1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <crypto/hash.h> 3 #include <linux/export.h> 4 #include <linux/bvec.h> 5 #include <linux/fault-inject-usercopy.h> 6 #include <linux/uio.h> 7 #include <linux/pagemap.h> 8 #include <linux/highmem.h> 9 #include <linux/slab.h> 10 #include <linux/vmalloc.h> 11 #include <linux/splice.h> 12 #include <linux/compat.h> 13 #include <net/checksum.h> 14 #include <linux/scatterlist.h> 15 #include <linux/instrumented.h> 16 17 /* covers ubuf and kbuf alike */ 18 #define iterate_buf(i, n, base, len, off, __p, STEP) { \ 19 size_t __maybe_unused off = 0; \ 20 len = n; \ 21 base = __p + i->iov_offset; \ 22 len -= (STEP); \ 23 i->iov_offset += len; \ 24 n = len; \ 25 } 26 27 /* covers iovec and kvec alike */ 28 #define iterate_iovec(i, n, base, len, off, __p, STEP) { \ 29 size_t off = 0; \ 30 size_t skip = i->iov_offset; \ 31 do { \ 32 len = min(n, __p->iov_len - skip); \ 33 if (likely(len)) { \ 34 base = __p->iov_base + skip; \ 35 len -= (STEP); \ 36 off += len; \ 37 skip += len; \ 38 n -= len; \ 39 if (skip < __p->iov_len) \ 40 break; \ 41 } \ 42 __p++; \ 43 skip = 0; \ 44 } while (n); \ 45 i->iov_offset = skip; \ 46 n = off; \ 47 } 48 49 #define iterate_bvec(i, n, base, len, off, p, STEP) { \ 50 size_t off = 0; \ 51 unsigned skip = i->iov_offset; \ 52 while (n) { \ 53 unsigned offset = p->bv_offset + skip; \ 54 unsigned left; \ 55 void *kaddr = kmap_local_page(p->bv_page + \ 56 offset / PAGE_SIZE); \ 57 base = kaddr + offset % PAGE_SIZE; \ 58 len = min(min(n, (size_t)(p->bv_len - skip)), \ 59 (size_t)(PAGE_SIZE - offset % PAGE_SIZE)); \ 60 left = (STEP); \ 61 kunmap_local(kaddr); \ 62 len -= left; \ 63 off += len; \ 64 skip += len; \ 65 if (skip == p->bv_len) { \ 66 skip = 0; \ 67 p++; \ 68 } \ 69 n -= len; \ 70 if (left) \ 71 break; \ 72 } \ 73 i->iov_offset = skip; \ 74 n = off; \ 75 } 76 77 #define iterate_xarray(i, n, base, len, __off, STEP) { \ 78 __label__ __out; \ 79 size_t __off = 0; \ 80 struct folio *folio; \ 81 loff_t start = i->xarray_start + i->iov_offset; \ 82 pgoff_t index = start / PAGE_SIZE; \ 83 XA_STATE(xas, i->xarray, index); \ 84 \ 85 len = PAGE_SIZE - offset_in_page(start); \ 86 rcu_read_lock(); \ 87 xas_for_each(&xas, folio, ULONG_MAX) { \ 88 unsigned left; \ 89 size_t offset; \ 90 if (xas_retry(&xas, folio)) \ 91 continue; \ 92 if (WARN_ON(xa_is_value(folio))) \ 93 break; \ 94 if (WARN_ON(folio_test_hugetlb(folio))) \ 95 break; \ 96 offset = offset_in_folio(folio, start + __off); \ 97 while (offset < folio_size(folio)) { \ 98 base = kmap_local_folio(folio, offset); \ 99 len = min(n, len); \ 100 left = (STEP); \ 101 kunmap_local(base); \ 102 len -= left; \ 103 __off += len; \ 104 n -= len; \ 105 if (left || n == 0) \ 106 goto __out; \ 107 offset += len; \ 108 len = PAGE_SIZE; \ 109 } \ 110 } \ 111 __out: \ 112 rcu_read_unlock(); \ 113 i->iov_offset += __off; \ 114 n = __off; \ 115 } 116 117 #define __iterate_and_advance(i, n, base, len, off, I, K) { \ 118 if (unlikely(i->count < n)) \ 119 n = i->count; \ 120 if (likely(n)) { \ 121 if (likely(iter_is_ubuf(i))) { \ 122 void __user *base; \ 123 size_t len; \ 124 iterate_buf(i, n, base, len, off, \ 125 i->ubuf, (I)) \ 126 } else if (likely(iter_is_iovec(i))) { \ 127 const struct iovec *iov = iter_iov(i); \ 128 void __user *base; \ 129 size_t len; \ 130 iterate_iovec(i, n, base, len, off, \ 131 iov, (I)) \ 132 i->nr_segs -= iov - iter_iov(i); \ 133 i->__iov = iov; \ 134 } else if (iov_iter_is_bvec(i)) { \ 135 const struct bio_vec *bvec = i->bvec; \ 136 void *base; \ 137 size_t len; \ 138 iterate_bvec(i, n, base, len, off, \ 139 bvec, (K)) \ 140 i->nr_segs -= bvec - i->bvec; \ 141 i->bvec = bvec; \ 142 } else if (iov_iter_is_kvec(i)) { \ 143 const struct kvec *kvec = i->kvec; \ 144 void *base; \ 145 size_t len; \ 146 iterate_iovec(i, n, base, len, off, \ 147 kvec, (K)) \ 148 i->nr_segs -= kvec - i->kvec; \ 149 i->kvec = kvec; \ 150 } else if (iov_iter_is_xarray(i)) { \ 151 void *base; \ 152 size_t len; \ 153 iterate_xarray(i, n, base, len, off, \ 154 (K)) \ 155 } \ 156 i->count -= n; \ 157 } \ 158 } 159 #define iterate_and_advance(i, n, base, len, off, I, K) \ 160 __iterate_and_advance(i, n, base, len, off, I, ((void)(K),0)) 161 162 static int copyout(void __user *to, const void *from, size_t n) 163 { 164 if (should_fail_usercopy()) 165 return n; 166 if (access_ok(to, n)) { 167 instrument_copy_to_user(to, from, n); 168 n = raw_copy_to_user(to, from, n); 169 } 170 return n; 171 } 172 173 static int copyout_nofault(void __user *to, const void *from, size_t n) 174 { 175 long res; 176 177 if (should_fail_usercopy()) 178 return n; 179 180 res = copy_to_user_nofault(to, from, n); 181 182 return res < 0 ? n : res; 183 } 184 185 static int copyin(void *to, const void __user *from, size_t n) 186 { 187 size_t res = n; 188 189 if (should_fail_usercopy()) 190 return n; 191 if (access_ok(from, n)) { 192 instrument_copy_from_user_before(to, from, n); 193 res = raw_copy_from_user(to, from, n); 194 instrument_copy_from_user_after(to, from, n, res); 195 } 196 return res; 197 } 198 199 /* 200 * fault_in_iov_iter_readable - fault in iov iterator for reading 201 * @i: iterator 202 * @size: maximum length 203 * 204 * Fault in one or more iovecs of the given iov_iter, to a maximum length of 205 * @size. For each iovec, fault in each page that constitutes the iovec. 206 * 207 * Returns the number of bytes not faulted in (like copy_to_user() and 208 * copy_from_user()). 209 * 210 * Always returns 0 for non-userspace iterators. 211 */ 212 size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size) 213 { 214 if (iter_is_ubuf(i)) { 215 size_t n = min(size, iov_iter_count(i)); 216 n -= fault_in_readable(i->ubuf + i->iov_offset, n); 217 return size - n; 218 } else if (iter_is_iovec(i)) { 219 size_t count = min(size, iov_iter_count(i)); 220 const struct iovec *p; 221 size_t skip; 222 223 size -= count; 224 for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) { 225 size_t len = min(count, p->iov_len - skip); 226 size_t ret; 227 228 if (unlikely(!len)) 229 continue; 230 ret = fault_in_readable(p->iov_base + skip, len); 231 count -= len - ret; 232 if (ret) 233 break; 234 } 235 return count + size; 236 } 237 return 0; 238 } 239 EXPORT_SYMBOL(fault_in_iov_iter_readable); 240 241 /* 242 * fault_in_iov_iter_writeable - fault in iov iterator for writing 243 * @i: iterator 244 * @size: maximum length 245 * 246 * Faults in the iterator using get_user_pages(), i.e., without triggering 247 * hardware page faults. This is primarily useful when we already know that 248 * some or all of the pages in @i aren't in memory. 249 * 250 * Returns the number of bytes not faulted in, like copy_to_user() and 251 * copy_from_user(). 252 * 253 * Always returns 0 for non-user-space iterators. 254 */ 255 size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size) 256 { 257 if (iter_is_ubuf(i)) { 258 size_t n = min(size, iov_iter_count(i)); 259 n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n); 260 return size - n; 261 } else if (iter_is_iovec(i)) { 262 size_t count = min(size, iov_iter_count(i)); 263 const struct iovec *p; 264 size_t skip; 265 266 size -= count; 267 for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) { 268 size_t len = min(count, p->iov_len - skip); 269 size_t ret; 270 271 if (unlikely(!len)) 272 continue; 273 ret = fault_in_safe_writeable(p->iov_base + skip, len); 274 count -= len - ret; 275 if (ret) 276 break; 277 } 278 return count + size; 279 } 280 return 0; 281 } 282 EXPORT_SYMBOL(fault_in_iov_iter_writeable); 283 284 void iov_iter_init(struct iov_iter *i, unsigned int direction, 285 const struct iovec *iov, unsigned long nr_segs, 286 size_t count) 287 { 288 WARN_ON(direction & ~(READ | WRITE)); 289 *i = (struct iov_iter) { 290 .iter_type = ITER_IOVEC, 291 .copy_mc = false, 292 .nofault = false, 293 .user_backed = true, 294 .data_source = direction, 295 .__iov = iov, 296 .nr_segs = nr_segs, 297 .iov_offset = 0, 298 .count = count 299 }; 300 } 301 EXPORT_SYMBOL(iov_iter_init); 302 303 static __wsum csum_and_memcpy(void *to, const void *from, size_t len, 304 __wsum sum, size_t off) 305 { 306 __wsum next = csum_partial_copy_nocheck(from, to, len); 307 return csum_block_add(sum, next, off); 308 } 309 310 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i) 311 { 312 if (WARN_ON_ONCE(i->data_source)) 313 return 0; 314 if (user_backed_iter(i)) 315 might_fault(); 316 iterate_and_advance(i, bytes, base, len, off, 317 copyout(base, addr + off, len), 318 memcpy(base, addr + off, len) 319 ) 320 321 return bytes; 322 } 323 EXPORT_SYMBOL(_copy_to_iter); 324 325 #ifdef CONFIG_ARCH_HAS_COPY_MC 326 static int copyout_mc(void __user *to, const void *from, size_t n) 327 { 328 if (access_ok(to, n)) { 329 instrument_copy_to_user(to, from, n); 330 n = copy_mc_to_user((__force void *) to, from, n); 331 } 332 return n; 333 } 334 335 /** 336 * _copy_mc_to_iter - copy to iter with source memory error exception handling 337 * @addr: source kernel address 338 * @bytes: total transfer length 339 * @i: destination iterator 340 * 341 * The pmem driver deploys this for the dax operation 342 * (dax_copy_to_iter()) for dax reads (bypass page-cache and the 343 * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes 344 * successfully copied. 345 * 346 * The main differences between this and typical _copy_to_iter(). 347 * 348 * * Typical tail/residue handling after a fault retries the copy 349 * byte-by-byte until the fault happens again. Re-triggering machine 350 * checks is potentially fatal so the implementation uses source 351 * alignment and poison alignment assumptions to avoid re-triggering 352 * hardware exceptions. 353 * 354 * * ITER_KVEC and ITER_BVEC can return short copies. Compare to 355 * copy_to_iter() where only ITER_IOVEC attempts might return a short copy. 356 * 357 * Return: number of bytes copied (may be %0) 358 */ 359 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i) 360 { 361 if (WARN_ON_ONCE(i->data_source)) 362 return 0; 363 if (user_backed_iter(i)) 364 might_fault(); 365 __iterate_and_advance(i, bytes, base, len, off, 366 copyout_mc(base, addr + off, len), 367 copy_mc_to_kernel(base, addr + off, len) 368 ) 369 370 return bytes; 371 } 372 EXPORT_SYMBOL_GPL(_copy_mc_to_iter); 373 #endif /* CONFIG_ARCH_HAS_COPY_MC */ 374 375 static void *memcpy_from_iter(struct iov_iter *i, void *to, const void *from, 376 size_t size) 377 { 378 if (iov_iter_is_copy_mc(i)) 379 return (void *)copy_mc_to_kernel(to, from, size); 380 return memcpy(to, from, size); 381 } 382 383 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i) 384 { 385 if (WARN_ON_ONCE(!i->data_source)) 386 return 0; 387 388 if (user_backed_iter(i)) 389 might_fault(); 390 iterate_and_advance(i, bytes, base, len, off, 391 copyin(addr + off, base, len), 392 memcpy_from_iter(i, addr + off, base, len) 393 ) 394 395 return bytes; 396 } 397 EXPORT_SYMBOL(_copy_from_iter); 398 399 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i) 400 { 401 if (WARN_ON_ONCE(!i->data_source)) 402 return 0; 403 404 iterate_and_advance(i, bytes, base, len, off, 405 __copy_from_user_inatomic_nocache(addr + off, base, len), 406 memcpy(addr + off, base, len) 407 ) 408 409 return bytes; 410 } 411 EXPORT_SYMBOL(_copy_from_iter_nocache); 412 413 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE 414 /** 415 * _copy_from_iter_flushcache - write destination through cpu cache 416 * @addr: destination kernel address 417 * @bytes: total transfer length 418 * @i: source iterator 419 * 420 * The pmem driver arranges for filesystem-dax to use this facility via 421 * dax_copy_from_iter() for ensuring that writes to persistent memory 422 * are flushed through the CPU cache. It is differentiated from 423 * _copy_from_iter_nocache() in that guarantees all data is flushed for 424 * all iterator types. The _copy_from_iter_nocache() only attempts to 425 * bypass the cache for the ITER_IOVEC case, and on some archs may use 426 * instructions that strand dirty-data in the cache. 427 * 428 * Return: number of bytes copied (may be %0) 429 */ 430 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i) 431 { 432 if (WARN_ON_ONCE(!i->data_source)) 433 return 0; 434 435 iterate_and_advance(i, bytes, base, len, off, 436 __copy_from_user_flushcache(addr + off, base, len), 437 memcpy_flushcache(addr + off, base, len) 438 ) 439 440 return bytes; 441 } 442 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache); 443 #endif 444 445 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n) 446 { 447 struct page *head; 448 size_t v = n + offset; 449 450 /* 451 * The general case needs to access the page order in order 452 * to compute the page size. 453 * However, we mostly deal with order-0 pages and thus can 454 * avoid a possible cache line miss for requests that fit all 455 * page orders. 456 */ 457 if (n <= v && v <= PAGE_SIZE) 458 return true; 459 460 head = compound_head(page); 461 v += (page - head) << PAGE_SHIFT; 462 463 if (WARN_ON(n > v || v > page_size(head))) 464 return false; 465 return true; 466 } 467 468 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes, 469 struct iov_iter *i) 470 { 471 size_t res = 0; 472 if (!page_copy_sane(page, offset, bytes)) 473 return 0; 474 if (WARN_ON_ONCE(i->data_source)) 475 return 0; 476 page += offset / PAGE_SIZE; // first subpage 477 offset %= PAGE_SIZE; 478 while (1) { 479 void *kaddr = kmap_local_page(page); 480 size_t n = min(bytes, (size_t)PAGE_SIZE - offset); 481 n = _copy_to_iter(kaddr + offset, n, i); 482 kunmap_local(kaddr); 483 res += n; 484 bytes -= n; 485 if (!bytes || !n) 486 break; 487 offset += n; 488 if (offset == PAGE_SIZE) { 489 page++; 490 offset = 0; 491 } 492 } 493 return res; 494 } 495 EXPORT_SYMBOL(copy_page_to_iter); 496 497 size_t copy_page_to_iter_nofault(struct page *page, unsigned offset, size_t bytes, 498 struct iov_iter *i) 499 { 500 size_t res = 0; 501 502 if (!page_copy_sane(page, offset, bytes)) 503 return 0; 504 if (WARN_ON_ONCE(i->data_source)) 505 return 0; 506 page += offset / PAGE_SIZE; // first subpage 507 offset %= PAGE_SIZE; 508 while (1) { 509 void *kaddr = kmap_local_page(page); 510 size_t n = min(bytes, (size_t)PAGE_SIZE - offset); 511 512 iterate_and_advance(i, n, base, len, off, 513 copyout_nofault(base, kaddr + offset + off, len), 514 memcpy(base, kaddr + offset + off, len) 515 ) 516 kunmap_local(kaddr); 517 res += n; 518 bytes -= n; 519 if (!bytes || !n) 520 break; 521 offset += n; 522 if (offset == PAGE_SIZE) { 523 page++; 524 offset = 0; 525 } 526 } 527 return res; 528 } 529 EXPORT_SYMBOL(copy_page_to_iter_nofault); 530 531 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes, 532 struct iov_iter *i) 533 { 534 size_t res = 0; 535 if (!page_copy_sane(page, offset, bytes)) 536 return 0; 537 page += offset / PAGE_SIZE; // first subpage 538 offset %= PAGE_SIZE; 539 while (1) { 540 void *kaddr = kmap_local_page(page); 541 size_t n = min(bytes, (size_t)PAGE_SIZE - offset); 542 n = _copy_from_iter(kaddr + offset, n, i); 543 kunmap_local(kaddr); 544 res += n; 545 bytes -= n; 546 if (!bytes || !n) 547 break; 548 offset += n; 549 if (offset == PAGE_SIZE) { 550 page++; 551 offset = 0; 552 } 553 } 554 return res; 555 } 556 EXPORT_SYMBOL(copy_page_from_iter); 557 558 size_t iov_iter_zero(size_t bytes, struct iov_iter *i) 559 { 560 iterate_and_advance(i, bytes, base, len, count, 561 clear_user(base, len), 562 memset(base, 0, len) 563 ) 564 565 return bytes; 566 } 567 EXPORT_SYMBOL(iov_iter_zero); 568 569 size_t copy_page_from_iter_atomic(struct page *page, unsigned offset, size_t bytes, 570 struct iov_iter *i) 571 { 572 char *kaddr = kmap_atomic(page), *p = kaddr + offset; 573 if (!page_copy_sane(page, offset, bytes)) { 574 kunmap_atomic(kaddr); 575 return 0; 576 } 577 if (WARN_ON_ONCE(!i->data_source)) { 578 kunmap_atomic(kaddr); 579 return 0; 580 } 581 iterate_and_advance(i, bytes, base, len, off, 582 copyin(p + off, base, len), 583 memcpy_from_iter(i, p + off, base, len) 584 ) 585 kunmap_atomic(kaddr); 586 return bytes; 587 } 588 EXPORT_SYMBOL(copy_page_from_iter_atomic); 589 590 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size) 591 { 592 const struct bio_vec *bvec, *end; 593 594 if (!i->count) 595 return; 596 i->count -= size; 597 598 size += i->iov_offset; 599 600 for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) { 601 if (likely(size < bvec->bv_len)) 602 break; 603 size -= bvec->bv_len; 604 } 605 i->iov_offset = size; 606 i->nr_segs -= bvec - i->bvec; 607 i->bvec = bvec; 608 } 609 610 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size) 611 { 612 const struct iovec *iov, *end; 613 614 if (!i->count) 615 return; 616 i->count -= size; 617 618 size += i->iov_offset; // from beginning of current segment 619 for (iov = iter_iov(i), end = iov + i->nr_segs; iov < end; iov++) { 620 if (likely(size < iov->iov_len)) 621 break; 622 size -= iov->iov_len; 623 } 624 i->iov_offset = size; 625 i->nr_segs -= iov - iter_iov(i); 626 i->__iov = iov; 627 } 628 629 void iov_iter_advance(struct iov_iter *i, size_t size) 630 { 631 if (unlikely(i->count < size)) 632 size = i->count; 633 if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) { 634 i->iov_offset += size; 635 i->count -= size; 636 } else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) { 637 /* iovec and kvec have identical layouts */ 638 iov_iter_iovec_advance(i, size); 639 } else if (iov_iter_is_bvec(i)) { 640 iov_iter_bvec_advance(i, size); 641 } else if (iov_iter_is_discard(i)) { 642 i->count -= size; 643 } 644 } 645 EXPORT_SYMBOL(iov_iter_advance); 646 647 void iov_iter_revert(struct iov_iter *i, size_t unroll) 648 { 649 if (!unroll) 650 return; 651 if (WARN_ON(unroll > MAX_RW_COUNT)) 652 return; 653 i->count += unroll; 654 if (unlikely(iov_iter_is_discard(i))) 655 return; 656 if (unroll <= i->iov_offset) { 657 i->iov_offset -= unroll; 658 return; 659 } 660 unroll -= i->iov_offset; 661 if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) { 662 BUG(); /* We should never go beyond the start of the specified 663 * range since we might then be straying into pages that 664 * aren't pinned. 665 */ 666 } else if (iov_iter_is_bvec(i)) { 667 const struct bio_vec *bvec = i->bvec; 668 while (1) { 669 size_t n = (--bvec)->bv_len; 670 i->nr_segs++; 671 if (unroll <= n) { 672 i->bvec = bvec; 673 i->iov_offset = n - unroll; 674 return; 675 } 676 unroll -= n; 677 } 678 } else { /* same logics for iovec and kvec */ 679 const struct iovec *iov = iter_iov(i); 680 while (1) { 681 size_t n = (--iov)->iov_len; 682 i->nr_segs++; 683 if (unroll <= n) { 684 i->__iov = iov; 685 i->iov_offset = n - unroll; 686 return; 687 } 688 unroll -= n; 689 } 690 } 691 } 692 EXPORT_SYMBOL(iov_iter_revert); 693 694 /* 695 * Return the count of just the current iov_iter segment. 696 */ 697 size_t iov_iter_single_seg_count(const struct iov_iter *i) 698 { 699 if (i->nr_segs > 1) { 700 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) 701 return min(i->count, iter_iov(i)->iov_len - i->iov_offset); 702 if (iov_iter_is_bvec(i)) 703 return min(i->count, i->bvec->bv_len - i->iov_offset); 704 } 705 return i->count; 706 } 707 EXPORT_SYMBOL(iov_iter_single_seg_count); 708 709 void iov_iter_kvec(struct iov_iter *i, unsigned int direction, 710 const struct kvec *kvec, unsigned long nr_segs, 711 size_t count) 712 { 713 WARN_ON(direction & ~(READ | WRITE)); 714 *i = (struct iov_iter){ 715 .iter_type = ITER_KVEC, 716 .copy_mc = false, 717 .data_source = direction, 718 .kvec = kvec, 719 .nr_segs = nr_segs, 720 .iov_offset = 0, 721 .count = count 722 }; 723 } 724 EXPORT_SYMBOL(iov_iter_kvec); 725 726 void iov_iter_bvec(struct iov_iter *i, unsigned int direction, 727 const struct bio_vec *bvec, unsigned long nr_segs, 728 size_t count) 729 { 730 WARN_ON(direction & ~(READ | WRITE)); 731 *i = (struct iov_iter){ 732 .iter_type = ITER_BVEC, 733 .copy_mc = false, 734 .data_source = direction, 735 .bvec = bvec, 736 .nr_segs = nr_segs, 737 .iov_offset = 0, 738 .count = count 739 }; 740 } 741 EXPORT_SYMBOL(iov_iter_bvec); 742 743 /** 744 * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray 745 * @i: The iterator to initialise. 746 * @direction: The direction of the transfer. 747 * @xarray: The xarray to access. 748 * @start: The start file position. 749 * @count: The size of the I/O buffer in bytes. 750 * 751 * Set up an I/O iterator to either draw data out of the pages attached to an 752 * inode or to inject data into those pages. The pages *must* be prevented 753 * from evaporation, either by taking a ref on them or locking them by the 754 * caller. 755 */ 756 void iov_iter_xarray(struct iov_iter *i, unsigned int direction, 757 struct xarray *xarray, loff_t start, size_t count) 758 { 759 BUG_ON(direction & ~1); 760 *i = (struct iov_iter) { 761 .iter_type = ITER_XARRAY, 762 .copy_mc = false, 763 .data_source = direction, 764 .xarray = xarray, 765 .xarray_start = start, 766 .count = count, 767 .iov_offset = 0 768 }; 769 } 770 EXPORT_SYMBOL(iov_iter_xarray); 771 772 /** 773 * iov_iter_discard - Initialise an I/O iterator that discards data 774 * @i: The iterator to initialise. 775 * @direction: The direction of the transfer. 776 * @count: The size of the I/O buffer in bytes. 777 * 778 * Set up an I/O iterator that just discards everything that's written to it. 779 * It's only available as a READ iterator. 780 */ 781 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count) 782 { 783 BUG_ON(direction != READ); 784 *i = (struct iov_iter){ 785 .iter_type = ITER_DISCARD, 786 .copy_mc = false, 787 .data_source = false, 788 .count = count, 789 .iov_offset = 0 790 }; 791 } 792 EXPORT_SYMBOL(iov_iter_discard); 793 794 static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask, 795 unsigned len_mask) 796 { 797 size_t size = i->count; 798 size_t skip = i->iov_offset; 799 unsigned k; 800 801 for (k = 0; k < i->nr_segs; k++, skip = 0) { 802 const struct iovec *iov = iter_iov(i) + k; 803 size_t len = iov->iov_len - skip; 804 805 if (len > size) 806 len = size; 807 if (len & len_mask) 808 return false; 809 if ((unsigned long)(iov->iov_base + skip) & addr_mask) 810 return false; 811 812 size -= len; 813 if (!size) 814 break; 815 } 816 return true; 817 } 818 819 static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask, 820 unsigned len_mask) 821 { 822 size_t size = i->count; 823 unsigned skip = i->iov_offset; 824 unsigned k; 825 826 for (k = 0; k < i->nr_segs; k++, skip = 0) { 827 size_t len = i->bvec[k].bv_len - skip; 828 829 if (len > size) 830 len = size; 831 if (len & len_mask) 832 return false; 833 if ((unsigned long)(i->bvec[k].bv_offset + skip) & addr_mask) 834 return false; 835 836 size -= len; 837 if (!size) 838 break; 839 } 840 return true; 841 } 842 843 /** 844 * iov_iter_is_aligned() - Check if the addresses and lengths of each segments 845 * are aligned to the parameters. 846 * 847 * @i: &struct iov_iter to restore 848 * @addr_mask: bit mask to check against the iov element's addresses 849 * @len_mask: bit mask to check against the iov element's lengths 850 * 851 * Return: false if any addresses or lengths intersect with the provided masks 852 */ 853 bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask, 854 unsigned len_mask) 855 { 856 if (likely(iter_is_ubuf(i))) { 857 if (i->count & len_mask) 858 return false; 859 if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask) 860 return false; 861 return true; 862 } 863 864 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) 865 return iov_iter_aligned_iovec(i, addr_mask, len_mask); 866 867 if (iov_iter_is_bvec(i)) 868 return iov_iter_aligned_bvec(i, addr_mask, len_mask); 869 870 if (iov_iter_is_xarray(i)) { 871 if (i->count & len_mask) 872 return false; 873 if ((i->xarray_start + i->iov_offset) & addr_mask) 874 return false; 875 } 876 877 return true; 878 } 879 EXPORT_SYMBOL_GPL(iov_iter_is_aligned); 880 881 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i) 882 { 883 unsigned long res = 0; 884 size_t size = i->count; 885 size_t skip = i->iov_offset; 886 unsigned k; 887 888 for (k = 0; k < i->nr_segs; k++, skip = 0) { 889 const struct iovec *iov = iter_iov(i) + k; 890 size_t len = iov->iov_len - skip; 891 if (len) { 892 res |= (unsigned long)iov->iov_base + skip; 893 if (len > size) 894 len = size; 895 res |= len; 896 size -= len; 897 if (!size) 898 break; 899 } 900 } 901 return res; 902 } 903 904 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i) 905 { 906 unsigned res = 0; 907 size_t size = i->count; 908 unsigned skip = i->iov_offset; 909 unsigned k; 910 911 for (k = 0; k < i->nr_segs; k++, skip = 0) { 912 size_t len = i->bvec[k].bv_len - skip; 913 res |= (unsigned long)i->bvec[k].bv_offset + skip; 914 if (len > size) 915 len = size; 916 res |= len; 917 size -= len; 918 if (!size) 919 break; 920 } 921 return res; 922 } 923 924 unsigned long iov_iter_alignment(const struct iov_iter *i) 925 { 926 if (likely(iter_is_ubuf(i))) { 927 size_t size = i->count; 928 if (size) 929 return ((unsigned long)i->ubuf + i->iov_offset) | size; 930 return 0; 931 } 932 933 /* iovec and kvec have identical layouts */ 934 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) 935 return iov_iter_alignment_iovec(i); 936 937 if (iov_iter_is_bvec(i)) 938 return iov_iter_alignment_bvec(i); 939 940 if (iov_iter_is_xarray(i)) 941 return (i->xarray_start + i->iov_offset) | i->count; 942 943 return 0; 944 } 945 EXPORT_SYMBOL(iov_iter_alignment); 946 947 unsigned long iov_iter_gap_alignment(const struct iov_iter *i) 948 { 949 unsigned long res = 0; 950 unsigned long v = 0; 951 size_t size = i->count; 952 unsigned k; 953 954 if (iter_is_ubuf(i)) 955 return 0; 956 957 if (WARN_ON(!iter_is_iovec(i))) 958 return ~0U; 959 960 for (k = 0; k < i->nr_segs; k++) { 961 const struct iovec *iov = iter_iov(i) + k; 962 if (iov->iov_len) { 963 unsigned long base = (unsigned long)iov->iov_base; 964 if (v) // if not the first one 965 res |= base | v; // this start | previous end 966 v = base + iov->iov_len; 967 if (size <= iov->iov_len) 968 break; 969 size -= iov->iov_len; 970 } 971 } 972 return res; 973 } 974 EXPORT_SYMBOL(iov_iter_gap_alignment); 975 976 static int want_pages_array(struct page ***res, size_t size, 977 size_t start, unsigned int maxpages) 978 { 979 unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE); 980 981 if (count > maxpages) 982 count = maxpages; 983 WARN_ON(!count); // caller should've prevented that 984 if (!*res) { 985 *res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL); 986 if (!*res) 987 return 0; 988 } 989 return count; 990 } 991 992 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa, 993 pgoff_t index, unsigned int nr_pages) 994 { 995 XA_STATE(xas, xa, index); 996 struct page *page; 997 unsigned int ret = 0; 998 999 rcu_read_lock(); 1000 for (page = xas_load(&xas); page; page = xas_next(&xas)) { 1001 if (xas_retry(&xas, page)) 1002 continue; 1003 1004 /* Has the page moved or been split? */ 1005 if (unlikely(page != xas_reload(&xas))) { 1006 xas_reset(&xas); 1007 continue; 1008 } 1009 1010 pages[ret] = find_subpage(page, xas.xa_index); 1011 get_page(pages[ret]); 1012 if (++ret == nr_pages) 1013 break; 1014 } 1015 rcu_read_unlock(); 1016 return ret; 1017 } 1018 1019 static ssize_t iter_xarray_get_pages(struct iov_iter *i, 1020 struct page ***pages, size_t maxsize, 1021 unsigned maxpages, size_t *_start_offset) 1022 { 1023 unsigned nr, offset, count; 1024 pgoff_t index; 1025 loff_t pos; 1026 1027 pos = i->xarray_start + i->iov_offset; 1028 index = pos >> PAGE_SHIFT; 1029 offset = pos & ~PAGE_MASK; 1030 *_start_offset = offset; 1031 1032 count = want_pages_array(pages, maxsize, offset, maxpages); 1033 if (!count) 1034 return -ENOMEM; 1035 nr = iter_xarray_populate_pages(*pages, i->xarray, index, count); 1036 if (nr == 0) 1037 return 0; 1038 1039 maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize); 1040 i->iov_offset += maxsize; 1041 i->count -= maxsize; 1042 return maxsize; 1043 } 1044 1045 /* must be done on non-empty ITER_UBUF or ITER_IOVEC one */ 1046 static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size) 1047 { 1048 size_t skip; 1049 long k; 1050 1051 if (iter_is_ubuf(i)) 1052 return (unsigned long)i->ubuf + i->iov_offset; 1053 1054 for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) { 1055 const struct iovec *iov = iter_iov(i) + k; 1056 size_t len = iov->iov_len - skip; 1057 1058 if (unlikely(!len)) 1059 continue; 1060 if (*size > len) 1061 *size = len; 1062 return (unsigned long)iov->iov_base + skip; 1063 } 1064 BUG(); // if it had been empty, we wouldn't get called 1065 } 1066 1067 /* must be done on non-empty ITER_BVEC one */ 1068 static struct page *first_bvec_segment(const struct iov_iter *i, 1069 size_t *size, size_t *start) 1070 { 1071 struct page *page; 1072 size_t skip = i->iov_offset, len; 1073 1074 len = i->bvec->bv_len - skip; 1075 if (*size > len) 1076 *size = len; 1077 skip += i->bvec->bv_offset; 1078 page = i->bvec->bv_page + skip / PAGE_SIZE; 1079 *start = skip % PAGE_SIZE; 1080 return page; 1081 } 1082 1083 static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i, 1084 struct page ***pages, size_t maxsize, 1085 unsigned int maxpages, size_t *start) 1086 { 1087 unsigned int n, gup_flags = 0; 1088 1089 if (maxsize > i->count) 1090 maxsize = i->count; 1091 if (!maxsize) 1092 return 0; 1093 if (maxsize > MAX_RW_COUNT) 1094 maxsize = MAX_RW_COUNT; 1095 1096 if (likely(user_backed_iter(i))) { 1097 unsigned long addr; 1098 int res; 1099 1100 if (iov_iter_rw(i) != WRITE) 1101 gup_flags |= FOLL_WRITE; 1102 if (i->nofault) 1103 gup_flags |= FOLL_NOFAULT; 1104 1105 addr = first_iovec_segment(i, &maxsize); 1106 *start = addr % PAGE_SIZE; 1107 addr &= PAGE_MASK; 1108 n = want_pages_array(pages, maxsize, *start, maxpages); 1109 if (!n) 1110 return -ENOMEM; 1111 res = get_user_pages_fast(addr, n, gup_flags, *pages); 1112 if (unlikely(res <= 0)) 1113 return res; 1114 maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start); 1115 iov_iter_advance(i, maxsize); 1116 return maxsize; 1117 } 1118 if (iov_iter_is_bvec(i)) { 1119 struct page **p; 1120 struct page *page; 1121 1122 page = first_bvec_segment(i, &maxsize, start); 1123 n = want_pages_array(pages, maxsize, *start, maxpages); 1124 if (!n) 1125 return -ENOMEM; 1126 p = *pages; 1127 for (int k = 0; k < n; k++) 1128 get_page(p[k] = page + k); 1129 maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start); 1130 i->count -= maxsize; 1131 i->iov_offset += maxsize; 1132 if (i->iov_offset == i->bvec->bv_len) { 1133 i->iov_offset = 0; 1134 i->bvec++; 1135 i->nr_segs--; 1136 } 1137 return maxsize; 1138 } 1139 if (iov_iter_is_xarray(i)) 1140 return iter_xarray_get_pages(i, pages, maxsize, maxpages, start); 1141 return -EFAULT; 1142 } 1143 1144 ssize_t iov_iter_get_pages2(struct iov_iter *i, struct page **pages, 1145 size_t maxsize, unsigned maxpages, size_t *start) 1146 { 1147 if (!maxpages) 1148 return 0; 1149 BUG_ON(!pages); 1150 1151 return __iov_iter_get_pages_alloc(i, &pages, maxsize, maxpages, start); 1152 } 1153 EXPORT_SYMBOL(iov_iter_get_pages2); 1154 1155 ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i, 1156 struct page ***pages, size_t maxsize, size_t *start) 1157 { 1158 ssize_t len; 1159 1160 *pages = NULL; 1161 1162 len = __iov_iter_get_pages_alloc(i, pages, maxsize, ~0U, start); 1163 if (len <= 0) { 1164 kvfree(*pages); 1165 *pages = NULL; 1166 } 1167 return len; 1168 } 1169 EXPORT_SYMBOL(iov_iter_get_pages_alloc2); 1170 1171 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum, 1172 struct iov_iter *i) 1173 { 1174 __wsum sum, next; 1175 sum = *csum; 1176 if (WARN_ON_ONCE(!i->data_source)) 1177 return 0; 1178 1179 iterate_and_advance(i, bytes, base, len, off, ({ 1180 next = csum_and_copy_from_user(base, addr + off, len); 1181 sum = csum_block_add(sum, next, off); 1182 next ? 0 : len; 1183 }), ({ 1184 sum = csum_and_memcpy(addr + off, base, len, sum, off); 1185 }) 1186 ) 1187 *csum = sum; 1188 return bytes; 1189 } 1190 EXPORT_SYMBOL(csum_and_copy_from_iter); 1191 1192 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate, 1193 struct iov_iter *i) 1194 { 1195 struct csum_state *csstate = _csstate; 1196 __wsum sum, next; 1197 1198 if (WARN_ON_ONCE(i->data_source)) 1199 return 0; 1200 if (unlikely(iov_iter_is_discard(i))) { 1201 // can't use csum_memcpy() for that one - data is not copied 1202 csstate->csum = csum_block_add(csstate->csum, 1203 csum_partial(addr, bytes, 0), 1204 csstate->off); 1205 csstate->off += bytes; 1206 return bytes; 1207 } 1208 1209 sum = csum_shift(csstate->csum, csstate->off); 1210 iterate_and_advance(i, bytes, base, len, off, ({ 1211 next = csum_and_copy_to_user(addr + off, base, len); 1212 sum = csum_block_add(sum, next, off); 1213 next ? 0 : len; 1214 }), ({ 1215 sum = csum_and_memcpy(base, addr + off, len, sum, off); 1216 }) 1217 ) 1218 csstate->csum = csum_shift(sum, csstate->off); 1219 csstate->off += bytes; 1220 return bytes; 1221 } 1222 EXPORT_SYMBOL(csum_and_copy_to_iter); 1223 1224 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp, 1225 struct iov_iter *i) 1226 { 1227 #ifdef CONFIG_CRYPTO_HASH 1228 struct ahash_request *hash = hashp; 1229 struct scatterlist sg; 1230 size_t copied; 1231 1232 copied = copy_to_iter(addr, bytes, i); 1233 sg_init_one(&sg, addr, copied); 1234 ahash_request_set_crypt(hash, &sg, NULL, copied); 1235 crypto_ahash_update(hash); 1236 return copied; 1237 #else 1238 return 0; 1239 #endif 1240 } 1241 EXPORT_SYMBOL(hash_and_copy_to_iter); 1242 1243 static int iov_npages(const struct iov_iter *i, int maxpages) 1244 { 1245 size_t skip = i->iov_offset, size = i->count; 1246 const struct iovec *p; 1247 int npages = 0; 1248 1249 for (p = iter_iov(i); size; skip = 0, p++) { 1250 unsigned offs = offset_in_page(p->iov_base + skip); 1251 size_t len = min(p->iov_len - skip, size); 1252 1253 if (len) { 1254 size -= len; 1255 npages += DIV_ROUND_UP(offs + len, PAGE_SIZE); 1256 if (unlikely(npages > maxpages)) 1257 return maxpages; 1258 } 1259 } 1260 return npages; 1261 } 1262 1263 static int bvec_npages(const struct iov_iter *i, int maxpages) 1264 { 1265 size_t skip = i->iov_offset, size = i->count; 1266 const struct bio_vec *p; 1267 int npages = 0; 1268 1269 for (p = i->bvec; size; skip = 0, p++) { 1270 unsigned offs = (p->bv_offset + skip) % PAGE_SIZE; 1271 size_t len = min(p->bv_len - skip, size); 1272 1273 size -= len; 1274 npages += DIV_ROUND_UP(offs + len, PAGE_SIZE); 1275 if (unlikely(npages > maxpages)) 1276 return maxpages; 1277 } 1278 return npages; 1279 } 1280 1281 int iov_iter_npages(const struct iov_iter *i, int maxpages) 1282 { 1283 if (unlikely(!i->count)) 1284 return 0; 1285 if (likely(iter_is_ubuf(i))) { 1286 unsigned offs = offset_in_page(i->ubuf + i->iov_offset); 1287 int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE); 1288 return min(npages, maxpages); 1289 } 1290 /* iovec and kvec have identical layouts */ 1291 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) 1292 return iov_npages(i, maxpages); 1293 if (iov_iter_is_bvec(i)) 1294 return bvec_npages(i, maxpages); 1295 if (iov_iter_is_xarray(i)) { 1296 unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE; 1297 int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE); 1298 return min(npages, maxpages); 1299 } 1300 return 0; 1301 } 1302 EXPORT_SYMBOL(iov_iter_npages); 1303 1304 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags) 1305 { 1306 *new = *old; 1307 if (iov_iter_is_bvec(new)) 1308 return new->bvec = kmemdup(new->bvec, 1309 new->nr_segs * sizeof(struct bio_vec), 1310 flags); 1311 else if (iov_iter_is_kvec(new) || iter_is_iovec(new)) 1312 /* iovec and kvec have identical layout */ 1313 return new->__iov = kmemdup(new->__iov, 1314 new->nr_segs * sizeof(struct iovec), 1315 flags); 1316 return NULL; 1317 } 1318 EXPORT_SYMBOL(dup_iter); 1319 1320 static __noclone int copy_compat_iovec_from_user(struct iovec *iov, 1321 const struct iovec __user *uvec, unsigned long nr_segs) 1322 { 1323 const struct compat_iovec __user *uiov = 1324 (const struct compat_iovec __user *)uvec; 1325 int ret = -EFAULT, i; 1326 1327 if (!user_access_begin(uiov, nr_segs * sizeof(*uiov))) 1328 return -EFAULT; 1329 1330 for (i = 0; i < nr_segs; i++) { 1331 compat_uptr_t buf; 1332 compat_ssize_t len; 1333 1334 unsafe_get_user(len, &uiov[i].iov_len, uaccess_end); 1335 unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end); 1336 1337 /* check for compat_size_t not fitting in compat_ssize_t .. */ 1338 if (len < 0) { 1339 ret = -EINVAL; 1340 goto uaccess_end; 1341 } 1342 iov[i].iov_base = compat_ptr(buf); 1343 iov[i].iov_len = len; 1344 } 1345 1346 ret = 0; 1347 uaccess_end: 1348 user_access_end(); 1349 return ret; 1350 } 1351 1352 static int copy_iovec_from_user(struct iovec *iov, 1353 const struct iovec __user *uiov, unsigned long nr_segs) 1354 { 1355 int ret = -EFAULT; 1356 1357 if (!user_access_begin(uiov, nr_segs * sizeof(*uiov))) 1358 return -EFAULT; 1359 1360 do { 1361 void __user *buf; 1362 ssize_t len; 1363 1364 unsafe_get_user(len, &uiov->iov_len, uaccess_end); 1365 unsafe_get_user(buf, &uiov->iov_base, uaccess_end); 1366 1367 /* check for size_t not fitting in ssize_t .. */ 1368 if (unlikely(len < 0)) { 1369 ret = -EINVAL; 1370 goto uaccess_end; 1371 } 1372 iov->iov_base = buf; 1373 iov->iov_len = len; 1374 1375 uiov++; iov++; 1376 } while (--nr_segs); 1377 1378 ret = 0; 1379 uaccess_end: 1380 user_access_end(); 1381 return ret; 1382 } 1383 1384 struct iovec *iovec_from_user(const struct iovec __user *uvec, 1385 unsigned long nr_segs, unsigned long fast_segs, 1386 struct iovec *fast_iov, bool compat) 1387 { 1388 struct iovec *iov = fast_iov; 1389 int ret; 1390 1391 /* 1392 * SuS says "The readv() function *may* fail if the iovcnt argument was 1393 * less than or equal to 0, or greater than {IOV_MAX}. Linux has 1394 * traditionally returned zero for zero segments, so... 1395 */ 1396 if (nr_segs == 0) 1397 return iov; 1398 if (nr_segs > UIO_MAXIOV) 1399 return ERR_PTR(-EINVAL); 1400 if (nr_segs > fast_segs) { 1401 iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL); 1402 if (!iov) 1403 return ERR_PTR(-ENOMEM); 1404 } 1405 1406 if (unlikely(compat)) 1407 ret = copy_compat_iovec_from_user(iov, uvec, nr_segs); 1408 else 1409 ret = copy_iovec_from_user(iov, uvec, nr_segs); 1410 if (ret) { 1411 if (iov != fast_iov) 1412 kfree(iov); 1413 return ERR_PTR(ret); 1414 } 1415 1416 return iov; 1417 } 1418 1419 /* 1420 * Single segment iovec supplied by the user, import it as ITER_UBUF. 1421 */ 1422 static ssize_t __import_iovec_ubuf(int type, const struct iovec __user *uvec, 1423 struct iovec **iovp, struct iov_iter *i, 1424 bool compat) 1425 { 1426 struct iovec *iov = *iovp; 1427 ssize_t ret; 1428 1429 if (compat) 1430 ret = copy_compat_iovec_from_user(iov, uvec, 1); 1431 else 1432 ret = copy_iovec_from_user(iov, uvec, 1); 1433 if (unlikely(ret)) 1434 return ret; 1435 1436 ret = import_ubuf(type, iov->iov_base, iov->iov_len, i); 1437 if (unlikely(ret)) 1438 return ret; 1439 *iovp = NULL; 1440 return i->count; 1441 } 1442 1443 ssize_t __import_iovec(int type, const struct iovec __user *uvec, 1444 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp, 1445 struct iov_iter *i, bool compat) 1446 { 1447 ssize_t total_len = 0; 1448 unsigned long seg; 1449 struct iovec *iov; 1450 1451 if (nr_segs == 1) 1452 return __import_iovec_ubuf(type, uvec, iovp, i, compat); 1453 1454 iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat); 1455 if (IS_ERR(iov)) { 1456 *iovp = NULL; 1457 return PTR_ERR(iov); 1458 } 1459 1460 /* 1461 * According to the Single Unix Specification we should return EINVAL if 1462 * an element length is < 0 when cast to ssize_t or if the total length 1463 * would overflow the ssize_t return value of the system call. 1464 * 1465 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the 1466 * overflow case. 1467 */ 1468 for (seg = 0; seg < nr_segs; seg++) { 1469 ssize_t len = (ssize_t)iov[seg].iov_len; 1470 1471 if (!access_ok(iov[seg].iov_base, len)) { 1472 if (iov != *iovp) 1473 kfree(iov); 1474 *iovp = NULL; 1475 return -EFAULT; 1476 } 1477 1478 if (len > MAX_RW_COUNT - total_len) { 1479 len = MAX_RW_COUNT - total_len; 1480 iov[seg].iov_len = len; 1481 } 1482 total_len += len; 1483 } 1484 1485 iov_iter_init(i, type, iov, nr_segs, total_len); 1486 if (iov == *iovp) 1487 *iovp = NULL; 1488 else 1489 *iovp = iov; 1490 return total_len; 1491 } 1492 1493 /** 1494 * import_iovec() - Copy an array of &struct iovec from userspace 1495 * into the kernel, check that it is valid, and initialize a new 1496 * &struct iov_iter iterator to access it. 1497 * 1498 * @type: One of %READ or %WRITE. 1499 * @uvec: Pointer to the userspace array. 1500 * @nr_segs: Number of elements in userspace array. 1501 * @fast_segs: Number of elements in @iov. 1502 * @iovp: (input and output parameter) Pointer to pointer to (usually small 1503 * on-stack) kernel array. 1504 * @i: Pointer to iterator that will be initialized on success. 1505 * 1506 * If the array pointed to by *@iov is large enough to hold all @nr_segs, 1507 * then this function places %NULL in *@iov on return. Otherwise, a new 1508 * array will be allocated and the result placed in *@iov. This means that 1509 * the caller may call kfree() on *@iov regardless of whether the small 1510 * on-stack array was used or not (and regardless of whether this function 1511 * returns an error or not). 1512 * 1513 * Return: Negative error code on error, bytes imported on success 1514 */ 1515 ssize_t import_iovec(int type, const struct iovec __user *uvec, 1516 unsigned nr_segs, unsigned fast_segs, 1517 struct iovec **iovp, struct iov_iter *i) 1518 { 1519 return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i, 1520 in_compat_syscall()); 1521 } 1522 EXPORT_SYMBOL(import_iovec); 1523 1524 int import_single_range(int rw, void __user *buf, size_t len, 1525 struct iovec *iov, struct iov_iter *i) 1526 { 1527 if (len > MAX_RW_COUNT) 1528 len = MAX_RW_COUNT; 1529 if (unlikely(!access_ok(buf, len))) 1530 return -EFAULT; 1531 1532 iov_iter_ubuf(i, rw, buf, len); 1533 return 0; 1534 } 1535 EXPORT_SYMBOL(import_single_range); 1536 1537 int import_ubuf(int rw, void __user *buf, size_t len, struct iov_iter *i) 1538 { 1539 if (len > MAX_RW_COUNT) 1540 len = MAX_RW_COUNT; 1541 if (unlikely(!access_ok(buf, len))) 1542 return -EFAULT; 1543 1544 iov_iter_ubuf(i, rw, buf, len); 1545 return 0; 1546 } 1547 1548 /** 1549 * iov_iter_restore() - Restore a &struct iov_iter to the same state as when 1550 * iov_iter_save_state() was called. 1551 * 1552 * @i: &struct iov_iter to restore 1553 * @state: state to restore from 1554 * 1555 * Used after iov_iter_save_state() to bring restore @i, if operations may 1556 * have advanced it. 1557 * 1558 * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC 1559 */ 1560 void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state) 1561 { 1562 if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i) && 1563 !iter_is_ubuf(i)) && !iov_iter_is_kvec(i)) 1564 return; 1565 i->iov_offset = state->iov_offset; 1566 i->count = state->count; 1567 if (iter_is_ubuf(i)) 1568 return; 1569 /* 1570 * For the *vec iters, nr_segs + iov is constant - if we increment 1571 * the vec, then we also decrement the nr_segs count. Hence we don't 1572 * need to track both of these, just one is enough and we can deduct 1573 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct 1574 * size, so we can just increment the iov pointer as they are unionzed. 1575 * ITER_BVEC _may_ be the same size on some archs, but on others it is 1576 * not. Be safe and handle it separately. 1577 */ 1578 BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec)); 1579 if (iov_iter_is_bvec(i)) 1580 i->bvec -= state->nr_segs - i->nr_segs; 1581 else 1582 i->__iov -= state->nr_segs - i->nr_segs; 1583 i->nr_segs = state->nr_segs; 1584 } 1585 1586 /* 1587 * Extract a list of contiguous pages from an ITER_XARRAY iterator. This does not 1588 * get references on the pages, nor does it get a pin on them. 1589 */ 1590 static ssize_t iov_iter_extract_xarray_pages(struct iov_iter *i, 1591 struct page ***pages, size_t maxsize, 1592 unsigned int maxpages, 1593 iov_iter_extraction_t extraction_flags, 1594 size_t *offset0) 1595 { 1596 struct page *page, **p; 1597 unsigned int nr = 0, offset; 1598 loff_t pos = i->xarray_start + i->iov_offset; 1599 pgoff_t index = pos >> PAGE_SHIFT; 1600 XA_STATE(xas, i->xarray, index); 1601 1602 offset = pos & ~PAGE_MASK; 1603 *offset0 = offset; 1604 1605 maxpages = want_pages_array(pages, maxsize, offset, maxpages); 1606 if (!maxpages) 1607 return -ENOMEM; 1608 p = *pages; 1609 1610 rcu_read_lock(); 1611 for (page = xas_load(&xas); page; page = xas_next(&xas)) { 1612 if (xas_retry(&xas, page)) 1613 continue; 1614 1615 /* Has the page moved or been split? */ 1616 if (unlikely(page != xas_reload(&xas))) { 1617 xas_reset(&xas); 1618 continue; 1619 } 1620 1621 p[nr++] = find_subpage(page, xas.xa_index); 1622 if (nr == maxpages) 1623 break; 1624 } 1625 rcu_read_unlock(); 1626 1627 maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize); 1628 iov_iter_advance(i, maxsize); 1629 return maxsize; 1630 } 1631 1632 /* 1633 * Extract a list of contiguous pages from an ITER_BVEC iterator. This does 1634 * not get references on the pages, nor does it get a pin on them. 1635 */ 1636 static ssize_t iov_iter_extract_bvec_pages(struct iov_iter *i, 1637 struct page ***pages, size_t maxsize, 1638 unsigned int maxpages, 1639 iov_iter_extraction_t extraction_flags, 1640 size_t *offset0) 1641 { 1642 struct page **p, *page; 1643 size_t skip = i->iov_offset, offset; 1644 int k; 1645 1646 for (;;) { 1647 if (i->nr_segs == 0) 1648 return 0; 1649 maxsize = min(maxsize, i->bvec->bv_len - skip); 1650 if (maxsize) 1651 break; 1652 i->iov_offset = 0; 1653 i->nr_segs--; 1654 i->bvec++; 1655 skip = 0; 1656 } 1657 1658 skip += i->bvec->bv_offset; 1659 page = i->bvec->bv_page + skip / PAGE_SIZE; 1660 offset = skip % PAGE_SIZE; 1661 *offset0 = offset; 1662 1663 maxpages = want_pages_array(pages, maxsize, offset, maxpages); 1664 if (!maxpages) 1665 return -ENOMEM; 1666 p = *pages; 1667 for (k = 0; k < maxpages; k++) 1668 p[k] = page + k; 1669 1670 maxsize = min_t(size_t, maxsize, maxpages * PAGE_SIZE - offset); 1671 iov_iter_advance(i, maxsize); 1672 return maxsize; 1673 } 1674 1675 /* 1676 * Extract a list of virtually contiguous pages from an ITER_KVEC iterator. 1677 * This does not get references on the pages, nor does it get a pin on them. 1678 */ 1679 static ssize_t iov_iter_extract_kvec_pages(struct iov_iter *i, 1680 struct page ***pages, size_t maxsize, 1681 unsigned int maxpages, 1682 iov_iter_extraction_t extraction_flags, 1683 size_t *offset0) 1684 { 1685 struct page **p, *page; 1686 const void *kaddr; 1687 size_t skip = i->iov_offset, offset, len; 1688 int k; 1689 1690 for (;;) { 1691 if (i->nr_segs == 0) 1692 return 0; 1693 maxsize = min(maxsize, i->kvec->iov_len - skip); 1694 if (maxsize) 1695 break; 1696 i->iov_offset = 0; 1697 i->nr_segs--; 1698 i->kvec++; 1699 skip = 0; 1700 } 1701 1702 kaddr = i->kvec->iov_base + skip; 1703 offset = (unsigned long)kaddr & ~PAGE_MASK; 1704 *offset0 = offset; 1705 1706 maxpages = want_pages_array(pages, maxsize, offset, maxpages); 1707 if (!maxpages) 1708 return -ENOMEM; 1709 p = *pages; 1710 1711 kaddr -= offset; 1712 len = offset + maxsize; 1713 for (k = 0; k < maxpages; k++) { 1714 size_t seg = min_t(size_t, len, PAGE_SIZE); 1715 1716 if (is_vmalloc_or_module_addr(kaddr)) 1717 page = vmalloc_to_page(kaddr); 1718 else 1719 page = virt_to_page(kaddr); 1720 1721 p[k] = page; 1722 len -= seg; 1723 kaddr += PAGE_SIZE; 1724 } 1725 1726 maxsize = min_t(size_t, maxsize, maxpages * PAGE_SIZE - offset); 1727 iov_iter_advance(i, maxsize); 1728 return maxsize; 1729 } 1730 1731 /* 1732 * Extract a list of contiguous pages from a user iterator and get a pin on 1733 * each of them. This should only be used if the iterator is user-backed 1734 * (IOBUF/UBUF). 1735 * 1736 * It does not get refs on the pages, but the pages must be unpinned by the 1737 * caller once the transfer is complete. 1738 * 1739 * This is safe to be used where background IO/DMA *is* going to be modifying 1740 * the buffer; using a pin rather than a ref makes forces fork() to give the 1741 * child a copy of the page. 1742 */ 1743 static ssize_t iov_iter_extract_user_pages(struct iov_iter *i, 1744 struct page ***pages, 1745 size_t maxsize, 1746 unsigned int maxpages, 1747 iov_iter_extraction_t extraction_flags, 1748 size_t *offset0) 1749 { 1750 unsigned long addr; 1751 unsigned int gup_flags = 0; 1752 size_t offset; 1753 int res; 1754 1755 if (i->data_source == ITER_DEST) 1756 gup_flags |= FOLL_WRITE; 1757 if (extraction_flags & ITER_ALLOW_P2PDMA) 1758 gup_flags |= FOLL_PCI_P2PDMA; 1759 if (i->nofault) 1760 gup_flags |= FOLL_NOFAULT; 1761 1762 addr = first_iovec_segment(i, &maxsize); 1763 *offset0 = offset = addr % PAGE_SIZE; 1764 addr &= PAGE_MASK; 1765 maxpages = want_pages_array(pages, maxsize, offset, maxpages); 1766 if (!maxpages) 1767 return -ENOMEM; 1768 res = pin_user_pages_fast(addr, maxpages, gup_flags, *pages); 1769 if (unlikely(res <= 0)) 1770 return res; 1771 maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - offset); 1772 iov_iter_advance(i, maxsize); 1773 return maxsize; 1774 } 1775 1776 /** 1777 * iov_iter_extract_pages - Extract a list of contiguous pages from an iterator 1778 * @i: The iterator to extract from 1779 * @pages: Where to return the list of pages 1780 * @maxsize: The maximum amount of iterator to extract 1781 * @maxpages: The maximum size of the list of pages 1782 * @extraction_flags: Flags to qualify request 1783 * @offset0: Where to return the starting offset into (*@pages)[0] 1784 * 1785 * Extract a list of contiguous pages from the current point of the iterator, 1786 * advancing the iterator. The maximum number of pages and the maximum amount 1787 * of page contents can be set. 1788 * 1789 * If *@pages is NULL, a page list will be allocated to the required size and 1790 * *@pages will be set to its base. If *@pages is not NULL, it will be assumed 1791 * that the caller allocated a page list at least @maxpages in size and this 1792 * will be filled in. 1793 * 1794 * @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA 1795 * be allowed on the pages extracted. 1796 * 1797 * The iov_iter_extract_will_pin() function can be used to query how cleanup 1798 * should be performed. 1799 * 1800 * Extra refs or pins on the pages may be obtained as follows: 1801 * 1802 * (*) If the iterator is user-backed (ITER_IOVEC/ITER_UBUF), pins will be 1803 * added to the pages, but refs will not be taken. 1804 * iov_iter_extract_will_pin() will return true. 1805 * 1806 * (*) If the iterator is ITER_KVEC, ITER_BVEC or ITER_XARRAY, the pages are 1807 * merely listed; no extra refs or pins are obtained. 1808 * iov_iter_extract_will_pin() will return 0. 1809 * 1810 * Note also: 1811 * 1812 * (*) Use with ITER_DISCARD is not supported as that has no content. 1813 * 1814 * On success, the function sets *@pages to the new pagelist, if allocated, and 1815 * sets *offset0 to the offset into the first page. 1816 * 1817 * It may also return -ENOMEM and -EFAULT. 1818 */ 1819 ssize_t iov_iter_extract_pages(struct iov_iter *i, 1820 struct page ***pages, 1821 size_t maxsize, 1822 unsigned int maxpages, 1823 iov_iter_extraction_t extraction_flags, 1824 size_t *offset0) 1825 { 1826 maxsize = min_t(size_t, min_t(size_t, maxsize, i->count), MAX_RW_COUNT); 1827 if (!maxsize) 1828 return 0; 1829 1830 if (likely(user_backed_iter(i))) 1831 return iov_iter_extract_user_pages(i, pages, maxsize, 1832 maxpages, extraction_flags, 1833 offset0); 1834 if (iov_iter_is_kvec(i)) 1835 return iov_iter_extract_kvec_pages(i, pages, maxsize, 1836 maxpages, extraction_flags, 1837 offset0); 1838 if (iov_iter_is_bvec(i)) 1839 return iov_iter_extract_bvec_pages(i, pages, maxsize, 1840 maxpages, extraction_flags, 1841 offset0); 1842 if (iov_iter_is_xarray(i)) 1843 return iov_iter_extract_xarray_pages(i, pages, maxsize, 1844 maxpages, extraction_flags, 1845 offset0); 1846 return -EFAULT; 1847 } 1848 EXPORT_SYMBOL_GPL(iov_iter_extract_pages); 1849