xref: /linux/lib/iov_iter.c (revision 946e697c69ffeeefdd84dad90eac307284df46be)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <crypto/hash.h>
3 #include <linux/export.h>
4 #include <linux/bvec.h>
5 #include <linux/fault-inject-usercopy.h>
6 #include <linux/uio.h>
7 #include <linux/pagemap.h>
8 #include <linux/highmem.h>
9 #include <linux/slab.h>
10 #include <linux/vmalloc.h>
11 #include <linux/splice.h>
12 #include <linux/compat.h>
13 #include <net/checksum.h>
14 #include <linux/scatterlist.h>
15 #include <linux/instrumented.h>
16 
17 #define PIPE_PARANOIA /* for now */
18 
19 /* covers ubuf and kbuf alike */
20 #define iterate_buf(i, n, base, len, off, __p, STEP) {		\
21 	size_t __maybe_unused off = 0;				\
22 	len = n;						\
23 	base = __p + i->iov_offset;				\
24 	len -= (STEP);						\
25 	i->iov_offset += len;					\
26 	n = len;						\
27 }
28 
29 /* covers iovec and kvec alike */
30 #define iterate_iovec(i, n, base, len, off, __p, STEP) {	\
31 	size_t off = 0;						\
32 	size_t skip = i->iov_offset;				\
33 	do {							\
34 		len = min(n, __p->iov_len - skip);		\
35 		if (likely(len)) {				\
36 			base = __p->iov_base + skip;		\
37 			len -= (STEP);				\
38 			off += len;				\
39 			skip += len;				\
40 			n -= len;				\
41 			if (skip < __p->iov_len)		\
42 				break;				\
43 		}						\
44 		__p++;						\
45 		skip = 0;					\
46 	} while (n);						\
47 	i->iov_offset = skip;					\
48 	n = off;						\
49 }
50 
51 #define iterate_bvec(i, n, base, len, off, p, STEP) {		\
52 	size_t off = 0;						\
53 	unsigned skip = i->iov_offset;				\
54 	while (n) {						\
55 		unsigned offset = p->bv_offset + skip;		\
56 		unsigned left;					\
57 		void *kaddr = kmap_local_page(p->bv_page +	\
58 					offset / PAGE_SIZE);	\
59 		base = kaddr + offset % PAGE_SIZE;		\
60 		len = min(min(n, (size_t)(p->bv_len - skip)),	\
61 		     (size_t)(PAGE_SIZE - offset % PAGE_SIZE));	\
62 		left = (STEP);					\
63 		kunmap_local(kaddr);				\
64 		len -= left;					\
65 		off += len;					\
66 		skip += len;					\
67 		if (skip == p->bv_len) {			\
68 			skip = 0;				\
69 			p++;					\
70 		}						\
71 		n -= len;					\
72 		if (left)					\
73 			break;					\
74 	}							\
75 	i->iov_offset = skip;					\
76 	n = off;						\
77 }
78 
79 #define iterate_xarray(i, n, base, len, __off, STEP) {		\
80 	__label__ __out;					\
81 	size_t __off = 0;					\
82 	struct folio *folio;					\
83 	loff_t start = i->xarray_start + i->iov_offset;		\
84 	pgoff_t index = start / PAGE_SIZE;			\
85 	XA_STATE(xas, i->xarray, index);			\
86 								\
87 	len = PAGE_SIZE - offset_in_page(start);		\
88 	rcu_read_lock();					\
89 	xas_for_each(&xas, folio, ULONG_MAX) {			\
90 		unsigned left;					\
91 		size_t offset;					\
92 		if (xas_retry(&xas, folio))			\
93 			continue;				\
94 		if (WARN_ON(xa_is_value(folio)))		\
95 			break;					\
96 		if (WARN_ON(folio_test_hugetlb(folio)))		\
97 			break;					\
98 		offset = offset_in_folio(folio, start + __off);	\
99 		while (offset < folio_size(folio)) {		\
100 			base = kmap_local_folio(folio, offset);	\
101 			len = min(n, len);			\
102 			left = (STEP);				\
103 			kunmap_local(base);			\
104 			len -= left;				\
105 			__off += len;				\
106 			n -= len;				\
107 			if (left || n == 0)			\
108 				goto __out;			\
109 			offset += len;				\
110 			len = PAGE_SIZE;			\
111 		}						\
112 	}							\
113 __out:								\
114 	rcu_read_unlock();					\
115 	i->iov_offset += __off;					\
116 	n = __off;						\
117 }
118 
119 #define __iterate_and_advance(i, n, base, len, off, I, K) {	\
120 	if (unlikely(i->count < n))				\
121 		n = i->count;					\
122 	if (likely(n)) {					\
123 		if (likely(iter_is_ubuf(i))) {			\
124 			void __user *base;			\
125 			size_t len;				\
126 			iterate_buf(i, n, base, len, off,	\
127 						i->ubuf, (I)) 	\
128 		} else if (likely(iter_is_iovec(i))) {		\
129 			const struct iovec *iov = iter_iov(i);	\
130 			void __user *base;			\
131 			size_t len;				\
132 			iterate_iovec(i, n, base, len, off,	\
133 						iov, (I))	\
134 			i->nr_segs -= iov - iter_iov(i);	\
135 			i->__iov = iov;				\
136 		} else if (iov_iter_is_bvec(i)) {		\
137 			const struct bio_vec *bvec = i->bvec;	\
138 			void *base;				\
139 			size_t len;				\
140 			iterate_bvec(i, n, base, len, off,	\
141 						bvec, (K))	\
142 			i->nr_segs -= bvec - i->bvec;		\
143 			i->bvec = bvec;				\
144 		} else if (iov_iter_is_kvec(i)) {		\
145 			const struct kvec *kvec = i->kvec;	\
146 			void *base;				\
147 			size_t len;				\
148 			iterate_iovec(i, n, base, len, off,	\
149 						kvec, (K))	\
150 			i->nr_segs -= kvec - i->kvec;		\
151 			i->kvec = kvec;				\
152 		} else if (iov_iter_is_xarray(i)) {		\
153 			void *base;				\
154 			size_t len;				\
155 			iterate_xarray(i, n, base, len, off,	\
156 							(K))	\
157 		}						\
158 		i->count -= n;					\
159 	}							\
160 }
161 #define iterate_and_advance(i, n, base, len, off, I, K) \
162 	__iterate_and_advance(i, n, base, len, off, I, ((void)(K),0))
163 
164 static int copyout(void __user *to, const void *from, size_t n)
165 {
166 	if (should_fail_usercopy())
167 		return n;
168 	if (access_ok(to, n)) {
169 		instrument_copy_to_user(to, from, n);
170 		n = raw_copy_to_user(to, from, n);
171 	}
172 	return n;
173 }
174 
175 static int copyout_nofault(void __user *to, const void *from, size_t n)
176 {
177 	long res;
178 
179 	if (should_fail_usercopy())
180 		return n;
181 
182 	res = copy_to_user_nofault(to, from, n);
183 
184 	return res < 0 ? n : res;
185 }
186 
187 static int copyin(void *to, const void __user *from, size_t n)
188 {
189 	size_t res = n;
190 
191 	if (should_fail_usercopy())
192 		return n;
193 	if (access_ok(from, n)) {
194 		instrument_copy_from_user_before(to, from, n);
195 		res = raw_copy_from_user(to, from, n);
196 		instrument_copy_from_user_after(to, from, n, res);
197 	}
198 	return res;
199 }
200 
201 #ifdef PIPE_PARANOIA
202 static bool sanity(const struct iov_iter *i)
203 {
204 	struct pipe_inode_info *pipe = i->pipe;
205 	unsigned int p_head = pipe->head;
206 	unsigned int p_tail = pipe->tail;
207 	unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
208 	unsigned int i_head = i->head;
209 	unsigned int idx;
210 
211 	if (i->last_offset) {
212 		struct pipe_buffer *p;
213 		if (unlikely(p_occupancy == 0))
214 			goto Bad;	// pipe must be non-empty
215 		if (unlikely(i_head != p_head - 1))
216 			goto Bad;	// must be at the last buffer...
217 
218 		p = pipe_buf(pipe, i_head);
219 		if (unlikely(p->offset + p->len != abs(i->last_offset)))
220 			goto Bad;	// ... at the end of segment
221 	} else {
222 		if (i_head != p_head)
223 			goto Bad;	// must be right after the last buffer
224 	}
225 	return true;
226 Bad:
227 	printk(KERN_ERR "idx = %d, offset = %d\n", i_head, i->last_offset);
228 	printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
229 			p_head, p_tail, pipe->ring_size);
230 	for (idx = 0; idx < pipe->ring_size; idx++)
231 		printk(KERN_ERR "[%p %p %d %d]\n",
232 			pipe->bufs[idx].ops,
233 			pipe->bufs[idx].page,
234 			pipe->bufs[idx].offset,
235 			pipe->bufs[idx].len);
236 	WARN_ON(1);
237 	return false;
238 }
239 #else
240 #define sanity(i) true
241 #endif
242 
243 static struct page *push_anon(struct pipe_inode_info *pipe, unsigned size)
244 {
245 	struct page *page = alloc_page(GFP_USER);
246 	if (page) {
247 		struct pipe_buffer *buf = pipe_buf(pipe, pipe->head++);
248 		*buf = (struct pipe_buffer) {
249 			.ops = &default_pipe_buf_ops,
250 			.page = page,
251 			.offset = 0,
252 			.len = size
253 		};
254 	}
255 	return page;
256 }
257 
258 static void push_page(struct pipe_inode_info *pipe, struct page *page,
259 			unsigned int offset, unsigned int size)
260 {
261 	struct pipe_buffer *buf = pipe_buf(pipe, pipe->head++);
262 	*buf = (struct pipe_buffer) {
263 		.ops = &page_cache_pipe_buf_ops,
264 		.page = page,
265 		.offset = offset,
266 		.len = size
267 	};
268 	get_page(page);
269 }
270 
271 static inline int last_offset(const struct pipe_buffer *buf)
272 {
273 	if (buf->ops == &default_pipe_buf_ops)
274 		return buf->len;	// buf->offset is 0 for those
275 	else
276 		return -(buf->offset + buf->len);
277 }
278 
279 static struct page *append_pipe(struct iov_iter *i, size_t size,
280 				unsigned int *off)
281 {
282 	struct pipe_inode_info *pipe = i->pipe;
283 	int offset = i->last_offset;
284 	struct pipe_buffer *buf;
285 	struct page *page;
286 
287 	if (offset > 0 && offset < PAGE_SIZE) {
288 		// some space in the last buffer; add to it
289 		buf = pipe_buf(pipe, pipe->head - 1);
290 		size = min_t(size_t, size, PAGE_SIZE - offset);
291 		buf->len += size;
292 		i->last_offset += size;
293 		i->count -= size;
294 		*off = offset;
295 		return buf->page;
296 	}
297 	// OK, we need a new buffer
298 	*off = 0;
299 	size = min_t(size_t, size, PAGE_SIZE);
300 	if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
301 		return NULL;
302 	page = push_anon(pipe, size);
303 	if (!page)
304 		return NULL;
305 	i->head = pipe->head - 1;
306 	i->last_offset = size;
307 	i->count -= size;
308 	return page;
309 }
310 
311 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
312 			 struct iov_iter *i)
313 {
314 	struct pipe_inode_info *pipe = i->pipe;
315 	unsigned int head = pipe->head;
316 
317 	if (unlikely(bytes > i->count))
318 		bytes = i->count;
319 
320 	if (unlikely(!bytes))
321 		return 0;
322 
323 	if (!sanity(i))
324 		return 0;
325 
326 	if (offset && i->last_offset == -offset) { // could we merge it?
327 		struct pipe_buffer *buf = pipe_buf(pipe, head - 1);
328 		if (buf->page == page) {
329 			buf->len += bytes;
330 			i->last_offset -= bytes;
331 			i->count -= bytes;
332 			return bytes;
333 		}
334 	}
335 	if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
336 		return 0;
337 
338 	push_page(pipe, page, offset, bytes);
339 	i->last_offset = -(offset + bytes);
340 	i->head = head;
341 	i->count -= bytes;
342 	return bytes;
343 }
344 
345 /*
346  * fault_in_iov_iter_readable - fault in iov iterator for reading
347  * @i: iterator
348  * @size: maximum length
349  *
350  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
351  * @size.  For each iovec, fault in each page that constitutes the iovec.
352  *
353  * Returns the number of bytes not faulted in (like copy_to_user() and
354  * copy_from_user()).
355  *
356  * Always returns 0 for non-userspace iterators.
357  */
358 size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size)
359 {
360 	if (iter_is_ubuf(i)) {
361 		size_t n = min(size, iov_iter_count(i));
362 		n -= fault_in_readable(i->ubuf + i->iov_offset, n);
363 		return size - n;
364 	} else if (iter_is_iovec(i)) {
365 		size_t count = min(size, iov_iter_count(i));
366 		const struct iovec *p;
367 		size_t skip;
368 
369 		size -= count;
370 		for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) {
371 			size_t len = min(count, p->iov_len - skip);
372 			size_t ret;
373 
374 			if (unlikely(!len))
375 				continue;
376 			ret = fault_in_readable(p->iov_base + skip, len);
377 			count -= len - ret;
378 			if (ret)
379 				break;
380 		}
381 		return count + size;
382 	}
383 	return 0;
384 }
385 EXPORT_SYMBOL(fault_in_iov_iter_readable);
386 
387 /*
388  * fault_in_iov_iter_writeable - fault in iov iterator for writing
389  * @i: iterator
390  * @size: maximum length
391  *
392  * Faults in the iterator using get_user_pages(), i.e., without triggering
393  * hardware page faults.  This is primarily useful when we already know that
394  * some or all of the pages in @i aren't in memory.
395  *
396  * Returns the number of bytes not faulted in, like copy_to_user() and
397  * copy_from_user().
398  *
399  * Always returns 0 for non-user-space iterators.
400  */
401 size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size)
402 {
403 	if (iter_is_ubuf(i)) {
404 		size_t n = min(size, iov_iter_count(i));
405 		n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n);
406 		return size - n;
407 	} else if (iter_is_iovec(i)) {
408 		size_t count = min(size, iov_iter_count(i));
409 		const struct iovec *p;
410 		size_t skip;
411 
412 		size -= count;
413 		for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) {
414 			size_t len = min(count, p->iov_len - skip);
415 			size_t ret;
416 
417 			if (unlikely(!len))
418 				continue;
419 			ret = fault_in_safe_writeable(p->iov_base + skip, len);
420 			count -= len - ret;
421 			if (ret)
422 				break;
423 		}
424 		return count + size;
425 	}
426 	return 0;
427 }
428 EXPORT_SYMBOL(fault_in_iov_iter_writeable);
429 
430 void iov_iter_init(struct iov_iter *i, unsigned int direction,
431 			const struct iovec *iov, unsigned long nr_segs,
432 			size_t count)
433 {
434 	WARN_ON(direction & ~(READ | WRITE));
435 	*i = (struct iov_iter) {
436 		.iter_type = ITER_IOVEC,
437 		.copy_mc = false,
438 		.nofault = false,
439 		.user_backed = true,
440 		.data_source = direction,
441 		.__iov = iov,
442 		.nr_segs = nr_segs,
443 		.iov_offset = 0,
444 		.count = count
445 	};
446 }
447 EXPORT_SYMBOL(iov_iter_init);
448 
449 // returns the offset in partial buffer (if any)
450 static inline unsigned int pipe_npages(const struct iov_iter *i, int *npages)
451 {
452 	struct pipe_inode_info *pipe = i->pipe;
453 	int used = pipe->head - pipe->tail;
454 	int off = i->last_offset;
455 
456 	*npages = max((int)pipe->max_usage - used, 0);
457 
458 	if (off > 0 && off < PAGE_SIZE) { // anon and not full
459 		(*npages)++;
460 		return off;
461 	}
462 	return 0;
463 }
464 
465 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
466 				struct iov_iter *i)
467 {
468 	unsigned int off, chunk;
469 
470 	if (unlikely(bytes > i->count))
471 		bytes = i->count;
472 	if (unlikely(!bytes))
473 		return 0;
474 
475 	if (!sanity(i))
476 		return 0;
477 
478 	for (size_t n = bytes; n; n -= chunk) {
479 		struct page *page = append_pipe(i, n, &off);
480 		chunk = min_t(size_t, n, PAGE_SIZE - off);
481 		if (!page)
482 			return bytes - n;
483 		memcpy_to_page(page, off, addr, chunk);
484 		addr += chunk;
485 	}
486 	return bytes;
487 }
488 
489 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
490 			      __wsum sum, size_t off)
491 {
492 	__wsum next = csum_partial_copy_nocheck(from, to, len);
493 	return csum_block_add(sum, next, off);
494 }
495 
496 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
497 					 struct iov_iter *i, __wsum *sump)
498 {
499 	__wsum sum = *sump;
500 	size_t off = 0;
501 	unsigned int chunk, r;
502 
503 	if (unlikely(bytes > i->count))
504 		bytes = i->count;
505 	if (unlikely(!bytes))
506 		return 0;
507 
508 	if (!sanity(i))
509 		return 0;
510 
511 	while (bytes) {
512 		struct page *page = append_pipe(i, bytes, &r);
513 		char *p;
514 
515 		if (!page)
516 			break;
517 		chunk = min_t(size_t, bytes, PAGE_SIZE - r);
518 		p = kmap_local_page(page);
519 		sum = csum_and_memcpy(p + r, addr + off, chunk, sum, off);
520 		kunmap_local(p);
521 		off += chunk;
522 		bytes -= chunk;
523 	}
524 	*sump = sum;
525 	return off;
526 }
527 
528 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
529 {
530 	if (WARN_ON_ONCE(i->data_source))
531 		return 0;
532 	if (unlikely(iov_iter_is_pipe(i)))
533 		return copy_pipe_to_iter(addr, bytes, i);
534 	if (user_backed_iter(i))
535 		might_fault();
536 	iterate_and_advance(i, bytes, base, len, off,
537 		copyout(base, addr + off, len),
538 		memcpy(base, addr + off, len)
539 	)
540 
541 	return bytes;
542 }
543 EXPORT_SYMBOL(_copy_to_iter);
544 
545 #ifdef CONFIG_ARCH_HAS_COPY_MC
546 static int copyout_mc(void __user *to, const void *from, size_t n)
547 {
548 	if (access_ok(to, n)) {
549 		instrument_copy_to_user(to, from, n);
550 		n = copy_mc_to_user((__force void *) to, from, n);
551 	}
552 	return n;
553 }
554 
555 static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
556 				struct iov_iter *i)
557 {
558 	size_t xfer = 0;
559 	unsigned int off, chunk;
560 
561 	if (unlikely(bytes > i->count))
562 		bytes = i->count;
563 	if (unlikely(!bytes))
564 		return 0;
565 
566 	if (!sanity(i))
567 		return 0;
568 
569 	while (bytes) {
570 		struct page *page = append_pipe(i, bytes, &off);
571 		unsigned long rem;
572 		char *p;
573 
574 		if (!page)
575 			break;
576 		chunk = min_t(size_t, bytes, PAGE_SIZE - off);
577 		p = kmap_local_page(page);
578 		rem = copy_mc_to_kernel(p + off, addr + xfer, chunk);
579 		chunk -= rem;
580 		kunmap_local(p);
581 		xfer += chunk;
582 		bytes -= chunk;
583 		if (rem) {
584 			iov_iter_revert(i, rem);
585 			break;
586 		}
587 	}
588 	return xfer;
589 }
590 
591 /**
592  * _copy_mc_to_iter - copy to iter with source memory error exception handling
593  * @addr: source kernel address
594  * @bytes: total transfer length
595  * @i: destination iterator
596  *
597  * The pmem driver deploys this for the dax operation
598  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
599  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
600  * successfully copied.
601  *
602  * The main differences between this and typical _copy_to_iter().
603  *
604  * * Typical tail/residue handling after a fault retries the copy
605  *   byte-by-byte until the fault happens again. Re-triggering machine
606  *   checks is potentially fatal so the implementation uses source
607  *   alignment and poison alignment assumptions to avoid re-triggering
608  *   hardware exceptions.
609  *
610  * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
611  *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
612  *   a short copy.
613  *
614  * Return: number of bytes copied (may be %0)
615  */
616 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
617 {
618 	if (WARN_ON_ONCE(i->data_source))
619 		return 0;
620 	if (unlikely(iov_iter_is_pipe(i)))
621 		return copy_mc_pipe_to_iter(addr, bytes, i);
622 	if (user_backed_iter(i))
623 		might_fault();
624 	__iterate_and_advance(i, bytes, base, len, off,
625 		copyout_mc(base, addr + off, len),
626 		copy_mc_to_kernel(base, addr + off, len)
627 	)
628 
629 	return bytes;
630 }
631 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
632 #endif /* CONFIG_ARCH_HAS_COPY_MC */
633 
634 static void *memcpy_from_iter(struct iov_iter *i, void *to, const void *from,
635 				 size_t size)
636 {
637 	if (iov_iter_is_copy_mc(i))
638 		return (void *)copy_mc_to_kernel(to, from, size);
639 	return memcpy(to, from, size);
640 }
641 
642 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
643 {
644 	if (WARN_ON_ONCE(!i->data_source))
645 		return 0;
646 
647 	if (user_backed_iter(i))
648 		might_fault();
649 	iterate_and_advance(i, bytes, base, len, off,
650 		copyin(addr + off, base, len),
651 		memcpy_from_iter(i, addr + off, base, len)
652 	)
653 
654 	return bytes;
655 }
656 EXPORT_SYMBOL(_copy_from_iter);
657 
658 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
659 {
660 	if (WARN_ON_ONCE(!i->data_source))
661 		return 0;
662 
663 	iterate_and_advance(i, bytes, base, len, off,
664 		__copy_from_user_inatomic_nocache(addr + off, base, len),
665 		memcpy(addr + off, base, len)
666 	)
667 
668 	return bytes;
669 }
670 EXPORT_SYMBOL(_copy_from_iter_nocache);
671 
672 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
673 /**
674  * _copy_from_iter_flushcache - write destination through cpu cache
675  * @addr: destination kernel address
676  * @bytes: total transfer length
677  * @i: source iterator
678  *
679  * The pmem driver arranges for filesystem-dax to use this facility via
680  * dax_copy_from_iter() for ensuring that writes to persistent memory
681  * are flushed through the CPU cache. It is differentiated from
682  * _copy_from_iter_nocache() in that guarantees all data is flushed for
683  * all iterator types. The _copy_from_iter_nocache() only attempts to
684  * bypass the cache for the ITER_IOVEC case, and on some archs may use
685  * instructions that strand dirty-data in the cache.
686  *
687  * Return: number of bytes copied (may be %0)
688  */
689 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
690 {
691 	if (WARN_ON_ONCE(!i->data_source))
692 		return 0;
693 
694 	iterate_and_advance(i, bytes, base, len, off,
695 		__copy_from_user_flushcache(addr + off, base, len),
696 		memcpy_flushcache(addr + off, base, len)
697 	)
698 
699 	return bytes;
700 }
701 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
702 #endif
703 
704 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
705 {
706 	struct page *head;
707 	size_t v = n + offset;
708 
709 	/*
710 	 * The general case needs to access the page order in order
711 	 * to compute the page size.
712 	 * However, we mostly deal with order-0 pages and thus can
713 	 * avoid a possible cache line miss for requests that fit all
714 	 * page orders.
715 	 */
716 	if (n <= v && v <= PAGE_SIZE)
717 		return true;
718 
719 	head = compound_head(page);
720 	v += (page - head) << PAGE_SHIFT;
721 
722 	if (WARN_ON(n > v || v > page_size(head)))
723 		return false;
724 	return true;
725 }
726 
727 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
728 			 struct iov_iter *i)
729 {
730 	size_t res = 0;
731 	if (!page_copy_sane(page, offset, bytes))
732 		return 0;
733 	if (WARN_ON_ONCE(i->data_source))
734 		return 0;
735 	if (unlikely(iov_iter_is_pipe(i)))
736 		return copy_page_to_iter_pipe(page, offset, bytes, i);
737 	page += offset / PAGE_SIZE; // first subpage
738 	offset %= PAGE_SIZE;
739 	while (1) {
740 		void *kaddr = kmap_local_page(page);
741 		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
742 		n = _copy_to_iter(kaddr + offset, n, i);
743 		kunmap_local(kaddr);
744 		res += n;
745 		bytes -= n;
746 		if (!bytes || !n)
747 			break;
748 		offset += n;
749 		if (offset == PAGE_SIZE) {
750 			page++;
751 			offset = 0;
752 		}
753 	}
754 	return res;
755 }
756 EXPORT_SYMBOL(copy_page_to_iter);
757 
758 size_t copy_page_to_iter_nofault(struct page *page, unsigned offset, size_t bytes,
759 				 struct iov_iter *i)
760 {
761 	size_t res = 0;
762 
763 	if (!page_copy_sane(page, offset, bytes))
764 		return 0;
765 	if (WARN_ON_ONCE(i->data_source))
766 		return 0;
767 	if (unlikely(iov_iter_is_pipe(i)))
768 		return copy_page_to_iter_pipe(page, offset, bytes, i);
769 	page += offset / PAGE_SIZE; // first subpage
770 	offset %= PAGE_SIZE;
771 	while (1) {
772 		void *kaddr = kmap_local_page(page);
773 		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
774 
775 		iterate_and_advance(i, n, base, len, off,
776 			copyout_nofault(base, kaddr + offset + off, len),
777 			memcpy(base, kaddr + offset + off, len)
778 		)
779 		kunmap_local(kaddr);
780 		res += n;
781 		bytes -= n;
782 		if (!bytes || !n)
783 			break;
784 		offset += n;
785 		if (offset == PAGE_SIZE) {
786 			page++;
787 			offset = 0;
788 		}
789 	}
790 	return res;
791 }
792 EXPORT_SYMBOL(copy_page_to_iter_nofault);
793 
794 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
795 			 struct iov_iter *i)
796 {
797 	size_t res = 0;
798 	if (!page_copy_sane(page, offset, bytes))
799 		return 0;
800 	page += offset / PAGE_SIZE; // first subpage
801 	offset %= PAGE_SIZE;
802 	while (1) {
803 		void *kaddr = kmap_local_page(page);
804 		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
805 		n = _copy_from_iter(kaddr + offset, n, i);
806 		kunmap_local(kaddr);
807 		res += n;
808 		bytes -= n;
809 		if (!bytes || !n)
810 			break;
811 		offset += n;
812 		if (offset == PAGE_SIZE) {
813 			page++;
814 			offset = 0;
815 		}
816 	}
817 	return res;
818 }
819 EXPORT_SYMBOL(copy_page_from_iter);
820 
821 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
822 {
823 	unsigned int chunk, off;
824 
825 	if (unlikely(bytes > i->count))
826 		bytes = i->count;
827 	if (unlikely(!bytes))
828 		return 0;
829 
830 	if (!sanity(i))
831 		return 0;
832 
833 	for (size_t n = bytes; n; n -= chunk) {
834 		struct page *page = append_pipe(i, n, &off);
835 		char *p;
836 
837 		if (!page)
838 			return bytes - n;
839 		chunk = min_t(size_t, n, PAGE_SIZE - off);
840 		p = kmap_local_page(page);
841 		memset(p + off, 0, chunk);
842 		kunmap_local(p);
843 	}
844 	return bytes;
845 }
846 
847 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
848 {
849 	if (unlikely(iov_iter_is_pipe(i)))
850 		return pipe_zero(bytes, i);
851 	iterate_and_advance(i, bytes, base, len, count,
852 		clear_user(base, len),
853 		memset(base, 0, len)
854 	)
855 
856 	return bytes;
857 }
858 EXPORT_SYMBOL(iov_iter_zero);
859 
860 size_t copy_page_from_iter_atomic(struct page *page, unsigned offset, size_t bytes,
861 				  struct iov_iter *i)
862 {
863 	char *kaddr = kmap_atomic(page), *p = kaddr + offset;
864 	if (!page_copy_sane(page, offset, bytes)) {
865 		kunmap_atomic(kaddr);
866 		return 0;
867 	}
868 	if (WARN_ON_ONCE(!i->data_source)) {
869 		kunmap_atomic(kaddr);
870 		return 0;
871 	}
872 	iterate_and_advance(i, bytes, base, len, off,
873 		copyin(p + off, base, len),
874 		memcpy_from_iter(i, p + off, base, len)
875 	)
876 	kunmap_atomic(kaddr);
877 	return bytes;
878 }
879 EXPORT_SYMBOL(copy_page_from_iter_atomic);
880 
881 static void pipe_advance(struct iov_iter *i, size_t size)
882 {
883 	struct pipe_inode_info *pipe = i->pipe;
884 	int off = i->last_offset;
885 
886 	if (!off && !size) {
887 		pipe_discard_from(pipe, i->start_head); // discard everything
888 		return;
889 	}
890 	i->count -= size;
891 	while (1) {
892 		struct pipe_buffer *buf = pipe_buf(pipe, i->head);
893 		if (off) /* make it relative to the beginning of buffer */
894 			size += abs(off) - buf->offset;
895 		if (size <= buf->len) {
896 			buf->len = size;
897 			i->last_offset = last_offset(buf);
898 			break;
899 		}
900 		size -= buf->len;
901 		i->head++;
902 		off = 0;
903 	}
904 	pipe_discard_from(pipe, i->head + 1); // discard everything past this one
905 }
906 
907 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
908 {
909 	const struct bio_vec *bvec, *end;
910 
911 	if (!i->count)
912 		return;
913 	i->count -= size;
914 
915 	size += i->iov_offset;
916 
917 	for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) {
918 		if (likely(size < bvec->bv_len))
919 			break;
920 		size -= bvec->bv_len;
921 	}
922 	i->iov_offset = size;
923 	i->nr_segs -= bvec - i->bvec;
924 	i->bvec = bvec;
925 }
926 
927 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
928 {
929 	const struct iovec *iov, *end;
930 
931 	if (!i->count)
932 		return;
933 	i->count -= size;
934 
935 	size += i->iov_offset; // from beginning of current segment
936 	for (iov = iter_iov(i), end = iov + i->nr_segs; iov < end; iov++) {
937 		if (likely(size < iov->iov_len))
938 			break;
939 		size -= iov->iov_len;
940 	}
941 	i->iov_offset = size;
942 	i->nr_segs -= iov - iter_iov(i);
943 	i->__iov = iov;
944 }
945 
946 void iov_iter_advance(struct iov_iter *i, size_t size)
947 {
948 	if (unlikely(i->count < size))
949 		size = i->count;
950 	if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) {
951 		i->iov_offset += size;
952 		i->count -= size;
953 	} else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
954 		/* iovec and kvec have identical layouts */
955 		iov_iter_iovec_advance(i, size);
956 	} else if (iov_iter_is_bvec(i)) {
957 		iov_iter_bvec_advance(i, size);
958 	} else if (iov_iter_is_pipe(i)) {
959 		pipe_advance(i, size);
960 	} else if (iov_iter_is_discard(i)) {
961 		i->count -= size;
962 	}
963 }
964 EXPORT_SYMBOL(iov_iter_advance);
965 
966 void iov_iter_revert(struct iov_iter *i, size_t unroll)
967 {
968 	if (!unroll)
969 		return;
970 	if (WARN_ON(unroll > MAX_RW_COUNT))
971 		return;
972 	i->count += unroll;
973 	if (unlikely(iov_iter_is_pipe(i))) {
974 		struct pipe_inode_info *pipe = i->pipe;
975 		unsigned int head = pipe->head;
976 
977 		while (head > i->start_head) {
978 			struct pipe_buffer *b = pipe_buf(pipe, --head);
979 			if (unroll < b->len) {
980 				b->len -= unroll;
981 				i->last_offset = last_offset(b);
982 				i->head = head;
983 				return;
984 			}
985 			unroll -= b->len;
986 			pipe_buf_release(pipe, b);
987 			pipe->head--;
988 		}
989 		i->last_offset = 0;
990 		i->head = head;
991 		return;
992 	}
993 	if (unlikely(iov_iter_is_discard(i)))
994 		return;
995 	if (unroll <= i->iov_offset) {
996 		i->iov_offset -= unroll;
997 		return;
998 	}
999 	unroll -= i->iov_offset;
1000 	if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) {
1001 		BUG(); /* We should never go beyond the start of the specified
1002 			* range since we might then be straying into pages that
1003 			* aren't pinned.
1004 			*/
1005 	} else if (iov_iter_is_bvec(i)) {
1006 		const struct bio_vec *bvec = i->bvec;
1007 		while (1) {
1008 			size_t n = (--bvec)->bv_len;
1009 			i->nr_segs++;
1010 			if (unroll <= n) {
1011 				i->bvec = bvec;
1012 				i->iov_offset = n - unroll;
1013 				return;
1014 			}
1015 			unroll -= n;
1016 		}
1017 	} else { /* same logics for iovec and kvec */
1018 		const struct iovec *iov = iter_iov(i);
1019 		while (1) {
1020 			size_t n = (--iov)->iov_len;
1021 			i->nr_segs++;
1022 			if (unroll <= n) {
1023 				i->__iov = iov;
1024 				i->iov_offset = n - unroll;
1025 				return;
1026 			}
1027 			unroll -= n;
1028 		}
1029 	}
1030 }
1031 EXPORT_SYMBOL(iov_iter_revert);
1032 
1033 /*
1034  * Return the count of just the current iov_iter segment.
1035  */
1036 size_t iov_iter_single_seg_count(const struct iov_iter *i)
1037 {
1038 	if (i->nr_segs > 1) {
1039 		if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1040 			return min(i->count, iter_iov(i)->iov_len - i->iov_offset);
1041 		if (iov_iter_is_bvec(i))
1042 			return min(i->count, i->bvec->bv_len - i->iov_offset);
1043 	}
1044 	return i->count;
1045 }
1046 EXPORT_SYMBOL(iov_iter_single_seg_count);
1047 
1048 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
1049 			const struct kvec *kvec, unsigned long nr_segs,
1050 			size_t count)
1051 {
1052 	WARN_ON(direction & ~(READ | WRITE));
1053 	*i = (struct iov_iter){
1054 		.iter_type = ITER_KVEC,
1055 		.copy_mc = false,
1056 		.data_source = direction,
1057 		.kvec = kvec,
1058 		.nr_segs = nr_segs,
1059 		.iov_offset = 0,
1060 		.count = count
1061 	};
1062 }
1063 EXPORT_SYMBOL(iov_iter_kvec);
1064 
1065 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1066 			const struct bio_vec *bvec, unsigned long nr_segs,
1067 			size_t count)
1068 {
1069 	WARN_ON(direction & ~(READ | WRITE));
1070 	*i = (struct iov_iter){
1071 		.iter_type = ITER_BVEC,
1072 		.copy_mc = false,
1073 		.data_source = direction,
1074 		.bvec = bvec,
1075 		.nr_segs = nr_segs,
1076 		.iov_offset = 0,
1077 		.count = count
1078 	};
1079 }
1080 EXPORT_SYMBOL(iov_iter_bvec);
1081 
1082 void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1083 			struct pipe_inode_info *pipe,
1084 			size_t count)
1085 {
1086 	BUG_ON(direction != READ);
1087 	WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
1088 	*i = (struct iov_iter){
1089 		.iter_type = ITER_PIPE,
1090 		.data_source = false,
1091 		.pipe = pipe,
1092 		.head = pipe->head,
1093 		.start_head = pipe->head,
1094 		.last_offset = 0,
1095 		.count = count
1096 	};
1097 }
1098 EXPORT_SYMBOL(iov_iter_pipe);
1099 
1100 /**
1101  * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
1102  * @i: The iterator to initialise.
1103  * @direction: The direction of the transfer.
1104  * @xarray: The xarray to access.
1105  * @start: The start file position.
1106  * @count: The size of the I/O buffer in bytes.
1107  *
1108  * Set up an I/O iterator to either draw data out of the pages attached to an
1109  * inode or to inject data into those pages.  The pages *must* be prevented
1110  * from evaporation, either by taking a ref on them or locking them by the
1111  * caller.
1112  */
1113 void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
1114 		     struct xarray *xarray, loff_t start, size_t count)
1115 {
1116 	BUG_ON(direction & ~1);
1117 	*i = (struct iov_iter) {
1118 		.iter_type = ITER_XARRAY,
1119 		.copy_mc = false,
1120 		.data_source = direction,
1121 		.xarray = xarray,
1122 		.xarray_start = start,
1123 		.count = count,
1124 		.iov_offset = 0
1125 	};
1126 }
1127 EXPORT_SYMBOL(iov_iter_xarray);
1128 
1129 /**
1130  * iov_iter_discard - Initialise an I/O iterator that discards data
1131  * @i: The iterator to initialise.
1132  * @direction: The direction of the transfer.
1133  * @count: The size of the I/O buffer in bytes.
1134  *
1135  * Set up an I/O iterator that just discards everything that's written to it.
1136  * It's only available as a READ iterator.
1137  */
1138 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1139 {
1140 	BUG_ON(direction != READ);
1141 	*i = (struct iov_iter){
1142 		.iter_type = ITER_DISCARD,
1143 		.copy_mc = false,
1144 		.data_source = false,
1145 		.count = count,
1146 		.iov_offset = 0
1147 	};
1148 }
1149 EXPORT_SYMBOL(iov_iter_discard);
1150 
1151 static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask,
1152 				   unsigned len_mask)
1153 {
1154 	size_t size = i->count;
1155 	size_t skip = i->iov_offset;
1156 	unsigned k;
1157 
1158 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1159 		const struct iovec *iov = iter_iov(i) + k;
1160 		size_t len = iov->iov_len - skip;
1161 
1162 		if (len > size)
1163 			len = size;
1164 		if (len & len_mask)
1165 			return false;
1166 		if ((unsigned long)(iov->iov_base + skip) & addr_mask)
1167 			return false;
1168 
1169 		size -= len;
1170 		if (!size)
1171 			break;
1172 	}
1173 	return true;
1174 }
1175 
1176 static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask,
1177 				  unsigned len_mask)
1178 {
1179 	size_t size = i->count;
1180 	unsigned skip = i->iov_offset;
1181 	unsigned k;
1182 
1183 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1184 		size_t len = i->bvec[k].bv_len - skip;
1185 
1186 		if (len > size)
1187 			len = size;
1188 		if (len & len_mask)
1189 			return false;
1190 		if ((unsigned long)(i->bvec[k].bv_offset + skip) & addr_mask)
1191 			return false;
1192 
1193 		size -= len;
1194 		if (!size)
1195 			break;
1196 	}
1197 	return true;
1198 }
1199 
1200 /**
1201  * iov_iter_is_aligned() - Check if the addresses and lengths of each segments
1202  * 	are aligned to the parameters.
1203  *
1204  * @i: &struct iov_iter to restore
1205  * @addr_mask: bit mask to check against the iov element's addresses
1206  * @len_mask: bit mask to check against the iov element's lengths
1207  *
1208  * Return: false if any addresses or lengths intersect with the provided masks
1209  */
1210 bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask,
1211 			 unsigned len_mask)
1212 {
1213 	if (likely(iter_is_ubuf(i))) {
1214 		if (i->count & len_mask)
1215 			return false;
1216 		if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask)
1217 			return false;
1218 		return true;
1219 	}
1220 
1221 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1222 		return iov_iter_aligned_iovec(i, addr_mask, len_mask);
1223 
1224 	if (iov_iter_is_bvec(i))
1225 		return iov_iter_aligned_bvec(i, addr_mask, len_mask);
1226 
1227 	if (iov_iter_is_pipe(i)) {
1228 		size_t size = i->count;
1229 
1230 		if (size & len_mask)
1231 			return false;
1232 		if (size && i->last_offset > 0) {
1233 			if (i->last_offset & addr_mask)
1234 				return false;
1235 		}
1236 
1237 		return true;
1238 	}
1239 
1240 	if (iov_iter_is_xarray(i)) {
1241 		if (i->count & len_mask)
1242 			return false;
1243 		if ((i->xarray_start + i->iov_offset) & addr_mask)
1244 			return false;
1245 	}
1246 
1247 	return true;
1248 }
1249 EXPORT_SYMBOL_GPL(iov_iter_is_aligned);
1250 
1251 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
1252 {
1253 	unsigned long res = 0;
1254 	size_t size = i->count;
1255 	size_t skip = i->iov_offset;
1256 	unsigned k;
1257 
1258 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1259 		const struct iovec *iov = iter_iov(i) + k;
1260 		size_t len = iov->iov_len - skip;
1261 		if (len) {
1262 			res |= (unsigned long)iov->iov_base + skip;
1263 			if (len > size)
1264 				len = size;
1265 			res |= len;
1266 			size -= len;
1267 			if (!size)
1268 				break;
1269 		}
1270 	}
1271 	return res;
1272 }
1273 
1274 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
1275 {
1276 	unsigned res = 0;
1277 	size_t size = i->count;
1278 	unsigned skip = i->iov_offset;
1279 	unsigned k;
1280 
1281 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1282 		size_t len = i->bvec[k].bv_len - skip;
1283 		res |= (unsigned long)i->bvec[k].bv_offset + skip;
1284 		if (len > size)
1285 			len = size;
1286 		res |= len;
1287 		size -= len;
1288 		if (!size)
1289 			break;
1290 	}
1291 	return res;
1292 }
1293 
1294 unsigned long iov_iter_alignment(const struct iov_iter *i)
1295 {
1296 	if (likely(iter_is_ubuf(i))) {
1297 		size_t size = i->count;
1298 		if (size)
1299 			return ((unsigned long)i->ubuf + i->iov_offset) | size;
1300 		return 0;
1301 	}
1302 
1303 	/* iovec and kvec have identical layouts */
1304 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1305 		return iov_iter_alignment_iovec(i);
1306 
1307 	if (iov_iter_is_bvec(i))
1308 		return iov_iter_alignment_bvec(i);
1309 
1310 	if (iov_iter_is_pipe(i)) {
1311 		size_t size = i->count;
1312 
1313 		if (size && i->last_offset > 0)
1314 			return size | i->last_offset;
1315 		return size;
1316 	}
1317 
1318 	if (iov_iter_is_xarray(i))
1319 		return (i->xarray_start + i->iov_offset) | i->count;
1320 
1321 	return 0;
1322 }
1323 EXPORT_SYMBOL(iov_iter_alignment);
1324 
1325 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1326 {
1327 	unsigned long res = 0;
1328 	unsigned long v = 0;
1329 	size_t size = i->count;
1330 	unsigned k;
1331 
1332 	if (iter_is_ubuf(i))
1333 		return 0;
1334 
1335 	if (WARN_ON(!iter_is_iovec(i)))
1336 		return ~0U;
1337 
1338 	for (k = 0; k < i->nr_segs; k++) {
1339 		const struct iovec *iov = iter_iov(i) + k;
1340 		if (iov->iov_len) {
1341 			unsigned long base = (unsigned long)iov->iov_base;
1342 			if (v) // if not the first one
1343 				res |= base | v; // this start | previous end
1344 			v = base + iov->iov_len;
1345 			if (size <= iov->iov_len)
1346 				break;
1347 			size -= iov->iov_len;
1348 		}
1349 	}
1350 	return res;
1351 }
1352 EXPORT_SYMBOL(iov_iter_gap_alignment);
1353 
1354 static int want_pages_array(struct page ***res, size_t size,
1355 			    size_t start, unsigned int maxpages)
1356 {
1357 	unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE);
1358 
1359 	if (count > maxpages)
1360 		count = maxpages;
1361 	WARN_ON(!count);	// caller should've prevented that
1362 	if (!*res) {
1363 		*res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL);
1364 		if (!*res)
1365 			return 0;
1366 	}
1367 	return count;
1368 }
1369 
1370 static ssize_t pipe_get_pages(struct iov_iter *i,
1371 		   struct page ***pages, size_t maxsize, unsigned maxpages,
1372 		   size_t *start)
1373 {
1374 	unsigned int npages, count, off, chunk;
1375 	struct page **p;
1376 	size_t left;
1377 
1378 	if (!sanity(i))
1379 		return -EFAULT;
1380 
1381 	*start = off = pipe_npages(i, &npages);
1382 	if (!npages)
1383 		return -EFAULT;
1384 	count = want_pages_array(pages, maxsize, off, min(npages, maxpages));
1385 	if (!count)
1386 		return -ENOMEM;
1387 	p = *pages;
1388 	for (npages = 0, left = maxsize ; npages < count; npages++, left -= chunk) {
1389 		struct page *page = append_pipe(i, left, &off);
1390 		if (!page)
1391 			break;
1392 		chunk = min_t(size_t, left, PAGE_SIZE - off);
1393 		get_page(*p++ = page);
1394 	}
1395 	if (!npages)
1396 		return -EFAULT;
1397 	return maxsize - left;
1398 }
1399 
1400 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
1401 					  pgoff_t index, unsigned int nr_pages)
1402 {
1403 	XA_STATE(xas, xa, index);
1404 	struct page *page;
1405 	unsigned int ret = 0;
1406 
1407 	rcu_read_lock();
1408 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1409 		if (xas_retry(&xas, page))
1410 			continue;
1411 
1412 		/* Has the page moved or been split? */
1413 		if (unlikely(page != xas_reload(&xas))) {
1414 			xas_reset(&xas);
1415 			continue;
1416 		}
1417 
1418 		pages[ret] = find_subpage(page, xas.xa_index);
1419 		get_page(pages[ret]);
1420 		if (++ret == nr_pages)
1421 			break;
1422 	}
1423 	rcu_read_unlock();
1424 	return ret;
1425 }
1426 
1427 static ssize_t iter_xarray_get_pages(struct iov_iter *i,
1428 				     struct page ***pages, size_t maxsize,
1429 				     unsigned maxpages, size_t *_start_offset)
1430 {
1431 	unsigned nr, offset, count;
1432 	pgoff_t index;
1433 	loff_t pos;
1434 
1435 	pos = i->xarray_start + i->iov_offset;
1436 	index = pos >> PAGE_SHIFT;
1437 	offset = pos & ~PAGE_MASK;
1438 	*_start_offset = offset;
1439 
1440 	count = want_pages_array(pages, maxsize, offset, maxpages);
1441 	if (!count)
1442 		return -ENOMEM;
1443 	nr = iter_xarray_populate_pages(*pages, i->xarray, index, count);
1444 	if (nr == 0)
1445 		return 0;
1446 
1447 	maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1448 	i->iov_offset += maxsize;
1449 	i->count -= maxsize;
1450 	return maxsize;
1451 }
1452 
1453 /* must be done on non-empty ITER_UBUF or ITER_IOVEC one */
1454 static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size)
1455 {
1456 	size_t skip;
1457 	long k;
1458 
1459 	if (iter_is_ubuf(i))
1460 		return (unsigned long)i->ubuf + i->iov_offset;
1461 
1462 	for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
1463 		const struct iovec *iov = iter_iov(i) + k;
1464 		size_t len = iov->iov_len - skip;
1465 
1466 		if (unlikely(!len))
1467 			continue;
1468 		if (*size > len)
1469 			*size = len;
1470 		return (unsigned long)iov->iov_base + skip;
1471 	}
1472 	BUG(); // if it had been empty, we wouldn't get called
1473 }
1474 
1475 /* must be done on non-empty ITER_BVEC one */
1476 static struct page *first_bvec_segment(const struct iov_iter *i,
1477 				       size_t *size, size_t *start)
1478 {
1479 	struct page *page;
1480 	size_t skip = i->iov_offset, len;
1481 
1482 	len = i->bvec->bv_len - skip;
1483 	if (*size > len)
1484 		*size = len;
1485 	skip += i->bvec->bv_offset;
1486 	page = i->bvec->bv_page + skip / PAGE_SIZE;
1487 	*start = skip % PAGE_SIZE;
1488 	return page;
1489 }
1490 
1491 static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i,
1492 		   struct page ***pages, size_t maxsize,
1493 		   unsigned int maxpages, size_t *start,
1494 		   iov_iter_extraction_t extraction_flags)
1495 {
1496 	unsigned int n, gup_flags = 0;
1497 
1498 	if (maxsize > i->count)
1499 		maxsize = i->count;
1500 	if (!maxsize)
1501 		return 0;
1502 	if (maxsize > MAX_RW_COUNT)
1503 		maxsize = MAX_RW_COUNT;
1504 	if (extraction_flags & ITER_ALLOW_P2PDMA)
1505 		gup_flags |= FOLL_PCI_P2PDMA;
1506 
1507 	if (likely(user_backed_iter(i))) {
1508 		unsigned long addr;
1509 		int res;
1510 
1511 		if (iov_iter_rw(i) != WRITE)
1512 			gup_flags |= FOLL_WRITE;
1513 		if (i->nofault)
1514 			gup_flags |= FOLL_NOFAULT;
1515 
1516 		addr = first_iovec_segment(i, &maxsize);
1517 		*start = addr % PAGE_SIZE;
1518 		addr &= PAGE_MASK;
1519 		n = want_pages_array(pages, maxsize, *start, maxpages);
1520 		if (!n)
1521 			return -ENOMEM;
1522 		res = get_user_pages_fast(addr, n, gup_flags, *pages);
1523 		if (unlikely(res <= 0))
1524 			return res;
1525 		maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start);
1526 		iov_iter_advance(i, maxsize);
1527 		return maxsize;
1528 	}
1529 	if (iov_iter_is_bvec(i)) {
1530 		struct page **p;
1531 		struct page *page;
1532 
1533 		page = first_bvec_segment(i, &maxsize, start);
1534 		n = want_pages_array(pages, maxsize, *start, maxpages);
1535 		if (!n)
1536 			return -ENOMEM;
1537 		p = *pages;
1538 		for (int k = 0; k < n; k++)
1539 			get_page(p[k] = page + k);
1540 		maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start);
1541 		i->count -= maxsize;
1542 		i->iov_offset += maxsize;
1543 		if (i->iov_offset == i->bvec->bv_len) {
1544 			i->iov_offset = 0;
1545 			i->bvec++;
1546 			i->nr_segs--;
1547 		}
1548 		return maxsize;
1549 	}
1550 	if (iov_iter_is_pipe(i))
1551 		return pipe_get_pages(i, pages, maxsize, maxpages, start);
1552 	if (iov_iter_is_xarray(i))
1553 		return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1554 	return -EFAULT;
1555 }
1556 
1557 ssize_t iov_iter_get_pages(struct iov_iter *i,
1558 		   struct page **pages, size_t maxsize, unsigned maxpages,
1559 		   size_t *start, iov_iter_extraction_t extraction_flags)
1560 {
1561 	if (!maxpages)
1562 		return 0;
1563 	BUG_ON(!pages);
1564 
1565 	return __iov_iter_get_pages_alloc(i, &pages, maxsize, maxpages,
1566 					  start, extraction_flags);
1567 }
1568 EXPORT_SYMBOL_GPL(iov_iter_get_pages);
1569 
1570 ssize_t iov_iter_get_pages2(struct iov_iter *i, struct page **pages,
1571 		size_t maxsize, unsigned maxpages, size_t *start)
1572 {
1573 	return iov_iter_get_pages(i, pages, maxsize, maxpages, start, 0);
1574 }
1575 EXPORT_SYMBOL(iov_iter_get_pages2);
1576 
1577 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1578 		   struct page ***pages, size_t maxsize,
1579 		   size_t *start, iov_iter_extraction_t extraction_flags)
1580 {
1581 	ssize_t len;
1582 
1583 	*pages = NULL;
1584 
1585 	len = __iov_iter_get_pages_alloc(i, pages, maxsize, ~0U, start,
1586 					 extraction_flags);
1587 	if (len <= 0) {
1588 		kvfree(*pages);
1589 		*pages = NULL;
1590 	}
1591 	return len;
1592 }
1593 EXPORT_SYMBOL_GPL(iov_iter_get_pages_alloc);
1594 
1595 ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i,
1596 		struct page ***pages, size_t maxsize, size_t *start)
1597 {
1598 	return iov_iter_get_pages_alloc(i, pages, maxsize, start, 0);
1599 }
1600 EXPORT_SYMBOL(iov_iter_get_pages_alloc2);
1601 
1602 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1603 			       struct iov_iter *i)
1604 {
1605 	__wsum sum, next;
1606 	sum = *csum;
1607 	if (WARN_ON_ONCE(!i->data_source))
1608 		return 0;
1609 
1610 	iterate_and_advance(i, bytes, base, len, off, ({
1611 		next = csum_and_copy_from_user(base, addr + off, len);
1612 		sum = csum_block_add(sum, next, off);
1613 		next ? 0 : len;
1614 	}), ({
1615 		sum = csum_and_memcpy(addr + off, base, len, sum, off);
1616 	})
1617 	)
1618 	*csum = sum;
1619 	return bytes;
1620 }
1621 EXPORT_SYMBOL(csum_and_copy_from_iter);
1622 
1623 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
1624 			     struct iov_iter *i)
1625 {
1626 	struct csum_state *csstate = _csstate;
1627 	__wsum sum, next;
1628 
1629 	if (WARN_ON_ONCE(i->data_source))
1630 		return 0;
1631 	if (unlikely(iov_iter_is_discard(i))) {
1632 		// can't use csum_memcpy() for that one - data is not copied
1633 		csstate->csum = csum_block_add(csstate->csum,
1634 					       csum_partial(addr, bytes, 0),
1635 					       csstate->off);
1636 		csstate->off += bytes;
1637 		return bytes;
1638 	}
1639 
1640 	sum = csum_shift(csstate->csum, csstate->off);
1641 	if (unlikely(iov_iter_is_pipe(i)))
1642 		bytes = csum_and_copy_to_pipe_iter(addr, bytes, i, &sum);
1643 	else iterate_and_advance(i, bytes, base, len, off, ({
1644 		next = csum_and_copy_to_user(addr + off, base, len);
1645 		sum = csum_block_add(sum, next, off);
1646 		next ? 0 : len;
1647 	}), ({
1648 		sum = csum_and_memcpy(base, addr + off, len, sum, off);
1649 	})
1650 	)
1651 	csstate->csum = csum_shift(sum, csstate->off);
1652 	csstate->off += bytes;
1653 	return bytes;
1654 }
1655 EXPORT_SYMBOL(csum_and_copy_to_iter);
1656 
1657 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1658 		struct iov_iter *i)
1659 {
1660 #ifdef CONFIG_CRYPTO_HASH
1661 	struct ahash_request *hash = hashp;
1662 	struct scatterlist sg;
1663 	size_t copied;
1664 
1665 	copied = copy_to_iter(addr, bytes, i);
1666 	sg_init_one(&sg, addr, copied);
1667 	ahash_request_set_crypt(hash, &sg, NULL, copied);
1668 	crypto_ahash_update(hash);
1669 	return copied;
1670 #else
1671 	return 0;
1672 #endif
1673 }
1674 EXPORT_SYMBOL(hash_and_copy_to_iter);
1675 
1676 static int iov_npages(const struct iov_iter *i, int maxpages)
1677 {
1678 	size_t skip = i->iov_offset, size = i->count;
1679 	const struct iovec *p;
1680 	int npages = 0;
1681 
1682 	for (p = iter_iov(i); size; skip = 0, p++) {
1683 		unsigned offs = offset_in_page(p->iov_base + skip);
1684 		size_t len = min(p->iov_len - skip, size);
1685 
1686 		if (len) {
1687 			size -= len;
1688 			npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1689 			if (unlikely(npages > maxpages))
1690 				return maxpages;
1691 		}
1692 	}
1693 	return npages;
1694 }
1695 
1696 static int bvec_npages(const struct iov_iter *i, int maxpages)
1697 {
1698 	size_t skip = i->iov_offset, size = i->count;
1699 	const struct bio_vec *p;
1700 	int npages = 0;
1701 
1702 	for (p = i->bvec; size; skip = 0, p++) {
1703 		unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1704 		size_t len = min(p->bv_len - skip, size);
1705 
1706 		size -= len;
1707 		npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1708 		if (unlikely(npages > maxpages))
1709 			return maxpages;
1710 	}
1711 	return npages;
1712 }
1713 
1714 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1715 {
1716 	if (unlikely(!i->count))
1717 		return 0;
1718 	if (likely(iter_is_ubuf(i))) {
1719 		unsigned offs = offset_in_page(i->ubuf + i->iov_offset);
1720 		int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE);
1721 		return min(npages, maxpages);
1722 	}
1723 	/* iovec and kvec have identical layouts */
1724 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1725 		return iov_npages(i, maxpages);
1726 	if (iov_iter_is_bvec(i))
1727 		return bvec_npages(i, maxpages);
1728 	if (iov_iter_is_pipe(i)) {
1729 		int npages;
1730 
1731 		if (!sanity(i))
1732 			return 0;
1733 
1734 		pipe_npages(i, &npages);
1735 		return min(npages, maxpages);
1736 	}
1737 	if (iov_iter_is_xarray(i)) {
1738 		unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1739 		int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1740 		return min(npages, maxpages);
1741 	}
1742 	return 0;
1743 }
1744 EXPORT_SYMBOL(iov_iter_npages);
1745 
1746 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1747 {
1748 	*new = *old;
1749 	if (unlikely(iov_iter_is_pipe(new))) {
1750 		WARN_ON(1);
1751 		return NULL;
1752 	}
1753 	if (iov_iter_is_bvec(new))
1754 		return new->bvec = kmemdup(new->bvec,
1755 				    new->nr_segs * sizeof(struct bio_vec),
1756 				    flags);
1757 	else if (iov_iter_is_kvec(new) || iter_is_iovec(new))
1758 		/* iovec and kvec have identical layout */
1759 		return new->__iov = kmemdup(new->__iov,
1760 				   new->nr_segs * sizeof(struct iovec),
1761 				   flags);
1762 	return NULL;
1763 }
1764 EXPORT_SYMBOL(dup_iter);
1765 
1766 static __noclone int copy_compat_iovec_from_user(struct iovec *iov,
1767 		const struct iovec __user *uvec, unsigned long nr_segs)
1768 {
1769 	const struct compat_iovec __user *uiov =
1770 		(const struct compat_iovec __user *)uvec;
1771 	int ret = -EFAULT, i;
1772 
1773 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1774 		return -EFAULT;
1775 
1776 	for (i = 0; i < nr_segs; i++) {
1777 		compat_uptr_t buf;
1778 		compat_ssize_t len;
1779 
1780 		unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1781 		unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1782 
1783 		/* check for compat_size_t not fitting in compat_ssize_t .. */
1784 		if (len < 0) {
1785 			ret = -EINVAL;
1786 			goto uaccess_end;
1787 		}
1788 		iov[i].iov_base = compat_ptr(buf);
1789 		iov[i].iov_len = len;
1790 	}
1791 
1792 	ret = 0;
1793 uaccess_end:
1794 	user_access_end();
1795 	return ret;
1796 }
1797 
1798 static int copy_iovec_from_user(struct iovec *iov,
1799 		const struct iovec __user *uiov, unsigned long nr_segs)
1800 {
1801 	int ret = -EFAULT;
1802 
1803 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1804 		return -EFAULT;
1805 
1806 	do {
1807 		void __user *buf;
1808 		ssize_t len;
1809 
1810 		unsafe_get_user(len, &uiov->iov_len, uaccess_end);
1811 		unsafe_get_user(buf, &uiov->iov_base, uaccess_end);
1812 
1813 		/* check for size_t not fitting in ssize_t .. */
1814 		if (unlikely(len < 0)) {
1815 			ret = -EINVAL;
1816 			goto uaccess_end;
1817 		}
1818 		iov->iov_base = buf;
1819 		iov->iov_len = len;
1820 
1821 		uiov++; iov++;
1822 	} while (--nr_segs);
1823 
1824 	ret = 0;
1825 uaccess_end:
1826 	user_access_end();
1827 	return ret;
1828 }
1829 
1830 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1831 		unsigned long nr_segs, unsigned long fast_segs,
1832 		struct iovec *fast_iov, bool compat)
1833 {
1834 	struct iovec *iov = fast_iov;
1835 	int ret;
1836 
1837 	/*
1838 	 * SuS says "The readv() function *may* fail if the iovcnt argument was
1839 	 * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1840 	 * traditionally returned zero for zero segments, so...
1841 	 */
1842 	if (nr_segs == 0)
1843 		return iov;
1844 	if (nr_segs > UIO_MAXIOV)
1845 		return ERR_PTR(-EINVAL);
1846 	if (nr_segs > fast_segs) {
1847 		iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1848 		if (!iov)
1849 			return ERR_PTR(-ENOMEM);
1850 	}
1851 
1852 	if (unlikely(compat))
1853 		ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1854 	else
1855 		ret = copy_iovec_from_user(iov, uvec, nr_segs);
1856 	if (ret) {
1857 		if (iov != fast_iov)
1858 			kfree(iov);
1859 		return ERR_PTR(ret);
1860 	}
1861 
1862 	return iov;
1863 }
1864 
1865 /*
1866  * Single segment iovec supplied by the user, import it as ITER_UBUF.
1867  */
1868 static ssize_t __import_iovec_ubuf(int type, const struct iovec __user *uvec,
1869 				   struct iovec **iovp, struct iov_iter *i,
1870 				   bool compat)
1871 {
1872 	struct iovec *iov = *iovp;
1873 	ssize_t ret;
1874 
1875 	if (compat)
1876 		ret = copy_compat_iovec_from_user(iov, uvec, 1);
1877 	else
1878 		ret = copy_iovec_from_user(iov, uvec, 1);
1879 	if (unlikely(ret))
1880 		return ret;
1881 
1882 	ret = import_ubuf(type, iov->iov_base, iov->iov_len, i);
1883 	if (unlikely(ret))
1884 		return ret;
1885 	*iovp = NULL;
1886 	return i->count;
1887 }
1888 
1889 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1890 		 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1891 		 struct iov_iter *i, bool compat)
1892 {
1893 	ssize_t total_len = 0;
1894 	unsigned long seg;
1895 	struct iovec *iov;
1896 
1897 	if (nr_segs == 1)
1898 		return __import_iovec_ubuf(type, uvec, iovp, i, compat);
1899 
1900 	iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1901 	if (IS_ERR(iov)) {
1902 		*iovp = NULL;
1903 		return PTR_ERR(iov);
1904 	}
1905 
1906 	/*
1907 	 * According to the Single Unix Specification we should return EINVAL if
1908 	 * an element length is < 0 when cast to ssize_t or if the total length
1909 	 * would overflow the ssize_t return value of the system call.
1910 	 *
1911 	 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1912 	 * overflow case.
1913 	 */
1914 	for (seg = 0; seg < nr_segs; seg++) {
1915 		ssize_t len = (ssize_t)iov[seg].iov_len;
1916 
1917 		if (!access_ok(iov[seg].iov_base, len)) {
1918 			if (iov != *iovp)
1919 				kfree(iov);
1920 			*iovp = NULL;
1921 			return -EFAULT;
1922 		}
1923 
1924 		if (len > MAX_RW_COUNT - total_len) {
1925 			len = MAX_RW_COUNT - total_len;
1926 			iov[seg].iov_len = len;
1927 		}
1928 		total_len += len;
1929 	}
1930 
1931 	iov_iter_init(i, type, iov, nr_segs, total_len);
1932 	if (iov == *iovp)
1933 		*iovp = NULL;
1934 	else
1935 		*iovp = iov;
1936 	return total_len;
1937 }
1938 
1939 /**
1940  * import_iovec() - Copy an array of &struct iovec from userspace
1941  *     into the kernel, check that it is valid, and initialize a new
1942  *     &struct iov_iter iterator to access it.
1943  *
1944  * @type: One of %READ or %WRITE.
1945  * @uvec: Pointer to the userspace array.
1946  * @nr_segs: Number of elements in userspace array.
1947  * @fast_segs: Number of elements in @iov.
1948  * @iovp: (input and output parameter) Pointer to pointer to (usually small
1949  *     on-stack) kernel array.
1950  * @i: Pointer to iterator that will be initialized on success.
1951  *
1952  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1953  * then this function places %NULL in *@iov on return. Otherwise, a new
1954  * array will be allocated and the result placed in *@iov. This means that
1955  * the caller may call kfree() on *@iov regardless of whether the small
1956  * on-stack array was used or not (and regardless of whether this function
1957  * returns an error or not).
1958  *
1959  * Return: Negative error code on error, bytes imported on success
1960  */
1961 ssize_t import_iovec(int type, const struct iovec __user *uvec,
1962 		 unsigned nr_segs, unsigned fast_segs,
1963 		 struct iovec **iovp, struct iov_iter *i)
1964 {
1965 	return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1966 			      in_compat_syscall());
1967 }
1968 EXPORT_SYMBOL(import_iovec);
1969 
1970 int import_single_range(int rw, void __user *buf, size_t len,
1971 		 struct iovec *iov, struct iov_iter *i)
1972 {
1973 	if (len > MAX_RW_COUNT)
1974 		len = MAX_RW_COUNT;
1975 	if (unlikely(!access_ok(buf, len)))
1976 		return -EFAULT;
1977 
1978 	iov_iter_ubuf(i, rw, buf, len);
1979 	return 0;
1980 }
1981 EXPORT_SYMBOL(import_single_range);
1982 
1983 int import_ubuf(int rw, void __user *buf, size_t len, struct iov_iter *i)
1984 {
1985 	if (len > MAX_RW_COUNT)
1986 		len = MAX_RW_COUNT;
1987 	if (unlikely(!access_ok(buf, len)))
1988 		return -EFAULT;
1989 
1990 	iov_iter_ubuf(i, rw, buf, len);
1991 	return 0;
1992 }
1993 
1994 /**
1995  * iov_iter_restore() - Restore a &struct iov_iter to the same state as when
1996  *     iov_iter_save_state() was called.
1997  *
1998  * @i: &struct iov_iter to restore
1999  * @state: state to restore from
2000  *
2001  * Used after iov_iter_save_state() to bring restore @i, if operations may
2002  * have advanced it.
2003  *
2004  * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC
2005  */
2006 void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state)
2007 {
2008 	if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i) &&
2009 			 !iter_is_ubuf(i)) && !iov_iter_is_kvec(i))
2010 		return;
2011 	i->iov_offset = state->iov_offset;
2012 	i->count = state->count;
2013 	if (iter_is_ubuf(i))
2014 		return;
2015 	/*
2016 	 * For the *vec iters, nr_segs + iov is constant - if we increment
2017 	 * the vec, then we also decrement the nr_segs count. Hence we don't
2018 	 * need to track both of these, just one is enough and we can deduct
2019 	 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct
2020 	 * size, so we can just increment the iov pointer as they are unionzed.
2021 	 * ITER_BVEC _may_ be the same size on some archs, but on others it is
2022 	 * not. Be safe and handle it separately.
2023 	 */
2024 	BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec));
2025 	if (iov_iter_is_bvec(i))
2026 		i->bvec -= state->nr_segs - i->nr_segs;
2027 	else
2028 		i->__iov -= state->nr_segs - i->nr_segs;
2029 	i->nr_segs = state->nr_segs;
2030 }
2031 
2032 /*
2033  * Extract a list of contiguous pages from an ITER_XARRAY iterator.  This does not
2034  * get references on the pages, nor does it get a pin on them.
2035  */
2036 static ssize_t iov_iter_extract_xarray_pages(struct iov_iter *i,
2037 					     struct page ***pages, size_t maxsize,
2038 					     unsigned int maxpages,
2039 					     iov_iter_extraction_t extraction_flags,
2040 					     size_t *offset0)
2041 {
2042 	struct page *page, **p;
2043 	unsigned int nr = 0, offset;
2044 	loff_t pos = i->xarray_start + i->iov_offset;
2045 	pgoff_t index = pos >> PAGE_SHIFT;
2046 	XA_STATE(xas, i->xarray, index);
2047 
2048 	offset = pos & ~PAGE_MASK;
2049 	*offset0 = offset;
2050 
2051 	maxpages = want_pages_array(pages, maxsize, offset, maxpages);
2052 	if (!maxpages)
2053 		return -ENOMEM;
2054 	p = *pages;
2055 
2056 	rcu_read_lock();
2057 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
2058 		if (xas_retry(&xas, page))
2059 			continue;
2060 
2061 		/* Has the page moved or been split? */
2062 		if (unlikely(page != xas_reload(&xas))) {
2063 			xas_reset(&xas);
2064 			continue;
2065 		}
2066 
2067 		p[nr++] = find_subpage(page, xas.xa_index);
2068 		if (nr == maxpages)
2069 			break;
2070 	}
2071 	rcu_read_unlock();
2072 
2073 	maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
2074 	iov_iter_advance(i, maxsize);
2075 	return maxsize;
2076 }
2077 
2078 /*
2079  * Extract a list of contiguous pages from an ITER_BVEC iterator.  This does
2080  * not get references on the pages, nor does it get a pin on them.
2081  */
2082 static ssize_t iov_iter_extract_bvec_pages(struct iov_iter *i,
2083 					   struct page ***pages, size_t maxsize,
2084 					   unsigned int maxpages,
2085 					   iov_iter_extraction_t extraction_flags,
2086 					   size_t *offset0)
2087 {
2088 	struct page **p, *page;
2089 	size_t skip = i->iov_offset, offset;
2090 	int k;
2091 
2092 	for (;;) {
2093 		if (i->nr_segs == 0)
2094 			return 0;
2095 		maxsize = min(maxsize, i->bvec->bv_len - skip);
2096 		if (maxsize)
2097 			break;
2098 		i->iov_offset = 0;
2099 		i->nr_segs--;
2100 		i->bvec++;
2101 		skip = 0;
2102 	}
2103 
2104 	skip += i->bvec->bv_offset;
2105 	page = i->bvec->bv_page + skip / PAGE_SIZE;
2106 	offset = skip % PAGE_SIZE;
2107 	*offset0 = offset;
2108 
2109 	maxpages = want_pages_array(pages, maxsize, offset, maxpages);
2110 	if (!maxpages)
2111 		return -ENOMEM;
2112 	p = *pages;
2113 	for (k = 0; k < maxpages; k++)
2114 		p[k] = page + k;
2115 
2116 	maxsize = min_t(size_t, maxsize, maxpages * PAGE_SIZE - offset);
2117 	iov_iter_advance(i, maxsize);
2118 	return maxsize;
2119 }
2120 
2121 /*
2122  * Extract a list of virtually contiguous pages from an ITER_KVEC iterator.
2123  * This does not get references on the pages, nor does it get a pin on them.
2124  */
2125 static ssize_t iov_iter_extract_kvec_pages(struct iov_iter *i,
2126 					   struct page ***pages, size_t maxsize,
2127 					   unsigned int maxpages,
2128 					   iov_iter_extraction_t extraction_flags,
2129 					   size_t *offset0)
2130 {
2131 	struct page **p, *page;
2132 	const void *kaddr;
2133 	size_t skip = i->iov_offset, offset, len;
2134 	int k;
2135 
2136 	for (;;) {
2137 		if (i->nr_segs == 0)
2138 			return 0;
2139 		maxsize = min(maxsize, i->kvec->iov_len - skip);
2140 		if (maxsize)
2141 			break;
2142 		i->iov_offset = 0;
2143 		i->nr_segs--;
2144 		i->kvec++;
2145 		skip = 0;
2146 	}
2147 
2148 	kaddr = i->kvec->iov_base + skip;
2149 	offset = (unsigned long)kaddr & ~PAGE_MASK;
2150 	*offset0 = offset;
2151 
2152 	maxpages = want_pages_array(pages, maxsize, offset, maxpages);
2153 	if (!maxpages)
2154 		return -ENOMEM;
2155 	p = *pages;
2156 
2157 	kaddr -= offset;
2158 	len = offset + maxsize;
2159 	for (k = 0; k < maxpages; k++) {
2160 		size_t seg = min_t(size_t, len, PAGE_SIZE);
2161 
2162 		if (is_vmalloc_or_module_addr(kaddr))
2163 			page = vmalloc_to_page(kaddr);
2164 		else
2165 			page = virt_to_page(kaddr);
2166 
2167 		p[k] = page;
2168 		len -= seg;
2169 		kaddr += PAGE_SIZE;
2170 	}
2171 
2172 	maxsize = min_t(size_t, maxsize, maxpages * PAGE_SIZE - offset);
2173 	iov_iter_advance(i, maxsize);
2174 	return maxsize;
2175 }
2176 
2177 /*
2178  * Extract a list of contiguous pages from a user iterator and get a pin on
2179  * each of them.  This should only be used if the iterator is user-backed
2180  * (IOBUF/UBUF).
2181  *
2182  * It does not get refs on the pages, but the pages must be unpinned by the
2183  * caller once the transfer is complete.
2184  *
2185  * This is safe to be used where background IO/DMA *is* going to be modifying
2186  * the buffer; using a pin rather than a ref makes forces fork() to give the
2187  * child a copy of the page.
2188  */
2189 static ssize_t iov_iter_extract_user_pages(struct iov_iter *i,
2190 					   struct page ***pages,
2191 					   size_t maxsize,
2192 					   unsigned int maxpages,
2193 					   iov_iter_extraction_t extraction_flags,
2194 					   size_t *offset0)
2195 {
2196 	unsigned long addr;
2197 	unsigned int gup_flags = 0;
2198 	size_t offset;
2199 	int res;
2200 
2201 	if (i->data_source == ITER_DEST)
2202 		gup_flags |= FOLL_WRITE;
2203 	if (extraction_flags & ITER_ALLOW_P2PDMA)
2204 		gup_flags |= FOLL_PCI_P2PDMA;
2205 	if (i->nofault)
2206 		gup_flags |= FOLL_NOFAULT;
2207 
2208 	addr = first_iovec_segment(i, &maxsize);
2209 	*offset0 = offset = addr % PAGE_SIZE;
2210 	addr &= PAGE_MASK;
2211 	maxpages = want_pages_array(pages, maxsize, offset, maxpages);
2212 	if (!maxpages)
2213 		return -ENOMEM;
2214 	res = pin_user_pages_fast(addr, maxpages, gup_flags, *pages);
2215 	if (unlikely(res <= 0))
2216 		return res;
2217 	maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - offset);
2218 	iov_iter_advance(i, maxsize);
2219 	return maxsize;
2220 }
2221 
2222 /**
2223  * iov_iter_extract_pages - Extract a list of contiguous pages from an iterator
2224  * @i: The iterator to extract from
2225  * @pages: Where to return the list of pages
2226  * @maxsize: The maximum amount of iterator to extract
2227  * @maxpages: The maximum size of the list of pages
2228  * @extraction_flags: Flags to qualify request
2229  * @offset0: Where to return the starting offset into (*@pages)[0]
2230  *
2231  * Extract a list of contiguous pages from the current point of the iterator,
2232  * advancing the iterator.  The maximum number of pages and the maximum amount
2233  * of page contents can be set.
2234  *
2235  * If *@pages is NULL, a page list will be allocated to the required size and
2236  * *@pages will be set to its base.  If *@pages is not NULL, it will be assumed
2237  * that the caller allocated a page list at least @maxpages in size and this
2238  * will be filled in.
2239  *
2240  * @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA
2241  * be allowed on the pages extracted.
2242  *
2243  * The iov_iter_extract_will_pin() function can be used to query how cleanup
2244  * should be performed.
2245  *
2246  * Extra refs or pins on the pages may be obtained as follows:
2247  *
2248  *  (*) If the iterator is user-backed (ITER_IOVEC/ITER_UBUF), pins will be
2249  *      added to the pages, but refs will not be taken.
2250  *      iov_iter_extract_will_pin() will return true.
2251  *
2252  *  (*) If the iterator is ITER_KVEC, ITER_BVEC or ITER_XARRAY, the pages are
2253  *      merely listed; no extra refs or pins are obtained.
2254  *      iov_iter_extract_will_pin() will return 0.
2255  *
2256  * Note also:
2257  *
2258  *  (*) Use with ITER_DISCARD is not supported as that has no content.
2259  *
2260  * On success, the function sets *@pages to the new pagelist, if allocated, and
2261  * sets *offset0 to the offset into the first page.
2262  *
2263  * It may also return -ENOMEM and -EFAULT.
2264  */
2265 ssize_t iov_iter_extract_pages(struct iov_iter *i,
2266 			       struct page ***pages,
2267 			       size_t maxsize,
2268 			       unsigned int maxpages,
2269 			       iov_iter_extraction_t extraction_flags,
2270 			       size_t *offset0)
2271 {
2272 	maxsize = min_t(size_t, min_t(size_t, maxsize, i->count), MAX_RW_COUNT);
2273 	if (!maxsize)
2274 		return 0;
2275 
2276 	if (likely(user_backed_iter(i)))
2277 		return iov_iter_extract_user_pages(i, pages, maxsize,
2278 						   maxpages, extraction_flags,
2279 						   offset0);
2280 	if (iov_iter_is_kvec(i))
2281 		return iov_iter_extract_kvec_pages(i, pages, maxsize,
2282 						   maxpages, extraction_flags,
2283 						   offset0);
2284 	if (iov_iter_is_bvec(i))
2285 		return iov_iter_extract_bvec_pages(i, pages, maxsize,
2286 						   maxpages, extraction_flags,
2287 						   offset0);
2288 	if (iov_iter_is_xarray(i))
2289 		return iov_iter_extract_xarray_pages(i, pages, maxsize,
2290 						     maxpages, extraction_flags,
2291 						     offset0);
2292 	return -EFAULT;
2293 }
2294 EXPORT_SYMBOL_GPL(iov_iter_extract_pages);
2295