xref: /linux/lib/iov_iter.c (revision 77ec462536a13d4b428a1eead725c4818a49f0b1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <crypto/hash.h>
3 #include <linux/export.h>
4 #include <linux/bvec.h>
5 #include <linux/fault-inject-usercopy.h>
6 #include <linux/uio.h>
7 #include <linux/pagemap.h>
8 #include <linux/slab.h>
9 #include <linux/vmalloc.h>
10 #include <linux/splice.h>
11 #include <linux/compat.h>
12 #include <net/checksum.h>
13 #include <linux/scatterlist.h>
14 #include <linux/instrumented.h>
15 
16 #define PIPE_PARANOIA /* for now */
17 
18 #define iterate_iovec(i, n, __v, __p, skip, STEP) {	\
19 	size_t left;					\
20 	size_t wanted = n;				\
21 	__p = i->iov;					\
22 	__v.iov_len = min(n, __p->iov_len - skip);	\
23 	if (likely(__v.iov_len)) {			\
24 		__v.iov_base = __p->iov_base + skip;	\
25 		left = (STEP);				\
26 		__v.iov_len -= left;			\
27 		skip += __v.iov_len;			\
28 		n -= __v.iov_len;			\
29 	} else {					\
30 		left = 0;				\
31 	}						\
32 	while (unlikely(!left && n)) {			\
33 		__p++;					\
34 		__v.iov_len = min(n, __p->iov_len);	\
35 		if (unlikely(!__v.iov_len))		\
36 			continue;			\
37 		__v.iov_base = __p->iov_base;		\
38 		left = (STEP);				\
39 		__v.iov_len -= left;			\
40 		skip = __v.iov_len;			\
41 		n -= __v.iov_len;			\
42 	}						\
43 	n = wanted - n;					\
44 }
45 
46 #define iterate_kvec(i, n, __v, __p, skip, STEP) {	\
47 	size_t wanted = n;				\
48 	__p = i->kvec;					\
49 	__v.iov_len = min(n, __p->iov_len - skip);	\
50 	if (likely(__v.iov_len)) {			\
51 		__v.iov_base = __p->iov_base + skip;	\
52 		(void)(STEP);				\
53 		skip += __v.iov_len;			\
54 		n -= __v.iov_len;			\
55 	}						\
56 	while (unlikely(n)) {				\
57 		__p++;					\
58 		__v.iov_len = min(n, __p->iov_len);	\
59 		if (unlikely(!__v.iov_len))		\
60 			continue;			\
61 		__v.iov_base = __p->iov_base;		\
62 		(void)(STEP);				\
63 		skip = __v.iov_len;			\
64 		n -= __v.iov_len;			\
65 	}						\
66 	n = wanted;					\
67 }
68 
69 #define iterate_bvec(i, n, __v, __bi, skip, STEP) {	\
70 	struct bvec_iter __start;			\
71 	__start.bi_size = n;				\
72 	__start.bi_bvec_done = skip;			\
73 	__start.bi_idx = 0;				\
74 	for_each_bvec(__v, i->bvec, __bi, __start) {	\
75 		(void)(STEP);				\
76 	}						\
77 }
78 
79 #define iterate_all_kinds(i, n, v, I, B, K) {			\
80 	if (likely(n)) {					\
81 		size_t skip = i->iov_offset;			\
82 		if (unlikely(i->type & ITER_BVEC)) {		\
83 			struct bio_vec v;			\
84 			struct bvec_iter __bi;			\
85 			iterate_bvec(i, n, v, __bi, skip, (B))	\
86 		} else if (unlikely(i->type & ITER_KVEC)) {	\
87 			const struct kvec *kvec;		\
88 			struct kvec v;				\
89 			iterate_kvec(i, n, v, kvec, skip, (K))	\
90 		} else if (unlikely(i->type & ITER_DISCARD)) {	\
91 		} else {					\
92 			const struct iovec *iov;		\
93 			struct iovec v;				\
94 			iterate_iovec(i, n, v, iov, skip, (I))	\
95 		}						\
96 	}							\
97 }
98 
99 #define iterate_and_advance(i, n, v, I, B, K) {			\
100 	if (unlikely(i->count < n))				\
101 		n = i->count;					\
102 	if (i->count) {						\
103 		size_t skip = i->iov_offset;			\
104 		if (unlikely(i->type & ITER_BVEC)) {		\
105 			const struct bio_vec *bvec = i->bvec;	\
106 			struct bio_vec v;			\
107 			struct bvec_iter __bi;			\
108 			iterate_bvec(i, n, v, __bi, skip, (B))	\
109 			i->bvec = __bvec_iter_bvec(i->bvec, __bi);	\
110 			i->nr_segs -= i->bvec - bvec;		\
111 			skip = __bi.bi_bvec_done;		\
112 		} else if (unlikely(i->type & ITER_KVEC)) {	\
113 			const struct kvec *kvec;		\
114 			struct kvec v;				\
115 			iterate_kvec(i, n, v, kvec, skip, (K))	\
116 			if (skip == kvec->iov_len) {		\
117 				kvec++;				\
118 				skip = 0;			\
119 			}					\
120 			i->nr_segs -= kvec - i->kvec;		\
121 			i->kvec = kvec;				\
122 		} else if (unlikely(i->type & ITER_DISCARD)) {	\
123 			skip += n;				\
124 		} else {					\
125 			const struct iovec *iov;		\
126 			struct iovec v;				\
127 			iterate_iovec(i, n, v, iov, skip, (I))	\
128 			if (skip == iov->iov_len) {		\
129 				iov++;				\
130 				skip = 0;			\
131 			}					\
132 			i->nr_segs -= iov - i->iov;		\
133 			i->iov = iov;				\
134 		}						\
135 		i->count -= n;					\
136 		i->iov_offset = skip;				\
137 	}							\
138 }
139 
140 static int copyout(void __user *to, const void *from, size_t n)
141 {
142 	if (should_fail_usercopy())
143 		return n;
144 	if (access_ok(to, n)) {
145 		instrument_copy_to_user(to, from, n);
146 		n = raw_copy_to_user(to, from, n);
147 	}
148 	return n;
149 }
150 
151 static int copyin(void *to, const void __user *from, size_t n)
152 {
153 	if (should_fail_usercopy())
154 		return n;
155 	if (access_ok(from, n)) {
156 		instrument_copy_from_user(to, from, n);
157 		n = raw_copy_from_user(to, from, n);
158 	}
159 	return n;
160 }
161 
162 static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes,
163 			 struct iov_iter *i)
164 {
165 	size_t skip, copy, left, wanted;
166 	const struct iovec *iov;
167 	char __user *buf;
168 	void *kaddr, *from;
169 
170 	if (unlikely(bytes > i->count))
171 		bytes = i->count;
172 
173 	if (unlikely(!bytes))
174 		return 0;
175 
176 	might_fault();
177 	wanted = bytes;
178 	iov = i->iov;
179 	skip = i->iov_offset;
180 	buf = iov->iov_base + skip;
181 	copy = min(bytes, iov->iov_len - skip);
182 
183 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_writeable(buf, copy)) {
184 		kaddr = kmap_atomic(page);
185 		from = kaddr + offset;
186 
187 		/* first chunk, usually the only one */
188 		left = copyout(buf, from, copy);
189 		copy -= left;
190 		skip += copy;
191 		from += copy;
192 		bytes -= copy;
193 
194 		while (unlikely(!left && bytes)) {
195 			iov++;
196 			buf = iov->iov_base;
197 			copy = min(bytes, iov->iov_len);
198 			left = copyout(buf, from, copy);
199 			copy -= left;
200 			skip = copy;
201 			from += copy;
202 			bytes -= copy;
203 		}
204 		if (likely(!bytes)) {
205 			kunmap_atomic(kaddr);
206 			goto done;
207 		}
208 		offset = from - kaddr;
209 		buf += copy;
210 		kunmap_atomic(kaddr);
211 		copy = min(bytes, iov->iov_len - skip);
212 	}
213 	/* Too bad - revert to non-atomic kmap */
214 
215 	kaddr = kmap(page);
216 	from = kaddr + offset;
217 	left = copyout(buf, from, copy);
218 	copy -= left;
219 	skip += copy;
220 	from += copy;
221 	bytes -= copy;
222 	while (unlikely(!left && bytes)) {
223 		iov++;
224 		buf = iov->iov_base;
225 		copy = min(bytes, iov->iov_len);
226 		left = copyout(buf, from, copy);
227 		copy -= left;
228 		skip = copy;
229 		from += copy;
230 		bytes -= copy;
231 	}
232 	kunmap(page);
233 
234 done:
235 	if (skip == iov->iov_len) {
236 		iov++;
237 		skip = 0;
238 	}
239 	i->count -= wanted - bytes;
240 	i->nr_segs -= iov - i->iov;
241 	i->iov = iov;
242 	i->iov_offset = skip;
243 	return wanted - bytes;
244 }
245 
246 static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes,
247 			 struct iov_iter *i)
248 {
249 	size_t skip, copy, left, wanted;
250 	const struct iovec *iov;
251 	char __user *buf;
252 	void *kaddr, *to;
253 
254 	if (unlikely(bytes > i->count))
255 		bytes = i->count;
256 
257 	if (unlikely(!bytes))
258 		return 0;
259 
260 	might_fault();
261 	wanted = bytes;
262 	iov = i->iov;
263 	skip = i->iov_offset;
264 	buf = iov->iov_base + skip;
265 	copy = min(bytes, iov->iov_len - skip);
266 
267 	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_readable(buf, copy)) {
268 		kaddr = kmap_atomic(page);
269 		to = kaddr + offset;
270 
271 		/* first chunk, usually the only one */
272 		left = copyin(to, buf, copy);
273 		copy -= left;
274 		skip += copy;
275 		to += copy;
276 		bytes -= copy;
277 
278 		while (unlikely(!left && bytes)) {
279 			iov++;
280 			buf = iov->iov_base;
281 			copy = min(bytes, iov->iov_len);
282 			left = copyin(to, buf, copy);
283 			copy -= left;
284 			skip = copy;
285 			to += copy;
286 			bytes -= copy;
287 		}
288 		if (likely(!bytes)) {
289 			kunmap_atomic(kaddr);
290 			goto done;
291 		}
292 		offset = to - kaddr;
293 		buf += copy;
294 		kunmap_atomic(kaddr);
295 		copy = min(bytes, iov->iov_len - skip);
296 	}
297 	/* Too bad - revert to non-atomic kmap */
298 
299 	kaddr = kmap(page);
300 	to = kaddr + offset;
301 	left = copyin(to, buf, copy);
302 	copy -= left;
303 	skip += copy;
304 	to += copy;
305 	bytes -= copy;
306 	while (unlikely(!left && bytes)) {
307 		iov++;
308 		buf = iov->iov_base;
309 		copy = min(bytes, iov->iov_len);
310 		left = copyin(to, buf, copy);
311 		copy -= left;
312 		skip = copy;
313 		to += copy;
314 		bytes -= copy;
315 	}
316 	kunmap(page);
317 
318 done:
319 	if (skip == iov->iov_len) {
320 		iov++;
321 		skip = 0;
322 	}
323 	i->count -= wanted - bytes;
324 	i->nr_segs -= iov - i->iov;
325 	i->iov = iov;
326 	i->iov_offset = skip;
327 	return wanted - bytes;
328 }
329 
330 #ifdef PIPE_PARANOIA
331 static bool sanity(const struct iov_iter *i)
332 {
333 	struct pipe_inode_info *pipe = i->pipe;
334 	unsigned int p_head = pipe->head;
335 	unsigned int p_tail = pipe->tail;
336 	unsigned int p_mask = pipe->ring_size - 1;
337 	unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
338 	unsigned int i_head = i->head;
339 	unsigned int idx;
340 
341 	if (i->iov_offset) {
342 		struct pipe_buffer *p;
343 		if (unlikely(p_occupancy == 0))
344 			goto Bad;	// pipe must be non-empty
345 		if (unlikely(i_head != p_head - 1))
346 			goto Bad;	// must be at the last buffer...
347 
348 		p = &pipe->bufs[i_head & p_mask];
349 		if (unlikely(p->offset + p->len != i->iov_offset))
350 			goto Bad;	// ... at the end of segment
351 	} else {
352 		if (i_head != p_head)
353 			goto Bad;	// must be right after the last buffer
354 	}
355 	return true;
356 Bad:
357 	printk(KERN_ERR "idx = %d, offset = %zd\n", i_head, i->iov_offset);
358 	printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
359 			p_head, p_tail, pipe->ring_size);
360 	for (idx = 0; idx < pipe->ring_size; idx++)
361 		printk(KERN_ERR "[%p %p %d %d]\n",
362 			pipe->bufs[idx].ops,
363 			pipe->bufs[idx].page,
364 			pipe->bufs[idx].offset,
365 			pipe->bufs[idx].len);
366 	WARN_ON(1);
367 	return false;
368 }
369 #else
370 #define sanity(i) true
371 #endif
372 
373 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
374 			 struct iov_iter *i)
375 {
376 	struct pipe_inode_info *pipe = i->pipe;
377 	struct pipe_buffer *buf;
378 	unsigned int p_tail = pipe->tail;
379 	unsigned int p_mask = pipe->ring_size - 1;
380 	unsigned int i_head = i->head;
381 	size_t off;
382 
383 	if (unlikely(bytes > i->count))
384 		bytes = i->count;
385 
386 	if (unlikely(!bytes))
387 		return 0;
388 
389 	if (!sanity(i))
390 		return 0;
391 
392 	off = i->iov_offset;
393 	buf = &pipe->bufs[i_head & p_mask];
394 	if (off) {
395 		if (offset == off && buf->page == page) {
396 			/* merge with the last one */
397 			buf->len += bytes;
398 			i->iov_offset += bytes;
399 			goto out;
400 		}
401 		i_head++;
402 		buf = &pipe->bufs[i_head & p_mask];
403 	}
404 	if (pipe_full(i_head, p_tail, pipe->max_usage))
405 		return 0;
406 
407 	buf->ops = &page_cache_pipe_buf_ops;
408 	get_page(page);
409 	buf->page = page;
410 	buf->offset = offset;
411 	buf->len = bytes;
412 
413 	pipe->head = i_head + 1;
414 	i->iov_offset = offset + bytes;
415 	i->head = i_head;
416 out:
417 	i->count -= bytes;
418 	return bytes;
419 }
420 
421 /*
422  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
423  * bytes.  For each iovec, fault in each page that constitutes the iovec.
424  *
425  * Return 0 on success, or non-zero if the memory could not be accessed (i.e.
426  * because it is an invalid address).
427  */
428 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
429 {
430 	size_t skip = i->iov_offset;
431 	const struct iovec *iov;
432 	int err;
433 	struct iovec v;
434 
435 	if (!(i->type & (ITER_BVEC|ITER_KVEC))) {
436 		iterate_iovec(i, bytes, v, iov, skip, ({
437 			err = fault_in_pages_readable(v.iov_base, v.iov_len);
438 			if (unlikely(err))
439 			return err;
440 		0;}))
441 	}
442 	return 0;
443 }
444 EXPORT_SYMBOL(iov_iter_fault_in_readable);
445 
446 void iov_iter_init(struct iov_iter *i, unsigned int direction,
447 			const struct iovec *iov, unsigned long nr_segs,
448 			size_t count)
449 {
450 	WARN_ON(direction & ~(READ | WRITE));
451 	direction &= READ | WRITE;
452 
453 	/* It will get better.  Eventually... */
454 	if (uaccess_kernel()) {
455 		i->type = ITER_KVEC | direction;
456 		i->kvec = (struct kvec *)iov;
457 	} else {
458 		i->type = ITER_IOVEC | direction;
459 		i->iov = iov;
460 	}
461 	i->nr_segs = nr_segs;
462 	i->iov_offset = 0;
463 	i->count = count;
464 }
465 EXPORT_SYMBOL(iov_iter_init);
466 
467 static void memzero_page(struct page *page, size_t offset, size_t len)
468 {
469 	char *addr = kmap_atomic(page);
470 	memset(addr + offset, 0, len);
471 	kunmap_atomic(addr);
472 }
473 
474 static inline bool allocated(struct pipe_buffer *buf)
475 {
476 	return buf->ops == &default_pipe_buf_ops;
477 }
478 
479 static inline void data_start(const struct iov_iter *i,
480 			      unsigned int *iter_headp, size_t *offp)
481 {
482 	unsigned int p_mask = i->pipe->ring_size - 1;
483 	unsigned int iter_head = i->head;
484 	size_t off = i->iov_offset;
485 
486 	if (off && (!allocated(&i->pipe->bufs[iter_head & p_mask]) ||
487 		    off == PAGE_SIZE)) {
488 		iter_head++;
489 		off = 0;
490 	}
491 	*iter_headp = iter_head;
492 	*offp = off;
493 }
494 
495 static size_t push_pipe(struct iov_iter *i, size_t size,
496 			int *iter_headp, size_t *offp)
497 {
498 	struct pipe_inode_info *pipe = i->pipe;
499 	unsigned int p_tail = pipe->tail;
500 	unsigned int p_mask = pipe->ring_size - 1;
501 	unsigned int iter_head;
502 	size_t off;
503 	ssize_t left;
504 
505 	if (unlikely(size > i->count))
506 		size = i->count;
507 	if (unlikely(!size))
508 		return 0;
509 
510 	left = size;
511 	data_start(i, &iter_head, &off);
512 	*iter_headp = iter_head;
513 	*offp = off;
514 	if (off) {
515 		left -= PAGE_SIZE - off;
516 		if (left <= 0) {
517 			pipe->bufs[iter_head & p_mask].len += size;
518 			return size;
519 		}
520 		pipe->bufs[iter_head & p_mask].len = PAGE_SIZE;
521 		iter_head++;
522 	}
523 	while (!pipe_full(iter_head, p_tail, pipe->max_usage)) {
524 		struct pipe_buffer *buf = &pipe->bufs[iter_head & p_mask];
525 		struct page *page = alloc_page(GFP_USER);
526 		if (!page)
527 			break;
528 
529 		buf->ops = &default_pipe_buf_ops;
530 		buf->page = page;
531 		buf->offset = 0;
532 		buf->len = min_t(ssize_t, left, PAGE_SIZE);
533 		left -= buf->len;
534 		iter_head++;
535 		pipe->head = iter_head;
536 
537 		if (left == 0)
538 			return size;
539 	}
540 	return size - left;
541 }
542 
543 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
544 				struct iov_iter *i)
545 {
546 	struct pipe_inode_info *pipe = i->pipe;
547 	unsigned int p_mask = pipe->ring_size - 1;
548 	unsigned int i_head;
549 	size_t n, off;
550 
551 	if (!sanity(i))
552 		return 0;
553 
554 	bytes = n = push_pipe(i, bytes, &i_head, &off);
555 	if (unlikely(!n))
556 		return 0;
557 	do {
558 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
559 		memcpy_to_page(pipe->bufs[i_head & p_mask].page, off, addr, chunk);
560 		i->head = i_head;
561 		i->iov_offset = off + chunk;
562 		n -= chunk;
563 		addr += chunk;
564 		off = 0;
565 		i_head++;
566 	} while (n);
567 	i->count -= bytes;
568 	return bytes;
569 }
570 
571 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
572 			      __wsum sum, size_t off)
573 {
574 	__wsum next = csum_partial_copy_nocheck(from, to, len);
575 	return csum_block_add(sum, next, off);
576 }
577 
578 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
579 					 struct csum_state *csstate,
580 					 struct iov_iter *i)
581 {
582 	struct pipe_inode_info *pipe = i->pipe;
583 	unsigned int p_mask = pipe->ring_size - 1;
584 	__wsum sum = csstate->csum;
585 	size_t off = csstate->off;
586 	unsigned int i_head;
587 	size_t n, r;
588 
589 	if (!sanity(i))
590 		return 0;
591 
592 	bytes = n = push_pipe(i, bytes, &i_head, &r);
593 	if (unlikely(!n))
594 		return 0;
595 	do {
596 		size_t chunk = min_t(size_t, n, PAGE_SIZE - r);
597 		char *p = kmap_atomic(pipe->bufs[i_head & p_mask].page);
598 		sum = csum_and_memcpy(p + r, addr, chunk, sum, off);
599 		kunmap_atomic(p);
600 		i->head = i_head;
601 		i->iov_offset = r + chunk;
602 		n -= chunk;
603 		off += chunk;
604 		addr += chunk;
605 		r = 0;
606 		i_head++;
607 	} while (n);
608 	i->count -= bytes;
609 	csstate->csum = sum;
610 	csstate->off = off;
611 	return bytes;
612 }
613 
614 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
615 {
616 	const char *from = addr;
617 	if (unlikely(iov_iter_is_pipe(i)))
618 		return copy_pipe_to_iter(addr, bytes, i);
619 	if (iter_is_iovec(i))
620 		might_fault();
621 	iterate_and_advance(i, bytes, v,
622 		copyout(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len),
623 		memcpy_to_page(v.bv_page, v.bv_offset,
624 			       (from += v.bv_len) - v.bv_len, v.bv_len),
625 		memcpy(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len)
626 	)
627 
628 	return bytes;
629 }
630 EXPORT_SYMBOL(_copy_to_iter);
631 
632 #ifdef CONFIG_ARCH_HAS_COPY_MC
633 static int copyout_mc(void __user *to, const void *from, size_t n)
634 {
635 	if (access_ok(to, n)) {
636 		instrument_copy_to_user(to, from, n);
637 		n = copy_mc_to_user((__force void *) to, from, n);
638 	}
639 	return n;
640 }
641 
642 static unsigned long copy_mc_to_page(struct page *page, size_t offset,
643 		const char *from, size_t len)
644 {
645 	unsigned long ret;
646 	char *to;
647 
648 	to = kmap_atomic(page);
649 	ret = copy_mc_to_kernel(to + offset, from, len);
650 	kunmap_atomic(to);
651 
652 	return ret;
653 }
654 
655 static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
656 				struct iov_iter *i)
657 {
658 	struct pipe_inode_info *pipe = i->pipe;
659 	unsigned int p_mask = pipe->ring_size - 1;
660 	unsigned int i_head;
661 	size_t n, off, xfer = 0;
662 
663 	if (!sanity(i))
664 		return 0;
665 
666 	bytes = n = push_pipe(i, bytes, &i_head, &off);
667 	if (unlikely(!n))
668 		return 0;
669 	do {
670 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
671 		unsigned long rem;
672 
673 		rem = copy_mc_to_page(pipe->bufs[i_head & p_mask].page,
674 					    off, addr, chunk);
675 		i->head = i_head;
676 		i->iov_offset = off + chunk - rem;
677 		xfer += chunk - rem;
678 		if (rem)
679 			break;
680 		n -= chunk;
681 		addr += chunk;
682 		off = 0;
683 		i_head++;
684 	} while (n);
685 	i->count -= xfer;
686 	return xfer;
687 }
688 
689 /**
690  * _copy_mc_to_iter - copy to iter with source memory error exception handling
691  * @addr: source kernel address
692  * @bytes: total transfer length
693  * @iter: destination iterator
694  *
695  * The pmem driver deploys this for the dax operation
696  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
697  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
698  * successfully copied.
699  *
700  * The main differences between this and typical _copy_to_iter().
701  *
702  * * Typical tail/residue handling after a fault retries the copy
703  *   byte-by-byte until the fault happens again. Re-triggering machine
704  *   checks is potentially fatal so the implementation uses source
705  *   alignment and poison alignment assumptions to avoid re-triggering
706  *   hardware exceptions.
707  *
708  * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
709  *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
710  *   a short copy.
711  */
712 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
713 {
714 	const char *from = addr;
715 	unsigned long rem, curr_addr, s_addr = (unsigned long) addr;
716 
717 	if (unlikely(iov_iter_is_pipe(i)))
718 		return copy_mc_pipe_to_iter(addr, bytes, i);
719 	if (iter_is_iovec(i))
720 		might_fault();
721 	iterate_and_advance(i, bytes, v,
722 		copyout_mc(v.iov_base, (from += v.iov_len) - v.iov_len,
723 			   v.iov_len),
724 		({
725 		rem = copy_mc_to_page(v.bv_page, v.bv_offset,
726 				      (from += v.bv_len) - v.bv_len, v.bv_len);
727 		if (rem) {
728 			curr_addr = (unsigned long) from;
729 			bytes = curr_addr - s_addr - rem;
730 			return bytes;
731 		}
732 		}),
733 		({
734 		rem = copy_mc_to_kernel(v.iov_base, (from += v.iov_len)
735 					- v.iov_len, v.iov_len);
736 		if (rem) {
737 			curr_addr = (unsigned long) from;
738 			bytes = curr_addr - s_addr - rem;
739 			return bytes;
740 		}
741 		})
742 	)
743 
744 	return bytes;
745 }
746 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
747 #endif /* CONFIG_ARCH_HAS_COPY_MC */
748 
749 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
750 {
751 	char *to = addr;
752 	if (unlikely(iov_iter_is_pipe(i))) {
753 		WARN_ON(1);
754 		return 0;
755 	}
756 	if (iter_is_iovec(i))
757 		might_fault();
758 	iterate_and_advance(i, bytes, v,
759 		copyin((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
760 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
761 				 v.bv_offset, v.bv_len),
762 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
763 	)
764 
765 	return bytes;
766 }
767 EXPORT_SYMBOL(_copy_from_iter);
768 
769 bool _copy_from_iter_full(void *addr, size_t bytes, struct iov_iter *i)
770 {
771 	char *to = addr;
772 	if (unlikely(iov_iter_is_pipe(i))) {
773 		WARN_ON(1);
774 		return false;
775 	}
776 	if (unlikely(i->count < bytes))
777 		return false;
778 
779 	if (iter_is_iovec(i))
780 		might_fault();
781 	iterate_all_kinds(i, bytes, v, ({
782 		if (copyin((to += v.iov_len) - v.iov_len,
783 				      v.iov_base, v.iov_len))
784 			return false;
785 		0;}),
786 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
787 				 v.bv_offset, v.bv_len),
788 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
789 	)
790 
791 	iov_iter_advance(i, bytes);
792 	return true;
793 }
794 EXPORT_SYMBOL(_copy_from_iter_full);
795 
796 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
797 {
798 	char *to = addr;
799 	if (unlikely(iov_iter_is_pipe(i))) {
800 		WARN_ON(1);
801 		return 0;
802 	}
803 	iterate_and_advance(i, bytes, v,
804 		__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
805 					 v.iov_base, v.iov_len),
806 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
807 				 v.bv_offset, v.bv_len),
808 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
809 	)
810 
811 	return bytes;
812 }
813 EXPORT_SYMBOL(_copy_from_iter_nocache);
814 
815 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
816 /**
817  * _copy_from_iter_flushcache - write destination through cpu cache
818  * @addr: destination kernel address
819  * @bytes: total transfer length
820  * @iter: source iterator
821  *
822  * The pmem driver arranges for filesystem-dax to use this facility via
823  * dax_copy_from_iter() for ensuring that writes to persistent memory
824  * are flushed through the CPU cache. It is differentiated from
825  * _copy_from_iter_nocache() in that guarantees all data is flushed for
826  * all iterator types. The _copy_from_iter_nocache() only attempts to
827  * bypass the cache for the ITER_IOVEC case, and on some archs may use
828  * instructions that strand dirty-data in the cache.
829  */
830 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
831 {
832 	char *to = addr;
833 	if (unlikely(iov_iter_is_pipe(i))) {
834 		WARN_ON(1);
835 		return 0;
836 	}
837 	iterate_and_advance(i, bytes, v,
838 		__copy_from_user_flushcache((to += v.iov_len) - v.iov_len,
839 					 v.iov_base, v.iov_len),
840 		memcpy_page_flushcache((to += v.bv_len) - v.bv_len, v.bv_page,
841 				 v.bv_offset, v.bv_len),
842 		memcpy_flushcache((to += v.iov_len) - v.iov_len, v.iov_base,
843 			v.iov_len)
844 	)
845 
846 	return bytes;
847 }
848 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
849 #endif
850 
851 bool _copy_from_iter_full_nocache(void *addr, size_t bytes, struct iov_iter *i)
852 {
853 	char *to = addr;
854 	if (unlikely(iov_iter_is_pipe(i))) {
855 		WARN_ON(1);
856 		return false;
857 	}
858 	if (unlikely(i->count < bytes))
859 		return false;
860 	iterate_all_kinds(i, bytes, v, ({
861 		if (__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
862 					     v.iov_base, v.iov_len))
863 			return false;
864 		0;}),
865 		memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
866 				 v.bv_offset, v.bv_len),
867 		memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
868 	)
869 
870 	iov_iter_advance(i, bytes);
871 	return true;
872 }
873 EXPORT_SYMBOL(_copy_from_iter_full_nocache);
874 
875 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
876 {
877 	struct page *head;
878 	size_t v = n + offset;
879 
880 	/*
881 	 * The general case needs to access the page order in order
882 	 * to compute the page size.
883 	 * However, we mostly deal with order-0 pages and thus can
884 	 * avoid a possible cache line miss for requests that fit all
885 	 * page orders.
886 	 */
887 	if (n <= v && v <= PAGE_SIZE)
888 		return true;
889 
890 	head = compound_head(page);
891 	v += (page - head) << PAGE_SHIFT;
892 
893 	if (likely(n <= v && v <= (page_size(head))))
894 		return true;
895 	WARN_ON(1);
896 	return false;
897 }
898 
899 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
900 			 struct iov_iter *i)
901 {
902 	if (unlikely(!page_copy_sane(page, offset, bytes)))
903 		return 0;
904 	if (i->type & (ITER_BVEC|ITER_KVEC)) {
905 		void *kaddr = kmap_atomic(page);
906 		size_t wanted = copy_to_iter(kaddr + offset, bytes, i);
907 		kunmap_atomic(kaddr);
908 		return wanted;
909 	} else if (unlikely(iov_iter_is_discard(i)))
910 		return bytes;
911 	else if (likely(!iov_iter_is_pipe(i)))
912 		return copy_page_to_iter_iovec(page, offset, bytes, i);
913 	else
914 		return copy_page_to_iter_pipe(page, offset, bytes, i);
915 }
916 EXPORT_SYMBOL(copy_page_to_iter);
917 
918 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
919 			 struct iov_iter *i)
920 {
921 	if (unlikely(!page_copy_sane(page, offset, bytes)))
922 		return 0;
923 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
924 		WARN_ON(1);
925 		return 0;
926 	}
927 	if (i->type & (ITER_BVEC|ITER_KVEC)) {
928 		void *kaddr = kmap_atomic(page);
929 		size_t wanted = _copy_from_iter(kaddr + offset, bytes, i);
930 		kunmap_atomic(kaddr);
931 		return wanted;
932 	} else
933 		return copy_page_from_iter_iovec(page, offset, bytes, i);
934 }
935 EXPORT_SYMBOL(copy_page_from_iter);
936 
937 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
938 {
939 	struct pipe_inode_info *pipe = i->pipe;
940 	unsigned int p_mask = pipe->ring_size - 1;
941 	unsigned int i_head;
942 	size_t n, off;
943 
944 	if (!sanity(i))
945 		return 0;
946 
947 	bytes = n = push_pipe(i, bytes, &i_head, &off);
948 	if (unlikely(!n))
949 		return 0;
950 
951 	do {
952 		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
953 		memzero_page(pipe->bufs[i_head & p_mask].page, off, chunk);
954 		i->head = i_head;
955 		i->iov_offset = off + chunk;
956 		n -= chunk;
957 		off = 0;
958 		i_head++;
959 	} while (n);
960 	i->count -= bytes;
961 	return bytes;
962 }
963 
964 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
965 {
966 	if (unlikely(iov_iter_is_pipe(i)))
967 		return pipe_zero(bytes, i);
968 	iterate_and_advance(i, bytes, v,
969 		clear_user(v.iov_base, v.iov_len),
970 		memzero_page(v.bv_page, v.bv_offset, v.bv_len),
971 		memset(v.iov_base, 0, v.iov_len)
972 	)
973 
974 	return bytes;
975 }
976 EXPORT_SYMBOL(iov_iter_zero);
977 
978 size_t iov_iter_copy_from_user_atomic(struct page *page,
979 		struct iov_iter *i, unsigned long offset, size_t bytes)
980 {
981 	char *kaddr = kmap_atomic(page), *p = kaddr + offset;
982 	if (unlikely(!page_copy_sane(page, offset, bytes))) {
983 		kunmap_atomic(kaddr);
984 		return 0;
985 	}
986 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
987 		kunmap_atomic(kaddr);
988 		WARN_ON(1);
989 		return 0;
990 	}
991 	iterate_all_kinds(i, bytes, v,
992 		copyin((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
993 		memcpy_from_page((p += v.bv_len) - v.bv_len, v.bv_page,
994 				 v.bv_offset, v.bv_len),
995 		memcpy((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
996 	)
997 	kunmap_atomic(kaddr);
998 	return bytes;
999 }
1000 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1001 
1002 static inline void pipe_truncate(struct iov_iter *i)
1003 {
1004 	struct pipe_inode_info *pipe = i->pipe;
1005 	unsigned int p_tail = pipe->tail;
1006 	unsigned int p_head = pipe->head;
1007 	unsigned int p_mask = pipe->ring_size - 1;
1008 
1009 	if (!pipe_empty(p_head, p_tail)) {
1010 		struct pipe_buffer *buf;
1011 		unsigned int i_head = i->head;
1012 		size_t off = i->iov_offset;
1013 
1014 		if (off) {
1015 			buf = &pipe->bufs[i_head & p_mask];
1016 			buf->len = off - buf->offset;
1017 			i_head++;
1018 		}
1019 		while (p_head != i_head) {
1020 			p_head--;
1021 			pipe_buf_release(pipe, &pipe->bufs[p_head & p_mask]);
1022 		}
1023 
1024 		pipe->head = p_head;
1025 	}
1026 }
1027 
1028 static void pipe_advance(struct iov_iter *i, size_t size)
1029 {
1030 	struct pipe_inode_info *pipe = i->pipe;
1031 	if (unlikely(i->count < size))
1032 		size = i->count;
1033 	if (size) {
1034 		struct pipe_buffer *buf;
1035 		unsigned int p_mask = pipe->ring_size - 1;
1036 		unsigned int i_head = i->head;
1037 		size_t off = i->iov_offset, left = size;
1038 
1039 		if (off) /* make it relative to the beginning of buffer */
1040 			left += off - pipe->bufs[i_head & p_mask].offset;
1041 		while (1) {
1042 			buf = &pipe->bufs[i_head & p_mask];
1043 			if (left <= buf->len)
1044 				break;
1045 			left -= buf->len;
1046 			i_head++;
1047 		}
1048 		i->head = i_head;
1049 		i->iov_offset = buf->offset + left;
1050 	}
1051 	i->count -= size;
1052 	/* ... and discard everything past that point */
1053 	pipe_truncate(i);
1054 }
1055 
1056 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
1057 {
1058 	struct bvec_iter bi;
1059 
1060 	bi.bi_size = i->count;
1061 	bi.bi_bvec_done = i->iov_offset;
1062 	bi.bi_idx = 0;
1063 	bvec_iter_advance(i->bvec, &bi, size);
1064 
1065 	i->bvec += bi.bi_idx;
1066 	i->nr_segs -= bi.bi_idx;
1067 	i->count = bi.bi_size;
1068 	i->iov_offset = bi.bi_bvec_done;
1069 }
1070 
1071 void iov_iter_advance(struct iov_iter *i, size_t size)
1072 {
1073 	if (unlikely(iov_iter_is_pipe(i))) {
1074 		pipe_advance(i, size);
1075 		return;
1076 	}
1077 	if (unlikely(iov_iter_is_discard(i))) {
1078 		i->count -= size;
1079 		return;
1080 	}
1081 	if (iov_iter_is_bvec(i)) {
1082 		iov_iter_bvec_advance(i, size);
1083 		return;
1084 	}
1085 	iterate_and_advance(i, size, v, 0, 0, 0)
1086 }
1087 EXPORT_SYMBOL(iov_iter_advance);
1088 
1089 void iov_iter_revert(struct iov_iter *i, size_t unroll)
1090 {
1091 	if (!unroll)
1092 		return;
1093 	if (WARN_ON(unroll > MAX_RW_COUNT))
1094 		return;
1095 	i->count += unroll;
1096 	if (unlikely(iov_iter_is_pipe(i))) {
1097 		struct pipe_inode_info *pipe = i->pipe;
1098 		unsigned int p_mask = pipe->ring_size - 1;
1099 		unsigned int i_head = i->head;
1100 		size_t off = i->iov_offset;
1101 		while (1) {
1102 			struct pipe_buffer *b = &pipe->bufs[i_head & p_mask];
1103 			size_t n = off - b->offset;
1104 			if (unroll < n) {
1105 				off -= unroll;
1106 				break;
1107 			}
1108 			unroll -= n;
1109 			if (!unroll && i_head == i->start_head) {
1110 				off = 0;
1111 				break;
1112 			}
1113 			i_head--;
1114 			b = &pipe->bufs[i_head & p_mask];
1115 			off = b->offset + b->len;
1116 		}
1117 		i->iov_offset = off;
1118 		i->head = i_head;
1119 		pipe_truncate(i);
1120 		return;
1121 	}
1122 	if (unlikely(iov_iter_is_discard(i)))
1123 		return;
1124 	if (unroll <= i->iov_offset) {
1125 		i->iov_offset -= unroll;
1126 		return;
1127 	}
1128 	unroll -= i->iov_offset;
1129 	if (iov_iter_is_bvec(i)) {
1130 		const struct bio_vec *bvec = i->bvec;
1131 		while (1) {
1132 			size_t n = (--bvec)->bv_len;
1133 			i->nr_segs++;
1134 			if (unroll <= n) {
1135 				i->bvec = bvec;
1136 				i->iov_offset = n - unroll;
1137 				return;
1138 			}
1139 			unroll -= n;
1140 		}
1141 	} else { /* same logics for iovec and kvec */
1142 		const struct iovec *iov = i->iov;
1143 		while (1) {
1144 			size_t n = (--iov)->iov_len;
1145 			i->nr_segs++;
1146 			if (unroll <= n) {
1147 				i->iov = iov;
1148 				i->iov_offset = n - unroll;
1149 				return;
1150 			}
1151 			unroll -= n;
1152 		}
1153 	}
1154 }
1155 EXPORT_SYMBOL(iov_iter_revert);
1156 
1157 /*
1158  * Return the count of just the current iov_iter segment.
1159  */
1160 size_t iov_iter_single_seg_count(const struct iov_iter *i)
1161 {
1162 	if (unlikely(iov_iter_is_pipe(i)))
1163 		return i->count;	// it is a silly place, anyway
1164 	if (i->nr_segs == 1)
1165 		return i->count;
1166 	if (unlikely(iov_iter_is_discard(i)))
1167 		return i->count;
1168 	else if (iov_iter_is_bvec(i))
1169 		return min(i->count, i->bvec->bv_len - i->iov_offset);
1170 	else
1171 		return min(i->count, i->iov->iov_len - i->iov_offset);
1172 }
1173 EXPORT_SYMBOL(iov_iter_single_seg_count);
1174 
1175 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
1176 			const struct kvec *kvec, unsigned long nr_segs,
1177 			size_t count)
1178 {
1179 	WARN_ON(direction & ~(READ | WRITE));
1180 	i->type = ITER_KVEC | (direction & (READ | WRITE));
1181 	i->kvec = kvec;
1182 	i->nr_segs = nr_segs;
1183 	i->iov_offset = 0;
1184 	i->count = count;
1185 }
1186 EXPORT_SYMBOL(iov_iter_kvec);
1187 
1188 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1189 			const struct bio_vec *bvec, unsigned long nr_segs,
1190 			size_t count)
1191 {
1192 	WARN_ON(direction & ~(READ | WRITE));
1193 	i->type = ITER_BVEC | (direction & (READ | WRITE));
1194 	i->bvec = bvec;
1195 	i->nr_segs = nr_segs;
1196 	i->iov_offset = 0;
1197 	i->count = count;
1198 }
1199 EXPORT_SYMBOL(iov_iter_bvec);
1200 
1201 void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1202 			struct pipe_inode_info *pipe,
1203 			size_t count)
1204 {
1205 	BUG_ON(direction != READ);
1206 	WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
1207 	i->type = ITER_PIPE | READ;
1208 	i->pipe = pipe;
1209 	i->head = pipe->head;
1210 	i->iov_offset = 0;
1211 	i->count = count;
1212 	i->start_head = i->head;
1213 }
1214 EXPORT_SYMBOL(iov_iter_pipe);
1215 
1216 /**
1217  * iov_iter_discard - Initialise an I/O iterator that discards data
1218  * @i: The iterator to initialise.
1219  * @direction: The direction of the transfer.
1220  * @count: The size of the I/O buffer in bytes.
1221  *
1222  * Set up an I/O iterator that just discards everything that's written to it.
1223  * It's only available as a READ iterator.
1224  */
1225 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1226 {
1227 	BUG_ON(direction != READ);
1228 	i->type = ITER_DISCARD | READ;
1229 	i->count = count;
1230 	i->iov_offset = 0;
1231 }
1232 EXPORT_SYMBOL(iov_iter_discard);
1233 
1234 unsigned long iov_iter_alignment(const struct iov_iter *i)
1235 {
1236 	unsigned long res = 0;
1237 	size_t size = i->count;
1238 
1239 	if (unlikely(iov_iter_is_pipe(i))) {
1240 		unsigned int p_mask = i->pipe->ring_size - 1;
1241 
1242 		if (size && i->iov_offset && allocated(&i->pipe->bufs[i->head & p_mask]))
1243 			return size | i->iov_offset;
1244 		return size;
1245 	}
1246 	iterate_all_kinds(i, size, v,
1247 		(res |= (unsigned long)v.iov_base | v.iov_len, 0),
1248 		res |= v.bv_offset | v.bv_len,
1249 		res |= (unsigned long)v.iov_base | v.iov_len
1250 	)
1251 	return res;
1252 }
1253 EXPORT_SYMBOL(iov_iter_alignment);
1254 
1255 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1256 {
1257 	unsigned long res = 0;
1258 	size_t size = i->count;
1259 
1260 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1261 		WARN_ON(1);
1262 		return ~0U;
1263 	}
1264 
1265 	iterate_all_kinds(i, size, v,
1266 		(res |= (!res ? 0 : (unsigned long)v.iov_base) |
1267 			(size != v.iov_len ? size : 0), 0),
1268 		(res |= (!res ? 0 : (unsigned long)v.bv_offset) |
1269 			(size != v.bv_len ? size : 0)),
1270 		(res |= (!res ? 0 : (unsigned long)v.iov_base) |
1271 			(size != v.iov_len ? size : 0))
1272 		);
1273 	return res;
1274 }
1275 EXPORT_SYMBOL(iov_iter_gap_alignment);
1276 
1277 static inline ssize_t __pipe_get_pages(struct iov_iter *i,
1278 				size_t maxsize,
1279 				struct page **pages,
1280 				int iter_head,
1281 				size_t *start)
1282 {
1283 	struct pipe_inode_info *pipe = i->pipe;
1284 	unsigned int p_mask = pipe->ring_size - 1;
1285 	ssize_t n = push_pipe(i, maxsize, &iter_head, start);
1286 	if (!n)
1287 		return -EFAULT;
1288 
1289 	maxsize = n;
1290 	n += *start;
1291 	while (n > 0) {
1292 		get_page(*pages++ = pipe->bufs[iter_head & p_mask].page);
1293 		iter_head++;
1294 		n -= PAGE_SIZE;
1295 	}
1296 
1297 	return maxsize;
1298 }
1299 
1300 static ssize_t pipe_get_pages(struct iov_iter *i,
1301 		   struct page **pages, size_t maxsize, unsigned maxpages,
1302 		   size_t *start)
1303 {
1304 	unsigned int iter_head, npages;
1305 	size_t capacity;
1306 
1307 	if (!maxsize)
1308 		return 0;
1309 
1310 	if (!sanity(i))
1311 		return -EFAULT;
1312 
1313 	data_start(i, &iter_head, start);
1314 	/* Amount of free space: some of this one + all after this one */
1315 	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1316 	capacity = min(npages, maxpages) * PAGE_SIZE - *start;
1317 
1318 	return __pipe_get_pages(i, min(maxsize, capacity), pages, iter_head, start);
1319 }
1320 
1321 ssize_t iov_iter_get_pages(struct iov_iter *i,
1322 		   struct page **pages, size_t maxsize, unsigned maxpages,
1323 		   size_t *start)
1324 {
1325 	if (maxsize > i->count)
1326 		maxsize = i->count;
1327 
1328 	if (unlikely(iov_iter_is_pipe(i)))
1329 		return pipe_get_pages(i, pages, maxsize, maxpages, start);
1330 	if (unlikely(iov_iter_is_discard(i)))
1331 		return -EFAULT;
1332 
1333 	iterate_all_kinds(i, maxsize, v, ({
1334 		unsigned long addr = (unsigned long)v.iov_base;
1335 		size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1336 		int n;
1337 		int res;
1338 
1339 		if (len > maxpages * PAGE_SIZE)
1340 			len = maxpages * PAGE_SIZE;
1341 		addr &= ~(PAGE_SIZE - 1);
1342 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1343 		res = get_user_pages_fast(addr, n,
1344 				iov_iter_rw(i) != WRITE ?  FOLL_WRITE : 0,
1345 				pages);
1346 		if (unlikely(res < 0))
1347 			return res;
1348 		return (res == n ? len : res * PAGE_SIZE) - *start;
1349 	0;}),({
1350 		/* can't be more than PAGE_SIZE */
1351 		*start = v.bv_offset;
1352 		get_page(*pages = v.bv_page);
1353 		return v.bv_len;
1354 	}),({
1355 		return -EFAULT;
1356 	})
1357 	)
1358 	return 0;
1359 }
1360 EXPORT_SYMBOL(iov_iter_get_pages);
1361 
1362 static struct page **get_pages_array(size_t n)
1363 {
1364 	return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
1365 }
1366 
1367 static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
1368 		   struct page ***pages, size_t maxsize,
1369 		   size_t *start)
1370 {
1371 	struct page **p;
1372 	unsigned int iter_head, npages;
1373 	ssize_t n;
1374 
1375 	if (!maxsize)
1376 		return 0;
1377 
1378 	if (!sanity(i))
1379 		return -EFAULT;
1380 
1381 	data_start(i, &iter_head, start);
1382 	/* Amount of free space: some of this one + all after this one */
1383 	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1384 	n = npages * PAGE_SIZE - *start;
1385 	if (maxsize > n)
1386 		maxsize = n;
1387 	else
1388 		npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1389 	p = get_pages_array(npages);
1390 	if (!p)
1391 		return -ENOMEM;
1392 	n = __pipe_get_pages(i, maxsize, p, iter_head, start);
1393 	if (n > 0)
1394 		*pages = p;
1395 	else
1396 		kvfree(p);
1397 	return n;
1398 }
1399 
1400 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1401 		   struct page ***pages, size_t maxsize,
1402 		   size_t *start)
1403 {
1404 	struct page **p;
1405 
1406 	if (maxsize > i->count)
1407 		maxsize = i->count;
1408 
1409 	if (unlikely(iov_iter_is_pipe(i)))
1410 		return pipe_get_pages_alloc(i, pages, maxsize, start);
1411 	if (unlikely(iov_iter_is_discard(i)))
1412 		return -EFAULT;
1413 
1414 	iterate_all_kinds(i, maxsize, v, ({
1415 		unsigned long addr = (unsigned long)v.iov_base;
1416 		size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1417 		int n;
1418 		int res;
1419 
1420 		addr &= ~(PAGE_SIZE - 1);
1421 		n = DIV_ROUND_UP(len, PAGE_SIZE);
1422 		p = get_pages_array(n);
1423 		if (!p)
1424 			return -ENOMEM;
1425 		res = get_user_pages_fast(addr, n,
1426 				iov_iter_rw(i) != WRITE ?  FOLL_WRITE : 0, p);
1427 		if (unlikely(res < 0)) {
1428 			kvfree(p);
1429 			return res;
1430 		}
1431 		*pages = p;
1432 		return (res == n ? len : res * PAGE_SIZE) - *start;
1433 	0;}),({
1434 		/* can't be more than PAGE_SIZE */
1435 		*start = v.bv_offset;
1436 		*pages = p = get_pages_array(1);
1437 		if (!p)
1438 			return -ENOMEM;
1439 		get_page(*p = v.bv_page);
1440 		return v.bv_len;
1441 	}),({
1442 		return -EFAULT;
1443 	})
1444 	)
1445 	return 0;
1446 }
1447 EXPORT_SYMBOL(iov_iter_get_pages_alloc);
1448 
1449 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1450 			       struct iov_iter *i)
1451 {
1452 	char *to = addr;
1453 	__wsum sum, next;
1454 	size_t off = 0;
1455 	sum = *csum;
1456 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1457 		WARN_ON(1);
1458 		return 0;
1459 	}
1460 	iterate_and_advance(i, bytes, v, ({
1461 		next = csum_and_copy_from_user(v.iov_base,
1462 					       (to += v.iov_len) - v.iov_len,
1463 					       v.iov_len);
1464 		if (next) {
1465 			sum = csum_block_add(sum, next, off);
1466 			off += v.iov_len;
1467 		}
1468 		next ? 0 : v.iov_len;
1469 	}), ({
1470 		char *p = kmap_atomic(v.bv_page);
1471 		sum = csum_and_memcpy((to += v.bv_len) - v.bv_len,
1472 				      p + v.bv_offset, v.bv_len,
1473 				      sum, off);
1474 		kunmap_atomic(p);
1475 		off += v.bv_len;
1476 	}),({
1477 		sum = csum_and_memcpy((to += v.iov_len) - v.iov_len,
1478 				      v.iov_base, v.iov_len,
1479 				      sum, off);
1480 		off += v.iov_len;
1481 	})
1482 	)
1483 	*csum = sum;
1484 	return bytes;
1485 }
1486 EXPORT_SYMBOL(csum_and_copy_from_iter);
1487 
1488 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum,
1489 			       struct iov_iter *i)
1490 {
1491 	char *to = addr;
1492 	__wsum sum, next;
1493 	size_t off = 0;
1494 	sum = *csum;
1495 	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1496 		WARN_ON(1);
1497 		return false;
1498 	}
1499 	if (unlikely(i->count < bytes))
1500 		return false;
1501 	iterate_all_kinds(i, bytes, v, ({
1502 		next = csum_and_copy_from_user(v.iov_base,
1503 					       (to += v.iov_len) - v.iov_len,
1504 					       v.iov_len);
1505 		if (!next)
1506 			return false;
1507 		sum = csum_block_add(sum, next, off);
1508 		off += v.iov_len;
1509 		0;
1510 	}), ({
1511 		char *p = kmap_atomic(v.bv_page);
1512 		sum = csum_and_memcpy((to += v.bv_len) - v.bv_len,
1513 				      p + v.bv_offset, v.bv_len,
1514 				      sum, off);
1515 		kunmap_atomic(p);
1516 		off += v.bv_len;
1517 	}),({
1518 		sum = csum_and_memcpy((to += v.iov_len) - v.iov_len,
1519 				      v.iov_base, v.iov_len,
1520 				      sum, off);
1521 		off += v.iov_len;
1522 	})
1523 	)
1524 	*csum = sum;
1525 	iov_iter_advance(i, bytes);
1526 	return true;
1527 }
1528 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
1529 
1530 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
1531 			     struct iov_iter *i)
1532 {
1533 	struct csum_state *csstate = _csstate;
1534 	const char *from = addr;
1535 	__wsum sum, next;
1536 	size_t off;
1537 
1538 	if (unlikely(iov_iter_is_pipe(i)))
1539 		return csum_and_copy_to_pipe_iter(addr, bytes, _csstate, i);
1540 
1541 	sum = csstate->csum;
1542 	off = csstate->off;
1543 	if (unlikely(iov_iter_is_discard(i))) {
1544 		WARN_ON(1);	/* for now */
1545 		return 0;
1546 	}
1547 	iterate_and_advance(i, bytes, v, ({
1548 		next = csum_and_copy_to_user((from += v.iov_len) - v.iov_len,
1549 					     v.iov_base,
1550 					     v.iov_len);
1551 		if (next) {
1552 			sum = csum_block_add(sum, next, off);
1553 			off += v.iov_len;
1554 		}
1555 		next ? 0 : v.iov_len;
1556 	}), ({
1557 		char *p = kmap_atomic(v.bv_page);
1558 		sum = csum_and_memcpy(p + v.bv_offset,
1559 				      (from += v.bv_len) - v.bv_len,
1560 				      v.bv_len, sum, off);
1561 		kunmap_atomic(p);
1562 		off += v.bv_len;
1563 	}),({
1564 		sum = csum_and_memcpy(v.iov_base,
1565 				     (from += v.iov_len) - v.iov_len,
1566 				     v.iov_len, sum, off);
1567 		off += v.iov_len;
1568 	})
1569 	)
1570 	csstate->csum = sum;
1571 	csstate->off = off;
1572 	return bytes;
1573 }
1574 EXPORT_SYMBOL(csum_and_copy_to_iter);
1575 
1576 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1577 		struct iov_iter *i)
1578 {
1579 #ifdef CONFIG_CRYPTO_HASH
1580 	struct ahash_request *hash = hashp;
1581 	struct scatterlist sg;
1582 	size_t copied;
1583 
1584 	copied = copy_to_iter(addr, bytes, i);
1585 	sg_init_one(&sg, addr, copied);
1586 	ahash_request_set_crypt(hash, &sg, NULL, copied);
1587 	crypto_ahash_update(hash);
1588 	return copied;
1589 #else
1590 	return 0;
1591 #endif
1592 }
1593 EXPORT_SYMBOL(hash_and_copy_to_iter);
1594 
1595 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1596 {
1597 	size_t size = i->count;
1598 	int npages = 0;
1599 
1600 	if (!size)
1601 		return 0;
1602 	if (unlikely(iov_iter_is_discard(i)))
1603 		return 0;
1604 
1605 	if (unlikely(iov_iter_is_pipe(i))) {
1606 		struct pipe_inode_info *pipe = i->pipe;
1607 		unsigned int iter_head;
1608 		size_t off;
1609 
1610 		if (!sanity(i))
1611 			return 0;
1612 
1613 		data_start(i, &iter_head, &off);
1614 		/* some of this one + all after this one */
1615 		npages = pipe_space_for_user(iter_head, pipe->tail, pipe);
1616 		if (npages >= maxpages)
1617 			return maxpages;
1618 	} else iterate_all_kinds(i, size, v, ({
1619 		unsigned long p = (unsigned long)v.iov_base;
1620 		npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1621 			- p / PAGE_SIZE;
1622 		if (npages >= maxpages)
1623 			return maxpages;
1624 	0;}),({
1625 		npages++;
1626 		if (npages >= maxpages)
1627 			return maxpages;
1628 	}),({
1629 		unsigned long p = (unsigned long)v.iov_base;
1630 		npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1631 			- p / PAGE_SIZE;
1632 		if (npages >= maxpages)
1633 			return maxpages;
1634 	})
1635 	)
1636 	return npages;
1637 }
1638 EXPORT_SYMBOL(iov_iter_npages);
1639 
1640 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1641 {
1642 	*new = *old;
1643 	if (unlikely(iov_iter_is_pipe(new))) {
1644 		WARN_ON(1);
1645 		return NULL;
1646 	}
1647 	if (unlikely(iov_iter_is_discard(new)))
1648 		return NULL;
1649 	if (iov_iter_is_bvec(new))
1650 		return new->bvec = kmemdup(new->bvec,
1651 				    new->nr_segs * sizeof(struct bio_vec),
1652 				    flags);
1653 	else
1654 		/* iovec and kvec have identical layout */
1655 		return new->iov = kmemdup(new->iov,
1656 				   new->nr_segs * sizeof(struct iovec),
1657 				   flags);
1658 }
1659 EXPORT_SYMBOL(dup_iter);
1660 
1661 static int copy_compat_iovec_from_user(struct iovec *iov,
1662 		const struct iovec __user *uvec, unsigned long nr_segs)
1663 {
1664 	const struct compat_iovec __user *uiov =
1665 		(const struct compat_iovec __user *)uvec;
1666 	int ret = -EFAULT, i;
1667 
1668 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1669 		return -EFAULT;
1670 
1671 	for (i = 0; i < nr_segs; i++) {
1672 		compat_uptr_t buf;
1673 		compat_ssize_t len;
1674 
1675 		unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1676 		unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1677 
1678 		/* check for compat_size_t not fitting in compat_ssize_t .. */
1679 		if (len < 0) {
1680 			ret = -EINVAL;
1681 			goto uaccess_end;
1682 		}
1683 		iov[i].iov_base = compat_ptr(buf);
1684 		iov[i].iov_len = len;
1685 	}
1686 
1687 	ret = 0;
1688 uaccess_end:
1689 	user_access_end();
1690 	return ret;
1691 }
1692 
1693 static int copy_iovec_from_user(struct iovec *iov,
1694 		const struct iovec __user *uvec, unsigned long nr_segs)
1695 {
1696 	unsigned long seg;
1697 
1698 	if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec)))
1699 		return -EFAULT;
1700 	for (seg = 0; seg < nr_segs; seg++) {
1701 		if ((ssize_t)iov[seg].iov_len < 0)
1702 			return -EINVAL;
1703 	}
1704 
1705 	return 0;
1706 }
1707 
1708 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1709 		unsigned long nr_segs, unsigned long fast_segs,
1710 		struct iovec *fast_iov, bool compat)
1711 {
1712 	struct iovec *iov = fast_iov;
1713 	int ret;
1714 
1715 	/*
1716 	 * SuS says "The readv() function *may* fail if the iovcnt argument was
1717 	 * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1718 	 * traditionally returned zero for zero segments, so...
1719 	 */
1720 	if (nr_segs == 0)
1721 		return iov;
1722 	if (nr_segs > UIO_MAXIOV)
1723 		return ERR_PTR(-EINVAL);
1724 	if (nr_segs > fast_segs) {
1725 		iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1726 		if (!iov)
1727 			return ERR_PTR(-ENOMEM);
1728 	}
1729 
1730 	if (compat)
1731 		ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1732 	else
1733 		ret = copy_iovec_from_user(iov, uvec, nr_segs);
1734 	if (ret) {
1735 		if (iov != fast_iov)
1736 			kfree(iov);
1737 		return ERR_PTR(ret);
1738 	}
1739 
1740 	return iov;
1741 }
1742 
1743 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1744 		 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1745 		 struct iov_iter *i, bool compat)
1746 {
1747 	ssize_t total_len = 0;
1748 	unsigned long seg;
1749 	struct iovec *iov;
1750 
1751 	iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1752 	if (IS_ERR(iov)) {
1753 		*iovp = NULL;
1754 		return PTR_ERR(iov);
1755 	}
1756 
1757 	/*
1758 	 * According to the Single Unix Specification we should return EINVAL if
1759 	 * an element length is < 0 when cast to ssize_t or if the total length
1760 	 * would overflow the ssize_t return value of the system call.
1761 	 *
1762 	 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1763 	 * overflow case.
1764 	 */
1765 	for (seg = 0; seg < nr_segs; seg++) {
1766 		ssize_t len = (ssize_t)iov[seg].iov_len;
1767 
1768 		if (!access_ok(iov[seg].iov_base, len)) {
1769 			if (iov != *iovp)
1770 				kfree(iov);
1771 			*iovp = NULL;
1772 			return -EFAULT;
1773 		}
1774 
1775 		if (len > MAX_RW_COUNT - total_len) {
1776 			len = MAX_RW_COUNT - total_len;
1777 			iov[seg].iov_len = len;
1778 		}
1779 		total_len += len;
1780 	}
1781 
1782 	iov_iter_init(i, type, iov, nr_segs, total_len);
1783 	if (iov == *iovp)
1784 		*iovp = NULL;
1785 	else
1786 		*iovp = iov;
1787 	return total_len;
1788 }
1789 
1790 /**
1791  * import_iovec() - Copy an array of &struct iovec from userspace
1792  *     into the kernel, check that it is valid, and initialize a new
1793  *     &struct iov_iter iterator to access it.
1794  *
1795  * @type: One of %READ or %WRITE.
1796  * @uvec: Pointer to the userspace array.
1797  * @nr_segs: Number of elements in userspace array.
1798  * @fast_segs: Number of elements in @iov.
1799  * @iovp: (input and output parameter) Pointer to pointer to (usually small
1800  *     on-stack) kernel array.
1801  * @i: Pointer to iterator that will be initialized on success.
1802  *
1803  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1804  * then this function places %NULL in *@iov on return. Otherwise, a new
1805  * array will be allocated and the result placed in *@iov. This means that
1806  * the caller may call kfree() on *@iov regardless of whether the small
1807  * on-stack array was used or not (and regardless of whether this function
1808  * returns an error or not).
1809  *
1810  * Return: Negative error code on error, bytes imported on success
1811  */
1812 ssize_t import_iovec(int type, const struct iovec __user *uvec,
1813 		 unsigned nr_segs, unsigned fast_segs,
1814 		 struct iovec **iovp, struct iov_iter *i)
1815 {
1816 	return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1817 			      in_compat_syscall());
1818 }
1819 EXPORT_SYMBOL(import_iovec);
1820 
1821 int import_single_range(int rw, void __user *buf, size_t len,
1822 		 struct iovec *iov, struct iov_iter *i)
1823 {
1824 	if (len > MAX_RW_COUNT)
1825 		len = MAX_RW_COUNT;
1826 	if (unlikely(!access_ok(buf, len)))
1827 		return -EFAULT;
1828 
1829 	iov->iov_base = buf;
1830 	iov->iov_len = len;
1831 	iov_iter_init(i, rw, iov, 1, len);
1832 	return 0;
1833 }
1834 EXPORT_SYMBOL(import_single_range);
1835 
1836 int iov_iter_for_each_range(struct iov_iter *i, size_t bytes,
1837 			    int (*f)(struct kvec *vec, void *context),
1838 			    void *context)
1839 {
1840 	struct kvec w;
1841 	int err = -EINVAL;
1842 	if (!bytes)
1843 		return 0;
1844 
1845 	iterate_all_kinds(i, bytes, v, -EINVAL, ({
1846 		w.iov_base = kmap(v.bv_page) + v.bv_offset;
1847 		w.iov_len = v.bv_len;
1848 		err = f(&w, context);
1849 		kunmap(v.bv_page);
1850 		err;}), ({
1851 		w = v;
1852 		err = f(&w, context);})
1853 	)
1854 	return err;
1855 }
1856 EXPORT_SYMBOL(iov_iter_for_each_range);
1857