1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/export.h> 3 #include <linux/bvec.h> 4 #include <linux/fault-inject-usercopy.h> 5 #include <linux/uio.h> 6 #include <linux/pagemap.h> 7 #include <linux/highmem.h> 8 #include <linux/slab.h> 9 #include <linux/vmalloc.h> 10 #include <linux/splice.h> 11 #include <linux/compat.h> 12 #include <linux/scatterlist.h> 13 #include <linux/instrumented.h> 14 #include <linux/iov_iter.h> 15 16 static __always_inline 17 size_t copy_to_user_iter(void __user *iter_to, size_t progress, 18 size_t len, void *from, void *priv2) 19 { 20 if (should_fail_usercopy()) 21 return len; 22 if (access_ok(iter_to, len)) { 23 from += progress; 24 instrument_copy_to_user(iter_to, from, len); 25 len = raw_copy_to_user(iter_to, from, len); 26 } 27 return len; 28 } 29 30 static __always_inline 31 size_t copy_to_user_iter_nofault(void __user *iter_to, size_t progress, 32 size_t len, void *from, void *priv2) 33 { 34 ssize_t res; 35 36 if (should_fail_usercopy()) 37 return len; 38 39 from += progress; 40 res = copy_to_user_nofault(iter_to, from, len); 41 return res < 0 ? len : res; 42 } 43 44 static __always_inline 45 size_t copy_from_user_iter(void __user *iter_from, size_t progress, 46 size_t len, void *to, void *priv2) 47 { 48 size_t res = len; 49 50 if (should_fail_usercopy()) 51 return len; 52 if (access_ok(iter_from, len)) { 53 to += progress; 54 instrument_copy_from_user_before(to, iter_from, len); 55 res = raw_copy_from_user(to, iter_from, len); 56 instrument_copy_from_user_after(to, iter_from, len, res); 57 } 58 return res; 59 } 60 61 static __always_inline 62 size_t memcpy_to_iter(void *iter_to, size_t progress, 63 size_t len, void *from, void *priv2) 64 { 65 memcpy(iter_to, from + progress, len); 66 return 0; 67 } 68 69 static __always_inline 70 size_t memcpy_from_iter(void *iter_from, size_t progress, 71 size_t len, void *to, void *priv2) 72 { 73 memcpy(to + progress, iter_from, len); 74 return 0; 75 } 76 77 /* 78 * fault_in_iov_iter_readable - fault in iov iterator for reading 79 * @i: iterator 80 * @size: maximum length 81 * 82 * Fault in one or more iovecs of the given iov_iter, to a maximum length of 83 * @size. For each iovec, fault in each page that constitutes the iovec. 84 * 85 * Returns the number of bytes not faulted in (like copy_to_user() and 86 * copy_from_user()). 87 * 88 * Always returns 0 for non-userspace iterators. 89 */ 90 size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size) 91 { 92 if (iter_is_ubuf(i)) { 93 size_t n = min(size, iov_iter_count(i)); 94 n -= fault_in_readable(i->ubuf + i->iov_offset, n); 95 return size - n; 96 } else if (iter_is_iovec(i)) { 97 size_t count = min(size, iov_iter_count(i)); 98 const struct iovec *p; 99 size_t skip; 100 101 size -= count; 102 for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) { 103 size_t len = min(count, p->iov_len - skip); 104 size_t ret; 105 106 if (unlikely(!len)) 107 continue; 108 ret = fault_in_readable(p->iov_base + skip, len); 109 count -= len - ret; 110 if (ret) 111 break; 112 } 113 return count + size; 114 } 115 return 0; 116 } 117 EXPORT_SYMBOL(fault_in_iov_iter_readable); 118 119 /* 120 * fault_in_iov_iter_writeable - fault in iov iterator for writing 121 * @i: iterator 122 * @size: maximum length 123 * 124 * Faults in the iterator using get_user_pages(), i.e., without triggering 125 * hardware page faults. This is primarily useful when we already know that 126 * some or all of the pages in @i aren't in memory. 127 * 128 * Returns the number of bytes not faulted in, like copy_to_user() and 129 * copy_from_user(). 130 * 131 * Always returns 0 for non-user-space iterators. 132 */ 133 size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size) 134 { 135 if (iter_is_ubuf(i)) { 136 size_t n = min(size, iov_iter_count(i)); 137 n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n); 138 return size - n; 139 } else if (iter_is_iovec(i)) { 140 size_t count = min(size, iov_iter_count(i)); 141 const struct iovec *p; 142 size_t skip; 143 144 size -= count; 145 for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) { 146 size_t len = min(count, p->iov_len - skip); 147 size_t ret; 148 149 if (unlikely(!len)) 150 continue; 151 ret = fault_in_safe_writeable(p->iov_base + skip, len); 152 count -= len - ret; 153 if (ret) 154 break; 155 } 156 return count + size; 157 } 158 return 0; 159 } 160 EXPORT_SYMBOL(fault_in_iov_iter_writeable); 161 162 void iov_iter_init(struct iov_iter *i, unsigned int direction, 163 const struct iovec *iov, unsigned long nr_segs, 164 size_t count) 165 { 166 WARN_ON(direction & ~(READ | WRITE)); 167 *i = (struct iov_iter) { 168 .iter_type = ITER_IOVEC, 169 .nofault = false, 170 .data_source = direction, 171 .__iov = iov, 172 .nr_segs = nr_segs, 173 .iov_offset = 0, 174 .count = count 175 }; 176 } 177 EXPORT_SYMBOL(iov_iter_init); 178 179 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i) 180 { 181 if (WARN_ON_ONCE(i->data_source)) 182 return 0; 183 if (user_backed_iter(i)) 184 might_fault(); 185 return iterate_and_advance(i, bytes, (void *)addr, 186 copy_to_user_iter, memcpy_to_iter); 187 } 188 EXPORT_SYMBOL(_copy_to_iter); 189 190 #ifdef CONFIG_ARCH_HAS_COPY_MC 191 static __always_inline 192 size_t copy_to_user_iter_mc(void __user *iter_to, size_t progress, 193 size_t len, void *from, void *priv2) 194 { 195 if (access_ok(iter_to, len)) { 196 from += progress; 197 instrument_copy_to_user(iter_to, from, len); 198 len = copy_mc_to_user(iter_to, from, len); 199 } 200 return len; 201 } 202 203 static __always_inline 204 size_t memcpy_to_iter_mc(void *iter_to, size_t progress, 205 size_t len, void *from, void *priv2) 206 { 207 return copy_mc_to_kernel(iter_to, from + progress, len); 208 } 209 210 /** 211 * _copy_mc_to_iter - copy to iter with source memory error exception handling 212 * @addr: source kernel address 213 * @bytes: total transfer length 214 * @i: destination iterator 215 * 216 * The pmem driver deploys this for the dax operation 217 * (dax_copy_to_iter()) for dax reads (bypass page-cache and the 218 * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes 219 * successfully copied. 220 * 221 * The main differences between this and typical _copy_to_iter(). 222 * 223 * * Typical tail/residue handling after a fault retries the copy 224 * byte-by-byte until the fault happens again. Re-triggering machine 225 * checks is potentially fatal so the implementation uses source 226 * alignment and poison alignment assumptions to avoid re-triggering 227 * hardware exceptions. 228 * 229 * * ITER_KVEC and ITER_BVEC can return short copies. Compare to 230 * copy_to_iter() where only ITER_IOVEC attempts might return a short copy. 231 * 232 * Return: number of bytes copied (may be %0) 233 */ 234 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i) 235 { 236 if (WARN_ON_ONCE(i->data_source)) 237 return 0; 238 if (user_backed_iter(i)) 239 might_fault(); 240 return iterate_and_advance(i, bytes, (void *)addr, 241 copy_to_user_iter_mc, memcpy_to_iter_mc); 242 } 243 EXPORT_SYMBOL_GPL(_copy_mc_to_iter); 244 #endif /* CONFIG_ARCH_HAS_COPY_MC */ 245 246 static __always_inline 247 size_t __copy_from_iter(void *addr, size_t bytes, struct iov_iter *i) 248 { 249 return iterate_and_advance(i, bytes, addr, 250 copy_from_user_iter, memcpy_from_iter); 251 } 252 253 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i) 254 { 255 if (WARN_ON_ONCE(!i->data_source)) 256 return 0; 257 258 if (user_backed_iter(i)) 259 might_fault(); 260 return __copy_from_iter(addr, bytes, i); 261 } 262 EXPORT_SYMBOL(_copy_from_iter); 263 264 static __always_inline 265 size_t copy_from_user_iter_nocache(void __user *iter_from, size_t progress, 266 size_t len, void *to, void *priv2) 267 { 268 return __copy_from_user_inatomic_nocache(to + progress, iter_from, len); 269 } 270 271 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i) 272 { 273 if (WARN_ON_ONCE(!i->data_source)) 274 return 0; 275 276 return iterate_and_advance(i, bytes, addr, 277 copy_from_user_iter_nocache, 278 memcpy_from_iter); 279 } 280 EXPORT_SYMBOL(_copy_from_iter_nocache); 281 282 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE 283 static __always_inline 284 size_t copy_from_user_iter_flushcache(void __user *iter_from, size_t progress, 285 size_t len, void *to, void *priv2) 286 { 287 return __copy_from_user_flushcache(to + progress, iter_from, len); 288 } 289 290 static __always_inline 291 size_t memcpy_from_iter_flushcache(void *iter_from, size_t progress, 292 size_t len, void *to, void *priv2) 293 { 294 memcpy_flushcache(to + progress, iter_from, len); 295 return 0; 296 } 297 298 /** 299 * _copy_from_iter_flushcache - write destination through cpu cache 300 * @addr: destination kernel address 301 * @bytes: total transfer length 302 * @i: source iterator 303 * 304 * The pmem driver arranges for filesystem-dax to use this facility via 305 * dax_copy_from_iter() for ensuring that writes to persistent memory 306 * are flushed through the CPU cache. It is differentiated from 307 * _copy_from_iter_nocache() in that guarantees all data is flushed for 308 * all iterator types. The _copy_from_iter_nocache() only attempts to 309 * bypass the cache for the ITER_IOVEC case, and on some archs may use 310 * instructions that strand dirty-data in the cache. 311 * 312 * Return: number of bytes copied (may be %0) 313 */ 314 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i) 315 { 316 if (WARN_ON_ONCE(!i->data_source)) 317 return 0; 318 319 return iterate_and_advance(i, bytes, addr, 320 copy_from_user_iter_flushcache, 321 memcpy_from_iter_flushcache); 322 } 323 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache); 324 #endif 325 326 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n) 327 { 328 struct page *head; 329 size_t v = n + offset; 330 331 /* 332 * The general case needs to access the page order in order 333 * to compute the page size. 334 * However, we mostly deal with order-0 pages and thus can 335 * avoid a possible cache line miss for requests that fit all 336 * page orders. 337 */ 338 if (n <= v && v <= PAGE_SIZE) 339 return true; 340 341 head = compound_head(page); 342 v += (page - head) << PAGE_SHIFT; 343 344 if (WARN_ON(n > v || v > page_size(head))) 345 return false; 346 return true; 347 } 348 349 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes, 350 struct iov_iter *i) 351 { 352 size_t res = 0; 353 if (!page_copy_sane(page, offset, bytes)) 354 return 0; 355 if (WARN_ON_ONCE(i->data_source)) 356 return 0; 357 page += offset / PAGE_SIZE; // first subpage 358 offset %= PAGE_SIZE; 359 while (1) { 360 void *kaddr = kmap_local_page(page); 361 size_t n = min(bytes, (size_t)PAGE_SIZE - offset); 362 n = _copy_to_iter(kaddr + offset, n, i); 363 kunmap_local(kaddr); 364 res += n; 365 bytes -= n; 366 if (!bytes || !n) 367 break; 368 offset += n; 369 if (offset == PAGE_SIZE) { 370 page++; 371 offset = 0; 372 } 373 } 374 return res; 375 } 376 EXPORT_SYMBOL(copy_page_to_iter); 377 378 size_t copy_page_to_iter_nofault(struct page *page, unsigned offset, size_t bytes, 379 struct iov_iter *i) 380 { 381 size_t res = 0; 382 383 if (!page_copy_sane(page, offset, bytes)) 384 return 0; 385 if (WARN_ON_ONCE(i->data_source)) 386 return 0; 387 page += offset / PAGE_SIZE; // first subpage 388 offset %= PAGE_SIZE; 389 while (1) { 390 void *kaddr = kmap_local_page(page); 391 size_t n = min(bytes, (size_t)PAGE_SIZE - offset); 392 393 n = iterate_and_advance(i, n, kaddr + offset, 394 copy_to_user_iter_nofault, 395 memcpy_to_iter); 396 kunmap_local(kaddr); 397 res += n; 398 bytes -= n; 399 if (!bytes || !n) 400 break; 401 offset += n; 402 if (offset == PAGE_SIZE) { 403 page++; 404 offset = 0; 405 } 406 } 407 return res; 408 } 409 EXPORT_SYMBOL(copy_page_to_iter_nofault); 410 411 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes, 412 struct iov_iter *i) 413 { 414 size_t res = 0; 415 if (!page_copy_sane(page, offset, bytes)) 416 return 0; 417 page += offset / PAGE_SIZE; // first subpage 418 offset %= PAGE_SIZE; 419 while (1) { 420 void *kaddr = kmap_local_page(page); 421 size_t n = min(bytes, (size_t)PAGE_SIZE - offset); 422 n = _copy_from_iter(kaddr + offset, n, i); 423 kunmap_local(kaddr); 424 res += n; 425 bytes -= n; 426 if (!bytes || !n) 427 break; 428 offset += n; 429 if (offset == PAGE_SIZE) { 430 page++; 431 offset = 0; 432 } 433 } 434 return res; 435 } 436 EXPORT_SYMBOL(copy_page_from_iter); 437 438 static __always_inline 439 size_t zero_to_user_iter(void __user *iter_to, size_t progress, 440 size_t len, void *priv, void *priv2) 441 { 442 return clear_user(iter_to, len); 443 } 444 445 static __always_inline 446 size_t zero_to_iter(void *iter_to, size_t progress, 447 size_t len, void *priv, void *priv2) 448 { 449 memset(iter_to, 0, len); 450 return 0; 451 } 452 453 size_t iov_iter_zero(size_t bytes, struct iov_iter *i) 454 { 455 return iterate_and_advance(i, bytes, NULL, 456 zero_to_user_iter, zero_to_iter); 457 } 458 EXPORT_SYMBOL(iov_iter_zero); 459 460 size_t copy_page_from_iter_atomic(struct page *page, size_t offset, 461 size_t bytes, struct iov_iter *i) 462 { 463 size_t n, copied = 0; 464 465 if (!page_copy_sane(page, offset, bytes)) 466 return 0; 467 if (WARN_ON_ONCE(!i->data_source)) 468 return 0; 469 470 do { 471 char *p; 472 473 n = bytes - copied; 474 if (PageHighMem(page)) { 475 page += offset / PAGE_SIZE; 476 offset %= PAGE_SIZE; 477 n = min_t(size_t, n, PAGE_SIZE - offset); 478 } 479 480 p = kmap_atomic(page) + offset; 481 n = __copy_from_iter(p, n, i); 482 kunmap_atomic(p); 483 copied += n; 484 offset += n; 485 } while (PageHighMem(page) && copied != bytes && n > 0); 486 487 return copied; 488 } 489 EXPORT_SYMBOL(copy_page_from_iter_atomic); 490 491 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size) 492 { 493 const struct bio_vec *bvec, *end; 494 495 if (!i->count) 496 return; 497 i->count -= size; 498 499 size += i->iov_offset; 500 501 for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) { 502 if (likely(size < bvec->bv_len)) 503 break; 504 size -= bvec->bv_len; 505 } 506 i->iov_offset = size; 507 i->nr_segs -= bvec - i->bvec; 508 i->bvec = bvec; 509 } 510 511 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size) 512 { 513 const struct iovec *iov, *end; 514 515 if (!i->count) 516 return; 517 i->count -= size; 518 519 size += i->iov_offset; // from beginning of current segment 520 for (iov = iter_iov(i), end = iov + i->nr_segs; iov < end; iov++) { 521 if (likely(size < iov->iov_len)) 522 break; 523 size -= iov->iov_len; 524 } 525 i->iov_offset = size; 526 i->nr_segs -= iov - iter_iov(i); 527 i->__iov = iov; 528 } 529 530 static void iov_iter_folioq_advance(struct iov_iter *i, size_t size) 531 { 532 const struct folio_queue *folioq = i->folioq; 533 unsigned int slot = i->folioq_slot; 534 535 if (!i->count) 536 return; 537 i->count -= size; 538 539 if (slot >= folioq_nr_slots(folioq)) { 540 folioq = folioq->next; 541 slot = 0; 542 } 543 544 size += i->iov_offset; /* From beginning of current segment. */ 545 do { 546 size_t fsize = folioq_folio_size(folioq, slot); 547 548 if (likely(size < fsize)) 549 break; 550 size -= fsize; 551 slot++; 552 if (slot >= folioq_nr_slots(folioq) && folioq->next) { 553 folioq = folioq->next; 554 slot = 0; 555 } 556 } while (size); 557 558 i->iov_offset = size; 559 i->folioq_slot = slot; 560 i->folioq = folioq; 561 } 562 563 void iov_iter_advance(struct iov_iter *i, size_t size) 564 { 565 if (unlikely(i->count < size)) 566 size = i->count; 567 if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) { 568 i->iov_offset += size; 569 i->count -= size; 570 } else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) { 571 /* iovec and kvec have identical layouts */ 572 iov_iter_iovec_advance(i, size); 573 } else if (iov_iter_is_bvec(i)) { 574 iov_iter_bvec_advance(i, size); 575 } else if (iov_iter_is_folioq(i)) { 576 iov_iter_folioq_advance(i, size); 577 } else if (iov_iter_is_discard(i)) { 578 i->count -= size; 579 } 580 } 581 EXPORT_SYMBOL(iov_iter_advance); 582 583 static void iov_iter_folioq_revert(struct iov_iter *i, size_t unroll) 584 { 585 const struct folio_queue *folioq = i->folioq; 586 unsigned int slot = i->folioq_slot; 587 588 for (;;) { 589 size_t fsize; 590 591 if (slot == 0) { 592 folioq = folioq->prev; 593 slot = folioq_nr_slots(folioq); 594 } 595 slot--; 596 597 fsize = folioq_folio_size(folioq, slot); 598 if (unroll <= fsize) { 599 i->iov_offset = fsize - unroll; 600 break; 601 } 602 unroll -= fsize; 603 } 604 605 i->folioq_slot = slot; 606 i->folioq = folioq; 607 } 608 609 void iov_iter_revert(struct iov_iter *i, size_t unroll) 610 { 611 if (!unroll) 612 return; 613 if (WARN_ON(unroll > MAX_RW_COUNT)) 614 return; 615 i->count += unroll; 616 if (unlikely(iov_iter_is_discard(i))) 617 return; 618 if (unroll <= i->iov_offset) { 619 i->iov_offset -= unroll; 620 return; 621 } 622 unroll -= i->iov_offset; 623 if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) { 624 BUG(); /* We should never go beyond the start of the specified 625 * range since we might then be straying into pages that 626 * aren't pinned. 627 */ 628 } else if (iov_iter_is_bvec(i)) { 629 const struct bio_vec *bvec = i->bvec; 630 while (1) { 631 size_t n = (--bvec)->bv_len; 632 i->nr_segs++; 633 if (unroll <= n) { 634 i->bvec = bvec; 635 i->iov_offset = n - unroll; 636 return; 637 } 638 unroll -= n; 639 } 640 } else if (iov_iter_is_folioq(i)) { 641 i->iov_offset = 0; 642 iov_iter_folioq_revert(i, unroll); 643 } else { /* same logics for iovec and kvec */ 644 const struct iovec *iov = iter_iov(i); 645 while (1) { 646 size_t n = (--iov)->iov_len; 647 i->nr_segs++; 648 if (unroll <= n) { 649 i->__iov = iov; 650 i->iov_offset = n - unroll; 651 return; 652 } 653 unroll -= n; 654 } 655 } 656 } 657 EXPORT_SYMBOL(iov_iter_revert); 658 659 /* 660 * Return the count of just the current iov_iter segment. 661 */ 662 size_t iov_iter_single_seg_count(const struct iov_iter *i) 663 { 664 if (i->nr_segs > 1) { 665 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) 666 return min(i->count, iter_iov(i)->iov_len - i->iov_offset); 667 if (iov_iter_is_bvec(i)) 668 return min(i->count, i->bvec->bv_len - i->iov_offset); 669 } 670 if (unlikely(iov_iter_is_folioq(i))) 671 return !i->count ? 0 : 672 umin(folioq_folio_size(i->folioq, i->folioq_slot), i->count); 673 return i->count; 674 } 675 EXPORT_SYMBOL(iov_iter_single_seg_count); 676 677 void iov_iter_kvec(struct iov_iter *i, unsigned int direction, 678 const struct kvec *kvec, unsigned long nr_segs, 679 size_t count) 680 { 681 WARN_ON(direction & ~(READ | WRITE)); 682 *i = (struct iov_iter){ 683 .iter_type = ITER_KVEC, 684 .data_source = direction, 685 .kvec = kvec, 686 .nr_segs = nr_segs, 687 .iov_offset = 0, 688 .count = count 689 }; 690 } 691 EXPORT_SYMBOL(iov_iter_kvec); 692 693 void iov_iter_bvec(struct iov_iter *i, unsigned int direction, 694 const struct bio_vec *bvec, unsigned long nr_segs, 695 size_t count) 696 { 697 WARN_ON(direction & ~(READ | WRITE)); 698 *i = (struct iov_iter){ 699 .iter_type = ITER_BVEC, 700 .data_source = direction, 701 .bvec = bvec, 702 .nr_segs = nr_segs, 703 .iov_offset = 0, 704 .count = count 705 }; 706 } 707 EXPORT_SYMBOL(iov_iter_bvec); 708 709 /** 710 * iov_iter_folio_queue - Initialise an I/O iterator to use the folios in a folio queue 711 * @i: The iterator to initialise. 712 * @direction: The direction of the transfer. 713 * @folioq: The starting point in the folio queue. 714 * @first_slot: The first slot in the folio queue to use 715 * @offset: The offset into the folio in the first slot to start at 716 * @count: The size of the I/O buffer in bytes. 717 * 718 * Set up an I/O iterator to either draw data out of the pages attached to an 719 * inode or to inject data into those pages. The pages *must* be prevented 720 * from evaporation, either by taking a ref on them or locking them by the 721 * caller. 722 */ 723 void iov_iter_folio_queue(struct iov_iter *i, unsigned int direction, 724 const struct folio_queue *folioq, unsigned int first_slot, 725 unsigned int offset, size_t count) 726 { 727 BUG_ON(direction & ~1); 728 *i = (struct iov_iter) { 729 .iter_type = ITER_FOLIOQ, 730 .data_source = direction, 731 .folioq = folioq, 732 .folioq_slot = first_slot, 733 .count = count, 734 .iov_offset = offset, 735 }; 736 } 737 EXPORT_SYMBOL(iov_iter_folio_queue); 738 739 /** 740 * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray 741 * @i: The iterator to initialise. 742 * @direction: The direction of the transfer. 743 * @xarray: The xarray to access. 744 * @start: The start file position. 745 * @count: The size of the I/O buffer in bytes. 746 * 747 * Set up an I/O iterator to either draw data out of the pages attached to an 748 * inode or to inject data into those pages. The pages *must* be prevented 749 * from evaporation, either by taking a ref on them or locking them by the 750 * caller. 751 */ 752 void iov_iter_xarray(struct iov_iter *i, unsigned int direction, 753 struct xarray *xarray, loff_t start, size_t count) 754 { 755 BUG_ON(direction & ~1); 756 *i = (struct iov_iter) { 757 .iter_type = ITER_XARRAY, 758 .data_source = direction, 759 .xarray = xarray, 760 .xarray_start = start, 761 .count = count, 762 .iov_offset = 0 763 }; 764 } 765 EXPORT_SYMBOL(iov_iter_xarray); 766 767 /** 768 * iov_iter_discard - Initialise an I/O iterator that discards data 769 * @i: The iterator to initialise. 770 * @direction: The direction of the transfer. 771 * @count: The size of the I/O buffer in bytes. 772 * 773 * Set up an I/O iterator that just discards everything that's written to it. 774 * It's only available as a READ iterator. 775 */ 776 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count) 777 { 778 BUG_ON(direction != READ); 779 *i = (struct iov_iter){ 780 .iter_type = ITER_DISCARD, 781 .data_source = false, 782 .count = count, 783 .iov_offset = 0 784 }; 785 } 786 EXPORT_SYMBOL(iov_iter_discard); 787 788 static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask, 789 unsigned len_mask) 790 { 791 const struct iovec *iov = iter_iov(i); 792 size_t size = i->count; 793 size_t skip = i->iov_offset; 794 795 do { 796 size_t len = iov->iov_len - skip; 797 798 if (len > size) 799 len = size; 800 if (len & len_mask) 801 return false; 802 if ((unsigned long)(iov->iov_base + skip) & addr_mask) 803 return false; 804 805 iov++; 806 size -= len; 807 skip = 0; 808 } while (size); 809 810 return true; 811 } 812 813 static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask, 814 unsigned len_mask) 815 { 816 const struct bio_vec *bvec = i->bvec; 817 unsigned skip = i->iov_offset; 818 size_t size = i->count; 819 820 do { 821 size_t len = bvec->bv_len; 822 823 if (len > size) 824 len = size; 825 if (len & len_mask) 826 return false; 827 if ((unsigned long)(bvec->bv_offset + skip) & addr_mask) 828 return false; 829 830 bvec++; 831 size -= len; 832 skip = 0; 833 } while (size); 834 835 return true; 836 } 837 838 /** 839 * iov_iter_is_aligned() - Check if the addresses and lengths of each segments 840 * are aligned to the parameters. 841 * 842 * @i: &struct iov_iter to restore 843 * @addr_mask: bit mask to check against the iov element's addresses 844 * @len_mask: bit mask to check against the iov element's lengths 845 * 846 * Return: false if any addresses or lengths intersect with the provided masks 847 */ 848 bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask, 849 unsigned len_mask) 850 { 851 if (likely(iter_is_ubuf(i))) { 852 if (i->count & len_mask) 853 return false; 854 if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask) 855 return false; 856 return true; 857 } 858 859 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) 860 return iov_iter_aligned_iovec(i, addr_mask, len_mask); 861 862 if (iov_iter_is_bvec(i)) 863 return iov_iter_aligned_bvec(i, addr_mask, len_mask); 864 865 /* With both xarray and folioq types, we're dealing with whole folios. */ 866 if (iov_iter_is_xarray(i)) { 867 if (i->count & len_mask) 868 return false; 869 if ((i->xarray_start + i->iov_offset) & addr_mask) 870 return false; 871 } 872 if (iov_iter_is_folioq(i)) { 873 if (i->count & len_mask) 874 return false; 875 if (i->iov_offset & addr_mask) 876 return false; 877 } 878 879 return true; 880 } 881 EXPORT_SYMBOL_GPL(iov_iter_is_aligned); 882 883 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i) 884 { 885 const struct iovec *iov = iter_iov(i); 886 unsigned long res = 0; 887 size_t size = i->count; 888 size_t skip = i->iov_offset; 889 890 do { 891 size_t len = iov->iov_len - skip; 892 if (len) { 893 res |= (unsigned long)iov->iov_base + skip; 894 if (len > size) 895 len = size; 896 res |= len; 897 size -= len; 898 } 899 iov++; 900 skip = 0; 901 } while (size); 902 return res; 903 } 904 905 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i) 906 { 907 const struct bio_vec *bvec = i->bvec; 908 unsigned res = 0; 909 size_t size = i->count; 910 unsigned skip = i->iov_offset; 911 912 do { 913 size_t len = bvec->bv_len - skip; 914 res |= (unsigned long)bvec->bv_offset + skip; 915 if (len > size) 916 len = size; 917 res |= len; 918 bvec++; 919 size -= len; 920 skip = 0; 921 } while (size); 922 923 return res; 924 } 925 926 unsigned long iov_iter_alignment(const struct iov_iter *i) 927 { 928 if (likely(iter_is_ubuf(i))) { 929 size_t size = i->count; 930 if (size) 931 return ((unsigned long)i->ubuf + i->iov_offset) | size; 932 return 0; 933 } 934 935 /* iovec and kvec have identical layouts */ 936 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) 937 return iov_iter_alignment_iovec(i); 938 939 if (iov_iter_is_bvec(i)) 940 return iov_iter_alignment_bvec(i); 941 942 /* With both xarray and folioq types, we're dealing with whole folios. */ 943 if (iov_iter_is_folioq(i)) 944 return i->iov_offset | i->count; 945 if (iov_iter_is_xarray(i)) 946 return (i->xarray_start + i->iov_offset) | i->count; 947 948 return 0; 949 } 950 EXPORT_SYMBOL(iov_iter_alignment); 951 952 unsigned long iov_iter_gap_alignment(const struct iov_iter *i) 953 { 954 unsigned long res = 0; 955 unsigned long v = 0; 956 size_t size = i->count; 957 unsigned k; 958 959 if (iter_is_ubuf(i)) 960 return 0; 961 962 if (WARN_ON(!iter_is_iovec(i))) 963 return ~0U; 964 965 for (k = 0; k < i->nr_segs; k++) { 966 const struct iovec *iov = iter_iov(i) + k; 967 if (iov->iov_len) { 968 unsigned long base = (unsigned long)iov->iov_base; 969 if (v) // if not the first one 970 res |= base | v; // this start | previous end 971 v = base + iov->iov_len; 972 if (size <= iov->iov_len) 973 break; 974 size -= iov->iov_len; 975 } 976 } 977 return res; 978 } 979 EXPORT_SYMBOL(iov_iter_gap_alignment); 980 981 static int want_pages_array(struct page ***res, size_t size, 982 size_t start, unsigned int maxpages) 983 { 984 unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE); 985 986 if (count > maxpages) 987 count = maxpages; 988 WARN_ON(!count); // caller should've prevented that 989 if (!*res) { 990 *res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL); 991 if (!*res) 992 return 0; 993 } 994 return count; 995 } 996 997 static ssize_t iter_folioq_get_pages(struct iov_iter *iter, 998 struct page ***ppages, size_t maxsize, 999 unsigned maxpages, size_t *_start_offset) 1000 { 1001 const struct folio_queue *folioq = iter->folioq; 1002 struct page **pages; 1003 unsigned int slot = iter->folioq_slot; 1004 size_t extracted = 0, count = iter->count, iov_offset = iter->iov_offset; 1005 1006 if (slot >= folioq_nr_slots(folioq)) { 1007 folioq = folioq->next; 1008 slot = 0; 1009 if (WARN_ON(iov_offset != 0)) 1010 return -EIO; 1011 } 1012 1013 maxpages = want_pages_array(ppages, maxsize, iov_offset & ~PAGE_MASK, maxpages); 1014 if (!maxpages) 1015 return -ENOMEM; 1016 *_start_offset = iov_offset & ~PAGE_MASK; 1017 pages = *ppages; 1018 1019 for (;;) { 1020 struct folio *folio = folioq_folio(folioq, slot); 1021 size_t offset = iov_offset, fsize = folioq_folio_size(folioq, slot); 1022 size_t part = PAGE_SIZE - offset % PAGE_SIZE; 1023 1024 part = umin(part, umin(maxsize - extracted, fsize - offset)); 1025 count -= part; 1026 iov_offset += part; 1027 extracted += part; 1028 1029 *pages = folio_page(folio, offset / PAGE_SIZE); 1030 get_page(*pages); 1031 pages++; 1032 maxpages--; 1033 if (maxpages == 0 || extracted >= maxsize) 1034 break; 1035 1036 if (iov_offset >= fsize) { 1037 iov_offset = 0; 1038 slot++; 1039 if (slot == folioq_nr_slots(folioq) && folioq->next) { 1040 folioq = folioq->next; 1041 slot = 0; 1042 } 1043 } 1044 } 1045 1046 iter->count = count; 1047 iter->iov_offset = iov_offset; 1048 iter->folioq = folioq; 1049 iter->folioq_slot = slot; 1050 return extracted; 1051 } 1052 1053 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa, 1054 pgoff_t index, unsigned int nr_pages) 1055 { 1056 XA_STATE(xas, xa, index); 1057 struct page *page; 1058 unsigned int ret = 0; 1059 1060 rcu_read_lock(); 1061 for (page = xas_load(&xas); page; page = xas_next(&xas)) { 1062 if (xas_retry(&xas, page)) 1063 continue; 1064 1065 /* Has the page moved or been split? */ 1066 if (unlikely(page != xas_reload(&xas))) { 1067 xas_reset(&xas); 1068 continue; 1069 } 1070 1071 pages[ret] = find_subpage(page, xas.xa_index); 1072 get_page(pages[ret]); 1073 if (++ret == nr_pages) 1074 break; 1075 } 1076 rcu_read_unlock(); 1077 return ret; 1078 } 1079 1080 static ssize_t iter_xarray_get_pages(struct iov_iter *i, 1081 struct page ***pages, size_t maxsize, 1082 unsigned maxpages, size_t *_start_offset) 1083 { 1084 unsigned nr, offset, count; 1085 pgoff_t index; 1086 loff_t pos; 1087 1088 pos = i->xarray_start + i->iov_offset; 1089 index = pos >> PAGE_SHIFT; 1090 offset = pos & ~PAGE_MASK; 1091 *_start_offset = offset; 1092 1093 count = want_pages_array(pages, maxsize, offset, maxpages); 1094 if (!count) 1095 return -ENOMEM; 1096 nr = iter_xarray_populate_pages(*pages, i->xarray, index, count); 1097 if (nr == 0) 1098 return 0; 1099 1100 maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize); 1101 i->iov_offset += maxsize; 1102 i->count -= maxsize; 1103 return maxsize; 1104 } 1105 1106 /* must be done on non-empty ITER_UBUF or ITER_IOVEC one */ 1107 static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size) 1108 { 1109 size_t skip; 1110 long k; 1111 1112 if (iter_is_ubuf(i)) 1113 return (unsigned long)i->ubuf + i->iov_offset; 1114 1115 for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) { 1116 const struct iovec *iov = iter_iov(i) + k; 1117 size_t len = iov->iov_len - skip; 1118 1119 if (unlikely(!len)) 1120 continue; 1121 if (*size > len) 1122 *size = len; 1123 return (unsigned long)iov->iov_base + skip; 1124 } 1125 BUG(); // if it had been empty, we wouldn't get called 1126 } 1127 1128 /* must be done on non-empty ITER_BVEC one */ 1129 static struct page *first_bvec_segment(const struct iov_iter *i, 1130 size_t *size, size_t *start) 1131 { 1132 struct page *page; 1133 size_t skip = i->iov_offset, len; 1134 1135 len = i->bvec->bv_len - skip; 1136 if (*size > len) 1137 *size = len; 1138 skip += i->bvec->bv_offset; 1139 page = i->bvec->bv_page + skip / PAGE_SIZE; 1140 *start = skip % PAGE_SIZE; 1141 return page; 1142 } 1143 1144 static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i, 1145 struct page ***pages, size_t maxsize, 1146 unsigned int maxpages, size_t *start) 1147 { 1148 unsigned int n, gup_flags = 0; 1149 1150 if (maxsize > i->count) 1151 maxsize = i->count; 1152 if (!maxsize) 1153 return 0; 1154 if (maxsize > MAX_RW_COUNT) 1155 maxsize = MAX_RW_COUNT; 1156 1157 if (likely(user_backed_iter(i))) { 1158 unsigned long addr; 1159 int res; 1160 1161 if (iov_iter_rw(i) != WRITE) 1162 gup_flags |= FOLL_WRITE; 1163 if (i->nofault) 1164 gup_flags |= FOLL_NOFAULT; 1165 1166 addr = first_iovec_segment(i, &maxsize); 1167 *start = addr % PAGE_SIZE; 1168 addr &= PAGE_MASK; 1169 n = want_pages_array(pages, maxsize, *start, maxpages); 1170 if (!n) 1171 return -ENOMEM; 1172 res = get_user_pages_fast(addr, n, gup_flags, *pages); 1173 if (unlikely(res <= 0)) 1174 return res; 1175 maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start); 1176 iov_iter_advance(i, maxsize); 1177 return maxsize; 1178 } 1179 if (iov_iter_is_bvec(i)) { 1180 struct page **p; 1181 struct page *page; 1182 1183 page = first_bvec_segment(i, &maxsize, start); 1184 n = want_pages_array(pages, maxsize, *start, maxpages); 1185 if (!n) 1186 return -ENOMEM; 1187 p = *pages; 1188 for (int k = 0; k < n; k++) 1189 get_page(p[k] = page + k); 1190 maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start); 1191 i->count -= maxsize; 1192 i->iov_offset += maxsize; 1193 if (i->iov_offset == i->bvec->bv_len) { 1194 i->iov_offset = 0; 1195 i->bvec++; 1196 i->nr_segs--; 1197 } 1198 return maxsize; 1199 } 1200 if (iov_iter_is_folioq(i)) 1201 return iter_folioq_get_pages(i, pages, maxsize, maxpages, start); 1202 if (iov_iter_is_xarray(i)) 1203 return iter_xarray_get_pages(i, pages, maxsize, maxpages, start); 1204 return -EFAULT; 1205 } 1206 1207 ssize_t iov_iter_get_pages2(struct iov_iter *i, struct page **pages, 1208 size_t maxsize, unsigned maxpages, size_t *start) 1209 { 1210 if (!maxpages) 1211 return 0; 1212 BUG_ON(!pages); 1213 1214 return __iov_iter_get_pages_alloc(i, &pages, maxsize, maxpages, start); 1215 } 1216 EXPORT_SYMBOL(iov_iter_get_pages2); 1217 1218 ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i, 1219 struct page ***pages, size_t maxsize, size_t *start) 1220 { 1221 ssize_t len; 1222 1223 *pages = NULL; 1224 1225 len = __iov_iter_get_pages_alloc(i, pages, maxsize, ~0U, start); 1226 if (len <= 0) { 1227 kvfree(*pages); 1228 *pages = NULL; 1229 } 1230 return len; 1231 } 1232 EXPORT_SYMBOL(iov_iter_get_pages_alloc2); 1233 1234 static int iov_npages(const struct iov_iter *i, int maxpages) 1235 { 1236 size_t skip = i->iov_offset, size = i->count; 1237 const struct iovec *p; 1238 int npages = 0; 1239 1240 for (p = iter_iov(i); size; skip = 0, p++) { 1241 unsigned offs = offset_in_page(p->iov_base + skip); 1242 size_t len = min(p->iov_len - skip, size); 1243 1244 if (len) { 1245 size -= len; 1246 npages += DIV_ROUND_UP(offs + len, PAGE_SIZE); 1247 if (unlikely(npages > maxpages)) 1248 return maxpages; 1249 } 1250 } 1251 return npages; 1252 } 1253 1254 static int bvec_npages(const struct iov_iter *i, int maxpages) 1255 { 1256 size_t skip = i->iov_offset, size = i->count; 1257 const struct bio_vec *p; 1258 int npages = 0; 1259 1260 for (p = i->bvec; size; skip = 0, p++) { 1261 unsigned offs = (p->bv_offset + skip) % PAGE_SIZE; 1262 size_t len = min(p->bv_len - skip, size); 1263 1264 size -= len; 1265 npages += DIV_ROUND_UP(offs + len, PAGE_SIZE); 1266 if (unlikely(npages > maxpages)) 1267 return maxpages; 1268 } 1269 return npages; 1270 } 1271 1272 int iov_iter_npages(const struct iov_iter *i, int maxpages) 1273 { 1274 if (unlikely(!i->count)) 1275 return 0; 1276 if (likely(iter_is_ubuf(i))) { 1277 unsigned offs = offset_in_page(i->ubuf + i->iov_offset); 1278 int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE); 1279 return min(npages, maxpages); 1280 } 1281 /* iovec and kvec have identical layouts */ 1282 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) 1283 return iov_npages(i, maxpages); 1284 if (iov_iter_is_bvec(i)) 1285 return bvec_npages(i, maxpages); 1286 if (iov_iter_is_folioq(i)) { 1287 unsigned offset = i->iov_offset % PAGE_SIZE; 1288 int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE); 1289 return min(npages, maxpages); 1290 } 1291 if (iov_iter_is_xarray(i)) { 1292 unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE; 1293 int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE); 1294 return min(npages, maxpages); 1295 } 1296 return 0; 1297 } 1298 EXPORT_SYMBOL(iov_iter_npages); 1299 1300 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags) 1301 { 1302 *new = *old; 1303 if (iov_iter_is_bvec(new)) 1304 return new->bvec = kmemdup(new->bvec, 1305 new->nr_segs * sizeof(struct bio_vec), 1306 flags); 1307 else if (iov_iter_is_kvec(new) || iter_is_iovec(new)) 1308 /* iovec and kvec have identical layout */ 1309 return new->__iov = kmemdup(new->__iov, 1310 new->nr_segs * sizeof(struct iovec), 1311 flags); 1312 return NULL; 1313 } 1314 EXPORT_SYMBOL(dup_iter); 1315 1316 static __noclone int copy_compat_iovec_from_user(struct iovec *iov, 1317 const struct iovec __user *uvec, u32 nr_segs) 1318 { 1319 const struct compat_iovec __user *uiov = 1320 (const struct compat_iovec __user *)uvec; 1321 int ret = -EFAULT; 1322 u32 i; 1323 1324 if (!user_access_begin(uiov, nr_segs * sizeof(*uiov))) 1325 return -EFAULT; 1326 1327 for (i = 0; i < nr_segs; i++) { 1328 compat_uptr_t buf; 1329 compat_ssize_t len; 1330 1331 unsafe_get_user(len, &uiov[i].iov_len, uaccess_end); 1332 unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end); 1333 1334 /* check for compat_size_t not fitting in compat_ssize_t .. */ 1335 if (len < 0) { 1336 ret = -EINVAL; 1337 goto uaccess_end; 1338 } 1339 iov[i].iov_base = compat_ptr(buf); 1340 iov[i].iov_len = len; 1341 } 1342 1343 ret = 0; 1344 uaccess_end: 1345 user_access_end(); 1346 return ret; 1347 } 1348 1349 static __noclone int copy_iovec_from_user(struct iovec *iov, 1350 const struct iovec __user *uiov, unsigned long nr_segs) 1351 { 1352 int ret = -EFAULT; 1353 1354 if (!user_access_begin(uiov, nr_segs * sizeof(*uiov))) 1355 return -EFAULT; 1356 1357 do { 1358 void __user *buf; 1359 ssize_t len; 1360 1361 unsafe_get_user(len, &uiov->iov_len, uaccess_end); 1362 unsafe_get_user(buf, &uiov->iov_base, uaccess_end); 1363 1364 /* check for size_t not fitting in ssize_t .. */ 1365 if (unlikely(len < 0)) { 1366 ret = -EINVAL; 1367 goto uaccess_end; 1368 } 1369 iov->iov_base = buf; 1370 iov->iov_len = len; 1371 1372 uiov++; iov++; 1373 } while (--nr_segs); 1374 1375 ret = 0; 1376 uaccess_end: 1377 user_access_end(); 1378 return ret; 1379 } 1380 1381 struct iovec *iovec_from_user(const struct iovec __user *uvec, 1382 unsigned long nr_segs, unsigned long fast_segs, 1383 struct iovec *fast_iov, bool compat) 1384 { 1385 struct iovec *iov = fast_iov; 1386 int ret; 1387 1388 /* 1389 * SuS says "The readv() function *may* fail if the iovcnt argument was 1390 * less than or equal to 0, or greater than {IOV_MAX}. Linux has 1391 * traditionally returned zero for zero segments, so... 1392 */ 1393 if (nr_segs == 0) 1394 return iov; 1395 if (nr_segs > UIO_MAXIOV) 1396 return ERR_PTR(-EINVAL); 1397 if (nr_segs > fast_segs) { 1398 iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL); 1399 if (!iov) 1400 return ERR_PTR(-ENOMEM); 1401 } 1402 1403 if (unlikely(compat)) 1404 ret = copy_compat_iovec_from_user(iov, uvec, nr_segs); 1405 else 1406 ret = copy_iovec_from_user(iov, uvec, nr_segs); 1407 if (ret) { 1408 if (iov != fast_iov) 1409 kfree(iov); 1410 return ERR_PTR(ret); 1411 } 1412 1413 return iov; 1414 } 1415 1416 /* 1417 * Single segment iovec supplied by the user, import it as ITER_UBUF. 1418 */ 1419 static ssize_t __import_iovec_ubuf(int type, const struct iovec __user *uvec, 1420 struct iovec **iovp, struct iov_iter *i, 1421 bool compat) 1422 { 1423 struct iovec *iov = *iovp; 1424 ssize_t ret; 1425 1426 if (compat) 1427 ret = copy_compat_iovec_from_user(iov, uvec, 1); 1428 else 1429 ret = copy_iovec_from_user(iov, uvec, 1); 1430 if (unlikely(ret)) 1431 return ret; 1432 1433 ret = import_ubuf(type, iov->iov_base, iov->iov_len, i); 1434 if (unlikely(ret)) 1435 return ret; 1436 *iovp = NULL; 1437 return i->count; 1438 } 1439 1440 ssize_t __import_iovec(int type, const struct iovec __user *uvec, 1441 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp, 1442 struct iov_iter *i, bool compat) 1443 { 1444 ssize_t total_len = 0; 1445 unsigned long seg; 1446 struct iovec *iov; 1447 1448 if (nr_segs == 1) 1449 return __import_iovec_ubuf(type, uvec, iovp, i, compat); 1450 1451 iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat); 1452 if (IS_ERR(iov)) { 1453 *iovp = NULL; 1454 return PTR_ERR(iov); 1455 } 1456 1457 /* 1458 * According to the Single Unix Specification we should return EINVAL if 1459 * an element length is < 0 when cast to ssize_t or if the total length 1460 * would overflow the ssize_t return value of the system call. 1461 * 1462 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the 1463 * overflow case. 1464 */ 1465 for (seg = 0; seg < nr_segs; seg++) { 1466 ssize_t len = (ssize_t)iov[seg].iov_len; 1467 1468 if (!access_ok(iov[seg].iov_base, len)) { 1469 if (iov != *iovp) 1470 kfree(iov); 1471 *iovp = NULL; 1472 return -EFAULT; 1473 } 1474 1475 if (len > MAX_RW_COUNT - total_len) { 1476 len = MAX_RW_COUNT - total_len; 1477 iov[seg].iov_len = len; 1478 } 1479 total_len += len; 1480 } 1481 1482 iov_iter_init(i, type, iov, nr_segs, total_len); 1483 if (iov == *iovp) 1484 *iovp = NULL; 1485 else 1486 *iovp = iov; 1487 return total_len; 1488 } 1489 1490 /** 1491 * import_iovec() - Copy an array of &struct iovec from userspace 1492 * into the kernel, check that it is valid, and initialize a new 1493 * &struct iov_iter iterator to access it. 1494 * 1495 * @type: One of %READ or %WRITE. 1496 * @uvec: Pointer to the userspace array. 1497 * @nr_segs: Number of elements in userspace array. 1498 * @fast_segs: Number of elements in @iov. 1499 * @iovp: (input and output parameter) Pointer to pointer to (usually small 1500 * on-stack) kernel array. 1501 * @i: Pointer to iterator that will be initialized on success. 1502 * 1503 * If the array pointed to by *@iov is large enough to hold all @nr_segs, 1504 * then this function places %NULL in *@iov on return. Otherwise, a new 1505 * array will be allocated and the result placed in *@iov. This means that 1506 * the caller may call kfree() on *@iov regardless of whether the small 1507 * on-stack array was used or not (and regardless of whether this function 1508 * returns an error or not). 1509 * 1510 * Return: Negative error code on error, bytes imported on success 1511 */ 1512 ssize_t import_iovec(int type, const struct iovec __user *uvec, 1513 unsigned nr_segs, unsigned fast_segs, 1514 struct iovec **iovp, struct iov_iter *i) 1515 { 1516 return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i, 1517 in_compat_syscall()); 1518 } 1519 EXPORT_SYMBOL(import_iovec); 1520 1521 int import_ubuf(int rw, void __user *buf, size_t len, struct iov_iter *i) 1522 { 1523 if (len > MAX_RW_COUNT) 1524 len = MAX_RW_COUNT; 1525 if (unlikely(!access_ok(buf, len))) 1526 return -EFAULT; 1527 1528 iov_iter_ubuf(i, rw, buf, len); 1529 return 0; 1530 } 1531 EXPORT_SYMBOL_GPL(import_ubuf); 1532 1533 /** 1534 * iov_iter_restore() - Restore a &struct iov_iter to the same state as when 1535 * iov_iter_save_state() was called. 1536 * 1537 * @i: &struct iov_iter to restore 1538 * @state: state to restore from 1539 * 1540 * Used after iov_iter_save_state() to bring restore @i, if operations may 1541 * have advanced it. 1542 * 1543 * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC 1544 */ 1545 void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state) 1546 { 1547 if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i) && 1548 !iter_is_ubuf(i)) && !iov_iter_is_kvec(i)) 1549 return; 1550 i->iov_offset = state->iov_offset; 1551 i->count = state->count; 1552 if (iter_is_ubuf(i)) 1553 return; 1554 /* 1555 * For the *vec iters, nr_segs + iov is constant - if we increment 1556 * the vec, then we also decrement the nr_segs count. Hence we don't 1557 * need to track both of these, just one is enough and we can deduct 1558 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct 1559 * size, so we can just increment the iov pointer as they are unionzed. 1560 * ITER_BVEC _may_ be the same size on some archs, but on others it is 1561 * not. Be safe and handle it separately. 1562 */ 1563 BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec)); 1564 if (iov_iter_is_bvec(i)) 1565 i->bvec -= state->nr_segs - i->nr_segs; 1566 else 1567 i->__iov -= state->nr_segs - i->nr_segs; 1568 i->nr_segs = state->nr_segs; 1569 } 1570 1571 /* 1572 * Extract a list of contiguous pages from an ITER_FOLIOQ iterator. This does 1573 * not get references on the pages, nor does it get a pin on them. 1574 */ 1575 static ssize_t iov_iter_extract_folioq_pages(struct iov_iter *i, 1576 struct page ***pages, size_t maxsize, 1577 unsigned int maxpages, 1578 iov_iter_extraction_t extraction_flags, 1579 size_t *offset0) 1580 { 1581 const struct folio_queue *folioq = i->folioq; 1582 struct page **p; 1583 unsigned int nr = 0; 1584 size_t extracted = 0, offset, slot = i->folioq_slot; 1585 1586 if (slot >= folioq_nr_slots(folioq)) { 1587 folioq = folioq->next; 1588 slot = 0; 1589 if (WARN_ON(i->iov_offset != 0)) 1590 return -EIO; 1591 } 1592 1593 offset = i->iov_offset & ~PAGE_MASK; 1594 *offset0 = offset; 1595 1596 maxpages = want_pages_array(pages, maxsize, offset, maxpages); 1597 if (!maxpages) 1598 return -ENOMEM; 1599 p = *pages; 1600 1601 for (;;) { 1602 struct folio *folio = folioq_folio(folioq, slot); 1603 size_t offset = i->iov_offset, fsize = folioq_folio_size(folioq, slot); 1604 size_t part = PAGE_SIZE - offset % PAGE_SIZE; 1605 1606 if (offset < fsize) { 1607 part = umin(part, umin(maxsize - extracted, fsize - offset)); 1608 i->count -= part; 1609 i->iov_offset += part; 1610 extracted += part; 1611 1612 p[nr++] = folio_page(folio, offset / PAGE_SIZE); 1613 } 1614 1615 if (nr >= maxpages || extracted >= maxsize) 1616 break; 1617 1618 if (i->iov_offset >= fsize) { 1619 i->iov_offset = 0; 1620 slot++; 1621 if (slot == folioq_nr_slots(folioq) && folioq->next) { 1622 folioq = folioq->next; 1623 slot = 0; 1624 } 1625 } 1626 } 1627 1628 i->folioq = folioq; 1629 i->folioq_slot = slot; 1630 return extracted; 1631 } 1632 1633 /* 1634 * Extract a list of contiguous pages from an ITER_XARRAY iterator. This does not 1635 * get references on the pages, nor does it get a pin on them. 1636 */ 1637 static ssize_t iov_iter_extract_xarray_pages(struct iov_iter *i, 1638 struct page ***pages, size_t maxsize, 1639 unsigned int maxpages, 1640 iov_iter_extraction_t extraction_flags, 1641 size_t *offset0) 1642 { 1643 struct page *page, **p; 1644 unsigned int nr = 0, offset; 1645 loff_t pos = i->xarray_start + i->iov_offset; 1646 pgoff_t index = pos >> PAGE_SHIFT; 1647 XA_STATE(xas, i->xarray, index); 1648 1649 offset = pos & ~PAGE_MASK; 1650 *offset0 = offset; 1651 1652 maxpages = want_pages_array(pages, maxsize, offset, maxpages); 1653 if (!maxpages) 1654 return -ENOMEM; 1655 p = *pages; 1656 1657 rcu_read_lock(); 1658 for (page = xas_load(&xas); page; page = xas_next(&xas)) { 1659 if (xas_retry(&xas, page)) 1660 continue; 1661 1662 /* Has the page moved or been split? */ 1663 if (unlikely(page != xas_reload(&xas))) { 1664 xas_reset(&xas); 1665 continue; 1666 } 1667 1668 p[nr++] = find_subpage(page, xas.xa_index); 1669 if (nr == maxpages) 1670 break; 1671 } 1672 rcu_read_unlock(); 1673 1674 maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize); 1675 iov_iter_advance(i, maxsize); 1676 return maxsize; 1677 } 1678 1679 /* 1680 * Extract a list of virtually contiguous pages from an ITER_BVEC iterator. 1681 * This does not get references on the pages, nor does it get a pin on them. 1682 */ 1683 static ssize_t iov_iter_extract_bvec_pages(struct iov_iter *i, 1684 struct page ***pages, size_t maxsize, 1685 unsigned int maxpages, 1686 iov_iter_extraction_t extraction_flags, 1687 size_t *offset0) 1688 { 1689 size_t skip = i->iov_offset, size = 0; 1690 struct bvec_iter bi; 1691 int k = 0; 1692 1693 if (i->nr_segs == 0) 1694 return 0; 1695 1696 if (i->iov_offset == i->bvec->bv_len) { 1697 i->iov_offset = 0; 1698 i->nr_segs--; 1699 i->bvec++; 1700 skip = 0; 1701 } 1702 bi.bi_idx = 0; 1703 bi.bi_size = maxsize; 1704 bi.bi_bvec_done = skip; 1705 1706 maxpages = want_pages_array(pages, maxsize, skip, maxpages); 1707 1708 while (bi.bi_size && bi.bi_idx < i->nr_segs) { 1709 struct bio_vec bv = bvec_iter_bvec(i->bvec, bi); 1710 1711 /* 1712 * The iov_iter_extract_pages interface only allows an offset 1713 * into the first page. Break out of the loop if we see an 1714 * offset into subsequent pages, the caller will have to call 1715 * iov_iter_extract_pages again for the reminder. 1716 */ 1717 if (k) { 1718 if (bv.bv_offset) 1719 break; 1720 } else { 1721 *offset0 = bv.bv_offset; 1722 } 1723 1724 (*pages)[k++] = bv.bv_page; 1725 size += bv.bv_len; 1726 1727 if (k >= maxpages) 1728 break; 1729 1730 /* 1731 * We are done when the end of the bvec doesn't align to a page 1732 * boundary as that would create a hole in the returned space. 1733 * The caller will handle this with another call to 1734 * iov_iter_extract_pages. 1735 */ 1736 if (bv.bv_offset + bv.bv_len != PAGE_SIZE) 1737 break; 1738 1739 bvec_iter_advance_single(i->bvec, &bi, bv.bv_len); 1740 } 1741 1742 iov_iter_advance(i, size); 1743 return size; 1744 } 1745 1746 /* 1747 * Extract a list of virtually contiguous pages from an ITER_KVEC iterator. 1748 * This does not get references on the pages, nor does it get a pin on them. 1749 */ 1750 static ssize_t iov_iter_extract_kvec_pages(struct iov_iter *i, 1751 struct page ***pages, size_t maxsize, 1752 unsigned int maxpages, 1753 iov_iter_extraction_t extraction_flags, 1754 size_t *offset0) 1755 { 1756 struct page **p, *page; 1757 const void *kaddr; 1758 size_t skip = i->iov_offset, offset, len, size; 1759 int k; 1760 1761 for (;;) { 1762 if (i->nr_segs == 0) 1763 return 0; 1764 size = min(maxsize, i->kvec->iov_len - skip); 1765 if (size) 1766 break; 1767 i->iov_offset = 0; 1768 i->nr_segs--; 1769 i->kvec++; 1770 skip = 0; 1771 } 1772 1773 kaddr = i->kvec->iov_base + skip; 1774 offset = (unsigned long)kaddr & ~PAGE_MASK; 1775 *offset0 = offset; 1776 1777 maxpages = want_pages_array(pages, size, offset, maxpages); 1778 if (!maxpages) 1779 return -ENOMEM; 1780 p = *pages; 1781 1782 kaddr -= offset; 1783 len = offset + size; 1784 for (k = 0; k < maxpages; k++) { 1785 size_t seg = min_t(size_t, len, PAGE_SIZE); 1786 1787 if (is_vmalloc_or_module_addr(kaddr)) 1788 page = vmalloc_to_page(kaddr); 1789 else 1790 page = virt_to_page(kaddr); 1791 1792 p[k] = page; 1793 len -= seg; 1794 kaddr += PAGE_SIZE; 1795 } 1796 1797 size = min_t(size_t, size, maxpages * PAGE_SIZE - offset); 1798 iov_iter_advance(i, size); 1799 return size; 1800 } 1801 1802 /* 1803 * Extract a list of contiguous pages from a user iterator and get a pin on 1804 * each of them. This should only be used if the iterator is user-backed 1805 * (IOBUF/UBUF). 1806 * 1807 * It does not get refs on the pages, but the pages must be unpinned by the 1808 * caller once the transfer is complete. 1809 * 1810 * This is safe to be used where background IO/DMA *is* going to be modifying 1811 * the buffer; using a pin rather than a ref makes forces fork() to give the 1812 * child a copy of the page. 1813 */ 1814 static ssize_t iov_iter_extract_user_pages(struct iov_iter *i, 1815 struct page ***pages, 1816 size_t maxsize, 1817 unsigned int maxpages, 1818 iov_iter_extraction_t extraction_flags, 1819 size_t *offset0) 1820 { 1821 unsigned long addr; 1822 unsigned int gup_flags = 0; 1823 size_t offset; 1824 int res; 1825 1826 if (i->data_source == ITER_DEST) 1827 gup_flags |= FOLL_WRITE; 1828 if (extraction_flags & ITER_ALLOW_P2PDMA) 1829 gup_flags |= FOLL_PCI_P2PDMA; 1830 if (i->nofault) 1831 gup_flags |= FOLL_NOFAULT; 1832 1833 addr = first_iovec_segment(i, &maxsize); 1834 *offset0 = offset = addr % PAGE_SIZE; 1835 addr &= PAGE_MASK; 1836 maxpages = want_pages_array(pages, maxsize, offset, maxpages); 1837 if (!maxpages) 1838 return -ENOMEM; 1839 res = pin_user_pages_fast(addr, maxpages, gup_flags, *pages); 1840 if (unlikely(res <= 0)) 1841 return res; 1842 maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - offset); 1843 iov_iter_advance(i, maxsize); 1844 return maxsize; 1845 } 1846 1847 /** 1848 * iov_iter_extract_pages - Extract a list of contiguous pages from an iterator 1849 * @i: The iterator to extract from 1850 * @pages: Where to return the list of pages 1851 * @maxsize: The maximum amount of iterator to extract 1852 * @maxpages: The maximum size of the list of pages 1853 * @extraction_flags: Flags to qualify request 1854 * @offset0: Where to return the starting offset into (*@pages)[0] 1855 * 1856 * Extract a list of contiguous pages from the current point of the iterator, 1857 * advancing the iterator. The maximum number of pages and the maximum amount 1858 * of page contents can be set. 1859 * 1860 * If *@pages is NULL, a page list will be allocated to the required size and 1861 * *@pages will be set to its base. If *@pages is not NULL, it will be assumed 1862 * that the caller allocated a page list at least @maxpages in size and this 1863 * will be filled in. 1864 * 1865 * @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA 1866 * be allowed on the pages extracted. 1867 * 1868 * The iov_iter_extract_will_pin() function can be used to query how cleanup 1869 * should be performed. 1870 * 1871 * Extra refs or pins on the pages may be obtained as follows: 1872 * 1873 * (*) If the iterator is user-backed (ITER_IOVEC/ITER_UBUF), pins will be 1874 * added to the pages, but refs will not be taken. 1875 * iov_iter_extract_will_pin() will return true. 1876 * 1877 * (*) If the iterator is ITER_KVEC, ITER_BVEC, ITER_FOLIOQ or ITER_XARRAY, the 1878 * pages are merely listed; no extra refs or pins are obtained. 1879 * iov_iter_extract_will_pin() will return 0. 1880 * 1881 * Note also: 1882 * 1883 * (*) Use with ITER_DISCARD is not supported as that has no content. 1884 * 1885 * On success, the function sets *@pages to the new pagelist, if allocated, and 1886 * sets *offset0 to the offset into the first page. 1887 * 1888 * It may also return -ENOMEM and -EFAULT. 1889 */ 1890 ssize_t iov_iter_extract_pages(struct iov_iter *i, 1891 struct page ***pages, 1892 size_t maxsize, 1893 unsigned int maxpages, 1894 iov_iter_extraction_t extraction_flags, 1895 size_t *offset0) 1896 { 1897 maxsize = min_t(size_t, min_t(size_t, maxsize, i->count), MAX_RW_COUNT); 1898 if (!maxsize) 1899 return 0; 1900 1901 if (likely(user_backed_iter(i))) 1902 return iov_iter_extract_user_pages(i, pages, maxsize, 1903 maxpages, extraction_flags, 1904 offset0); 1905 if (iov_iter_is_kvec(i)) 1906 return iov_iter_extract_kvec_pages(i, pages, maxsize, 1907 maxpages, extraction_flags, 1908 offset0); 1909 if (iov_iter_is_bvec(i)) 1910 return iov_iter_extract_bvec_pages(i, pages, maxsize, 1911 maxpages, extraction_flags, 1912 offset0); 1913 if (iov_iter_is_folioq(i)) 1914 return iov_iter_extract_folioq_pages(i, pages, maxsize, 1915 maxpages, extraction_flags, 1916 offset0); 1917 if (iov_iter_is_xarray(i)) 1918 return iov_iter_extract_xarray_pages(i, pages, maxsize, 1919 maxpages, extraction_flags, 1920 offset0); 1921 return -EFAULT; 1922 } 1923 EXPORT_SYMBOL_GPL(iov_iter_extract_pages); 1924