alignment_bvec(i);
836 
837 	if (iov_iter_is_xarray(i))
838 		return (i->xarray_start + i->iov_offset) | i->count;
839 
840 	return 0;
841 }
842 EXPORT_SYMBOL(iov_iter_alignment);
843 
844 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
845 {
846 	unsigned long res = 0;
847 	unsigned long v = 0;
848 	size_t size = i->count;
849 	unsigned k;
850 
851 	if (iter_is_ubuf(i))
852 		return 0;
853 
854 	if (WARN_ON(!iter_is_iovec(i)))
855 		return ~0U;
856 
857 	for (k = 0; k < i->nr_segs; k++) {
858 		const struct iovec *iov = iter_iov(i) + k;
859 		if (iov->iov_len) {
860 			unsigned long base = (unsigned long)iov->iov_base;
861 			if (v) // if not the first one
862 				res |= base | v; // this start | previous end
863 			v = base + iov->iov_len;
864 			if (size <= iov->iov_len)
865 				break;
866 			size -= iov->iov_len;
867 		}
868 	}
869 	return res;
870 }
871 EXPORT_SYMBOL(iov_iter_gap_alignment);
872 
873 static int want_pages_array(struct page ***res, size_t size,
874 			    size_t start, unsigned int maxpages)
875 {
876 	unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE);
877 
878 	if (count > maxpages)
879 		count = maxpages;
880 	WARN_ON(!count);	// caller should've prevented that
881 	if (!*res) {
882 		*res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL);
883 		if (!*res)
884 			return 0;
885 	}
886 	return count;
887 }
888 
889 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
890 					  pgoff_t index, unsigned int nr_pages)
891 {
892 	XA_STATE(xas, xa, index);
893 	struct page *page;
894 	unsigned int ret = 0;
895 
896 	rcu_read_lock();
897 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
898 		if (xas_retry(&xas, page))
899 			continue;
900 
901 		/* Has the page moved or been split? */
902 		if (unlikely(page != xas_reload(&xas))) {
903 			xas_reset(&xas);
904 			continue;
905 		}
906 
907 		pages[ret] = find_subpage(page, xas.xa_index);
908 		get_page(pages[ret]);
909 		if (++ret == nr_pages)
910 			break;
911 	}
912 	rcu_read_unlock();
913 	return ret;
914 }
915 
916 static ssize_t iter_xarray_get_pages(struct iov_iter *i,
917 				     struct page ***pages, size_t maxsize,
918 				     unsigned maxpages, size_t *_start_offset)
919 {
920 	unsigned nr, offset, count;
921 	pgoff_t index;
922 	loff_t pos;
923 
924 	pos = i->xarray_start + i->iov_offset;
925 	index = pos >> PAGE_SHIFT;
926 	offset = pos & ~PAGE_MASK;
927 	*_start_offset = offset;
928 
929 	count = want_pages_array(pages, maxsize, offset, maxpages);
930 	if (!count)
931 		return -ENOMEM;
932 	nr = iter_xarray_populate_pages(*pages, i->xarray, index, count);
933 	if (nr == 0)
934 		return 0;
935 
936 	maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
937 	i->iov_offset += maxsize;
938 	i->count -= maxsize;
939 	return maxsize;
940 }
941 
942 /* must be done on non-empty ITER_UBUF or ITER_IOVEC one */
943 static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size)
944 {
945 	size_t skip;
946 	long k;
947 
948 	if (iter_is_ubuf(i))
949 		return (unsigned long)i->ubuf + i->iov_offset;
950 
951 	for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
952 		const struct iovec *iov = iter_iov(i) + k;
953 		size_t len = iov->iov_len - skip;
954 
955 		if (unlikely(!len))
956 			continue;
957 		if (*size > len)
958 			*size = len;
959 		return (unsigned long)iov->iov_base + skip;
960 	}
961 	BUG(); // if it had been empty, we wouldn't get called
962 }
963 
964 /* must be done on non-empty ITER_BVEC one */
965 static struct page *first_bvec_segment(const struct iov_iter *i,
966 				       size_t *size, size_t *start)
967 {
968 	struct page *page;
969 	size_t skip = i->iov_offset, len;
970 
971 	len = i->bvec->bv_len - skip;
972 	if (*size > len)
973 		*size = len;
974 	skip += i->bvec->bv_offset;
975 	page = i->bvec->bv_page + skip / PAGE_SIZE;
976 	*start = skip % PAGE_SIZE;
977 	return page;
978 }
979 
980 static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i,
981 		   struct page ***pages, size_t maxsize,
982 		   unsigned int maxpages, size_t *start)
983 {
984 	unsigned int n, gup_flags = 0;
985 
986 	if (maxsize > i->count)
987 		maxsize = i->count;
988 	if (!maxsize)
989 		return 0;
990 	if (maxsize > MAX_RW_COUNT)
991 		maxsize = MAX_RW_COUNT;
992 
993 	if (likely(user_backed_iter(i))) {
994 		unsigned long addr;
995 		int res;
996 
997 		if (iov_iter_rw(i) != WRITE)
998 			gup_flags |= FOLL_WRITE;
999 		if (i->nofault)
1000 			gup_flags |= FOLL_NOFAULT;
1001 
1002 		addr = first_iovec_segment(i, &maxsize);
1003 		*start = addr % PAGE_SIZE;
1004 		addr &= PAGE_MASK;
1005 		n = want_pages_array(pages, maxsize, *start, maxpages);
1006 		if (!n)
1007 			return -ENOMEM;
1008 		res = get_user_pages_fast(addr, n, gup_flags, *pages);
1009 		if (unlikely(res <= 0))
1010 			return res;
1011 		maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start);
1012 		iov_iter_advance(i, maxsize);
1013 		return maxsize;
1014 	}
1015 	if (iov_iter_is_bvec(i)) {
1016 		struct page **p;
1017 		struct page *page;
1018 
1019 		page = first_bvec_segment(i, &maxsize, start);
1020 		n = want_pages_array(pages, maxsize, *start, maxpages);
1021 		if (!n)
1022 			return -ENOMEM;
1023 		p = *pages;
1024 		for (int k = 0; k < n; k++)
1025 			get_page(p[k] = page + k);
1026 		maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start);
1027 		i->count -= maxsize;
1028 		i->iov_offset += maxsize;
1029 		if (i->iov_offset == i->bvec->bv_len) {
1030 			i->iov_offset = 0;
1031 			i->bvec++;
1032 			i->nr_segs--;
1033 		}
1034 		return maxsize;
1035 	}
1036 	if (iov_iter_is_xarray(i))
1037 		return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1038 	return -EFAULT;
1039 }
1040 
1041 ssize_t iov_iter_get_pages2(struct iov_iter *i, struct page **pages,
1042 		size_t maxsize, unsigned maxpages, size_t *start)
1043 {
1044 	if (!maxpages)
1045 		return 0;
1046 	BUG_ON(!pages);
1047 
1048 	return __iov_iter_get_pages_alloc(i, &pages, maxsize, maxpages, start);
1049 }
1050 EXPORT_SYMBOL(iov_iter_get_pages2);
1051 
1052 ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i,
1053 		struct page ***pages, size_t maxsize, size_t *start)
1054 {
1055 	ssize_t len;
1056 
1057 	*pages = NULL;
1058 
1059 	len = __iov_iter_get_pages_alloc(i, pages, maxsize, ~0U, start);
1060 	if (len <= 0) {
1061 		kvfree(*pages);
1062 		*pages = NULL;
1063 	}
1064 	return len;
1065 }
1066 EXPORT_SYMBOL(iov_iter_get_pages_alloc2);
1067 
1068 static int iov_npages(const struct iov_iter *i, int maxpages)
1069 {
1070 	size_t skip = i->iov_offset, size = i->count;
1071 	const struct iovec *p;
1072 	int npages = 0;
1073 
1074 	for (p = iter_iov(i); size; skip = 0, p++) {
1075 		unsigned offs = offset_in_page(p->iov_base + skip);
1076 		size_t len = min(p->iov_len - skip, size);
1077 
1078 		if (len) {
1079 			size -= len;
1080 			npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1081 			if (unlikely(npages > maxpages))
1082 				return maxpages;
1083 		}
1084 	}
1085 	return npages;
1086 }
1087 
1088 static int bvec_npages(const struct iov_iter *i, int maxpages)
1089 {
1090 	size_t skip = i->iov_offset, size = i->count;
1091 	const struct bio_vec *p;
1092 	int npages = 0;
1093 
1094 	for (p = i->bvec; size; skip = 0, p++) {
1095 		unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1096 		size_t len = min(p->bv_len - skip, size);
1097 
1098 		size -= len;
1099 		npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1100 		if (unlikely(npages > maxpages))
1101 			return maxpages;
1102 	}
1103 	return npages;
1104 }
1105 
1106 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1107 {
1108 	if (unlikely(!i->count))
1109 		return 0;
1110 	if (likely(iter_is_ubuf(i))) {
1111 		unsigned offs = offset_in_page(i->ubuf + i->iov_offset);
1112 		int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE);
1113 		return min(npages, maxpages);
1114 	}
1115 	/* iovec and kvec have identical layouts */
1116 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1117 		return iov_npages(i, maxpages);
1118 	if (iov_iter_is_bvec(i))
1119 		return bvec_npages(i, maxpages);
1120 	if (iov_iter_is_xarray(i)) {
1121 		unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1122 		int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1123 		return min(npages, maxpages);
1124 	}
1125 	return 0;
1126 }
1127 EXPORT_SYMBOL(iov_iter_npages);
1128 
1129 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1130 {
1131 	*new = *old;
1132 	if (iov_iter_is_bvec(new))
1133 		return new->bvec = kmemdup(new->bvec,
1134 				    new->nr_segs * sizeof(struct bio_vec),
1135 				    flags);
1136 	else if (iov_iter_is_kvec(new) || iter_is_iovec(new))
1137 		/* iovec and kvec have identical layout */
1138 		return new->__iov = kmemdup(new->__iov,
1139 				   new->nr_segs * sizeof(struct iovec),
1140 				   flags);
1141 	return NULL;
1142 }
1143 EXPORT_SYMBOL(dup_iter);
1144 
1145 static __noclone int copy_compat_iovec_from_user(struct iovec *iov,
1146 		const struct iovec __user *uvec, unsigned long nr_segs)
1147 {
1148 	const struct compat_iovec __user *uiov =
1149 		(const struct compat_iovec __user *)uvec;
1150 	int ret = -EFAULT, i;
1151 
1152 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1153 		return -EFAULT;
1154 
1155 	for (i = 0; i < nr_segs; i++) {
1156 		compat_uptr_t buf;
1157 		compat_ssize_t len;
1158 
1159 		unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1160 		unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1161 
1162 		/* check for compat_size_t not fitting in compat_ssize_t .. */
1163 		if (len < 0) {
1164 			ret = -EINVAL;
1165 			goto uaccess_end;
1166 		}
1167 		iov[i].iov_base = compat_ptr(buf);
1168 		iov[i].iov_len = len;
1169 	}
1170 
1171 	ret = 0;
1172 uaccess_end:
1173 	user_access_end();
1174 	return ret;
1175 }
1176 
1177 static __noclone int copy_iovec_from_user(struct iovec *iov,
1178 		const struct iovec __user *uiov, unsigned long nr_segs)
1179 {
1180 	int ret = -EFAULT;
1181 
1182 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1183 		return -EFAULT;
1184 
1185 	do {
1186 		void __user *buf;
1187 		ssize_t len;
1188 
1189 		unsafe_get_user(len, &uiov->iov_len, uaccess_end);
1190 		unsafe_get_user(buf, &uiov->iov_base, uaccess_end);
1191 
1192 		/* check for size_t not fitting in ssize_t .. */
1193 		if (unlikely(len < 0)) {
1194 			ret = -EINVAL;
1195 			goto uaccess_end;
1196 		}
1197 		iov->iov_base = buf;
1198 		iov->iov_len = len;
1199 
1200 		uiov++; iov++;
1201 	} while (--nr_segs);
1202 
1203 	ret = 0;
1204 uaccess_end:
1205 	user_access_end();
1206 	return ret;
1207 }
1208 
1209 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1210 		unsigned long nr_segs, unsigned long fast_segs,
1211 		struct iovec *fast_iov, bool compat)
1212 {
1213 	struct iovec *iov = fast_iov;
1214 	int ret;
1215 
1216 	/*
1217 	 * SuS says "The readv() function *may* fail if the iovcnt argument was
1218 	 * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1219 	 * traditionally returned zero for zero segments, so...
1220 	 */
1221 	if (nr_segs == 0)
1222 		return iov;
1223 	if (nr_segs > UIO_MAXIOV)
1224 		return ERR_PTR(-EINVAL);
1225 	if (nr_segs > fast_segs) {
1226 		iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1227 		if (!iov)
1228 			return ERR_PTR(-ENOMEM);
1229 	}
1230 
1231 	if (unlikely(compat))
1232 		ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1233 	else
1234 		ret = copy_iovec_from_user(iov, uvec, nr_segs);
1235 	if (ret) {
1236 		if (iov != fast_iov)
1237 			kfree(iov);
1238 		return ERR_PTR(ret);
1239 	}
1240 
1241 	return iov;
1242 }
1243 
1244 /*
1245  * Single segment iovec supplied by the user, import it as ITER_UBUF.
1246  */
1247 static ssize_t __import_iovec_ubuf(int type, const struct iovec __user *uvec,
1248 				   struct iovec **iovp, struct iov_iter *i,
1249 				   bool compat)
1250 {
1251 	struct iovec *iov = *iovp;
1252 	ssize_t ret;
1253 
1254 	if (compat)
1255 		ret = copy_compat_iovec_from_user(iov, uvec, 1);
1256 	else
1257 		ret = copy_iovec_from_user(iov, uvec, 1);
1258 	if (unlikely(ret))
1259 		return ret;
1260 
1261 	ret = import_ubuf(type, iov->iov_base, iov->iov_len, i);
1262 	if (unlikely(ret))
1263 		return ret;
1264 	*iovp = NULL;
1265 	return i->count;
1266 }
1267 
1268 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1269 		 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1270 		 struct iov_iter *i, bool compat)
1271 {
1272 	ssize_t total_len = 0;
1273 	unsigned long seg;
1274 	struct iovec *iov;
1275 
1276 	if (nr_segs == 1)
1277 		return __import_iovec_ubuf(type, uvec, iovp, i, compat);
1278 
1279 	iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1280 	if (IS_ERR(iov)) {
1281 		*iovp = NULL;
1282 		return PTR_ERR(iov);
1283 	}
1284 
1285 	/*
1286 	 * According to the Single Unix Specification we should return EINVAL if
1287 	 * an element length is < 0 when cast to ssize_t or if the total length
1288 	 * would overflow the ssize_t return value of the system call.
1289 	 *
1290 	 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1291 	 * overflow case.
1292 	 */
1293 	for (seg = 0; seg < nr_segs; seg++) {
1294 		ssize_t len = (ssize_t)iov[seg].iov_len;
1295 
1296 		if (!access_ok(iov[seg].iov_base, len)) {
1297 			if (iov != *iovp)
1298 				kfree(iov);
1299 			*iovp = NULL;
1300 			return -EFAULT;
1301 		}
1302 
1303 		if (len > MAX_RW_COUNT - total_len) {
1304 			len = MAX_RW_COUNT - total_len;
1305 			iov[seg].iov_len = len;
1306 		}
1307 		total_len += len;
1308 	}
1309 
1310 	iov_iter_init(i, type, iov, nr_segs, total_len);
1311 	if (iov == *iovp)
1312 		*iovp = NULL;
1313 	else
1314 		*iovp = iov;
1315 	return total_len;
1316 }
1317 
1318 /**
1319  * import_iovec() - Copy an array of &struct iovec from userspace
1320  *     into the kernel, check that it is valid, and initialize a new
1321  *     &struct iov_iter iterator to access it.
1322  *
1323  * @type: One of %READ or %WRITE.
1324  * @uvec: Pointer to the userspace array.
1325  * @nr_segs: Number of elements in userspace array.
1326  * @fast_segs: Number of elements in @iov.
1327  * @iovp: (input and output parameter) Pointer to pointer to (usually small
1328  *     on-stack) kernel array.
1329  * @i: Pointer to iterator that will be initialized on success.
1330  *
1331  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1332  * then this function places %NULL in *@iov on return. Otherwise, a new
1333  * array will be allocated and the result placed in *@iov. This means that
1334  * the caller may call kfree() on *@iov regardless of whether the small
1335  * on-stack array was used or not (and regardless of whether this function
1336  * returns an error or not).
1337  *
1338  * Return: Negative error code on error, bytes imported on success
1339  */
1340 ssize_t import_iovec(int type, const struct iovec __user *uvec,
1341 		 unsigned nr_segs, unsigned fast_segs,
1342 		 struct iovec **iovp, struct iov_iter *i)
1343 {
1344 	return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1345 			      in_compat_syscall());
1346 }
1347 EXPORT_SYMBOL(import_iovec);
1348 
1349 int import_ubuf(int rw, void __user *buf, size_t len, struct iov_iter *i)
1350 {
1351 	if (len > MAX_RW_COUNT)
1352 		len = MAX_RW_COUNT;
1353 	if (unlikely(!access_ok(buf, len)))
1354 		return -EFAULT;
1355 
1356 	iov_iter_ubuf(i, rw, buf, len);
1357 	return 0;
1358 }
1359 EXPORT_SYMBOL_GPL(import_ubuf);
1360 
1361 /**
1362  * iov_iter_restore() - Restore a &struct iov_iter to the same state as when
1363  *     iov_iter_save_state() was called.
1364  *
1365  * @i: &struct iov_iter to restore
1366  * @state: state to restore from
1367  *
1368  * Used after iov_iter_save_state() to bring restore @i, if operations may
1369  * have advanced it.
1370  *
1371  * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC
1372  */
1373 void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state)
1374 {
1375 	if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i) &&
1376 			 !iter_is_ubuf(i)) && !iov_iter_is_kvec(i))
1377 		return;
1378 	i->iov_offset = state->iov_offset;
1379 	i->count = state->count;
1380 	if (iter_is_ubuf(i))
1381 		return;
1382 	/*
1383 	 * For the *vec iters, nr_segs + iov is constant - if we increment
1384 	 * the vec, then we also decrement the nr_segs count. Hence we don't
1385 	 * need to track both of these, just one is enough and we can deduct
1386 	 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct
1387 	 * size, so we can just increment the iov pointer as they are unionzed.
1388 	 * ITER_BVEC _may_ be the same size on some archs, but on others it is
1389 	 * not. Be safe and handle it separately.
1390 	 */
1391 	BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec));
1392 	if (iov_iter_is_bvec(i))
1393 		i->bvec -= state->nr_segs - i->nr_segs;
1394 	else
1395 		i->__iov -= state->nr_segs - i->nr_segs;
1396 	i->nr_segs = state->nr_segs;
1397 }
1398 
1399 /*
1400  * Extract a list of contiguous pages from an ITER_XARRAY iterator.  This does not
1401  * get references on the pages, nor does it get a pin on them.
1402  */
1403 static ssize_t iov_iter_extract_xarray_pages(struct iov_iter *i,
1404 					     struct page ***pages, size_t maxsize,
1405 					     unsigned int maxpages,
1406 					     iov_iter_extraction_t extraction_flags,
1407 					     size_t *offset0)
1408 {
1409 	struct page *page, **p;
1410 	unsigned int nr = 0, offset;
1411 	loff_t pos = i->xarray_start + i->iov_offset;
1412 	pgoff_t index = pos >> PAGE_SHIFT;
1413 	XA_STATE(xas, i->xarray, index);
1414 
1415 	offset = pos & ~PAGE_MASK;
1416 	*offset0 = offset;
1417 
1418 	maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1419 	if (!maxpages)
1420 		return -ENOMEM;
1421 	p = *pages;
1422 
1423 	rcu_read_lock();
1424 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1425 		if (xas_retry(&xas, page))
1426 			continue;
1427 
1428 		/* Has the page moved or been split? */
1429 		if (unlikely(page != xas_reload(&xas))) {
1430 			xas_reset(&xas);
1431 			continue;
1432 		}
1433 
1434 		p[nr++] = find_subpage(page, xas.xa_index);
1435 		if (nr == maxpages)
1436 			break;
1437 	}
1438 	rcu_read_unlock();
1439 
1440 	maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1441 	iov_iter_advance(i, maxsize);
1442 	return maxsize;
1443 }
1444 
1445 /*
1446  * Extract a list of contiguous pages from an ITER_BVEC iterator.  This does
1447  * not get references on the pages, nor does it get a pin on them.
1448  */
1449 static ssize_t iov_iter_extract_bvec_pages(struct iov_iter *i,
1450 					   struct page ***pages, size_t maxsize,
1451 					   unsigned int maxpages,
1452 					   iov_iter_extraction_t extraction_flags,
1453 					   size_t *offset0)
1454 {
1455 	struct page **p, *page;
1456 	size_t skip = i->iov_offset, offset, size;
1457 	int k;
1458 
1459 	for (;;) {
1460 		if (i->nr_segs == 0)
1461 			return 0;
1462 		size = min(maxsize, i->bvec->bv_len - skip);
1463 		if (size)
1464 			break;
1465 		i->iov_offset = 0;
1466 		i->nr_segs--;
1467 		i->bvec++;
1468 		skip = 0;
1469 	}
1470 
1471 	skip += i->bvec->bv_offset;
1472 	page = i->bvec->bv_page + skip / PAGE_SIZE;
1473 	offset = skip % PAGE_SIZE;
1474 	*offset0 = offset;
1475 
1476 	maxpages = want_pages_array(pages, size, offset, maxpages);
1477 	if (!maxpages)
1478 		return -ENOMEM;
1479 	p = *pages;
1480 	for (k = 0; k < maxpages; k++)
1481 		p[k] = page + k;
1482 
1483 	size = min_t(size_t, size, maxpages * PAGE_SIZE - offset);
1484 	iov_iter_advance(i, size);
1485 	return size;
1486 }
1487 
1488 /*
1489  * Extract a list of virtually contiguous pages from an ITER_KVEC iterator.
1490  * This does not get references on the pages, nor does it get a pin on them.
1491  */
1492 static ssize_t iov_iter_extract_kvec_pages(struct iov_iter *i,
1493 					   struct page ***pages, size_t maxsize,
1494 					   unsigned int maxpages,
1495 					   iov_iter_extraction_t extraction_flags,
1496 					   size_t *offset0)
1497 {
1498 	struct page **p, *page;
1499 	const void *kaddr;
1500 	size_t skip = i->iov_offset, offset, len, size;
1501 	int k;
1502 
1503 	for (;;) {
1504 		if (i->nr_segs == 0)
1505 			return 0;
1506 		size = min(maxsize, i->kvec->iov_len - skip);
1507 		if (size)
1508 			break;
1509 		i->iov_offset = 0;
1510 		i->nr_segs--;
1511 		i->kvec++;
1512 		skip = 0;
1513 	}
1514 
1515 	kaddr = i->kvec->iov_base + skip;
1516 	offset = (unsigned long)kaddr & ~PAGE_MASK;
1517 	*offset0 = offset;
1518 
1519 	maxpages = want_pages_array(pages, size, offset, maxpages);
1520 	if (!maxpages)
1521 		return -ENOMEM;
1522 	p = *pages;
1523 
1524 	kaddr -= offset;
1525 	len = offset + size;
1526 	for (k = 0; k < maxpages; k++) {
1527 		size_t seg = min_t(size_t, len, PAGE_SIZE);
1528 
1529 		if (is_vmalloc_or_module_addr(kaddr))
1530 			page = vmalloc_to_page(kaddr);
1531 		else
1532 			page = virt_to_page(kaddr);
1533 
1534 		p[k] = page;
1535 		len -= seg;
1536 		kaddr += PAGE_SIZE;
1537 	}
1538 
1539 	size = min_t(size_t, size, maxpages * PAGE_SIZE - offset);
1540 	iov_iter_advance(i, size);
1541 	return size;
1542 }
1543 
1544 /*
1545  * Extract a list of contiguous pages from a user iterator and get a pin on
1546  * each of them.  This should only be used if the iterator is user-backed
1547  * (IOBUF/UBUF).
1548  *
1549  * It does not get refs on the pages, but the pages must be unpinned by the
1550  * caller once the transfer is complete.
1551  *
1552  * This is safe to be used where background IO/DMA *is* going to be modifying
1553  * the buffer; using a pin rather than a ref makes forces fork() to give the
1554  * child a copy of the page.
1555  */
1556 static ssize_t iov_iter_extract_user_pages(struct iov_iter *i,
1557 					   struct page ***pages,
1558 					   size_t maxsize,
1559 					   unsigned int maxpages,
1560 					   iov_iter_extraction_t extraction_flags,
1561 					   size_t *offset0)
1562 {
1563 	unsigned long addr;
1564 	unsigned int gup_flags = 0;
1565 	size_t offset;
1566 	int res;
1567 
1568 	if (i->data_source == ITER_DEST)
1569 		gup_flags |= FOLL_WRITE;
1570 	if (extraction_flags & ITER_ALLOW_P2PDMA)
1571 		gup_flags |= FOLL_PCI_P2PDMA;
1572 	if (i->nofault)
1573 		gup_flags |= FOLL_NOFAULT;
1574 
1575 	addr = first_iovec_segment(i, &maxsize);
1576 	*offset0 = offset = addr % PAGE_SIZE;
1577 	addr &= PAGE_MASK;
1578 	maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1579 	if (!maxpages)
1580 		return -ENOMEM;
1581 	res = pin_user_pages_fast(addr, maxpages, gup_flags, *pages);
1582 	if (unlikely(res <= 0))
1583 		return res;
1584 	maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - offset);
1585 	iov_iter_advance(i, maxsize);
1586 	return maxsize;
1587 }
1588 
1589 /**
1590  * iov_iter_extract_pages - Extract a list of contiguous pages from an iterator
1591  * @i: The iterator to extract from
1592  * @pages: Where to return the list of pages
1593  * @maxsize: The maximum amount of iterator to extract
1594  * @maxpages: The maximum size of the list of pages
1595  * @extraction_flags: Flags to qualify request
1596  * @offset0: Where to return the starting offset into (*@pages)[0]
1597  *
1598  * Extract a list of contiguous pages from the current point of the iterator,
1599  * advancing the iterator.  The maximum number of pages and the maximum amount
1600  * of page contents can be set.
1601  *
1602  * If *@pages is NULL, a page list will be allocated to the required size and
1603  * *@pages will be set to its base.  If *@pages is not NULL, it will be assumed
1604  * that the caller allocated a page list at least @maxpages in size and this
1605  * will be filled in.
1606  *
1607  * @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA
1608  * be allowed on the pages extracted.
1609  *
1610  * The iov_iter_extract_will_pin() function can be used to query how cleanup
1611  * should be performed.
1612  *
1613  * Extra refs or pins on the pages may be obtained as follows:
1614  *
1615  *  (*) If the iterator is user-backed (ITER_IOVEC/ITER_UBUF), pins will be
1616  *      added to the pages, but refs will not be taken.
1617  *      iov_iter_extract_will_pin() will return true.
1618  *
1619  *  (*) If the iterator is ITER_KVEC, ITER_BVEC or ITER_XARRAY, the pages are
1620  *      merely listed; no extra refs or pins are obtained.
1621  *      iov_iter_extract_will_pin() will return 0.
1622  *
1623  * Note also:
1624  *
1625  *  (*) Use with ITER_DISCARD is not supported as that has no content.
1626  *
1627  * On success, the function sets *@pages to the new pagelist, if allocated, and
1628  * sets *offset0 to the offset into the first page.
1629  *
1630  * It may also return -ENOMEM and -EFAULT.
1631  */
1632 ssize_t iov_iter_extract_pages(struct iov_iter *i,
1633 			       struct page ***pages,
1634 			       size_t maxsize,
1635 			       unsigned int maxpages,
1636 			       iov_iter_extraction_t extraction_flags,
1637 			       size_t *offset0)
1638 {
1639 	maxsize = min_t(size_t, min_t(size_t, maxsize, i->count), MAX_RW_COUNT);
1640 	if (!maxsize)
1641 		return 0;
1642 
1643 	if (likely(user_backed_iter(i)))
1644 		return iov_iter_extract_user_pages(i, pages, maxsize,
1645 						   maxpages, extraction_flags,
1646 						   offset0);
1647 	if (iov_iter_is_kvec(i))
1648 		return iov_iter_extract_kvec_pages(i, pages, maxsize,
1649 						   maxpages, extraction_flags,
1650 						   offset0);
1651 	if (iov_iter_is_bvec(i))
1652 		return iov_iter_extract_bvec_pages(i, pages, maxsize,
1653 						   maxpages, extraction_flags,
1654 						   offset0);
1655 	if (iov_iter_is_xarray(i))
1656 		return iov_iter_extract_xarray_pages(i, pages, maxsize,
1657 						     maxpages, extraction_flags,
1658 						     offset0);
1659 	return -EFAULT;
1660 }
1661 EXPORT_SYMBOL_GPL(iov_iter_extract_pages);
1662