1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/export.h> 3 #include <linux/bvec.h> 4 #include <linux/fault-inject-usercopy.h> 5 #include <linux/uio.h> 6 #include <linux/pagemap.h> 7 #include <linux/highmem.h> 8 #include <linux/slab.h> 9 #include <linux/vmalloc.h> 10 #include <linux/splice.h> 11 #include <linux/compat.h> 12 #include <linux/scatterlist.h> 13 #include <linux/instrumented.h> 14 #include <linux/iov_iter.h> 15 16 static __always_inline 17 size_t copy_to_user_iter(void __user *iter_to, size_t progress, 18 size_t len, void *from, void *priv2) 19 { 20 if (should_fail_usercopy()) 21 return len; 22 if (access_ok(iter_to, len)) { 23 from += progress; 24 instrument_copy_to_user(iter_to, from, len); 25 len = raw_copy_to_user(iter_to, from, len); 26 } 27 return len; 28 } 29 30 static __always_inline 31 size_t copy_to_user_iter_nofault(void __user *iter_to, size_t progress, 32 size_t len, void *from, void *priv2) 33 { 34 ssize_t res; 35 36 if (should_fail_usercopy()) 37 return len; 38 39 from += progress; 40 res = copy_to_user_nofault(iter_to, from, len); 41 return res < 0 ? len : res; 42 } 43 44 static __always_inline 45 size_t copy_from_user_iter(void __user *iter_from, size_t progress, 46 size_t len, void *to, void *priv2) 47 { 48 size_t res = len; 49 50 if (should_fail_usercopy()) 51 return len; 52 if (access_ok(iter_from, len)) { 53 to += progress; 54 instrument_copy_from_user_before(to, iter_from, len); 55 res = raw_copy_from_user(to, iter_from, len); 56 instrument_copy_from_user_after(to, iter_from, len, res); 57 } 58 return res; 59 } 60 61 static __always_inline 62 size_t memcpy_to_iter(void *iter_to, size_t progress, 63 size_t len, void *from, void *priv2) 64 { 65 memcpy(iter_to, from + progress, len); 66 return 0; 67 } 68 69 static __always_inline 70 size_t memcpy_from_iter(void *iter_from, size_t progress, 71 size_t len, void *to, void *priv2) 72 { 73 memcpy(to + progress, iter_from, len); 74 return 0; 75 } 76 77 /* 78 * fault_in_iov_iter_readable - fault in iov iterator for reading 79 * @i: iterator 80 * @size: maximum length 81 * 82 * Fault in one or more iovecs of the given iov_iter, to a maximum length of 83 * @size. For each iovec, fault in each page that constitutes the iovec. 84 * 85 * Returns the number of bytes not faulted in (like copy_to_user() and 86 * copy_from_user()). 87 * 88 * Always returns 0 for non-userspace iterators. 89 */ 90 size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size) 91 { 92 if (iter_is_ubuf(i)) { 93 size_t n = min(size, iov_iter_count(i)); 94 n -= fault_in_readable(i->ubuf + i->iov_offset, n); 95 return size - n; 96 } else if (iter_is_iovec(i)) { 97 size_t count = min(size, iov_iter_count(i)); 98 const struct iovec *p; 99 size_t skip; 100 101 size -= count; 102 for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) { 103 size_t len = min(count, p->iov_len - skip); 104 size_t ret; 105 106 if (unlikely(!len)) 107 continue; 108 ret = fault_in_readable(p->iov_base + skip, len); 109 count -= len - ret; 110 if (ret) 111 break; 112 } 113 return count + size; 114 } 115 return 0; 116 } 117 EXPORT_SYMBOL(fault_in_iov_iter_readable); 118 119 /* 120 * fault_in_iov_iter_writeable - fault in iov iterator for writing 121 * @i: iterator 122 * @size: maximum length 123 * 124 * Faults in the iterator using get_user_pages(), i.e., without triggering 125 * hardware page faults. This is primarily useful when we already know that 126 * some or all of the pages in @i aren't in memory. 127 * 128 * Returns the number of bytes not faulted in, like copy_to_user() and 129 * copy_from_user(). 130 * 131 * Always returns 0 for non-user-space iterators. 132 */ 133 size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size) 134 { 135 if (iter_is_ubuf(i)) { 136 size_t n = min(size, iov_iter_count(i)); 137 n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n); 138 return size - n; 139 } else if (iter_is_iovec(i)) { 140 size_t count = min(size, iov_iter_count(i)); 141 const struct iovec *p; 142 size_t skip; 143 144 size -= count; 145 for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) { 146 size_t len = min(count, p->iov_len - skip); 147 size_t ret; 148 149 if (unlikely(!len)) 150 continue; 151 ret = fault_in_safe_writeable(p->iov_base + skip, len); 152 count -= len - ret; 153 if (ret) 154 break; 155 } 156 return count + size; 157 } 158 return 0; 159 } 160 EXPORT_SYMBOL(fault_in_iov_iter_writeable); 161 162 void iov_iter_init(struct iov_iter *i, unsigned int direction, 163 const struct iovec *iov, unsigned long nr_segs, 164 size_t count) 165 { 166 WARN_ON(direction & ~(READ | WRITE)); 167 *i = (struct iov_iter) { 168 .iter_type = ITER_IOVEC, 169 .copy_mc = false, 170 .nofault = false, 171 .data_source = direction, 172 .__iov = iov, 173 .nr_segs = nr_segs, 174 .iov_offset = 0, 175 .count = count 176 }; 177 } 178 EXPORT_SYMBOL(iov_iter_init); 179 180 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i) 181 { 182 if (WARN_ON_ONCE(i->data_source)) 183 return 0; 184 if (user_backed_iter(i)) 185 might_fault(); 186 return iterate_and_advance(i, bytes, (void *)addr, 187 copy_to_user_iter, memcpy_to_iter); 188 } 189 EXPORT_SYMBOL(_copy_to_iter); 190 191 #ifdef CONFIG_ARCH_HAS_COPY_MC 192 static __always_inline 193 size_t copy_to_user_iter_mc(void __user *iter_to, size_t progress, 194 size_t len, void *from, void *priv2) 195 { 196 if (access_ok(iter_to, len)) { 197 from += progress; 198 instrument_copy_to_user(iter_to, from, len); 199 len = copy_mc_to_user(iter_to, from, len); 200 } 201 return len; 202 } 203 204 static __always_inline 205 size_t memcpy_to_iter_mc(void *iter_to, size_t progress, 206 size_t len, void *from, void *priv2) 207 { 208 return copy_mc_to_kernel(iter_to, from + progress, len); 209 } 210 211 /** 212 * _copy_mc_to_iter - copy to iter with source memory error exception handling 213 * @addr: source kernel address 214 * @bytes: total transfer length 215 * @i: destination iterator 216 * 217 * The pmem driver deploys this for the dax operation 218 * (dax_copy_to_iter()) for dax reads (bypass page-cache and the 219 * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes 220 * successfully copied. 221 * 222 * The main differences between this and typical _copy_to_iter(). 223 * 224 * * Typical tail/residue handling after a fault retries the copy 225 * byte-by-byte until the fault happens again. Re-triggering machine 226 * checks is potentially fatal so the implementation uses source 227 * alignment and poison alignment assumptions to avoid re-triggering 228 * hardware exceptions. 229 * 230 * * ITER_KVEC and ITER_BVEC can return short copies. Compare to 231 * copy_to_iter() where only ITER_IOVEC attempts might return a short copy. 232 * 233 * Return: number of bytes copied (may be %0) 234 */ 235 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i) 236 { 237 if (WARN_ON_ONCE(i->data_source)) 238 return 0; 239 if (user_backed_iter(i)) 240 might_fault(); 241 return iterate_and_advance(i, bytes, (void *)addr, 242 copy_to_user_iter_mc, memcpy_to_iter_mc); 243 } 244 EXPORT_SYMBOL_GPL(_copy_mc_to_iter); 245 #endif /* CONFIG_ARCH_HAS_COPY_MC */ 246 247 static __always_inline 248 size_t memcpy_from_iter_mc(void *iter_from, size_t progress, 249 size_t len, void *to, void *priv2) 250 { 251 return copy_mc_to_kernel(to + progress, iter_from, len); 252 } 253 254 static size_t __copy_from_iter_mc(void *addr, size_t bytes, struct iov_iter *i) 255 { 256 if (unlikely(i->count < bytes)) 257 bytes = i->count; 258 if (unlikely(!bytes)) 259 return 0; 260 return iterate_bvec(i, bytes, addr, NULL, memcpy_from_iter_mc); 261 } 262 263 static __always_inline 264 size_t __copy_from_iter(void *addr, size_t bytes, struct iov_iter *i) 265 { 266 if (unlikely(iov_iter_is_copy_mc(i))) 267 return __copy_from_iter_mc(addr, bytes, i); 268 return iterate_and_advance(i, bytes, addr, 269 copy_from_user_iter, memcpy_from_iter); 270 } 271 272 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i) 273 { 274 if (WARN_ON_ONCE(!i->data_source)) 275 return 0; 276 277 if (user_backed_iter(i)) 278 might_fault(); 279 return __copy_from_iter(addr, bytes, i); 280 } 281 EXPORT_SYMBOL(_copy_from_iter); 282 283 static __always_inline 284 size_t copy_from_user_iter_nocache(void __user *iter_from, size_t progress, 285 size_t len, void *to, void *priv2) 286 { 287 return __copy_from_user_inatomic_nocache(to + progress, iter_from, len); 288 } 289 290 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i) 291 { 292 if (WARN_ON_ONCE(!i->data_source)) 293 return 0; 294 295 return iterate_and_advance(i, bytes, addr, 296 copy_from_user_iter_nocache, 297 memcpy_from_iter); 298 } 299 EXPORT_SYMBOL(_copy_from_iter_nocache); 300 301 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE 302 static __always_inline 303 size_t copy_from_user_iter_flushcache(void __user *iter_from, size_t progress, 304 size_t len, void *to, void *priv2) 305 { 306 return __copy_from_user_flushcache(to + progress, iter_from, len); 307 } 308 309 static __always_inline 310 size_t memcpy_from_iter_flushcache(void *iter_from, size_t progress, 311 size_t len, void *to, void *priv2) 312 { 313 memcpy_flushcache(to + progress, iter_from, len); 314 return 0; 315 } 316 317 /** 318 * _copy_from_iter_flushcache - write destination through cpu cache 319 * @addr: destination kernel address 320 * @bytes: total transfer length 321 * @i: source iterator 322 * 323 * The pmem driver arranges for filesystem-dax to use this facility via 324 * dax_copy_from_iter() for ensuring that writes to persistent memory 325 * are flushed through the CPU cache. It is differentiated from 326 * _copy_from_iter_nocache() in that guarantees all data is flushed for 327 * all iterator types. The _copy_from_iter_nocache() only attempts to 328 * bypass the cache for the ITER_IOVEC case, and on some archs may use 329 * instructions that strand dirty-data in the cache. 330 * 331 * Return: number of bytes copied (may be %0) 332 */ 333 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i) 334 { 335 if (WARN_ON_ONCE(!i->data_source)) 336 return 0; 337 338 return iterate_and_advance(i, bytes, addr, 339 copy_from_user_iter_flushcache, 340 memcpy_from_iter_flushcache); 341 } 342 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache); 343 #endif 344 345 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n) 346 { 347 struct page *head; 348 size_t v = n + offset; 349 350 /* 351 * The general case needs to access the page order in order 352 * to compute the page size. 353 * However, we mostly deal with order-0 pages and thus can 354 * avoid a possible cache line miss for requests that fit all 355 * page orders. 356 */ 357 if (n <= v && v <= PAGE_SIZE) 358 return true; 359 360 head = compound_head(page); 361 v += (page - head) << PAGE_SHIFT; 362 363 if (WARN_ON(n > v || v > page_size(head))) 364 return false; 365 return true; 366 } 367 368 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes, 369 struct iov_iter *i) 370 { 371 size_t res = 0; 372 if (!page_copy_sane(page, offset, bytes)) 373 return 0; 374 if (WARN_ON_ONCE(i->data_source)) 375 return 0; 376 page += offset / PAGE_SIZE; // first subpage 377 offset %= PAGE_SIZE; 378 while (1) { 379 void *kaddr = kmap_local_page(page); 380 size_t n = min(bytes, (size_t)PAGE_SIZE - offset); 381 n = _copy_to_iter(kaddr + offset, n, i); 382 kunmap_local(kaddr); 383 res += n; 384 bytes -= n; 385 if (!bytes || !n) 386 break; 387 offset += n; 388 if (offset == PAGE_SIZE) { 389 page++; 390 offset = 0; 391 } 392 } 393 return res; 394 } 395 EXPORT_SYMBOL(copy_page_to_iter); 396 397 size_t copy_page_to_iter_nofault(struct page *page, unsigned offset, size_t bytes, 398 struct iov_iter *i) 399 { 400 size_t res = 0; 401 402 if (!page_copy_sane(page, offset, bytes)) 403 return 0; 404 if (WARN_ON_ONCE(i->data_source)) 405 return 0; 406 page += offset / PAGE_SIZE; // first subpage 407 offset %= PAGE_SIZE; 408 while (1) { 409 void *kaddr = kmap_local_page(page); 410 size_t n = min(bytes, (size_t)PAGE_SIZE - offset); 411 412 n = iterate_and_advance(i, bytes, kaddr, 413 copy_to_user_iter_nofault, 414 memcpy_to_iter); 415 kunmap_local(kaddr); 416 res += n; 417 bytes -= n; 418 if (!bytes || !n) 419 break; 420 offset += n; 421 if (offset == PAGE_SIZE) { 422 page++; 423 offset = 0; 424 } 425 } 426 return res; 427 } 428 EXPORT_SYMBOL(copy_page_to_iter_nofault); 429 430 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes, 431 struct iov_iter *i) 432 { 433 size_t res = 0; 434 if (!page_copy_sane(page, offset, bytes)) 435 return 0; 436 page += offset / PAGE_SIZE; // first subpage 437 offset %= PAGE_SIZE; 438 while (1) { 439 void *kaddr = kmap_local_page(page); 440 size_t n = min(bytes, (size_t)PAGE_SIZE - offset); 441 n = _copy_from_iter(kaddr + offset, n, i); 442 kunmap_local(kaddr); 443 res += n; 444 bytes -= n; 445 if (!bytes || !n) 446 break; 447 offset += n; 448 if (offset == PAGE_SIZE) { 449 page++; 450 offset = 0; 451 } 452 } 453 return res; 454 } 455 EXPORT_SYMBOL(copy_page_from_iter); 456 457 static __always_inline 458 size_t zero_to_user_iter(void __user *iter_to, size_t progress, 459 size_t len, void *priv, void *priv2) 460 { 461 return clear_user(iter_to, len); 462 } 463 464 static __always_inline 465 size_t zero_to_iter(void *iter_to, size_t progress, 466 size_t len, void *priv, void *priv2) 467 { 468 memset(iter_to, 0, len); 469 return 0; 470 } 471 472 size_t iov_iter_zero(size_t bytes, struct iov_iter *i) 473 { 474 return iterate_and_advance(i, bytes, NULL, 475 zero_to_user_iter, zero_to_iter); 476 } 477 EXPORT_SYMBOL(iov_iter_zero); 478 479 size_t copy_page_from_iter_atomic(struct page *page, size_t offset, 480 size_t bytes, struct iov_iter *i) 481 { 482 size_t n, copied = 0; 483 484 if (!page_copy_sane(page, offset, bytes)) 485 return 0; 486 if (WARN_ON_ONCE(!i->data_source)) 487 return 0; 488 489 do { 490 char *p; 491 492 n = bytes - copied; 493 if (PageHighMem(page)) { 494 page += offset / PAGE_SIZE; 495 offset %= PAGE_SIZE; 496 n = min_t(size_t, n, PAGE_SIZE - offset); 497 } 498 499 p = kmap_atomic(page) + offset; 500 n = __copy_from_iter(p, n, i); 501 kunmap_atomic(p); 502 copied += n; 503 offset += n; 504 } while (PageHighMem(page) && copied != bytes && n > 0); 505 506 return copied; 507 } 508 EXPORT_SYMBOL(copy_page_from_iter_atomic); 509 510 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size) 511 { 512 const struct bio_vec *bvec, *end; 513 514 if (!i->count) 515 return; 516 i->count -= size; 517 518 size += i->iov_offset; 519 520 for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) { 521 if (likely(size < bvec->bv_len)) 522 break; 523 size -= bvec->bv_len; 524 } 525 i->iov_offset = size; 526 i->nr_segs -= bvec - i->bvec; 527 i->bvec = bvec; 528 } 529 530 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size) 531 { 532 const struct iovec *iov, *end; 533 534 if (!i->count) 535 return; 536 i->count -= size; 537 538 size += i->iov_offset; // from beginning of current segment 539 for (iov = iter_iov(i), end = iov + i->nr_segs; iov < end; iov++) { 540 if (likely(size < iov->iov_len)) 541 break; 542 size -= iov->iov_len; 543 } 544 i->iov_offset = size; 545 i->nr_segs -= iov - iter_iov(i); 546 i->__iov = iov; 547 } 548 549 void iov_iter_advance(struct iov_iter *i, size_t size) 550 { 551 if (unlikely(i->count < size)) 552 size = i->count; 553 if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) { 554 i->iov_offset += size; 555 i->count -= size; 556 } else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) { 557 /* iovec and kvec have identical layouts */ 558 iov_iter_iovec_advance(i, size); 559 } else if (iov_iter_is_bvec(i)) { 560 iov_iter_bvec_advance(i, size); 561 } else if (iov_iter_is_discard(i)) { 562 i->count -= size; 563 } 564 } 565 EXPORT_SYMBOL(iov_iter_advance); 566 567 void iov_iter_revert(struct iov_iter *i, size_t unroll) 568 { 569 if (!unroll) 570 return; 571 if (WARN_ON(unroll > MAX_RW_COUNT)) 572 return; 573 i->count += unroll; 574 if (unlikely(iov_iter_is_discard(i))) 575 return; 576 if (unroll <= i->iov_offset) { 577 i->iov_offset -= unroll; 578 return; 579 } 580 unroll -= i->iov_offset; 581 if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) { 582 BUG(); /* We should never go beyond the start of the specified 583 * range since we might then be straying into pages that 584 * aren't pinned. 585 */ 586 } else if (iov_iter_is_bvec(i)) { 587 const struct bio_vec *bvec = i->bvec; 588 while (1) { 589 size_t n = (--bvec)->bv_len; 590 i->nr_segs++; 591 if (unroll <= n) { 592 i->bvec = bvec; 593 i->iov_offset = n - unroll; 594 return; 595 } 596 unroll -= n; 597 } 598 } else { /* same logics for iovec and kvec */ 599 const struct iovec *iov = iter_iov(i); 600 while (1) { 601 size_t n = (--iov)->iov_len; 602 i->nr_segs++; 603 if (unroll <= n) { 604 i->__iov = iov; 605 i->iov_offset = n - unroll; 606 return; 607 } 608 unroll -= n; 609 } 610 } 611 } 612 EXPORT_SYMBOL(iov_iter_revert); 613 614 /* 615 * Return the count of just the current iov_iter segment. 616 */ 617 size_t iov_iter_single_seg_count(const struct iov_iter *i) 618 { 619 if (i->nr_segs > 1) { 620 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) 621 return min(i->count, iter_iov(i)->iov_len - i->iov_offset); 622 if (iov_iter_is_bvec(i)) 623 return min(i->count, i->bvec->bv_len - i->iov_offset); 624 } 625 return i->count; 626 } 627 EXPORT_SYMBOL(iov_iter_single_seg_count); 628 629 void iov_iter_kvec(struct iov_iter *i, unsigned int direction, 630 const struct kvec *kvec, unsigned long nr_segs, 631 size_t count) 632 { 633 WARN_ON(direction & ~(READ | WRITE)); 634 *i = (struct iov_iter){ 635 .iter_type = ITER_KVEC, 636 .copy_mc = false, 637 .data_source = direction, 638 .kvec = kvec, 639 .nr_segs = nr_segs, 640 .iov_offset = 0, 641 .count = count 642 }; 643 } 644 EXPORT_SYMBOL(iov_iter_kvec); 645 646 void iov_iter_bvec(struct iov_iter *i, unsigned int direction, 647 const struct bio_vec *bvec, unsigned long nr_segs, 648 size_t count) 649 { 650 WARN_ON(direction & ~(READ | WRITE)); 651 *i = (struct iov_iter){ 652 .iter_type = ITER_BVEC, 653 .copy_mc = false, 654 .data_source = direction, 655 .bvec = bvec, 656 .nr_segs = nr_segs, 657 .iov_offset = 0, 658 .count = count 659 }; 660 } 661 EXPORT_SYMBOL(iov_iter_bvec); 662 663 /** 664 * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray 665 * @i: The iterator to initialise. 666 * @direction: The direction of the transfer. 667 * @xarray: The xarray to access. 668 * @start: The start file position. 669 * @count: The size of the I/O buffer in bytes. 670 * 671 * Set up an I/O iterator to either draw data out of the pages attached to an 672 * inode or to inject data into those pages. The pages *must* be prevented 673 * from evaporation, either by taking a ref on them or locking them by the 674 * caller. 675 */ 676 void iov_iter_xarray(struct iov_iter *i, unsigned int direction, 677 struct xarray *xarray, loff_t start, size_t count) 678 { 679 BUG_ON(direction & ~1); 680 *i = (struct iov_iter) { 681 .iter_type = ITER_XARRAY, 682 .copy_mc = false, 683 .data_source = direction, 684 .xarray = xarray, 685 .xarray_start = start, 686 .count = count, 687 .iov_offset = 0 688 }; 689 } 690 EXPORT_SYMBOL(iov_iter_xarray); 691 692 /** 693 * iov_iter_discard - Initialise an I/O iterator that discards data 694 * @i: The iterator to initialise. 695 * @direction: The direction of the transfer. 696 * @count: The size of the I/O buffer in bytes. 697 * 698 * Set up an I/O iterator that just discards everything that's written to it. 699 * It's only available as a READ iterator. 700 */ 701 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count) 702 { 703 BUG_ON(direction != READ); 704 *i = (struct iov_iter){ 705 .iter_type = ITER_DISCARD, 706 .copy_mc = false, 707 .data_source = false, 708 .count = count, 709 .iov_offset = 0 710 }; 711 } 712 EXPORT_SYMBOL(iov_iter_discard); 713 714 static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask, 715 unsigned len_mask) 716 { 717 size_t size = i->count; 718 size_t skip = i->iov_offset; 719 unsigned k; 720 721 for (k = 0; k < i->nr_segs; k++, skip = 0) { 722 const struct iovec *iov = iter_iov(i) + k; 723 size_t len = iov->iov_len - skip; 724 725 if (len > size) 726 len = size; 727 if (len & len_mask) 728 return false; 729 if ((unsigned long)(iov->iov_base + skip) & addr_mask) 730 return false; 731 732 size -= len; 733 if (!size) 734 break; 735 } 736 return true; 737 } 738 739 static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask, 740 unsigned len_mask) 741 { 742 size_t size = i->count; 743 unsigned skip = i->iov_offset; 744 unsigned k; 745 746 for (k = 0; k < i->nr_segs; k++, skip = 0) { 747 size_t len = i->bvec[k].bv_len - skip; 748 749 if (len > size) 750 len = size; 751 if (len & len_mask) 752 return false; 753 if ((unsigned long)(i->bvec[k].bv_offset + skip) & addr_mask) 754 return false; 755 756 size -= len; 757 if (!size) 758 break; 759 } 760 return true; 761 } 762 763 /** 764 * iov_iter_is_aligned() - Check if the addresses and lengths of each segments 765 * are aligned to the parameters. 766 * 767 * @i: &struct iov_iter to restore 768 * @addr_mask: bit mask to check against the iov element's addresses 769 * @len_mask: bit mask to check against the iov element's lengths 770 * 771 * Return: false if any addresses or lengths intersect with the provided masks 772 */ 773 bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask, 774 unsigned len_mask) 775 { 776 if (likely(iter_is_ubuf(i))) { 777 if (i->count & len_mask) 778 return false; 779 if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask) 780 return false; 781 return true; 782 } 783 784 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) 785 return iov_iter_aligned_iovec(i, addr_mask, len_mask); 786 787 if (iov_iter_is_bvec(i)) 788 return iov_iter_aligned_bvec(i, addr_mask, len_mask); 789 790 if (iov_iter_is_xarray(i)) { 791 if (i->count & len_mask) 792 return false; 793 if ((i->xarray_start + i->iov_offset) & addr_mask) 794 return false; 795 } 796 797 return true; 798 } 799 EXPORT_SYMBOL_GPL(iov_iter_is_aligned); 800 801 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i) 802 { 803 unsigned long res = 0; 804 size_t size = i->count; 805 size_t skip = i->iov_offset; 806 unsigned k; 807 808 for (k = 0; k < i->nr_segs; k++, skip = 0) { 809 const struct iovec *iov = iter_iov(i) + k; 810 size_t len = iov->iov_len - skip; 811 if (len) { 812 res |= (unsigned long)iov->iov_base + skip; 813 if (len > size) 814 len = size; 815 res |= len; 816 size -= len; 817 if (!size) 818 break; 819 } 820 } 821 return res; 822 } 823 824 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i) 825 { 826 unsigned res = 0; 827 size_t size = i->count; 828 unsigned skip = i->iov_offset; 829 unsigned k; 830 831 for (k = 0; k < i->nr_segs; k++, skip = 0) { 832 size_t len = i->bvec[k].bv_len - skip; 833 res |= (unsigned long)i->bvec[k].bv_offset + skip; 834 if (len > size) 835 len = size; 836 res |= len; 837 size -= len; 838 if (!size) 839 break; 840 } 841 return res; 842 } 843 844 unsigned long iov_iter_alignment(const struct iov_iter *i) 845 { 846 if (likely(iter_is_ubuf(i))) { 847 size_t size = i->count; 848 if (size) 849 return ((unsigned long)i->ubuf + i->iov_offset) | size; 850 return 0; 851 } 852 853 /* iovec and kvec have identical layouts */ 854 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) 855 return iov_iter_alignment_iovec(i); 856 857 if (iov_iter_is_bvec(i)) 858 return iov_iter_alignment_bvec(i); 859 860 if (iov_iter_is_xarray(i)) 861 return (i->xarray_start + i->iov_offset) | i->count; 862 863 return 0; 864 } 865 EXPORT_SYMBOL(iov_iter_alignment); 866 867 unsigned long iov_iter_gap_alignment(const struct iov_iter *i) 868 { 869 unsigned long res = 0; 870 unsigned long v = 0; 871 size_t size = i->count; 872 unsigned k; 873 874 if (iter_is_ubuf(i)) 875 return 0; 876 877 if (WARN_ON(!iter_is_iovec(i))) 878 return ~0U; 879 880 for (k = 0; k < i->nr_segs; k++) { 881 const struct iovec *iov = iter_iov(i) + k; 882 if (iov->iov_len) { 883 unsigned long base = (unsigned long)iov->iov_base; 884 if (v) // if not the first one 885 res |= base | v; // this start | previous end 886 v = base + iov->iov_len; 887 if (size <= iov->iov_len) 888 break; 889 size -= iov->iov_len; 890 } 891 } 892 return res; 893 } 894 EXPORT_SYMBOL(iov_iter_gap_alignment); 895 896 static int want_pages_array(struct page ***res, size_t size, 897 size_t start, unsigned int maxpages) 898 { 899 unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE); 900 901 if (count > maxpages) 902 count = maxpages; 903 WARN_ON(!count); // caller should've prevented that 904 if (!*res) { 905 *res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL); 906 if (!*res) 907 return 0; 908 } 909 return count; 910 } 911 912 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa, 913 pgoff_t index, unsigned int nr_pages) 914 { 915 XA_STATE(xas, xa, index); 916 struct page *page; 917 unsigned int ret = 0; 918 919 rcu_read_lock(); 920 for (page = xas_load(&xas); page; page = xas_next(&xas)) { 921 if (xas_retry(&xas, page)) 922 continue; 923 924 /* Has the page moved or been split? */ 925 if (unlikely(page != xas_reload(&xas))) { 926 xas_reset(&xas); 927 continue; 928 } 929 930 pages[ret] = find_subpage(page, xas.xa_index); 931 get_page(pages[ret]); 932 if (++ret == nr_pages) 933 break; 934 } 935 rcu_read_unlock(); 936 return ret; 937 } 938 939 static ssize_t iter_xarray_get_pages(struct iov_iter *i, 940 struct page ***pages, size_t maxsize, 941 unsigned maxpages, size_t *_start_offset) 942 { 943 unsigned nr, offset, count; 944 pgoff_t index; 945 loff_t pos; 946 947 pos = i->xarray_start + i->iov_offset; 948 index = pos >> PAGE_SHIFT; 949 offset = pos & ~PAGE_MASK; 950 *_start_offset = offset; 951 952 count = want_pages_array(pages, maxsize, offset, maxpages); 953 if (!count) 954 return -ENOMEM; 955 nr = iter_xarray_populate_pages(*pages, i->xarray, index, count); 956 if (nr == 0) 957 return 0; 958 959 maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize); 960 i->iov_offset += maxsize; 961 i->count -= maxsize; 962 return maxsize; 963 } 964 965 /* must be done on non-empty ITER_UBUF or ITER_IOVEC one */ 966 static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size) 967 { 968 size_t skip; 969 long k; 970 971 if (iter_is_ubuf(i)) 972 return (unsigned long)i->ubuf + i->iov_offset; 973 974 for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) { 975 const struct iovec *iov = iter_iov(i) + k; 976 size_t len = iov->iov_len - skip; 977 978 if (unlikely(!len)) 979 continue; 980 if (*size > len) 981 *size = len; 982 return (unsigned long)iov->iov_base + skip; 983 } 984 BUG(); // if it had been empty, we wouldn't get called 985 } 986 987 /* must be done on non-empty ITER_BVEC one */ 988 static struct page *first_bvec_segment(const struct iov_iter *i, 989 size_t *size, size_t *start) 990 { 991 struct page *page; 992 size_t skip = i->iov_offset, len; 993 994 len = i->bvec->bv_len - skip; 995 if (*size > len) 996 *size = len; 997 skip += i->bvec->bv_offset; 998 page = i->bvec->bv_page + skip / PAGE_SIZE; 999 *start = skip % PAGE_SIZE; 1000 return page; 1001 } 1002 1003 static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i, 1004 struct page ***pages, size_t maxsize, 1005 unsigned int maxpages, size_t *start) 1006 { 1007 unsigned int n, gup_flags = 0; 1008 1009 if (maxsize > i->count) 1010 maxsize = i->count; 1011 if (!maxsize) 1012 return 0; 1013 if (maxsize > MAX_RW_COUNT) 1014 maxsize = MAX_RW_COUNT; 1015 1016 if (likely(user_backed_iter(i))) { 1017 unsigned long addr; 1018 int res; 1019 1020 if (iov_iter_rw(i) != WRITE) 1021 gup_flags |= FOLL_WRITE; 1022 if (i->nofault) 1023 gup_flags |= FOLL_NOFAULT; 1024 1025 addr = first_iovec_segment(i, &maxsize); 1026 *start = addr % PAGE_SIZE; 1027 addr &= PAGE_MASK; 1028 n = want_pages_array(pages, maxsize, *start, maxpages); 1029 if (!n) 1030 return -ENOMEM; 1031 res = get_user_pages_fast(addr, n, gup_flags, *pages); 1032 if (unlikely(res <= 0)) 1033 return res; 1034 maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start); 1035 iov_iter_advance(i, maxsize); 1036 return maxsize; 1037 } 1038 if (iov_iter_is_bvec(i)) { 1039 struct page **p; 1040 struct page *page; 1041 1042 page = first_bvec_segment(i, &maxsize, start); 1043 n = want_pages_array(pages, maxsize, *start, maxpages); 1044 if (!n) 1045 return -ENOMEM; 1046 p = *pages; 1047 for (int k = 0; k < n; k++) 1048 get_page(p[k] = page + k); 1049 maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start); 1050 i->count -= maxsize; 1051 i->iov_offset += maxsize; 1052 if (i->iov_offset == i->bvec->bv_len) { 1053 i->iov_offset = 0; 1054 i->bvec++; 1055 i->nr_segs--; 1056 } 1057 return maxsize; 1058 } 1059 if (iov_iter_is_xarray(i)) 1060 return iter_xarray_get_pages(i, pages, maxsize, maxpages, start); 1061 return -EFAULT; 1062 } 1063 1064 ssize_t iov_iter_get_pages2(struct iov_iter *i, struct page **pages, 1065 size_t maxsize, unsigned maxpages, size_t *start) 1066 { 1067 if (!maxpages) 1068 return 0; 1069 BUG_ON(!pages); 1070 1071 return __iov_iter_get_pages_alloc(i, &pages, maxsize, maxpages, start); 1072 } 1073 EXPORT_SYMBOL(iov_iter_get_pages2); 1074 1075 ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i, 1076 struct page ***pages, size_t maxsize, size_t *start) 1077 { 1078 ssize_t len; 1079 1080 *pages = NULL; 1081 1082 len = __iov_iter_get_pages_alloc(i, pages, maxsize, ~0U, start); 1083 if (len <= 0) { 1084 kvfree(*pages); 1085 *pages = NULL; 1086 } 1087 return len; 1088 } 1089 EXPORT_SYMBOL(iov_iter_get_pages_alloc2); 1090 1091 static int iov_npages(const struct iov_iter *i, int maxpages) 1092 { 1093 size_t skip = i->iov_offset, size = i->count; 1094 const struct iovec *p; 1095 int npages = 0; 1096 1097 for (p = iter_iov(i); size; skip = 0, p++) { 1098 unsigned offs = offset_in_page(p->iov_base + skip); 1099 size_t len = min(p->iov_len - skip, size); 1100 1101 if (len) { 1102 size -= len; 1103 npages += DIV_ROUND_UP(offs + len, PAGE_SIZE); 1104 if (unlikely(npages > maxpages)) 1105 return maxpages; 1106 } 1107 } 1108 return npages; 1109 } 1110 1111 static int bvec_npages(const struct iov_iter *i, int maxpages) 1112 { 1113 size_t skip = i->iov_offset, size = i->count; 1114 const struct bio_vec *p; 1115 int npages = 0; 1116 1117 for (p = i->bvec; size; skip = 0, p++) { 1118 unsigned offs = (p->bv_offset + skip) % PAGE_SIZE; 1119 size_t len = min(p->bv_len - skip, size); 1120 1121 size -= len; 1122 npages += DIV_ROUND_UP(offs + len, PAGE_SIZE); 1123 if (unlikely(npages > maxpages)) 1124 return maxpages; 1125 } 1126 return npages; 1127 } 1128 1129 int iov_iter_npages(const struct iov_iter *i, int maxpages) 1130 { 1131 if (unlikely(!i->count)) 1132 return 0; 1133 if (likely(iter_is_ubuf(i))) { 1134 unsigned offs = offset_in_page(i->ubuf + i->iov_offset); 1135 int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE); 1136 return min(npages, maxpages); 1137 } 1138 /* iovec and kvec have identical layouts */ 1139 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) 1140 return iov_npages(i, maxpages); 1141 if (iov_iter_is_bvec(i)) 1142 return bvec_npages(i, maxpages); 1143 if (iov_iter_is_xarray(i)) { 1144 unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE; 1145 int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE); 1146 return min(npages, maxpages); 1147 } 1148 return 0; 1149 } 1150 EXPORT_SYMBOL(iov_iter_npages); 1151 1152 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags) 1153 { 1154 *new = *old; 1155 if (iov_iter_is_bvec(new)) 1156 return new->bvec = kmemdup(new->bvec, 1157 new->nr_segs * sizeof(struct bio_vec), 1158 flags); 1159 else if (iov_iter_is_kvec(new) || iter_is_iovec(new)) 1160 /* iovec and kvec have identical layout */ 1161 return new->__iov = kmemdup(new->__iov, 1162 new->nr_segs * sizeof(struct iovec), 1163 flags); 1164 return NULL; 1165 } 1166 EXPORT_SYMBOL(dup_iter); 1167 1168 static __noclone int copy_compat_iovec_from_user(struct iovec *iov, 1169 const struct iovec __user *uvec, unsigned long nr_segs) 1170 { 1171 const struct compat_iovec __user *uiov = 1172 (const struct compat_iovec __user *)uvec; 1173 int ret = -EFAULT, i; 1174 1175 if (!user_access_begin(uiov, nr_segs * sizeof(*uiov))) 1176 return -EFAULT; 1177 1178 for (i = 0; i < nr_segs; i++) { 1179 compat_uptr_t buf; 1180 compat_ssize_t len; 1181 1182 unsafe_get_user(len, &uiov[i].iov_len, uaccess_end); 1183 unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end); 1184 1185 /* check for compat_size_t not fitting in compat_ssize_t .. */ 1186 if (len < 0) { 1187 ret = -EINVAL; 1188 goto uaccess_end; 1189 } 1190 iov[i].iov_base = compat_ptr(buf); 1191 iov[i].iov_len = len; 1192 } 1193 1194 ret = 0; 1195 uaccess_end: 1196 user_access_end(); 1197 return ret; 1198 } 1199 1200 static __noclone int copy_iovec_from_user(struct iovec *iov, 1201 const struct iovec __user *uiov, unsigned long nr_segs) 1202 { 1203 int ret = -EFAULT; 1204 1205 if (!user_access_begin(uiov, nr_segs * sizeof(*uiov))) 1206 return -EFAULT; 1207 1208 do { 1209 void __user *buf; 1210 ssize_t len; 1211 1212 unsafe_get_user(len, &uiov->iov_len, uaccess_end); 1213 unsafe_get_user(buf, &uiov->iov_base, uaccess_end); 1214 1215 /* check for size_t not fitting in ssize_t .. */ 1216 if (unlikely(len < 0)) { 1217 ret = -EINVAL; 1218 goto uaccess_end; 1219 } 1220 iov->iov_base = buf; 1221 iov->iov_len = len; 1222 1223 uiov++; iov++; 1224 } while (--nr_segs); 1225 1226 ret = 0; 1227 uaccess_end: 1228 user_access_end(); 1229 return ret; 1230 } 1231 1232 struct iovec *iovec_from_user(const struct iovec __user *uvec, 1233 unsigned long nr_segs, unsigned long fast_segs, 1234 struct iovec *fast_iov, bool compat) 1235 { 1236 struct iovec *iov = fast_iov; 1237 int ret; 1238 1239 /* 1240 * SuS says "The readv() function *may* fail if the iovcnt argument was 1241 * less than or equal to 0, or greater than {IOV_MAX}. Linux has 1242 * traditionally returned zero for zero segments, so... 1243 */ 1244 if (nr_segs == 0) 1245 return iov; 1246 if (nr_segs > UIO_MAXIOV) 1247 return ERR_PTR(-EINVAL); 1248 if (nr_segs > fast_segs) { 1249 iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL); 1250 if (!iov) 1251 return ERR_PTR(-ENOMEM); 1252 } 1253 1254 if (unlikely(compat)) 1255 ret = copy_compat_iovec_from_user(iov, uvec, nr_segs); 1256 else 1257 ret = copy_iovec_from_user(iov, uvec, nr_segs); 1258 if (ret) { 1259 if (iov != fast_iov) 1260 kfree(iov); 1261 return ERR_PTR(ret); 1262 } 1263 1264 return iov; 1265 } 1266 1267 /* 1268 * Single segment iovec supplied by the user, import it as ITER_UBUF. 1269 */ 1270 static ssize_t __import_iovec_ubuf(int type, const struct iovec __user *uvec, 1271 struct iovec **iovp, struct iov_iter *i, 1272 bool compat) 1273 { 1274 struct iovec *iov = *iovp; 1275 ssize_t ret; 1276 1277 if (compat) 1278 ret = copy_compat_iovec_from_user(iov, uvec, 1); 1279 else 1280 ret = copy_iovec_from_user(iov, uvec, 1); 1281 if (unlikely(ret)) 1282 return ret; 1283 1284 ret = import_ubuf(type, iov->iov_base, iov->iov_len, i); 1285 if (unlikely(ret)) 1286 return ret; 1287 *iovp = NULL; 1288 return i->count; 1289 } 1290 1291 ssize_t __import_iovec(int type, const struct iovec __user *uvec, 1292 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp, 1293 struct iov_iter *i, bool compat) 1294 { 1295 ssize_t total_len = 0; 1296 unsigned long seg; 1297 struct iovec *iov; 1298 1299 if (nr_segs == 1) 1300 return __import_iovec_ubuf(type, uvec, iovp, i, compat); 1301 1302 iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat); 1303 if (IS_ERR(iov)) { 1304 *iovp = NULL; 1305 return PTR_ERR(iov); 1306 } 1307 1308 /* 1309 * According to the Single Unix Specification we should return EINVAL if 1310 * an element length is < 0 when cast to ssize_t or if the total length 1311 * would overflow the ssize_t return value of the system call. 1312 * 1313 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the 1314 * overflow case. 1315 */ 1316 for (seg = 0; seg < nr_segs; seg++) { 1317 ssize_t len = (ssize_t)iov[seg].iov_len; 1318 1319 if (!access_ok(iov[seg].iov_base, len)) { 1320 if (iov != *iovp) 1321 kfree(iov); 1322 *iovp = NULL; 1323 return -EFAULT; 1324 } 1325 1326 if (len > MAX_RW_COUNT - total_len) { 1327 len = MAX_RW_COUNT - total_len; 1328 iov[seg].iov_len = len; 1329 } 1330 total_len += len; 1331 } 1332 1333 iov_iter_init(i, type, iov, nr_segs, total_len); 1334 if (iov == *iovp) 1335 *iovp = NULL; 1336 else 1337 *iovp = iov; 1338 return total_len; 1339 } 1340 1341 /** 1342 * import_iovec() - Copy an array of &struct iovec from userspace 1343 * into the kernel, check that it is valid, and initialize a new 1344 * &struct iov_iter iterator to access it. 1345 * 1346 * @type: One of %READ or %WRITE. 1347 * @uvec: Pointer to the userspace array. 1348 * @nr_segs: Number of elements in userspace array. 1349 * @fast_segs: Number of elements in @iov. 1350 * @iovp: (input and output parameter) Pointer to pointer to (usually small 1351 * on-stack) kernel array. 1352 * @i: Pointer to iterator that will be initialized on success. 1353 * 1354 * If the array pointed to by *@iov is large enough to hold all @nr_segs, 1355 * then this function places %NULL in *@iov on return. Otherwise, a new 1356 * array will be allocated and the result placed in *@iov. This means that 1357 * the caller may call kfree() on *@iov regardless of whether the small 1358 * on-stack array was used or not (and regardless of whether this function 1359 * returns an error or not). 1360 * 1361 * Return: Negative error code on error, bytes imported on success 1362 */ 1363 ssize_t import_iovec(int type, const struct iovec __user *uvec, 1364 unsigned nr_segs, unsigned fast_segs, 1365 struct iovec **iovp, struct iov_iter *i) 1366 { 1367 return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i, 1368 in_compat_syscall()); 1369 } 1370 EXPORT_SYMBOL(import_iovec); 1371 1372 int import_single_range(int rw, void __user *buf, size_t len, 1373 struct iovec *iov, struct iov_iter *i) 1374 { 1375 if (len > MAX_RW_COUNT) 1376 len = MAX_RW_COUNT; 1377 if (unlikely(!access_ok(buf, len))) 1378 return -EFAULT; 1379 1380 iov_iter_ubuf(i, rw, buf, len); 1381 return 0; 1382 } 1383 EXPORT_SYMBOL(import_single_range); 1384 1385 int import_ubuf(int rw, void __user *buf, size_t len, struct iov_iter *i) 1386 { 1387 if (len > MAX_RW_COUNT) 1388 len = MAX_RW_COUNT; 1389 if (unlikely(!access_ok(buf, len))) 1390 return -EFAULT; 1391 1392 iov_iter_ubuf(i, rw, buf, len); 1393 return 0; 1394 } 1395 EXPORT_SYMBOL_GPL(import_ubuf); 1396 1397 /** 1398 * iov_iter_restore() - Restore a &struct iov_iter to the same state as when 1399 * iov_iter_save_state() was called. 1400 * 1401 * @i: &struct iov_iter to restore 1402 * @state: state to restore from 1403 * 1404 * Used after iov_iter_save_state() to bring restore @i, if operations may 1405 * have advanced it. 1406 * 1407 * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC 1408 */ 1409 void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state) 1410 { 1411 if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i) && 1412 !iter_is_ubuf(i)) && !iov_iter_is_kvec(i)) 1413 return; 1414 i->iov_offset = state->iov_offset; 1415 i->count = state->count; 1416 if (iter_is_ubuf(i)) 1417 return; 1418 /* 1419 * For the *vec iters, nr_segs + iov is constant - if we increment 1420 * the vec, then we also decrement the nr_segs count. Hence we don't 1421 * need to track both of these, just one is enough and we can deduct 1422 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct 1423 * size, so we can just increment the iov pointer as they are unionzed. 1424 * ITER_BVEC _may_ be the same size on some archs, but on others it is 1425 * not. Be safe and handle it separately. 1426 */ 1427 BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec)); 1428 if (iov_iter_is_bvec(i)) 1429 i->bvec -= state->nr_segs - i->nr_segs; 1430 else 1431 i->__iov -= state->nr_segs - i->nr_segs; 1432 i->nr_segs = state->nr_segs; 1433 } 1434 1435 /* 1436 * Extract a list of contiguous pages from an ITER_XARRAY iterator. This does not 1437 * get references on the pages, nor does it get a pin on them. 1438 */ 1439 static ssize_t iov_iter_extract_xarray_pages(struct iov_iter *i, 1440 struct page ***pages, size_t maxsize, 1441 unsigned int maxpages, 1442 iov_iter_extraction_t extraction_flags, 1443 size_t *offset0) 1444 { 1445 struct page *page, **p; 1446 unsigned int nr = 0, offset; 1447 loff_t pos = i->xarray_start + i->iov_offset; 1448 pgoff_t index = pos >> PAGE_SHIFT; 1449 XA_STATE(xas, i->xarray, index); 1450 1451 offset = pos & ~PAGE_MASK; 1452 *offset0 = offset; 1453 1454 maxpages = want_pages_array(pages, maxsize, offset, maxpages); 1455 if (!maxpages) 1456 return -ENOMEM; 1457 p = *pages; 1458 1459 rcu_read_lock(); 1460 for (page = xas_load(&xas); page; page = xas_next(&xas)) { 1461 if (xas_retry(&xas, page)) 1462 continue; 1463 1464 /* Has the page moved or been split? */ 1465 if (unlikely(page != xas_reload(&xas))) { 1466 xas_reset(&xas); 1467 continue; 1468 } 1469 1470 p[nr++] = find_subpage(page, xas.xa_index); 1471 if (nr == maxpages) 1472 break; 1473 } 1474 rcu_read_unlock(); 1475 1476 maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize); 1477 iov_iter_advance(i, maxsize); 1478 return maxsize; 1479 } 1480 1481 /* 1482 * Extract a list of contiguous pages from an ITER_BVEC iterator. This does 1483 * not get references on the pages, nor does it get a pin on them. 1484 */ 1485 static ssize_t iov_iter_extract_bvec_pages(struct iov_iter *i, 1486 struct page ***pages, size_t maxsize, 1487 unsigned int maxpages, 1488 iov_iter_extraction_t extraction_flags, 1489 size_t *offset0) 1490 { 1491 struct page **p, *page; 1492 size_t skip = i->iov_offset, offset, size; 1493 int k; 1494 1495 for (;;) { 1496 if (i->nr_segs == 0) 1497 return 0; 1498 size = min(maxsize, i->bvec->bv_len - skip); 1499 if (size) 1500 break; 1501 i->iov_offset = 0; 1502 i->nr_segs--; 1503 i->bvec++; 1504 skip = 0; 1505 } 1506 1507 skip += i->bvec->bv_offset; 1508 page = i->bvec->bv_page + skip / PAGE_SIZE; 1509 offset = skip % PAGE_SIZE; 1510 *offset0 = offset; 1511 1512 maxpages = want_pages_array(pages, size, offset, maxpages); 1513 if (!maxpages) 1514 return -ENOMEM; 1515 p = *pages; 1516 for (k = 0; k < maxpages; k++) 1517 p[k] = page + k; 1518 1519 size = min_t(size_t, size, maxpages * PAGE_SIZE - offset); 1520 iov_iter_advance(i, size); 1521 return size; 1522 } 1523 1524 /* 1525 * Extract a list of virtually contiguous pages from an ITER_KVEC iterator. 1526 * This does not get references on the pages, nor does it get a pin on them. 1527 */ 1528 static ssize_t iov_iter_extract_kvec_pages(struct iov_iter *i, 1529 struct page ***pages, size_t maxsize, 1530 unsigned int maxpages, 1531 iov_iter_extraction_t extraction_flags, 1532 size_t *offset0) 1533 { 1534 struct page **p, *page; 1535 const void *kaddr; 1536 size_t skip = i->iov_offset, offset, len, size; 1537 int k; 1538 1539 for (;;) { 1540 if (i->nr_segs == 0) 1541 return 0; 1542 size = min(maxsize, i->kvec->iov_len - skip); 1543 if (size) 1544 break; 1545 i->iov_offset = 0; 1546 i->nr_segs--; 1547 i->kvec++; 1548 skip = 0; 1549 } 1550 1551 kaddr = i->kvec->iov_base + skip; 1552 offset = (unsigned long)kaddr & ~PAGE_MASK; 1553 *offset0 = offset; 1554 1555 maxpages = want_pages_array(pages, size, offset, maxpages); 1556 if (!maxpages) 1557 return -ENOMEM; 1558 p = *pages; 1559 1560 kaddr -= offset; 1561 len = offset + size; 1562 for (k = 0; k < maxpages; k++) { 1563 size_t seg = min_t(size_t, len, PAGE_SIZE); 1564 1565 if (is_vmalloc_or_module_addr(kaddr)) 1566 page = vmalloc_to_page(kaddr); 1567 else 1568 page = virt_to_page(kaddr); 1569 1570 p[k] = page; 1571 len -= seg; 1572 kaddr += PAGE_SIZE; 1573 } 1574 1575 size = min_t(size_t, size, maxpages * PAGE_SIZE - offset); 1576 iov_iter_advance(i, size); 1577 return size; 1578 } 1579 1580 /* 1581 * Extract a list of contiguous pages from a user iterator and get a pin on 1582 * each of them. This should only be used if the iterator is user-backed 1583 * (IOBUF/UBUF). 1584 * 1585 * It does not get refs on the pages, but the pages must be unpinned by the 1586 * caller once the transfer is complete. 1587 * 1588 * This is safe to be used where background IO/DMA *is* going to be modifying 1589 * the buffer; using a pin rather than a ref makes forces fork() to give the 1590 * child a copy of the page. 1591 */ 1592 static ssize_t iov_iter_extract_user_pages(struct iov_iter *i, 1593 struct page ***pages, 1594 size_t maxsize, 1595 unsigned int maxpages, 1596 iov_iter_extraction_t extraction_flags, 1597 size_t *offset0) 1598 { 1599 unsigned long addr; 1600 unsigned int gup_flags = 0; 1601 size_t offset; 1602 int res; 1603 1604 if (i->data_source == ITER_DEST) 1605 gup_flags |= FOLL_WRITE; 1606 if (extraction_flags & ITER_ALLOW_P2PDMA) 1607 gup_flags |= FOLL_PCI_P2PDMA; 1608 if (i->nofault) 1609 gup_flags |= FOLL_NOFAULT; 1610 1611 addr = first_iovec_segment(i, &maxsize); 1612 *offset0 = offset = addr % PAGE_SIZE; 1613 addr &= PAGE_MASK; 1614 maxpages = want_pages_array(pages, maxsize, offset, maxpages); 1615 if (!maxpages) 1616 return -ENOMEM; 1617 res = pin_user_pages_fast(addr, maxpages, gup_flags, *pages); 1618 if (unlikely(res <= 0)) 1619 return res; 1620 maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - offset); 1621 iov_iter_advance(i, maxsize); 1622 return maxsize; 1623 } 1624 1625 /** 1626 * iov_iter_extract_pages - Extract a list of contiguous pages from an iterator 1627 * @i: The iterator to extract from 1628 * @pages: Where to return the list of pages 1629 * @maxsize: The maximum amount of iterator to extract 1630 * @maxpages: The maximum size of the list of pages 1631 * @extraction_flags: Flags to qualify request 1632 * @offset0: Where to return the starting offset into (*@pages)[0] 1633 * 1634 * Extract a list of contiguous pages from the current point of the iterator, 1635 * advancing the iterator. The maximum number of pages and the maximum amount 1636 * of page contents can be set. 1637 * 1638 * If *@pages is NULL, a page list will be allocated to the required size and 1639 * *@pages will be set to its base. If *@pages is not NULL, it will be assumed 1640 * that the caller allocated a page list at least @maxpages in size and this 1641 * will be filled in. 1642 * 1643 * @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA 1644 * be allowed on the pages extracted. 1645 * 1646 * The iov_iter_extract_will_pin() function can be used to query how cleanup 1647 * should be performed. 1648 * 1649 * Extra refs or pins on the pages may be obtained as follows: 1650 * 1651 * (*) If the iterator is user-backed (ITER_IOVEC/ITER_UBUF), pins will be 1652 * added to the pages, but refs will not be taken. 1653 * iov_iter_extract_will_pin() will return true. 1654 * 1655 * (*) If the iterator is ITER_KVEC, ITER_BVEC or ITER_XARRAY, the pages are 1656 * merely listed; no extra refs or pins are obtained. 1657 * iov_iter_extract_will_pin() will return 0. 1658 * 1659 * Note also: 1660 * 1661 * (*) Use with ITER_DISCARD is not supported as that has no content. 1662 * 1663 * On success, the function sets *@pages to the new pagelist, if allocated, and 1664 * sets *offset0 to the offset into the first page. 1665 * 1666 * It may also return -ENOMEM and -EFAULT. 1667 */ 1668 ssize_t iov_iter_extract_pages(struct iov_iter *i, 1669 struct page ***pages, 1670 size_t maxsize, 1671 unsigned int maxpages, 1672 iov_iter_extraction_t extraction_flags, 1673 size_t *offset0) 1674 { 1675 maxsize = min_t(size_t, min_t(size_t, maxsize, i->count), MAX_RW_COUNT); 1676 if (!maxsize) 1677 return 0; 1678 1679 if (likely(user_backed_iter(i))) 1680 return iov_iter_extract_user_pages(i, pages, maxsize, 1681 maxpages, extraction_flags, 1682 offset0); 1683 if (iov_iter_is_kvec(i)) 1684 return iov_iter_extract_kvec_pages(i, pages, maxsize, 1685 maxpages, extraction_flags, 1686 offset0); 1687 if (iov_iter_is_bvec(i)) 1688 return iov_iter_extract_bvec_pages(i, pages, maxsize, 1689 maxpages, extraction_flags, 1690 offset0); 1691 if (iov_iter_is_xarray(i)) 1692 return iov_iter_extract_xarray_pages(i, pages, maxsize, 1693 maxpages, extraction_flags, 1694 offset0); 1695 return -EFAULT; 1696 } 1697 EXPORT_SYMBOL_GPL(iov_iter_extract_pages); 1698