xref: /linux/lib/iov_iter.c (revision a4a755c422242c27cb0f7900ac00cf33ac17b1ce)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/export.h>
3 #include <linux/bvec.h>
4 #include <linux/fault-inject-usercopy.h>
5 #include <linux/uio.h>
6 #include <linux/pagemap.h>
7 #include <linux/highmem.h>
8 #include <linux/slab.h>
9 #include <linux/vmalloc.h>
10 #include <linux/splice.h>
11 #include <linux/compat.h>
12 #include <linux/scatterlist.h>
13 #include <linux/instrumented.h>
14 #include <linux/iov_iter.h>
15 
16 static __always_inline
17 size_t copy_to_user_iter(void __user *iter_to, size_t progress,
18 			 size_t len, void *from, void *priv2)
19 {
20 	if (should_fail_usercopy())
21 		return len;
22 	if (access_ok(iter_to, len)) {
23 		from += progress;
24 		instrument_copy_to_user(iter_to, from, len);
25 		len = raw_copy_to_user(iter_to, from, len);
26 	}
27 	return len;
28 }
29 
30 static __always_inline
31 size_t copy_to_user_iter_nofault(void __user *iter_to, size_t progress,
32 				 size_t len, void *from, void *priv2)
33 {
34 	ssize_t res;
35 
36 	if (should_fail_usercopy())
37 		return len;
38 
39 	from += progress;
40 	res = copy_to_user_nofault(iter_to, from, len);
41 	return res < 0 ? len : res;
42 }
43 
44 static __always_inline
45 size_t copy_from_user_iter(void __user *iter_from, size_t progress,
46 			   size_t len, void *to, void *priv2)
47 {
48 	size_t res = len;
49 
50 	if (should_fail_usercopy())
51 		return len;
52 	if (access_ok(iter_from, len)) {
53 		to += progress;
54 		instrument_copy_from_user_before(to, iter_from, len);
55 		res = raw_copy_from_user(to, iter_from, len);
56 		instrument_copy_from_user_after(to, iter_from, len, res);
57 	}
58 	return res;
59 }
60 
61 static __always_inline
62 size_t memcpy_to_iter(void *iter_to, size_t progress,
63 		      size_t len, void *from, void *priv2)
64 {
65 	memcpy(iter_to, from + progress, len);
66 	return 0;
67 }
68 
69 static __always_inline
70 size_t memcpy_from_iter(void *iter_from, size_t progress,
71 			size_t len, void *to, void *priv2)
72 {
73 	memcpy(to + progress, iter_from, len);
74 	return 0;
75 }
76 
77 /*
78  * fault_in_iov_iter_readable - fault in iov iterator for reading
79  * @i: iterator
80  * @size: maximum length
81  *
82  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
83  * @size.  For each iovec, fault in each page that constitutes the iovec.
84  *
85  * Returns the number of bytes not faulted in (like copy_to_user() and
86  * copy_from_user()).
87  *
88  * Always returns 0 for non-userspace iterators.
89  */
90 size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size)
91 {
92 	if (iter_is_ubuf(i)) {
93 		size_t n = min(size, iov_iter_count(i));
94 		n -= fault_in_readable(i->ubuf + i->iov_offset, n);
95 		return size - n;
96 	} else if (iter_is_iovec(i)) {
97 		size_t count = min(size, iov_iter_count(i));
98 		const struct iovec *p;
99 		size_t skip;
100 
101 		size -= count;
102 		for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) {
103 			size_t len = min(count, p->iov_len - skip);
104 			size_t ret;
105 
106 			if (unlikely(!len))
107 				continue;
108 			ret = fault_in_readable(p->iov_base + skip, len);
109 			count -= len - ret;
110 			if (ret)
111 				break;
112 		}
113 		return count + size;
114 	}
115 	return 0;
116 }
117 EXPORT_SYMBOL(fault_in_iov_iter_readable);
118 
119 /*
120  * fault_in_iov_iter_writeable - fault in iov iterator for writing
121  * @i: iterator
122  * @size: maximum length
123  *
124  * Faults in the iterator using get_user_pages(), i.e., without triggering
125  * hardware page faults.  This is primarily useful when we already know that
126  * some or all of the pages in @i aren't in memory.
127  *
128  * Returns the number of bytes not faulted in, like copy_to_user() and
129  * copy_from_user().
130  *
131  * Always returns 0 for non-user-space iterators.
132  */
133 size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size)
134 {
135 	if (iter_is_ubuf(i)) {
136 		size_t n = min(size, iov_iter_count(i));
137 		n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n);
138 		return size - n;
139 	} else if (iter_is_iovec(i)) {
140 		size_t count = min(size, iov_iter_count(i));
141 		const struct iovec *p;
142 		size_t skip;
143 
144 		size -= count;
145 		for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) {
146 			size_t len = min(count, p->iov_len - skip);
147 			size_t ret;
148 
149 			if (unlikely(!len))
150 				continue;
151 			ret = fault_in_safe_writeable(p->iov_base + skip, len);
152 			count -= len - ret;
153 			if (ret)
154 				break;
155 		}
156 		return count + size;
157 	}
158 	return 0;
159 }
160 EXPORT_SYMBOL(fault_in_iov_iter_writeable);
161 
162 void iov_iter_init(struct iov_iter *i, unsigned int direction,
163 			const struct iovec *iov, unsigned long nr_segs,
164 			size_t count)
165 {
166 	WARN_ON(direction & ~(READ | WRITE));
167 	*i = (struct iov_iter) {
168 		.iter_type = ITER_IOVEC,
169 		.nofault = false,
170 		.data_source = direction,
171 		.__iov = iov,
172 		.nr_segs = nr_segs,
173 		.iov_offset = 0,
174 		.count = count
175 	};
176 }
177 EXPORT_SYMBOL(iov_iter_init);
178 
179 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
180 {
181 	if (WARN_ON_ONCE(i->data_source))
182 		return 0;
183 	if (user_backed_iter(i))
184 		might_fault();
185 	return iterate_and_advance(i, bytes, (void *)addr,
186 				   copy_to_user_iter, memcpy_to_iter);
187 }
188 EXPORT_SYMBOL(_copy_to_iter);
189 
190 #ifdef CONFIG_ARCH_HAS_COPY_MC
191 static __always_inline
192 size_t copy_to_user_iter_mc(void __user *iter_to, size_t progress,
193 			    size_t len, void *from, void *priv2)
194 {
195 	if (access_ok(iter_to, len)) {
196 		from += progress;
197 		instrument_copy_to_user(iter_to, from, len);
198 		len = copy_mc_to_user(iter_to, from, len);
199 	}
200 	return len;
201 }
202 
203 static __always_inline
204 size_t memcpy_to_iter_mc(void *iter_to, size_t progress,
205 			 size_t len, void *from, void *priv2)
206 {
207 	return copy_mc_to_kernel(iter_to, from + progress, len);
208 }
209 
210 /**
211  * _copy_mc_to_iter - copy to iter with source memory error exception handling
212  * @addr: source kernel address
213  * @bytes: total transfer length
214  * @i: destination iterator
215  *
216  * The pmem driver deploys this for the dax operation
217  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
218  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
219  * successfully copied.
220  *
221  * The main differences between this and typical _copy_to_iter().
222  *
223  * * Typical tail/residue handling after a fault retries the copy
224  *   byte-by-byte until the fault happens again. Re-triggering machine
225  *   checks is potentially fatal so the implementation uses source
226  *   alignment and poison alignment assumptions to avoid re-triggering
227  *   hardware exceptions.
228  *
229  * * ITER_KVEC and ITER_BVEC can return short copies.  Compare to
230  *   copy_to_iter() where only ITER_IOVEC attempts might return a short copy.
231  *
232  * Return: number of bytes copied (may be %0)
233  */
234 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
235 {
236 	if (WARN_ON_ONCE(i->data_source))
237 		return 0;
238 	if (user_backed_iter(i))
239 		might_fault();
240 	return iterate_and_advance(i, bytes, (void *)addr,
241 				   copy_to_user_iter_mc, memcpy_to_iter_mc);
242 }
243 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
244 #endif /* CONFIG_ARCH_HAS_COPY_MC */
245 
246 static __always_inline
247 size_t __copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
248 {
249 	return iterate_and_advance(i, bytes, addr,
250 				   copy_from_user_iter, memcpy_from_iter);
251 }
252 
253 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
254 {
255 	if (WARN_ON_ONCE(!i->data_source))
256 		return 0;
257 
258 	if (user_backed_iter(i))
259 		might_fault();
260 	return __copy_from_iter(addr, bytes, i);
261 }
262 EXPORT_SYMBOL(_copy_from_iter);
263 
264 static __always_inline
265 size_t copy_from_user_iter_nocache(void __user *iter_from, size_t progress,
266 				   size_t len, void *to, void *priv2)
267 {
268 	return __copy_from_user_inatomic_nocache(to + progress, iter_from, len);
269 }
270 
271 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
272 {
273 	if (WARN_ON_ONCE(!i->data_source))
274 		return 0;
275 
276 	return iterate_and_advance(i, bytes, addr,
277 				   copy_from_user_iter_nocache,
278 				   memcpy_from_iter);
279 }
280 EXPORT_SYMBOL(_copy_from_iter_nocache);
281 
282 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
283 static __always_inline
284 size_t copy_from_user_iter_flushcache(void __user *iter_from, size_t progress,
285 				      size_t len, void *to, void *priv2)
286 {
287 	return __copy_from_user_flushcache(to + progress, iter_from, len);
288 }
289 
290 static __always_inline
291 size_t memcpy_from_iter_flushcache(void *iter_from, size_t progress,
292 				   size_t len, void *to, void *priv2)
293 {
294 	memcpy_flushcache(to + progress, iter_from, len);
295 	return 0;
296 }
297 
298 /**
299  * _copy_from_iter_flushcache - write destination through cpu cache
300  * @addr: destination kernel address
301  * @bytes: total transfer length
302  * @i: source iterator
303  *
304  * The pmem driver arranges for filesystem-dax to use this facility via
305  * dax_copy_from_iter() for ensuring that writes to persistent memory
306  * are flushed through the CPU cache. It is differentiated from
307  * _copy_from_iter_nocache() in that guarantees all data is flushed for
308  * all iterator types. The _copy_from_iter_nocache() only attempts to
309  * bypass the cache for the ITER_IOVEC case, and on some archs may use
310  * instructions that strand dirty-data in the cache.
311  *
312  * Return: number of bytes copied (may be %0)
313  */
314 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
315 {
316 	if (WARN_ON_ONCE(!i->data_source))
317 		return 0;
318 
319 	return iterate_and_advance(i, bytes, addr,
320 				   copy_from_user_iter_flushcache,
321 				   memcpy_from_iter_flushcache);
322 }
323 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
324 #endif
325 
326 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
327 {
328 	struct page *head;
329 	size_t v = n + offset;
330 
331 	/*
332 	 * The general case needs to access the page order in order
333 	 * to compute the page size.
334 	 * However, we mostly deal with order-0 pages and thus can
335 	 * avoid a possible cache line miss for requests that fit all
336 	 * page orders.
337 	 */
338 	if (n <= v && v <= PAGE_SIZE)
339 		return true;
340 
341 	head = compound_head(page);
342 	v += (page - head) << PAGE_SHIFT;
343 
344 	if (WARN_ON(n > v || v > page_size(head)))
345 		return false;
346 	return true;
347 }
348 
349 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
350 			 struct iov_iter *i)
351 {
352 	size_t res = 0;
353 	if (!page_copy_sane(page, offset, bytes))
354 		return 0;
355 	if (WARN_ON_ONCE(i->data_source))
356 		return 0;
357 	page += offset / PAGE_SIZE; // first subpage
358 	offset %= PAGE_SIZE;
359 	while (1) {
360 		void *kaddr = kmap_local_page(page);
361 		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
362 		n = _copy_to_iter(kaddr + offset, n, i);
363 		kunmap_local(kaddr);
364 		res += n;
365 		bytes -= n;
366 		if (!bytes || !n)
367 			break;
368 		offset += n;
369 		if (offset == PAGE_SIZE) {
370 			page++;
371 			offset = 0;
372 		}
373 	}
374 	return res;
375 }
376 EXPORT_SYMBOL(copy_page_to_iter);
377 
378 size_t copy_page_to_iter_nofault(struct page *page, unsigned offset, size_t bytes,
379 				 struct iov_iter *i)
380 {
381 	size_t res = 0;
382 
383 	if (!page_copy_sane(page, offset, bytes))
384 		return 0;
385 	if (WARN_ON_ONCE(i->data_source))
386 		return 0;
387 	page += offset / PAGE_SIZE; // first subpage
388 	offset %= PAGE_SIZE;
389 	while (1) {
390 		void *kaddr = kmap_local_page(page);
391 		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
392 
393 		n = iterate_and_advance(i, n, kaddr + offset,
394 					copy_to_user_iter_nofault,
395 					memcpy_to_iter);
396 		kunmap_local(kaddr);
397 		res += n;
398 		bytes -= n;
399 		if (!bytes || !n)
400 			break;
401 		offset += n;
402 		if (offset == PAGE_SIZE) {
403 			page++;
404 			offset = 0;
405 		}
406 	}
407 	return res;
408 }
409 EXPORT_SYMBOL(copy_page_to_iter_nofault);
410 
411 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
412 			 struct iov_iter *i)
413 {
414 	size_t res = 0;
415 	if (!page_copy_sane(page, offset, bytes))
416 		return 0;
417 	page += offset / PAGE_SIZE; // first subpage
418 	offset %= PAGE_SIZE;
419 	while (1) {
420 		void *kaddr = kmap_local_page(page);
421 		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
422 		n = _copy_from_iter(kaddr + offset, n, i);
423 		kunmap_local(kaddr);
424 		res += n;
425 		bytes -= n;
426 		if (!bytes || !n)
427 			break;
428 		offset += n;
429 		if (offset == PAGE_SIZE) {
430 			page++;
431 			offset = 0;
432 		}
433 	}
434 	return res;
435 }
436 EXPORT_SYMBOL(copy_page_from_iter);
437 
438 static __always_inline
439 size_t zero_to_user_iter(void __user *iter_to, size_t progress,
440 			 size_t len, void *priv, void *priv2)
441 {
442 	return clear_user(iter_to, len);
443 }
444 
445 static __always_inline
446 size_t zero_to_iter(void *iter_to, size_t progress,
447 		    size_t len, void *priv, void *priv2)
448 {
449 	memset(iter_to, 0, len);
450 	return 0;
451 }
452 
453 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
454 {
455 	return iterate_and_advance(i, bytes, NULL,
456 				   zero_to_user_iter, zero_to_iter);
457 }
458 EXPORT_SYMBOL(iov_iter_zero);
459 
460 size_t copy_page_from_iter_atomic(struct page *page, size_t offset,
461 		size_t bytes, struct iov_iter *i)
462 {
463 	size_t n, copied = 0;
464 
465 	if (!page_copy_sane(page, offset, bytes))
466 		return 0;
467 	if (WARN_ON_ONCE(!i->data_source))
468 		return 0;
469 
470 	do {
471 		char *p;
472 
473 		n = bytes - copied;
474 		if (PageHighMem(page)) {
475 			page += offset / PAGE_SIZE;
476 			offset %= PAGE_SIZE;
477 			n = min_t(size_t, n, PAGE_SIZE - offset);
478 		}
479 
480 		p = kmap_atomic(page) + offset;
481 		n = __copy_from_iter(p, n, i);
482 		kunmap_atomic(p);
483 		copied += n;
484 		offset += n;
485 	} while (PageHighMem(page) && copied != bytes && n > 0);
486 
487 	return copied;
488 }
489 EXPORT_SYMBOL(copy_page_from_iter_atomic);
490 
491 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
492 {
493 	const struct bio_vec *bvec, *end;
494 
495 	if (!i->count)
496 		return;
497 	i->count -= size;
498 
499 	size += i->iov_offset;
500 
501 	for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) {
502 		if (likely(size < bvec->bv_len))
503 			break;
504 		size -= bvec->bv_len;
505 	}
506 	i->iov_offset = size;
507 	i->nr_segs -= bvec - i->bvec;
508 	i->bvec = bvec;
509 }
510 
511 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
512 {
513 	const struct iovec *iov, *end;
514 
515 	if (!i->count)
516 		return;
517 	i->count -= size;
518 
519 	size += i->iov_offset; // from beginning of current segment
520 	for (iov = iter_iov(i), end = iov + i->nr_segs; iov < end; iov++) {
521 		if (likely(size < iov->iov_len))
522 			break;
523 		size -= iov->iov_len;
524 	}
525 	i->iov_offset = size;
526 	i->nr_segs -= iov - iter_iov(i);
527 	i->__iov = iov;
528 }
529 
530 void iov_iter_advance(struct iov_iter *i, size_t size)
531 {
532 	if (unlikely(i->count < size))
533 		size = i->count;
534 	if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) {
535 		i->iov_offset += size;
536 		i->count -= size;
537 	} else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
538 		/* iovec and kvec have identical layouts */
539 		iov_iter_iovec_advance(i, size);
540 	} else if (iov_iter_is_bvec(i)) {
541 		iov_iter_bvec_advance(i, size);
542 	} else if (iov_iter_is_discard(i)) {
543 		i->count -= size;
544 	}
545 }
546 EXPORT_SYMBOL(iov_iter_advance);
547 
548 void iov_iter_revert(struct iov_iter *i, size_t unroll)
549 {
550 	if (!unroll)
551 		return;
552 	if (WARN_ON(unroll > MAX_RW_COUNT))
553 		return;
554 	i->count += unroll;
555 	if (unlikely(iov_iter_is_discard(i)))
556 		return;
557 	if (unroll <= i->iov_offset) {
558 		i->iov_offset -= unroll;
559 		return;
560 	}
561 	unroll -= i->iov_offset;
562 	if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) {
563 		BUG(); /* We should never go beyond the start of the specified
564 			* range since we might then be straying into pages that
565 			* aren't pinned.
566 			*/
567 	} else if (iov_iter_is_bvec(i)) {
568 		const struct bio_vec *bvec = i->bvec;
569 		while (1) {
570 			size_t n = (--bvec)->bv_len;
571 			i->nr_segs++;
572 			if (unroll <= n) {
573 				i->bvec = bvec;
574 				i->iov_offset = n - unroll;
575 				return;
576 			}
577 			unroll -= n;
578 		}
579 	} else { /* same logics for iovec and kvec */
580 		const struct iovec *iov = iter_iov(i);
581 		while (1) {
582 			size_t n = (--iov)->iov_len;
583 			i->nr_segs++;
584 			if (unroll <= n) {
585 				i->__iov = iov;
586 				i->iov_offset = n - unroll;
587 				return;
588 			}
589 			unroll -= n;
590 		}
591 	}
592 }
593 EXPORT_SYMBOL(iov_iter_revert);
594 
595 /*
596  * Return the count of just the current iov_iter segment.
597  */
598 size_t iov_iter_single_seg_count(const struct iov_iter *i)
599 {
600 	if (i->nr_segs > 1) {
601 		if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
602 			return min(i->count, iter_iov(i)->iov_len - i->iov_offset);
603 		if (iov_iter_is_bvec(i))
604 			return min(i->count, i->bvec->bv_len - i->iov_offset);
605 	}
606 	return i->count;
607 }
608 EXPORT_SYMBOL(iov_iter_single_seg_count);
609 
610 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
611 			const struct kvec *kvec, unsigned long nr_segs,
612 			size_t count)
613 {
614 	WARN_ON(direction & ~(READ | WRITE));
615 	*i = (struct iov_iter){
616 		.iter_type = ITER_KVEC,
617 		.data_source = direction,
618 		.kvec = kvec,
619 		.nr_segs = nr_segs,
620 		.iov_offset = 0,
621 		.count = count
622 	};
623 }
624 EXPORT_SYMBOL(iov_iter_kvec);
625 
626 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
627 			const struct bio_vec *bvec, unsigned long nr_segs,
628 			size_t count)
629 {
630 	WARN_ON(direction & ~(READ | WRITE));
631 	*i = (struct iov_iter){
632 		.iter_type = ITER_BVEC,
633 		.data_source = direction,
634 		.bvec = bvec,
635 		.nr_segs = nr_segs,
636 		.iov_offset = 0,
637 		.count = count
638 	};
639 }
640 EXPORT_SYMBOL(iov_iter_bvec);
641 
642 /**
643  * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
644  * @i: The iterator to initialise.
645  * @direction: The direction of the transfer.
646  * @xarray: The xarray to access.
647  * @start: The start file position.
648  * @count: The size of the I/O buffer in bytes.
649  *
650  * Set up an I/O iterator to either draw data out of the pages attached to an
651  * inode or to inject data into those pages.  The pages *must* be prevented
652  * from evaporation, either by taking a ref on them or locking them by the
653  * caller.
654  */
655 void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
656 		     struct xarray *xarray, loff_t start, size_t count)
657 {
658 	BUG_ON(direction & ~1);
659 	*i = (struct iov_iter) {
660 		.iter_type = ITER_XARRAY,
661 		.data_source = direction,
662 		.xarray = xarray,
663 		.xarray_start = start,
664 		.count = count,
665 		.iov_offset = 0
666 	};
667 }
668 EXPORT_SYMBOL(iov_iter_xarray);
669 
670 /**
671  * iov_iter_discard - Initialise an I/O iterator that discards data
672  * @i: The iterator to initialise.
673  * @direction: The direction of the transfer.
674  * @count: The size of the I/O buffer in bytes.
675  *
676  * Set up an I/O iterator that just discards everything that's written to it.
677  * It's only available as a READ iterator.
678  */
679 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
680 {
681 	BUG_ON(direction != READ);
682 	*i = (struct iov_iter){
683 		.iter_type = ITER_DISCARD,
684 		.data_source = false,
685 		.count = count,
686 		.iov_offset = 0
687 	};
688 }
689 EXPORT_SYMBOL(iov_iter_discard);
690 
691 static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask,
692 				   unsigned len_mask)
693 {
694 	const struct iovec *iov = iter_iov(i);
695 	size_t size = i->count;
696 	size_t skip = i->iov_offset;
697 
698 	do {
699 		size_t len = iov->iov_len - skip;
700 
701 		if (len > size)
702 			len = size;
703 		if (len & len_mask)
704 			return false;
705 		if ((unsigned long)(iov->iov_base + skip) & addr_mask)
706 			return false;
707 
708 		iov++;
709 		size -= len;
710 		skip = 0;
711 	} while (size);
712 
713 	return true;
714 }
715 
716 static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask,
717 				  unsigned len_mask)
718 {
719 	const struct bio_vec *bvec = i->bvec;
720 	unsigned skip = i->iov_offset;
721 	size_t size = i->count;
722 
723 	do {
724 		size_t len = bvec->bv_len;
725 
726 		if (len > size)
727 			len = size;
728 		if (len & len_mask)
729 			return false;
730 		if ((unsigned long)(bvec->bv_offset + skip) & addr_mask)
731 			return false;
732 
733 		bvec++;
734 		size -= len;
735 		skip = 0;
736 	} while (size);
737 
738 	return true;
739 }
740 
741 /**
742  * iov_iter_is_aligned() - Check if the addresses and lengths of each segments
743  * 	are aligned to the parameters.
744  *
745  * @i: &struct iov_iter to restore
746  * @addr_mask: bit mask to check against the iov element's addresses
747  * @len_mask: bit mask to check against the iov element's lengths
748  *
749  * Return: false if any addresses or lengths intersect with the provided masks
750  */
751 bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask,
752 			 unsigned len_mask)
753 {
754 	if (likely(iter_is_ubuf(i))) {
755 		if (i->count & len_mask)
756 			return false;
757 		if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask)
758 			return false;
759 		return true;
760 	}
761 
762 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
763 		return iov_iter_aligned_iovec(i, addr_mask, len_mask);
764 
765 	if (iov_iter_is_bvec(i))
766 		return iov_iter_aligned_bvec(i, addr_mask, len_mask);
767 
768 	if (iov_iter_is_xarray(i)) {
769 		if (i->count & len_mask)
770 			return false;
771 		if ((i->xarray_start + i->iov_offset) & addr_mask)
772 			return false;
773 	}
774 
775 	return true;
776 }
777 EXPORT_SYMBOL_GPL(iov_iter_is_aligned);
778 
779 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
780 {
781 	const struct iovec *iov = iter_iov(i);
782 	unsigned long res = 0;
783 	size_t size = i->count;
784 	size_t skip = i->iov_offset;
785 
786 	do {
787 		size_t len = iov->iov_len - skip;
788 		if (len) {
789 			res |= (unsigned long)iov->iov_base + skip;
790 			if (len > size)
791 				len = size;
792 			res |= len;
793 			size -= len;
794 		}
795 		iov++;
796 		skip = 0;
797 	} while (size);
798 	return res;
799 }
800 
801 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
802 {
803 	const struct bio_vec *bvec = i->bvec;
804 	unsigned res = 0;
805 	size_t size = i->count;
806 	unsigned skip = i->iov_offset;
807 
808 	do {
809 		size_t len = bvec->bv_len - skip;
810 		res |= (unsigned long)bvec->bv_offset + skip;
811 		if (len > size)
812 			len = size;
813 		res |= len;
814 		bvec++;
815 		size -= len;
816 		skip = 0;
817 	} while (size);
818 
819 	return res;
820 }
821 
822 unsigned long iov_iter_alignment(const struct iov_iter *i)
823 {
824 	if (likely(iter_is_ubuf(i))) {
825 		size_t size = i->count;
826 		if (size)
827 			return ((unsigned long)i->ubuf + i->iov_offset) | size;
828 		return 0;
829 	}
830 
831 	/* iovec and kvec have identical layouts */
832 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
833 		return iov_iter_alignment_iovec(i);
834 
835 	if (iov_iter_is_bvec(i))
836 		return iov_iter_alignment_bvec(i);
837 
838 	if (iov_iter_is_xarray(i))
839 		return (i->xarray_start + i->iov_offset) | i->count;
840 
841 	return 0;
842 }
843 EXPORT_SYMBOL(iov_iter_alignment);
844 
845 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
846 {
847 	unsigned long res = 0;
848 	unsigned long v = 0;
849 	size_t size = i->count;
850 	unsigned k;
851 
852 	if (iter_is_ubuf(i))
853 		return 0;
854 
855 	if (WARN_ON(!iter_is_iovec(i)))
856 		return ~0U;
857 
858 	for (k = 0; k < i->nr_segs; k++) {
859 		const struct iovec *iov = iter_iov(i) + k;
860 		if (iov->iov_len) {
861 			unsigned long base = (unsigned long)iov->iov_base;
862 			if (v) // if not the first one
863 				res |= base | v; // this start | previous end
864 			v = base + iov->iov_len;
865 			if (size <= iov->iov_len)
866 				break;
867 			size -= iov->iov_len;
868 		}
869 	}
870 	return res;
871 }
872 EXPORT_SYMBOL(iov_iter_gap_alignment);
873 
874 static int want_pages_array(struct page ***res, size_t size,
875 			    size_t start, unsigned int maxpages)
876 {
877 	unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE);
878 
879 	if (count > maxpages)
880 		count = maxpages;
881 	WARN_ON(!count);	// caller should've prevented that
882 	if (!*res) {
883 		*res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL);
884 		if (!*res)
885 			return 0;
886 	}
887 	return count;
888 }
889 
890 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
891 					  pgoff_t index, unsigned int nr_pages)
892 {
893 	XA_STATE(xas, xa, index);
894 	struct page *page;
895 	unsigned int ret = 0;
896 
897 	rcu_read_lock();
898 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
899 		if (xas_retry(&xas, page))
900 			continue;
901 
902 		/* Has the page moved or been split? */
903 		if (unlikely(page != xas_reload(&xas))) {
904 			xas_reset(&xas);
905 			continue;
906 		}
907 
908 		pages[ret] = find_subpage(page, xas.xa_index);
909 		get_page(pages[ret]);
910 		if (++ret == nr_pages)
911 			break;
912 	}
913 	rcu_read_unlock();
914 	return ret;
915 }
916 
917 static ssize_t iter_xarray_get_pages(struct iov_iter *i,
918 				     struct page ***pages, size_t maxsize,
919 				     unsigned maxpages, size_t *_start_offset)
920 {
921 	unsigned nr, offset, count;
922 	pgoff_t index;
923 	loff_t pos;
924 
925 	pos = i->xarray_start + i->iov_offset;
926 	index = pos >> PAGE_SHIFT;
927 	offset = pos & ~PAGE_MASK;
928 	*_start_offset = offset;
929 
930 	count = want_pages_array(pages, maxsize, offset, maxpages);
931 	if (!count)
932 		return -ENOMEM;
933 	nr = iter_xarray_populate_pages(*pages, i->xarray, index, count);
934 	if (nr == 0)
935 		return 0;
936 
937 	maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
938 	i->iov_offset += maxsize;
939 	i->count -= maxsize;
940 	return maxsize;
941 }
942 
943 /* must be done on non-empty ITER_UBUF or ITER_IOVEC one */
944 static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size)
945 {
946 	size_t skip;
947 	long k;
948 
949 	if (iter_is_ubuf(i))
950 		return (unsigned long)i->ubuf + i->iov_offset;
951 
952 	for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
953 		const struct iovec *iov = iter_iov(i) + k;
954 		size_t len = iov->iov_len - skip;
955 
956 		if (unlikely(!len))
957 			continue;
958 		if (*size > len)
959 			*size = len;
960 		return (unsigned long)iov->iov_base + skip;
961 	}
962 	BUG(); // if it had been empty, we wouldn't get called
963 }
964 
965 /* must be done on non-empty ITER_BVEC one */
966 static struct page *first_bvec_segment(const struct iov_iter *i,
967 				       size_t *size, size_t *start)
968 {
969 	struct page *page;
970 	size_t skip = i->iov_offset, len;
971 
972 	len = i->bvec->bv_len - skip;
973 	if (*size > len)
974 		*size = len;
975 	skip += i->bvec->bv_offset;
976 	page = i->bvec->bv_page + skip / PAGE_SIZE;
977 	*start = skip % PAGE_SIZE;
978 	return page;
979 }
980 
981 static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i,
982 		   struct page ***pages, size_t maxsize,
983 		   unsigned int maxpages, size_t *start)
984 {
985 	unsigned int n, gup_flags = 0;
986 
987 	if (maxsize > i->count)
988 		maxsize = i->count;
989 	if (!maxsize)
990 		return 0;
991 	if (maxsize > MAX_RW_COUNT)
992 		maxsize = MAX_RW_COUNT;
993 
994 	if (likely(user_backed_iter(i))) {
995 		unsigned long addr;
996 		int res;
997 
998 		if (iov_iter_rw(i) != WRITE)
999 			gup_flags |= FOLL_WRITE;
1000 		if (i->nofault)
1001 			gup_flags |= FOLL_NOFAULT;
1002 
1003 		addr = first_iovec_segment(i, &maxsize);
1004 		*start = addr % PAGE_SIZE;
1005 		addr &= PAGE_MASK;
1006 		n = want_pages_array(pages, maxsize, *start, maxpages);
1007 		if (!n)
1008 			return -ENOMEM;
1009 		res = get_user_pages_fast(addr, n, gup_flags, *pages);
1010 		if (unlikely(res <= 0))
1011 			return res;
1012 		maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start);
1013 		iov_iter_advance(i, maxsize);
1014 		return maxsize;
1015 	}
1016 	if (iov_iter_is_bvec(i)) {
1017 		struct page **p;
1018 		struct page *page;
1019 
1020 		page = first_bvec_segment(i, &maxsize, start);
1021 		n = want_pages_array(pages, maxsize, *start, maxpages);
1022 		if (!n)
1023 			return -ENOMEM;
1024 		p = *pages;
1025 		for (int k = 0; k < n; k++)
1026 			get_page(p[k] = page + k);
1027 		maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start);
1028 		i->count -= maxsize;
1029 		i->iov_offset += maxsize;
1030 		if (i->iov_offset == i->bvec->bv_len) {
1031 			i->iov_offset = 0;
1032 			i->bvec++;
1033 			i->nr_segs--;
1034 		}
1035 		return maxsize;
1036 	}
1037 	if (iov_iter_is_xarray(i))
1038 		return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1039 	return -EFAULT;
1040 }
1041 
1042 ssize_t iov_iter_get_pages2(struct iov_iter *i, struct page **pages,
1043 		size_t maxsize, unsigned maxpages, size_t *start)
1044 {
1045 	if (!maxpages)
1046 		return 0;
1047 	BUG_ON(!pages);
1048 
1049 	return __iov_iter_get_pages_alloc(i, &pages, maxsize, maxpages, start);
1050 }
1051 EXPORT_SYMBOL(iov_iter_get_pages2);
1052 
1053 ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i,
1054 		struct page ***pages, size_t maxsize, size_t *start)
1055 {
1056 	ssize_t len;
1057 
1058 	*pages = NULL;
1059 
1060 	len = __iov_iter_get_pages_alloc(i, pages, maxsize, ~0U, start);
1061 	if (len <= 0) {
1062 		kvfree(*pages);
1063 		*pages = NULL;
1064 	}
1065 	return len;
1066 }
1067 EXPORT_SYMBOL(iov_iter_get_pages_alloc2);
1068 
1069 static int iov_npages(const struct iov_iter *i, int maxpages)
1070 {
1071 	size_t skip = i->iov_offset, size = i->count;
1072 	const struct iovec *p;
1073 	int npages = 0;
1074 
1075 	for (p = iter_iov(i); size; skip = 0, p++) {
1076 		unsigned offs = offset_in_page(p->iov_base + skip);
1077 		size_t len = min(p->iov_len - skip, size);
1078 
1079 		if (len) {
1080 			size -= len;
1081 			npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1082 			if (unlikely(npages > maxpages))
1083 				return maxpages;
1084 		}
1085 	}
1086 	return npages;
1087 }
1088 
1089 static int bvec_npages(const struct iov_iter *i, int maxpages)
1090 {
1091 	size_t skip = i->iov_offset, size = i->count;
1092 	const struct bio_vec *p;
1093 	int npages = 0;
1094 
1095 	for (p = i->bvec; size; skip = 0, p++) {
1096 		unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1097 		size_t len = min(p->bv_len - skip, size);
1098 
1099 		size -= len;
1100 		npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1101 		if (unlikely(npages > maxpages))
1102 			return maxpages;
1103 	}
1104 	return npages;
1105 }
1106 
1107 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1108 {
1109 	if (unlikely(!i->count))
1110 		return 0;
1111 	if (likely(iter_is_ubuf(i))) {
1112 		unsigned offs = offset_in_page(i->ubuf + i->iov_offset);
1113 		int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE);
1114 		return min(npages, maxpages);
1115 	}
1116 	/* iovec and kvec have identical layouts */
1117 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1118 		return iov_npages(i, maxpages);
1119 	if (iov_iter_is_bvec(i))
1120 		return bvec_npages(i, maxpages);
1121 	if (iov_iter_is_xarray(i)) {
1122 		unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1123 		int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1124 		return min(npages, maxpages);
1125 	}
1126 	return 0;
1127 }
1128 EXPORT_SYMBOL(iov_iter_npages);
1129 
1130 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1131 {
1132 	*new = *old;
1133 	if (iov_iter_is_bvec(new))
1134 		return new->bvec = kmemdup(new->bvec,
1135 				    new->nr_segs * sizeof(struct bio_vec),
1136 				    flags);
1137 	else if (iov_iter_is_kvec(new) || iter_is_iovec(new))
1138 		/* iovec and kvec have identical layout */
1139 		return new->__iov = kmemdup(new->__iov,
1140 				   new->nr_segs * sizeof(struct iovec),
1141 				   flags);
1142 	return NULL;
1143 }
1144 EXPORT_SYMBOL(dup_iter);
1145 
1146 static __noclone int copy_compat_iovec_from_user(struct iovec *iov,
1147 		const struct iovec __user *uvec, u32 nr_segs)
1148 {
1149 	const struct compat_iovec __user *uiov =
1150 		(const struct compat_iovec __user *)uvec;
1151 	int ret = -EFAULT;
1152 	u32 i;
1153 
1154 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1155 		return -EFAULT;
1156 
1157 	for (i = 0; i < nr_segs; i++) {
1158 		compat_uptr_t buf;
1159 		compat_ssize_t len;
1160 
1161 		unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1162 		unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1163 
1164 		/* check for compat_size_t not fitting in compat_ssize_t .. */
1165 		if (len < 0) {
1166 			ret = -EINVAL;
1167 			goto uaccess_end;
1168 		}
1169 		iov[i].iov_base = compat_ptr(buf);
1170 		iov[i].iov_len = len;
1171 	}
1172 
1173 	ret = 0;
1174 uaccess_end:
1175 	user_access_end();
1176 	return ret;
1177 }
1178 
1179 static __noclone int copy_iovec_from_user(struct iovec *iov,
1180 		const struct iovec __user *uiov, unsigned long nr_segs)
1181 {
1182 	int ret = -EFAULT;
1183 
1184 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1185 		return -EFAULT;
1186 
1187 	do {
1188 		void __user *buf;
1189 		ssize_t len;
1190 
1191 		unsafe_get_user(len, &uiov->iov_len, uaccess_end);
1192 		unsafe_get_user(buf, &uiov->iov_base, uaccess_end);
1193 
1194 		/* check for size_t not fitting in ssize_t .. */
1195 		if (unlikely(len < 0)) {
1196 			ret = -EINVAL;
1197 			goto uaccess_end;
1198 		}
1199 		iov->iov_base = buf;
1200 		iov->iov_len = len;
1201 
1202 		uiov++; iov++;
1203 	} while (--nr_segs);
1204 
1205 	ret = 0;
1206 uaccess_end:
1207 	user_access_end();
1208 	return ret;
1209 }
1210 
1211 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1212 		unsigned long nr_segs, unsigned long fast_segs,
1213 		struct iovec *fast_iov, bool compat)
1214 {
1215 	struct iovec *iov = fast_iov;
1216 	int ret;
1217 
1218 	/*
1219 	 * SuS says "The readv() function *may* fail if the iovcnt argument was
1220 	 * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1221 	 * traditionally returned zero for zero segments, so...
1222 	 */
1223 	if (nr_segs == 0)
1224 		return iov;
1225 	if (nr_segs > UIO_MAXIOV)
1226 		return ERR_PTR(-EINVAL);
1227 	if (nr_segs > fast_segs) {
1228 		iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1229 		if (!iov)
1230 			return ERR_PTR(-ENOMEM);
1231 	}
1232 
1233 	if (unlikely(compat))
1234 		ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1235 	else
1236 		ret = copy_iovec_from_user(iov, uvec, nr_segs);
1237 	if (ret) {
1238 		if (iov != fast_iov)
1239 			kfree(iov);
1240 		return ERR_PTR(ret);
1241 	}
1242 
1243 	return iov;
1244 }
1245 
1246 /*
1247  * Single segment iovec supplied by the user, import it as ITER_UBUF.
1248  */
1249 static ssize_t __import_iovec_ubuf(int type, const struct iovec __user *uvec,
1250 				   struct iovec **iovp, struct iov_iter *i,
1251 				   bool compat)
1252 {
1253 	struct iovec *iov = *iovp;
1254 	ssize_t ret;
1255 
1256 	if (compat)
1257 		ret = copy_compat_iovec_from_user(iov, uvec, 1);
1258 	else
1259 		ret = copy_iovec_from_user(iov, uvec, 1);
1260 	if (unlikely(ret))
1261 		return ret;
1262 
1263 	ret = import_ubuf(type, iov->iov_base, iov->iov_len, i);
1264 	if (unlikely(ret))
1265 		return ret;
1266 	*iovp = NULL;
1267 	return i->count;
1268 }
1269 
1270 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1271 		 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1272 		 struct iov_iter *i, bool compat)
1273 {
1274 	ssize_t total_len = 0;
1275 	unsigned long seg;
1276 	struct iovec *iov;
1277 
1278 	if (nr_segs == 1)
1279 		return __import_iovec_ubuf(type, uvec, iovp, i, compat);
1280 
1281 	iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1282 	if (IS_ERR(iov)) {
1283 		*iovp = NULL;
1284 		return PTR_ERR(iov);
1285 	}
1286 
1287 	/*
1288 	 * According to the Single Unix Specification we should return EINVAL if
1289 	 * an element length is < 0 when cast to ssize_t or if the total length
1290 	 * would overflow the ssize_t return value of the system call.
1291 	 *
1292 	 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1293 	 * overflow case.
1294 	 */
1295 	for (seg = 0; seg < nr_segs; seg++) {
1296 		ssize_t len = (ssize_t)iov[seg].iov_len;
1297 
1298 		if (!access_ok(iov[seg].iov_base, len)) {
1299 			if (iov != *iovp)
1300 				kfree(iov);
1301 			*iovp = NULL;
1302 			return -EFAULT;
1303 		}
1304 
1305 		if (len > MAX_RW_COUNT - total_len) {
1306 			len = MAX_RW_COUNT - total_len;
1307 			iov[seg].iov_len = len;
1308 		}
1309 		total_len += len;
1310 	}
1311 
1312 	iov_iter_init(i, type, iov, nr_segs, total_len);
1313 	if (iov == *iovp)
1314 		*iovp = NULL;
1315 	else
1316 		*iovp = iov;
1317 	return total_len;
1318 }
1319 
1320 /**
1321  * import_iovec() - Copy an array of &struct iovec from userspace
1322  *     into the kernel, check that it is valid, and initialize a new
1323  *     &struct iov_iter iterator to access it.
1324  *
1325  * @type: One of %READ or %WRITE.
1326  * @uvec: Pointer to the userspace array.
1327  * @nr_segs: Number of elements in userspace array.
1328  * @fast_segs: Number of elements in @iov.
1329  * @iovp: (input and output parameter) Pointer to pointer to (usually small
1330  *     on-stack) kernel array.
1331  * @i: Pointer to iterator that will be initialized on success.
1332  *
1333  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1334  * then this function places %NULL in *@iov on return. Otherwise, a new
1335  * array will be allocated and the result placed in *@iov. This means that
1336  * the caller may call kfree() on *@iov regardless of whether the small
1337  * on-stack array was used or not (and regardless of whether this function
1338  * returns an error or not).
1339  *
1340  * Return: Negative error code on error, bytes imported on success
1341  */
1342 ssize_t import_iovec(int type, const struct iovec __user *uvec,
1343 		 unsigned nr_segs, unsigned fast_segs,
1344 		 struct iovec **iovp, struct iov_iter *i)
1345 {
1346 	return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1347 			      in_compat_syscall());
1348 }
1349 EXPORT_SYMBOL(import_iovec);
1350 
1351 int import_ubuf(int rw, void __user *buf, size_t len, struct iov_iter *i)
1352 {
1353 	if (len > MAX_RW_COUNT)
1354 		len = MAX_RW_COUNT;
1355 	if (unlikely(!access_ok(buf, len)))
1356 		return -EFAULT;
1357 
1358 	iov_iter_ubuf(i, rw, buf, len);
1359 	return 0;
1360 }
1361 EXPORT_SYMBOL_GPL(import_ubuf);
1362 
1363 /**
1364  * iov_iter_restore() - Restore a &struct iov_iter to the same state as when
1365  *     iov_iter_save_state() was called.
1366  *
1367  * @i: &struct iov_iter to restore
1368  * @state: state to restore from
1369  *
1370  * Used after iov_iter_save_state() to bring restore @i, if operations may
1371  * have advanced it.
1372  *
1373  * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC
1374  */
1375 void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state)
1376 {
1377 	if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i) &&
1378 			 !iter_is_ubuf(i)) && !iov_iter_is_kvec(i))
1379 		return;
1380 	i->iov_offset = state->iov_offset;
1381 	i->count = state->count;
1382 	if (iter_is_ubuf(i))
1383 		return;
1384 	/*
1385 	 * For the *vec iters, nr_segs + iov is constant - if we increment
1386 	 * the vec, then we also decrement the nr_segs count. Hence we don't
1387 	 * need to track both of these, just one is enough and we can deduct
1388 	 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct
1389 	 * size, so we can just increment the iov pointer as they are unionzed.
1390 	 * ITER_BVEC _may_ be the same size on some archs, but on others it is
1391 	 * not. Be safe and handle it separately.
1392 	 */
1393 	BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec));
1394 	if (iov_iter_is_bvec(i))
1395 		i->bvec -= state->nr_segs - i->nr_segs;
1396 	else
1397 		i->__iov -= state->nr_segs - i->nr_segs;
1398 	i->nr_segs = state->nr_segs;
1399 }
1400 
1401 /*
1402  * Extract a list of contiguous pages from an ITER_XARRAY iterator.  This does not
1403  * get references on the pages, nor does it get a pin on them.
1404  */
1405 static ssize_t iov_iter_extract_xarray_pages(struct iov_iter *i,
1406 					     struct page ***pages, size_t maxsize,
1407 					     unsigned int maxpages,
1408 					     iov_iter_extraction_t extraction_flags,
1409 					     size_t *offset0)
1410 {
1411 	struct page *page, **p;
1412 	unsigned int nr = 0, offset;
1413 	loff_t pos = i->xarray_start + i->iov_offset;
1414 	pgoff_t index = pos >> PAGE_SHIFT;
1415 	XA_STATE(xas, i->xarray, index);
1416 
1417 	offset = pos & ~PAGE_MASK;
1418 	*offset0 = offset;
1419 
1420 	maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1421 	if (!maxpages)
1422 		return -ENOMEM;
1423 	p = *pages;
1424 
1425 	rcu_read_lock();
1426 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1427 		if (xas_retry(&xas, page))
1428 			continue;
1429 
1430 		/* Has the page moved or been split? */
1431 		if (unlikely(page != xas_reload(&xas))) {
1432 			xas_reset(&xas);
1433 			continue;
1434 		}
1435 
1436 		p[nr++] = find_subpage(page, xas.xa_index);
1437 		if (nr == maxpages)
1438 			break;
1439 	}
1440 	rcu_read_unlock();
1441 
1442 	maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1443 	iov_iter_advance(i, maxsize);
1444 	return maxsize;
1445 }
1446 
1447 /*
1448  * Extract a list of contiguous pages from an ITER_BVEC iterator.  This does
1449  * not get references on the pages, nor does it get a pin on them.
1450  */
1451 static ssize_t iov_iter_extract_bvec_pages(struct iov_iter *i,
1452 					   struct page ***pages, size_t maxsize,
1453 					   unsigned int maxpages,
1454 					   iov_iter_extraction_t extraction_flags,
1455 					   size_t *offset0)
1456 {
1457 	struct page **p, *page;
1458 	size_t skip = i->iov_offset, offset, size;
1459 	int k;
1460 
1461 	for (;;) {
1462 		if (i->nr_segs == 0)
1463 			return 0;
1464 		size = min(maxsize, i->bvec->bv_len - skip);
1465 		if (size)
1466 			break;
1467 		i->iov_offset = 0;
1468 		i->nr_segs--;
1469 		i->bvec++;
1470 		skip = 0;
1471 	}
1472 
1473 	skip += i->bvec->bv_offset;
1474 	page = i->bvec->bv_page + skip / PAGE_SIZE;
1475 	offset = skip % PAGE_SIZE;
1476 	*offset0 = offset;
1477 
1478 	maxpages = want_pages_array(pages, size, offset, maxpages);
1479 	if (!maxpages)
1480 		return -ENOMEM;
1481 	p = *pages;
1482 	for (k = 0; k < maxpages; k++)
1483 		p[k] = page + k;
1484 
1485 	size = min_t(size_t, size, maxpages * PAGE_SIZE - offset);
1486 	iov_iter_advance(i, size);
1487 	return size;
1488 }
1489 
1490 /*
1491  * Extract a list of virtually contiguous pages from an ITER_KVEC iterator.
1492  * This does not get references on the pages, nor does it get a pin on them.
1493  */
1494 static ssize_t iov_iter_extract_kvec_pages(struct iov_iter *i,
1495 					   struct page ***pages, size_t maxsize,
1496 					   unsigned int maxpages,
1497 					   iov_iter_extraction_t extraction_flags,
1498 					   size_t *offset0)
1499 {
1500 	struct page **p, *page;
1501 	const void *kaddr;
1502 	size_t skip = i->iov_offset, offset, len, size;
1503 	int k;
1504 
1505 	for (;;) {
1506 		if (i->nr_segs == 0)
1507 			return 0;
1508 		size = min(maxsize, i->kvec->iov_len - skip);
1509 		if (size)
1510 			break;
1511 		i->iov_offset = 0;
1512 		i->nr_segs--;
1513 		i->kvec++;
1514 		skip = 0;
1515 	}
1516 
1517 	kaddr = i->kvec->iov_base + skip;
1518 	offset = (unsigned long)kaddr & ~PAGE_MASK;
1519 	*offset0 = offset;
1520 
1521 	maxpages = want_pages_array(pages, size, offset, maxpages);
1522 	if (!maxpages)
1523 		return -ENOMEM;
1524 	p = *pages;
1525 
1526 	kaddr -= offset;
1527 	len = offset + size;
1528 	for (k = 0; k < maxpages; k++) {
1529 		size_t seg = min_t(size_t, len, PAGE_SIZE);
1530 
1531 		if (is_vmalloc_or_module_addr(kaddr))
1532 			page = vmalloc_to_page(kaddr);
1533 		else
1534 			page = virt_to_page(kaddr);
1535 
1536 		p[k] = page;
1537 		len -= seg;
1538 		kaddr += PAGE_SIZE;
1539 	}
1540 
1541 	size = min_t(size_t, size, maxpages * PAGE_SIZE - offset);
1542 	iov_iter_advance(i, size);
1543 	return size;
1544 }
1545 
1546 /*
1547  * Extract a list of contiguous pages from a user iterator and get a pin on
1548  * each of them.  This should only be used if the iterator is user-backed
1549  * (IOBUF/UBUF).
1550  *
1551  * It does not get refs on the pages, but the pages must be unpinned by the
1552  * caller once the transfer is complete.
1553  *
1554  * This is safe to be used where background IO/DMA *is* going to be modifying
1555  * the buffer; using a pin rather than a ref makes forces fork() to give the
1556  * child a copy of the page.
1557  */
1558 static ssize_t iov_iter_extract_user_pages(struct iov_iter *i,
1559 					   struct page ***pages,
1560 					   size_t maxsize,
1561 					   unsigned int maxpages,
1562 					   iov_iter_extraction_t extraction_flags,
1563 					   size_t *offset0)
1564 {
1565 	unsigned long addr;
1566 	unsigned int gup_flags = 0;
1567 	size_t offset;
1568 	int res;
1569 
1570 	if (i->data_source == ITER_DEST)
1571 		gup_flags |= FOLL_WRITE;
1572 	if (extraction_flags & ITER_ALLOW_P2PDMA)
1573 		gup_flags |= FOLL_PCI_P2PDMA;
1574 	if (i->nofault)
1575 		gup_flags |= FOLL_NOFAULT;
1576 
1577 	addr = first_iovec_segment(i, &maxsize);
1578 	*offset0 = offset = addr % PAGE_SIZE;
1579 	addr &= PAGE_MASK;
1580 	maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1581 	if (!maxpages)
1582 		return -ENOMEM;
1583 	res = pin_user_pages_fast(addr, maxpages, gup_flags, *pages);
1584 	if (unlikely(res <= 0))
1585 		return res;
1586 	maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - offset);
1587 	iov_iter_advance(i, maxsize);
1588 	return maxsize;
1589 }
1590 
1591 /**
1592  * iov_iter_extract_pages - Extract a list of contiguous pages from an iterator
1593  * @i: The iterator to extract from
1594  * @pages: Where to return the list of pages
1595  * @maxsize: The maximum amount of iterator to extract
1596  * @maxpages: The maximum size of the list of pages
1597  * @extraction_flags: Flags to qualify request
1598  * @offset0: Where to return the starting offset into (*@pages)[0]
1599  *
1600  * Extract a list of contiguous pages from the current point of the iterator,
1601  * advancing the iterator.  The maximum number of pages and the maximum amount
1602  * of page contents can be set.
1603  *
1604  * If *@pages is NULL, a page list will be allocated to the required size and
1605  * *@pages will be set to its base.  If *@pages is not NULL, it will be assumed
1606  * that the caller allocated a page list at least @maxpages in size and this
1607  * will be filled in.
1608  *
1609  * @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA
1610  * be allowed on the pages extracted.
1611  *
1612  * The iov_iter_extract_will_pin() function can be used to query how cleanup
1613  * should be performed.
1614  *
1615  * Extra refs or pins on the pages may be obtained as follows:
1616  *
1617  *  (*) If the iterator is user-backed (ITER_IOVEC/ITER_UBUF), pins will be
1618  *      added to the pages, but refs will not be taken.
1619  *      iov_iter_extract_will_pin() will return true.
1620  *
1621  *  (*) If the iterator is ITER_KVEC, ITER_BVEC or ITER_XARRAY, the pages are
1622  *      merely listed; no extra refs or pins are obtained.
1623  *      iov_iter_extract_will_pin() will return 0.
1624  *
1625  * Note also:
1626  *
1627  *  (*) Use with ITER_DISCARD is not supported as that has no content.
1628  *
1629  * On success, the function sets *@pages to the new pagelist, if allocated, and
1630  * sets *offset0 to the offset into the first page.
1631  *
1632  * It may also return -ENOMEM and -EFAULT.
1633  */
1634 ssize_t iov_iter_extract_pages(struct iov_iter *i,
1635 			       struct page ***pages,
1636 			       size_t maxsize,
1637 			       unsigned int maxpages,
1638 			       iov_iter_extraction_t extraction_flags,
1639 			       size_t *offset0)
1640 {
1641 	maxsize = min_t(size_t, min_t(size_t, maxsize, i->count), MAX_RW_COUNT);
1642 	if (!maxsize)
1643 		return 0;
1644 
1645 	if (likely(user_backed_iter(i)))
1646 		return iov_iter_extract_user_pages(i, pages, maxsize,
1647 						   maxpages, extraction_flags,
1648 						   offset0);
1649 	if (iov_iter_is_kvec(i))
1650 		return iov_iter_extract_kvec_pages(i, pages, maxsize,
1651 						   maxpages, extraction_flags,
1652 						   offset0);
1653 	if (iov_iter_is_bvec(i))
1654 		return iov_iter_extract_bvec_pages(i, pages, maxsize,
1655 						   maxpages, extraction_flags,
1656 						   offset0);
1657 	if (iov_iter_is_xarray(i))
1658 		return iov_iter_extract_xarray_pages(i, pages, maxsize,
1659 						     maxpages, extraction_flags,
1660 						     offset0);
1661 	return -EFAULT;
1662 }
1663 EXPORT_SYMBOL_GPL(iov_iter_extract_pages);
1664