xref: /linux/lib/iov_iter.c (revision 60684c2bd35064043360e6f716d1b7c20e967b7d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <crypto/hash.h>
3 #include <linux/export.h>
4 #include <linux/bvec.h>
5 #include <linux/fault-inject-usercopy.h>
6 #include <linux/uio.h>
7 #include <linux/pagemap.h>
8 #include <linux/highmem.h>
9 #include <linux/slab.h>
10 #include <linux/vmalloc.h>
11 #include <linux/splice.h>
12 #include <linux/compat.h>
13 #include <net/checksum.h>
14 #include <linux/scatterlist.h>
15 #include <linux/instrumented.h>
16 
17 #define PIPE_PARANOIA /* for now */
18 
19 /* covers ubuf and kbuf alike */
20 #define iterate_buf(i, n, base, len, off, __p, STEP) {		\
21 	size_t __maybe_unused off = 0;				\
22 	len = n;						\
23 	base = __p + i->iov_offset;				\
24 	len -= (STEP);						\
25 	i->iov_offset += len;					\
26 	n = len;						\
27 }
28 
29 /* covers iovec and kvec alike */
30 #define iterate_iovec(i, n, base, len, off, __p, STEP) {	\
31 	size_t off = 0;						\
32 	size_t skip = i->iov_offset;				\
33 	do {							\
34 		len = min(n, __p->iov_len - skip);		\
35 		if (likely(len)) {				\
36 			base = __p->iov_base + skip;		\
37 			len -= (STEP);				\
38 			off += len;				\
39 			skip += len;				\
40 			n -= len;				\
41 			if (skip < __p->iov_len)		\
42 				break;				\
43 		}						\
44 		__p++;						\
45 		skip = 0;					\
46 	} while (n);						\
47 	i->iov_offset = skip;					\
48 	n = off;						\
49 }
50 
51 #define iterate_bvec(i, n, base, len, off, p, STEP) {		\
52 	size_t off = 0;						\
53 	unsigned skip = i->iov_offset;				\
54 	while (n) {						\
55 		unsigned offset = p->bv_offset + skip;		\
56 		unsigned left;					\
57 		void *kaddr = kmap_local_page(p->bv_page +	\
58 					offset / PAGE_SIZE);	\
59 		base = kaddr + offset % PAGE_SIZE;		\
60 		len = min(min(n, (size_t)(p->bv_len - skip)),	\
61 		     (size_t)(PAGE_SIZE - offset % PAGE_SIZE));	\
62 		left = (STEP);					\
63 		kunmap_local(kaddr);				\
64 		len -= left;					\
65 		off += len;					\
66 		skip += len;					\
67 		if (skip == p->bv_len) {			\
68 			skip = 0;				\
69 			p++;					\
70 		}						\
71 		n -= len;					\
72 		if (left)					\
73 			break;					\
74 	}							\
75 	i->iov_offset = skip;					\
76 	n = off;						\
77 }
78 
79 #define iterate_xarray(i, n, base, len, __off, STEP) {		\
80 	__label__ __out;					\
81 	size_t __off = 0;					\
82 	struct folio *folio;					\
83 	loff_t start = i->xarray_start + i->iov_offset;		\
84 	pgoff_t index = start / PAGE_SIZE;			\
85 	XA_STATE(xas, i->xarray, index);			\
86 								\
87 	len = PAGE_SIZE - offset_in_page(start);		\
88 	rcu_read_lock();					\
89 	xas_for_each(&xas, folio, ULONG_MAX) {			\
90 		unsigned left;					\
91 		size_t offset;					\
92 		if (xas_retry(&xas, folio))			\
93 			continue;				\
94 		if (WARN_ON(xa_is_value(folio)))		\
95 			break;					\
96 		if (WARN_ON(folio_test_hugetlb(folio)))		\
97 			break;					\
98 		offset = offset_in_folio(folio, start + __off);	\
99 		while (offset < folio_size(folio)) {		\
100 			base = kmap_local_folio(folio, offset);	\
101 			len = min(n, len);			\
102 			left = (STEP);				\
103 			kunmap_local(base);			\
104 			len -= left;				\
105 			__off += len;				\
106 			n -= len;				\
107 			if (left || n == 0)			\
108 				goto __out;			\
109 			offset += len;				\
110 			len = PAGE_SIZE;			\
111 		}						\
112 	}							\
113 __out:								\
114 	rcu_read_unlock();					\
115 	i->iov_offset += __off;					\
116 	n = __off;						\
117 }
118 
119 #define __iterate_and_advance(i, n, base, len, off, I, K) {	\
120 	if (unlikely(i->count < n))				\
121 		n = i->count;					\
122 	if (likely(n)) {					\
123 		if (likely(iter_is_ubuf(i))) {			\
124 			void __user *base;			\
125 			size_t len;				\
126 			iterate_buf(i, n, base, len, off,	\
127 						i->ubuf, (I)) 	\
128 		} else if (likely(iter_is_iovec(i))) {		\
129 			const struct iovec *iov = i->iov;	\
130 			void __user *base;			\
131 			size_t len;				\
132 			iterate_iovec(i, n, base, len, off,	\
133 						iov, (I))	\
134 			i->nr_segs -= iov - i->iov;		\
135 			i->iov = iov;				\
136 		} else if (iov_iter_is_bvec(i)) {		\
137 			const struct bio_vec *bvec = i->bvec;	\
138 			void *base;				\
139 			size_t len;				\
140 			iterate_bvec(i, n, base, len, off,	\
141 						bvec, (K))	\
142 			i->nr_segs -= bvec - i->bvec;		\
143 			i->bvec = bvec;				\
144 		} else if (iov_iter_is_kvec(i)) {		\
145 			const struct kvec *kvec = i->kvec;	\
146 			void *base;				\
147 			size_t len;				\
148 			iterate_iovec(i, n, base, len, off,	\
149 						kvec, (K))	\
150 			i->nr_segs -= kvec - i->kvec;		\
151 			i->kvec = kvec;				\
152 		} else if (iov_iter_is_xarray(i)) {		\
153 			void *base;				\
154 			size_t len;				\
155 			iterate_xarray(i, n, base, len, off,	\
156 							(K))	\
157 		}						\
158 		i->count -= n;					\
159 	}							\
160 }
161 #define iterate_and_advance(i, n, base, len, off, I, K) \
162 	__iterate_and_advance(i, n, base, len, off, I, ((void)(K),0))
163 
164 static int copyout(void __user *to, const void *from, size_t n)
165 {
166 	if (should_fail_usercopy())
167 		return n;
168 	if (access_ok(to, n)) {
169 		instrument_copy_to_user(to, from, n);
170 		n = raw_copy_to_user(to, from, n);
171 	}
172 	return n;
173 }
174 
175 static int copyin(void *to, const void __user *from, size_t n)
176 {
177 	size_t res = n;
178 
179 	if (should_fail_usercopy())
180 		return n;
181 	if (access_ok(from, n)) {
182 		instrument_copy_from_user_before(to, from, n);
183 		res = raw_copy_from_user(to, from, n);
184 		instrument_copy_from_user_after(to, from, n, res);
185 	}
186 	return res;
187 }
188 
189 #ifdef PIPE_PARANOIA
190 static bool sanity(const struct iov_iter *i)
191 {
192 	struct pipe_inode_info *pipe = i->pipe;
193 	unsigned int p_head = pipe->head;
194 	unsigned int p_tail = pipe->tail;
195 	unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
196 	unsigned int i_head = i->head;
197 	unsigned int idx;
198 
199 	if (i->last_offset) {
200 		struct pipe_buffer *p;
201 		if (unlikely(p_occupancy == 0))
202 			goto Bad;	// pipe must be non-empty
203 		if (unlikely(i_head != p_head - 1))
204 			goto Bad;	// must be at the last buffer...
205 
206 		p = pipe_buf(pipe, i_head);
207 		if (unlikely(p->offset + p->len != abs(i->last_offset)))
208 			goto Bad;	// ... at the end of segment
209 	} else {
210 		if (i_head != p_head)
211 			goto Bad;	// must be right after the last buffer
212 	}
213 	return true;
214 Bad:
215 	printk(KERN_ERR "idx = %d, offset = %d\n", i_head, i->last_offset);
216 	printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
217 			p_head, p_tail, pipe->ring_size);
218 	for (idx = 0; idx < pipe->ring_size; idx++)
219 		printk(KERN_ERR "[%p %p %d %d]\n",
220 			pipe->bufs[idx].ops,
221 			pipe->bufs[idx].page,
222 			pipe->bufs[idx].offset,
223 			pipe->bufs[idx].len);
224 	WARN_ON(1);
225 	return false;
226 }
227 #else
228 #define sanity(i) true
229 #endif
230 
231 static struct page *push_anon(struct pipe_inode_info *pipe, unsigned size)
232 {
233 	struct page *page = alloc_page(GFP_USER);
234 	if (page) {
235 		struct pipe_buffer *buf = pipe_buf(pipe, pipe->head++);
236 		*buf = (struct pipe_buffer) {
237 			.ops = &default_pipe_buf_ops,
238 			.page = page,
239 			.offset = 0,
240 			.len = size
241 		};
242 	}
243 	return page;
244 }
245 
246 static void push_page(struct pipe_inode_info *pipe, struct page *page,
247 			unsigned int offset, unsigned int size)
248 {
249 	struct pipe_buffer *buf = pipe_buf(pipe, pipe->head++);
250 	*buf = (struct pipe_buffer) {
251 		.ops = &page_cache_pipe_buf_ops,
252 		.page = page,
253 		.offset = offset,
254 		.len = size
255 	};
256 	get_page(page);
257 }
258 
259 static inline int last_offset(const struct pipe_buffer *buf)
260 {
261 	if (buf->ops == &default_pipe_buf_ops)
262 		return buf->len;	// buf->offset is 0 for those
263 	else
264 		return -(buf->offset + buf->len);
265 }
266 
267 static struct page *append_pipe(struct iov_iter *i, size_t size,
268 				unsigned int *off)
269 {
270 	struct pipe_inode_info *pipe = i->pipe;
271 	int offset = i->last_offset;
272 	struct pipe_buffer *buf;
273 	struct page *page;
274 
275 	if (offset > 0 && offset < PAGE_SIZE) {
276 		// some space in the last buffer; add to it
277 		buf = pipe_buf(pipe, pipe->head - 1);
278 		size = min_t(size_t, size, PAGE_SIZE - offset);
279 		buf->len += size;
280 		i->last_offset += size;
281 		i->count -= size;
282 		*off = offset;
283 		return buf->page;
284 	}
285 	// OK, we need a new buffer
286 	*off = 0;
287 	size = min_t(size_t, size, PAGE_SIZE);
288 	if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
289 		return NULL;
290 	page = push_anon(pipe, size);
291 	if (!page)
292 		return NULL;
293 	i->head = pipe->head - 1;
294 	i->last_offset = size;
295 	i->count -= size;
296 	return page;
297 }
298 
299 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
300 			 struct iov_iter *i)
301 {
302 	struct pipe_inode_info *pipe = i->pipe;
303 	unsigned int head = pipe->head;
304 
305 	if (unlikely(bytes > i->count))
306 		bytes = i->count;
307 
308 	if (unlikely(!bytes))
309 		return 0;
310 
311 	if (!sanity(i))
312 		return 0;
313 
314 	if (offset && i->last_offset == -offset) { // could we merge it?
315 		struct pipe_buffer *buf = pipe_buf(pipe, head - 1);
316 		if (buf->page == page) {
317 			buf->len += bytes;
318 			i->last_offset -= bytes;
319 			i->count -= bytes;
320 			return bytes;
321 		}
322 	}
323 	if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
324 		return 0;
325 
326 	push_page(pipe, page, offset, bytes);
327 	i->last_offset = -(offset + bytes);
328 	i->head = head;
329 	i->count -= bytes;
330 	return bytes;
331 }
332 
333 /*
334  * fault_in_iov_iter_readable - fault in iov iterator for reading
335  * @i: iterator
336  * @size: maximum length
337  *
338  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
339  * @size.  For each iovec, fault in each page that constitutes the iovec.
340  *
341  * Returns the number of bytes not faulted in (like copy_to_user() and
342  * copy_from_user()).
343  *
344  * Always returns 0 for non-userspace iterators.
345  */
346 size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size)
347 {
348 	if (iter_is_ubuf(i)) {
349 		size_t n = min(size, iov_iter_count(i));
350 		n -= fault_in_readable(i->ubuf + i->iov_offset, n);
351 		return size - n;
352 	} else if (iter_is_iovec(i)) {
353 		size_t count = min(size, iov_iter_count(i));
354 		const struct iovec *p;
355 		size_t skip;
356 
357 		size -= count;
358 		for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) {
359 			size_t len = min(count, p->iov_len - skip);
360 			size_t ret;
361 
362 			if (unlikely(!len))
363 				continue;
364 			ret = fault_in_readable(p->iov_base + skip, len);
365 			count -= len - ret;
366 			if (ret)
367 				break;
368 		}
369 		return count + size;
370 	}
371 	return 0;
372 }
373 EXPORT_SYMBOL(fault_in_iov_iter_readable);
374 
375 /*
376  * fault_in_iov_iter_writeable - fault in iov iterator for writing
377  * @i: iterator
378  * @size: maximum length
379  *
380  * Faults in the iterator using get_user_pages(), i.e., without triggering
381  * hardware page faults.  This is primarily useful when we already know that
382  * some or all of the pages in @i aren't in memory.
383  *
384  * Returns the number of bytes not faulted in, like copy_to_user() and
385  * copy_from_user().
386  *
387  * Always returns 0 for non-user-space iterators.
388  */
389 size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size)
390 {
391 	if (iter_is_ubuf(i)) {
392 		size_t n = min(size, iov_iter_count(i));
393 		n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n);
394 		return size - n;
395 	} else if (iter_is_iovec(i)) {
396 		size_t count = min(size, iov_iter_count(i));
397 		const struct iovec *p;
398 		size_t skip;
399 
400 		size -= count;
401 		for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) {
402 			size_t len = min(count, p->iov_len - skip);
403 			size_t ret;
404 
405 			if (unlikely(!len))
406 				continue;
407 			ret = fault_in_safe_writeable(p->iov_base + skip, len);
408 			count -= len - ret;
409 			if (ret)
410 				break;
411 		}
412 		return count + size;
413 	}
414 	return 0;
415 }
416 EXPORT_SYMBOL(fault_in_iov_iter_writeable);
417 
418 void iov_iter_init(struct iov_iter *i, unsigned int direction,
419 			const struct iovec *iov, unsigned long nr_segs,
420 			size_t count)
421 {
422 	WARN_ON(direction & ~(READ | WRITE));
423 	*i = (struct iov_iter) {
424 		.iter_type = ITER_IOVEC,
425 		.nofault = false,
426 		.user_backed = true,
427 		.data_source = direction,
428 		.iov = iov,
429 		.nr_segs = nr_segs,
430 		.iov_offset = 0,
431 		.count = count
432 	};
433 }
434 EXPORT_SYMBOL(iov_iter_init);
435 
436 // returns the offset in partial buffer (if any)
437 static inline unsigned int pipe_npages(const struct iov_iter *i, int *npages)
438 {
439 	struct pipe_inode_info *pipe = i->pipe;
440 	int used = pipe->head - pipe->tail;
441 	int off = i->last_offset;
442 
443 	*npages = max((int)pipe->max_usage - used, 0);
444 
445 	if (off > 0 && off < PAGE_SIZE) { // anon and not full
446 		(*npages)++;
447 		return off;
448 	}
449 	return 0;
450 }
451 
452 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
453 				struct iov_iter *i)
454 {
455 	unsigned int off, chunk;
456 
457 	if (unlikely(bytes > i->count))
458 		bytes = i->count;
459 	if (unlikely(!bytes))
460 		return 0;
461 
462 	if (!sanity(i))
463 		return 0;
464 
465 	for (size_t n = bytes; n; n -= chunk) {
466 		struct page *page = append_pipe(i, n, &off);
467 		chunk = min_t(size_t, n, PAGE_SIZE - off);
468 		if (!page)
469 			return bytes - n;
470 		memcpy_to_page(page, off, addr, chunk);
471 		addr += chunk;
472 	}
473 	return bytes;
474 }
475 
476 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
477 			      __wsum sum, size_t off)
478 {
479 	__wsum next = csum_partial_copy_nocheck(from, to, len);
480 	return csum_block_add(sum, next, off);
481 }
482 
483 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
484 					 struct iov_iter *i, __wsum *sump)
485 {
486 	__wsum sum = *sump;
487 	size_t off = 0;
488 	unsigned int chunk, r;
489 
490 	if (unlikely(bytes > i->count))
491 		bytes = i->count;
492 	if (unlikely(!bytes))
493 		return 0;
494 
495 	if (!sanity(i))
496 		return 0;
497 
498 	while (bytes) {
499 		struct page *page = append_pipe(i, bytes, &r);
500 		char *p;
501 
502 		if (!page)
503 			break;
504 		chunk = min_t(size_t, bytes, PAGE_SIZE - r);
505 		p = kmap_local_page(page);
506 		sum = csum_and_memcpy(p + r, addr + off, chunk, sum, off);
507 		kunmap_local(p);
508 		off += chunk;
509 		bytes -= chunk;
510 	}
511 	*sump = sum;
512 	return off;
513 }
514 
515 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
516 {
517 	if (WARN_ON_ONCE(i->data_source))
518 		return 0;
519 	if (unlikely(iov_iter_is_pipe(i)))
520 		return copy_pipe_to_iter(addr, bytes, i);
521 	if (user_backed_iter(i))
522 		might_fault();
523 	iterate_and_advance(i, bytes, base, len, off,
524 		copyout(base, addr + off, len),
525 		memcpy(base, addr + off, len)
526 	)
527 
528 	return bytes;
529 }
530 EXPORT_SYMBOL(_copy_to_iter);
531 
532 #ifdef CONFIG_ARCH_HAS_COPY_MC
533 static int copyout_mc(void __user *to, const void *from, size_t n)
534 {
535 	if (access_ok(to, n)) {
536 		instrument_copy_to_user(to, from, n);
537 		n = copy_mc_to_user((__force void *) to, from, n);
538 	}
539 	return n;
540 }
541 
542 static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
543 				struct iov_iter *i)
544 {
545 	size_t xfer = 0;
546 	unsigned int off, chunk;
547 
548 	if (unlikely(bytes > i->count))
549 		bytes = i->count;
550 	if (unlikely(!bytes))
551 		return 0;
552 
553 	if (!sanity(i))
554 		return 0;
555 
556 	while (bytes) {
557 		struct page *page = append_pipe(i, bytes, &off);
558 		unsigned long rem;
559 		char *p;
560 
561 		if (!page)
562 			break;
563 		chunk = min_t(size_t, bytes, PAGE_SIZE - off);
564 		p = kmap_local_page(page);
565 		rem = copy_mc_to_kernel(p + off, addr + xfer, chunk);
566 		chunk -= rem;
567 		kunmap_local(p);
568 		xfer += chunk;
569 		bytes -= chunk;
570 		if (rem) {
571 			iov_iter_revert(i, rem);
572 			break;
573 		}
574 	}
575 	return xfer;
576 }
577 
578 /**
579  * _copy_mc_to_iter - copy to iter with source memory error exception handling
580  * @addr: source kernel address
581  * @bytes: total transfer length
582  * @i: destination iterator
583  *
584  * The pmem driver deploys this for the dax operation
585  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
586  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
587  * successfully copied.
588  *
589  * The main differences between this and typical _copy_to_iter().
590  *
591  * * Typical tail/residue handling after a fault retries the copy
592  *   byte-by-byte until the fault happens again. Re-triggering machine
593  *   checks is potentially fatal so the implementation uses source
594  *   alignment and poison alignment assumptions to avoid re-triggering
595  *   hardware exceptions.
596  *
597  * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
598  *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
599  *   a short copy.
600  *
601  * Return: number of bytes copied (may be %0)
602  */
603 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
604 {
605 	if (WARN_ON_ONCE(i->data_source))
606 		return 0;
607 	if (unlikely(iov_iter_is_pipe(i)))
608 		return copy_mc_pipe_to_iter(addr, bytes, i);
609 	if (user_backed_iter(i))
610 		might_fault();
611 	__iterate_and_advance(i, bytes, base, len, off,
612 		copyout_mc(base, addr + off, len),
613 		copy_mc_to_kernel(base, addr + off, len)
614 	)
615 
616 	return bytes;
617 }
618 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
619 #endif /* CONFIG_ARCH_HAS_COPY_MC */
620 
621 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
622 {
623 	if (WARN_ON_ONCE(!i->data_source))
624 		return 0;
625 
626 	if (user_backed_iter(i))
627 		might_fault();
628 	iterate_and_advance(i, bytes, base, len, off,
629 		copyin(addr + off, base, len),
630 		memcpy(addr + off, base, len)
631 	)
632 
633 	return bytes;
634 }
635 EXPORT_SYMBOL(_copy_from_iter);
636 
637 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
638 {
639 	if (WARN_ON_ONCE(!i->data_source))
640 		return 0;
641 
642 	iterate_and_advance(i, bytes, base, len, off,
643 		__copy_from_user_inatomic_nocache(addr + off, base, len),
644 		memcpy(addr + off, base, len)
645 	)
646 
647 	return bytes;
648 }
649 EXPORT_SYMBOL(_copy_from_iter_nocache);
650 
651 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
652 /**
653  * _copy_from_iter_flushcache - write destination through cpu cache
654  * @addr: destination kernel address
655  * @bytes: total transfer length
656  * @i: source iterator
657  *
658  * The pmem driver arranges for filesystem-dax to use this facility via
659  * dax_copy_from_iter() for ensuring that writes to persistent memory
660  * are flushed through the CPU cache. It is differentiated from
661  * _copy_from_iter_nocache() in that guarantees all data is flushed for
662  * all iterator types. The _copy_from_iter_nocache() only attempts to
663  * bypass the cache for the ITER_IOVEC case, and on some archs may use
664  * instructions that strand dirty-data in the cache.
665  *
666  * Return: number of bytes copied (may be %0)
667  */
668 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
669 {
670 	if (WARN_ON_ONCE(!i->data_source))
671 		return 0;
672 
673 	iterate_and_advance(i, bytes, base, len, off,
674 		__copy_from_user_flushcache(addr + off, base, len),
675 		memcpy_flushcache(addr + off, base, len)
676 	)
677 
678 	return bytes;
679 }
680 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
681 #endif
682 
683 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
684 {
685 	struct page *head;
686 	size_t v = n + offset;
687 
688 	/*
689 	 * The general case needs to access the page order in order
690 	 * to compute the page size.
691 	 * However, we mostly deal with order-0 pages and thus can
692 	 * avoid a possible cache line miss for requests that fit all
693 	 * page orders.
694 	 */
695 	if (n <= v && v <= PAGE_SIZE)
696 		return true;
697 
698 	head = compound_head(page);
699 	v += (page - head) << PAGE_SHIFT;
700 
701 	if (WARN_ON(n > v || v > page_size(head)))
702 		return false;
703 	return true;
704 }
705 
706 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
707 			 struct iov_iter *i)
708 {
709 	size_t res = 0;
710 	if (!page_copy_sane(page, offset, bytes))
711 		return 0;
712 	if (WARN_ON_ONCE(i->data_source))
713 		return 0;
714 	if (unlikely(iov_iter_is_pipe(i)))
715 		return copy_page_to_iter_pipe(page, offset, bytes, i);
716 	page += offset / PAGE_SIZE; // first subpage
717 	offset %= PAGE_SIZE;
718 	while (1) {
719 		void *kaddr = kmap_local_page(page);
720 		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
721 		n = _copy_to_iter(kaddr + offset, n, i);
722 		kunmap_local(kaddr);
723 		res += n;
724 		bytes -= n;
725 		if (!bytes || !n)
726 			break;
727 		offset += n;
728 		if (offset == PAGE_SIZE) {
729 			page++;
730 			offset = 0;
731 		}
732 	}
733 	return res;
734 }
735 EXPORT_SYMBOL(copy_page_to_iter);
736 
737 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
738 			 struct iov_iter *i)
739 {
740 	size_t res = 0;
741 	if (!page_copy_sane(page, offset, bytes))
742 		return 0;
743 	page += offset / PAGE_SIZE; // first subpage
744 	offset %= PAGE_SIZE;
745 	while (1) {
746 		void *kaddr = kmap_local_page(page);
747 		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
748 		n = _copy_from_iter(kaddr + offset, n, i);
749 		kunmap_local(kaddr);
750 		res += n;
751 		bytes -= n;
752 		if (!bytes || !n)
753 			break;
754 		offset += n;
755 		if (offset == PAGE_SIZE) {
756 			page++;
757 			offset = 0;
758 		}
759 	}
760 	return res;
761 }
762 EXPORT_SYMBOL(copy_page_from_iter);
763 
764 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
765 {
766 	unsigned int chunk, off;
767 
768 	if (unlikely(bytes > i->count))
769 		bytes = i->count;
770 	if (unlikely(!bytes))
771 		return 0;
772 
773 	if (!sanity(i))
774 		return 0;
775 
776 	for (size_t n = bytes; n; n -= chunk) {
777 		struct page *page = append_pipe(i, n, &off);
778 		char *p;
779 
780 		if (!page)
781 			return bytes - n;
782 		chunk = min_t(size_t, n, PAGE_SIZE - off);
783 		p = kmap_local_page(page);
784 		memset(p + off, 0, chunk);
785 		kunmap_local(p);
786 	}
787 	return bytes;
788 }
789 
790 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
791 {
792 	if (unlikely(iov_iter_is_pipe(i)))
793 		return pipe_zero(bytes, i);
794 	iterate_and_advance(i, bytes, base, len, count,
795 		clear_user(base, len),
796 		memset(base, 0, len)
797 	)
798 
799 	return bytes;
800 }
801 EXPORT_SYMBOL(iov_iter_zero);
802 
803 size_t copy_page_from_iter_atomic(struct page *page, unsigned offset, size_t bytes,
804 				  struct iov_iter *i)
805 {
806 	char *kaddr = kmap_atomic(page), *p = kaddr + offset;
807 	if (!page_copy_sane(page, offset, bytes)) {
808 		kunmap_atomic(kaddr);
809 		return 0;
810 	}
811 	if (WARN_ON_ONCE(!i->data_source)) {
812 		kunmap_atomic(kaddr);
813 		return 0;
814 	}
815 	iterate_and_advance(i, bytes, base, len, off,
816 		copyin(p + off, base, len),
817 		memcpy(p + off, base, len)
818 	)
819 	kunmap_atomic(kaddr);
820 	return bytes;
821 }
822 EXPORT_SYMBOL(copy_page_from_iter_atomic);
823 
824 static void pipe_advance(struct iov_iter *i, size_t size)
825 {
826 	struct pipe_inode_info *pipe = i->pipe;
827 	int off = i->last_offset;
828 
829 	if (!off && !size) {
830 		pipe_discard_from(pipe, i->start_head); // discard everything
831 		return;
832 	}
833 	i->count -= size;
834 	while (1) {
835 		struct pipe_buffer *buf = pipe_buf(pipe, i->head);
836 		if (off) /* make it relative to the beginning of buffer */
837 			size += abs(off) - buf->offset;
838 		if (size <= buf->len) {
839 			buf->len = size;
840 			i->last_offset = last_offset(buf);
841 			break;
842 		}
843 		size -= buf->len;
844 		i->head++;
845 		off = 0;
846 	}
847 	pipe_discard_from(pipe, i->head + 1); // discard everything past this one
848 }
849 
850 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
851 {
852 	const struct bio_vec *bvec, *end;
853 
854 	if (!i->count)
855 		return;
856 	i->count -= size;
857 
858 	size += i->iov_offset;
859 
860 	for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) {
861 		if (likely(size < bvec->bv_len))
862 			break;
863 		size -= bvec->bv_len;
864 	}
865 	i->iov_offset = size;
866 	i->nr_segs -= bvec - i->bvec;
867 	i->bvec = bvec;
868 }
869 
870 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
871 {
872 	const struct iovec *iov, *end;
873 
874 	if (!i->count)
875 		return;
876 	i->count -= size;
877 
878 	size += i->iov_offset; // from beginning of current segment
879 	for (iov = i->iov, end = iov + i->nr_segs; iov < end; iov++) {
880 		if (likely(size < iov->iov_len))
881 			break;
882 		size -= iov->iov_len;
883 	}
884 	i->iov_offset = size;
885 	i->nr_segs -= iov - i->iov;
886 	i->iov = iov;
887 }
888 
889 void iov_iter_advance(struct iov_iter *i, size_t size)
890 {
891 	if (unlikely(i->count < size))
892 		size = i->count;
893 	if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) {
894 		i->iov_offset += size;
895 		i->count -= size;
896 	} else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
897 		/* iovec and kvec have identical layouts */
898 		iov_iter_iovec_advance(i, size);
899 	} else if (iov_iter_is_bvec(i)) {
900 		iov_iter_bvec_advance(i, size);
901 	} else if (iov_iter_is_pipe(i)) {
902 		pipe_advance(i, size);
903 	} else if (iov_iter_is_discard(i)) {
904 		i->count -= size;
905 	}
906 }
907 EXPORT_SYMBOL(iov_iter_advance);
908 
909 void iov_iter_revert(struct iov_iter *i, size_t unroll)
910 {
911 	if (!unroll)
912 		return;
913 	if (WARN_ON(unroll > MAX_RW_COUNT))
914 		return;
915 	i->count += unroll;
916 	if (unlikely(iov_iter_is_pipe(i))) {
917 		struct pipe_inode_info *pipe = i->pipe;
918 		unsigned int head = pipe->head;
919 
920 		while (head > i->start_head) {
921 			struct pipe_buffer *b = pipe_buf(pipe, --head);
922 			if (unroll < b->len) {
923 				b->len -= unroll;
924 				i->last_offset = last_offset(b);
925 				i->head = head;
926 				return;
927 			}
928 			unroll -= b->len;
929 			pipe_buf_release(pipe, b);
930 			pipe->head--;
931 		}
932 		i->last_offset = 0;
933 		i->head = head;
934 		return;
935 	}
936 	if (unlikely(iov_iter_is_discard(i)))
937 		return;
938 	if (unroll <= i->iov_offset) {
939 		i->iov_offset -= unroll;
940 		return;
941 	}
942 	unroll -= i->iov_offset;
943 	if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) {
944 		BUG(); /* We should never go beyond the start of the specified
945 			* range since we might then be straying into pages that
946 			* aren't pinned.
947 			*/
948 	} else if (iov_iter_is_bvec(i)) {
949 		const struct bio_vec *bvec = i->bvec;
950 		while (1) {
951 			size_t n = (--bvec)->bv_len;
952 			i->nr_segs++;
953 			if (unroll <= n) {
954 				i->bvec = bvec;
955 				i->iov_offset = n - unroll;
956 				return;
957 			}
958 			unroll -= n;
959 		}
960 	} else { /* same logics for iovec and kvec */
961 		const struct iovec *iov = i->iov;
962 		while (1) {
963 			size_t n = (--iov)->iov_len;
964 			i->nr_segs++;
965 			if (unroll <= n) {
966 				i->iov = iov;
967 				i->iov_offset = n - unroll;
968 				return;
969 			}
970 			unroll -= n;
971 		}
972 	}
973 }
974 EXPORT_SYMBOL(iov_iter_revert);
975 
976 /*
977  * Return the count of just the current iov_iter segment.
978  */
979 size_t iov_iter_single_seg_count(const struct iov_iter *i)
980 {
981 	if (i->nr_segs > 1) {
982 		if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
983 			return min(i->count, i->iov->iov_len - i->iov_offset);
984 		if (iov_iter_is_bvec(i))
985 			return min(i->count, i->bvec->bv_len - i->iov_offset);
986 	}
987 	return i->count;
988 }
989 EXPORT_SYMBOL(iov_iter_single_seg_count);
990 
991 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
992 			const struct kvec *kvec, unsigned long nr_segs,
993 			size_t count)
994 {
995 	WARN_ON(direction & ~(READ | WRITE));
996 	*i = (struct iov_iter){
997 		.iter_type = ITER_KVEC,
998 		.data_source = direction,
999 		.kvec = kvec,
1000 		.nr_segs = nr_segs,
1001 		.iov_offset = 0,
1002 		.count = count
1003 	};
1004 }
1005 EXPORT_SYMBOL(iov_iter_kvec);
1006 
1007 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1008 			const struct bio_vec *bvec, unsigned long nr_segs,
1009 			size_t count)
1010 {
1011 	WARN_ON(direction & ~(READ | WRITE));
1012 	*i = (struct iov_iter){
1013 		.iter_type = ITER_BVEC,
1014 		.data_source = direction,
1015 		.bvec = bvec,
1016 		.nr_segs = nr_segs,
1017 		.iov_offset = 0,
1018 		.count = count
1019 	};
1020 }
1021 EXPORT_SYMBOL(iov_iter_bvec);
1022 
1023 void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1024 			struct pipe_inode_info *pipe,
1025 			size_t count)
1026 {
1027 	BUG_ON(direction != READ);
1028 	WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
1029 	*i = (struct iov_iter){
1030 		.iter_type = ITER_PIPE,
1031 		.data_source = false,
1032 		.pipe = pipe,
1033 		.head = pipe->head,
1034 		.start_head = pipe->head,
1035 		.last_offset = 0,
1036 		.count = count
1037 	};
1038 }
1039 EXPORT_SYMBOL(iov_iter_pipe);
1040 
1041 /**
1042  * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
1043  * @i: The iterator to initialise.
1044  * @direction: The direction of the transfer.
1045  * @xarray: The xarray to access.
1046  * @start: The start file position.
1047  * @count: The size of the I/O buffer in bytes.
1048  *
1049  * Set up an I/O iterator to either draw data out of the pages attached to an
1050  * inode or to inject data into those pages.  The pages *must* be prevented
1051  * from evaporation, either by taking a ref on them or locking them by the
1052  * caller.
1053  */
1054 void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
1055 		     struct xarray *xarray, loff_t start, size_t count)
1056 {
1057 	BUG_ON(direction & ~1);
1058 	*i = (struct iov_iter) {
1059 		.iter_type = ITER_XARRAY,
1060 		.data_source = direction,
1061 		.xarray = xarray,
1062 		.xarray_start = start,
1063 		.count = count,
1064 		.iov_offset = 0
1065 	};
1066 }
1067 EXPORT_SYMBOL(iov_iter_xarray);
1068 
1069 /**
1070  * iov_iter_discard - Initialise an I/O iterator that discards data
1071  * @i: The iterator to initialise.
1072  * @direction: The direction of the transfer.
1073  * @count: The size of the I/O buffer in bytes.
1074  *
1075  * Set up an I/O iterator that just discards everything that's written to it.
1076  * It's only available as a READ iterator.
1077  */
1078 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1079 {
1080 	BUG_ON(direction != READ);
1081 	*i = (struct iov_iter){
1082 		.iter_type = ITER_DISCARD,
1083 		.data_source = false,
1084 		.count = count,
1085 		.iov_offset = 0
1086 	};
1087 }
1088 EXPORT_SYMBOL(iov_iter_discard);
1089 
1090 static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask,
1091 				   unsigned len_mask)
1092 {
1093 	size_t size = i->count;
1094 	size_t skip = i->iov_offset;
1095 	unsigned k;
1096 
1097 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1098 		size_t len = i->iov[k].iov_len - skip;
1099 
1100 		if (len > size)
1101 			len = size;
1102 		if (len & len_mask)
1103 			return false;
1104 		if ((unsigned long)(i->iov[k].iov_base + skip) & addr_mask)
1105 			return false;
1106 
1107 		size -= len;
1108 		if (!size)
1109 			break;
1110 	}
1111 	return true;
1112 }
1113 
1114 static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask,
1115 				  unsigned len_mask)
1116 {
1117 	size_t size = i->count;
1118 	unsigned skip = i->iov_offset;
1119 	unsigned k;
1120 
1121 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1122 		size_t len = i->bvec[k].bv_len - skip;
1123 
1124 		if (len > size)
1125 			len = size;
1126 		if (len & len_mask)
1127 			return false;
1128 		if ((unsigned long)(i->bvec[k].bv_offset + skip) & addr_mask)
1129 			return false;
1130 
1131 		size -= len;
1132 		if (!size)
1133 			break;
1134 	}
1135 	return true;
1136 }
1137 
1138 /**
1139  * iov_iter_is_aligned() - Check if the addresses and lengths of each segments
1140  * 	are aligned to the parameters.
1141  *
1142  * @i: &struct iov_iter to restore
1143  * @addr_mask: bit mask to check against the iov element's addresses
1144  * @len_mask: bit mask to check against the iov element's lengths
1145  *
1146  * Return: false if any addresses or lengths intersect with the provided masks
1147  */
1148 bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask,
1149 			 unsigned len_mask)
1150 {
1151 	if (likely(iter_is_ubuf(i))) {
1152 		if (i->count & len_mask)
1153 			return false;
1154 		if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask)
1155 			return false;
1156 		return true;
1157 	}
1158 
1159 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1160 		return iov_iter_aligned_iovec(i, addr_mask, len_mask);
1161 
1162 	if (iov_iter_is_bvec(i))
1163 		return iov_iter_aligned_bvec(i, addr_mask, len_mask);
1164 
1165 	if (iov_iter_is_pipe(i)) {
1166 		size_t size = i->count;
1167 
1168 		if (size & len_mask)
1169 			return false;
1170 		if (size && i->last_offset > 0) {
1171 			if (i->last_offset & addr_mask)
1172 				return false;
1173 		}
1174 
1175 		return true;
1176 	}
1177 
1178 	if (iov_iter_is_xarray(i)) {
1179 		if (i->count & len_mask)
1180 			return false;
1181 		if ((i->xarray_start + i->iov_offset) & addr_mask)
1182 			return false;
1183 	}
1184 
1185 	return true;
1186 }
1187 EXPORT_SYMBOL_GPL(iov_iter_is_aligned);
1188 
1189 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
1190 {
1191 	unsigned long res = 0;
1192 	size_t size = i->count;
1193 	size_t skip = i->iov_offset;
1194 	unsigned k;
1195 
1196 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1197 		size_t len = i->iov[k].iov_len - skip;
1198 		if (len) {
1199 			res |= (unsigned long)i->iov[k].iov_base + skip;
1200 			if (len > size)
1201 				len = size;
1202 			res |= len;
1203 			size -= len;
1204 			if (!size)
1205 				break;
1206 		}
1207 	}
1208 	return res;
1209 }
1210 
1211 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
1212 {
1213 	unsigned res = 0;
1214 	size_t size = i->count;
1215 	unsigned skip = i->iov_offset;
1216 	unsigned k;
1217 
1218 	for (k = 0; k < i->nr_segs; k++, skip = 0) {
1219 		size_t len = i->bvec[k].bv_len - skip;
1220 		res |= (unsigned long)i->bvec[k].bv_offset + skip;
1221 		if (len > size)
1222 			len = size;
1223 		res |= len;
1224 		size -= len;
1225 		if (!size)
1226 			break;
1227 	}
1228 	return res;
1229 }
1230 
1231 unsigned long iov_iter_alignment(const struct iov_iter *i)
1232 {
1233 	if (likely(iter_is_ubuf(i))) {
1234 		size_t size = i->count;
1235 		if (size)
1236 			return ((unsigned long)i->ubuf + i->iov_offset) | size;
1237 		return 0;
1238 	}
1239 
1240 	/* iovec and kvec have identical layouts */
1241 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1242 		return iov_iter_alignment_iovec(i);
1243 
1244 	if (iov_iter_is_bvec(i))
1245 		return iov_iter_alignment_bvec(i);
1246 
1247 	if (iov_iter_is_pipe(i)) {
1248 		size_t size = i->count;
1249 
1250 		if (size && i->last_offset > 0)
1251 			return size | i->last_offset;
1252 		return size;
1253 	}
1254 
1255 	if (iov_iter_is_xarray(i))
1256 		return (i->xarray_start + i->iov_offset) | i->count;
1257 
1258 	return 0;
1259 }
1260 EXPORT_SYMBOL(iov_iter_alignment);
1261 
1262 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1263 {
1264 	unsigned long res = 0;
1265 	unsigned long v = 0;
1266 	size_t size = i->count;
1267 	unsigned k;
1268 
1269 	if (iter_is_ubuf(i))
1270 		return 0;
1271 
1272 	if (WARN_ON(!iter_is_iovec(i)))
1273 		return ~0U;
1274 
1275 	for (k = 0; k < i->nr_segs; k++) {
1276 		if (i->iov[k].iov_len) {
1277 			unsigned long base = (unsigned long)i->iov[k].iov_base;
1278 			if (v) // if not the first one
1279 				res |= base | v; // this start | previous end
1280 			v = base + i->iov[k].iov_len;
1281 			if (size <= i->iov[k].iov_len)
1282 				break;
1283 			size -= i->iov[k].iov_len;
1284 		}
1285 	}
1286 	return res;
1287 }
1288 EXPORT_SYMBOL(iov_iter_gap_alignment);
1289 
1290 static int want_pages_array(struct page ***res, size_t size,
1291 			    size_t start, unsigned int maxpages)
1292 {
1293 	unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE);
1294 
1295 	if (count > maxpages)
1296 		count = maxpages;
1297 	WARN_ON(!count);	// caller should've prevented that
1298 	if (!*res) {
1299 		*res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL);
1300 		if (!*res)
1301 			return 0;
1302 	}
1303 	return count;
1304 }
1305 
1306 static ssize_t pipe_get_pages(struct iov_iter *i,
1307 		   struct page ***pages, size_t maxsize, unsigned maxpages,
1308 		   size_t *start)
1309 {
1310 	unsigned int npages, count, off, chunk;
1311 	struct page **p;
1312 	size_t left;
1313 
1314 	if (!sanity(i))
1315 		return -EFAULT;
1316 
1317 	*start = off = pipe_npages(i, &npages);
1318 	if (!npages)
1319 		return -EFAULT;
1320 	count = want_pages_array(pages, maxsize, off, min(npages, maxpages));
1321 	if (!count)
1322 		return -ENOMEM;
1323 	p = *pages;
1324 	for (npages = 0, left = maxsize ; npages < count; npages++, left -= chunk) {
1325 		struct page *page = append_pipe(i, left, &off);
1326 		if (!page)
1327 			break;
1328 		chunk = min_t(size_t, left, PAGE_SIZE - off);
1329 		get_page(*p++ = page);
1330 	}
1331 	if (!npages)
1332 		return -EFAULT;
1333 	return maxsize - left;
1334 }
1335 
1336 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
1337 					  pgoff_t index, unsigned int nr_pages)
1338 {
1339 	XA_STATE(xas, xa, index);
1340 	struct page *page;
1341 	unsigned int ret = 0;
1342 
1343 	rcu_read_lock();
1344 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1345 		if (xas_retry(&xas, page))
1346 			continue;
1347 
1348 		/* Has the page moved or been split? */
1349 		if (unlikely(page != xas_reload(&xas))) {
1350 			xas_reset(&xas);
1351 			continue;
1352 		}
1353 
1354 		pages[ret] = find_subpage(page, xas.xa_index);
1355 		get_page(pages[ret]);
1356 		if (++ret == nr_pages)
1357 			break;
1358 	}
1359 	rcu_read_unlock();
1360 	return ret;
1361 }
1362 
1363 static ssize_t iter_xarray_get_pages(struct iov_iter *i,
1364 				     struct page ***pages, size_t maxsize,
1365 				     unsigned maxpages, size_t *_start_offset)
1366 {
1367 	unsigned nr, offset, count;
1368 	pgoff_t index;
1369 	loff_t pos;
1370 
1371 	pos = i->xarray_start + i->iov_offset;
1372 	index = pos >> PAGE_SHIFT;
1373 	offset = pos & ~PAGE_MASK;
1374 	*_start_offset = offset;
1375 
1376 	count = want_pages_array(pages, maxsize, offset, maxpages);
1377 	if (!count)
1378 		return -ENOMEM;
1379 	nr = iter_xarray_populate_pages(*pages, i->xarray, index, count);
1380 	if (nr == 0)
1381 		return 0;
1382 
1383 	maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1384 	i->iov_offset += maxsize;
1385 	i->count -= maxsize;
1386 	return maxsize;
1387 }
1388 
1389 /* must be done on non-empty ITER_UBUF or ITER_IOVEC one */
1390 static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size)
1391 {
1392 	size_t skip;
1393 	long k;
1394 
1395 	if (iter_is_ubuf(i))
1396 		return (unsigned long)i->ubuf + i->iov_offset;
1397 
1398 	for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
1399 		size_t len = i->iov[k].iov_len - skip;
1400 
1401 		if (unlikely(!len))
1402 			continue;
1403 		if (*size > len)
1404 			*size = len;
1405 		return (unsigned long)i->iov[k].iov_base + skip;
1406 	}
1407 	BUG(); // if it had been empty, we wouldn't get called
1408 }
1409 
1410 /* must be done on non-empty ITER_BVEC one */
1411 static struct page *first_bvec_segment(const struct iov_iter *i,
1412 				       size_t *size, size_t *start)
1413 {
1414 	struct page *page;
1415 	size_t skip = i->iov_offset, len;
1416 
1417 	len = i->bvec->bv_len - skip;
1418 	if (*size > len)
1419 		*size = len;
1420 	skip += i->bvec->bv_offset;
1421 	page = i->bvec->bv_page + skip / PAGE_SIZE;
1422 	*start = skip % PAGE_SIZE;
1423 	return page;
1424 }
1425 
1426 static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i,
1427 		   struct page ***pages, size_t maxsize,
1428 		   unsigned int maxpages, size_t *start,
1429 		   iov_iter_extraction_t extraction_flags)
1430 {
1431 	unsigned int n, gup_flags = 0;
1432 
1433 	if (maxsize > i->count)
1434 		maxsize = i->count;
1435 	if (!maxsize)
1436 		return 0;
1437 	if (maxsize > MAX_RW_COUNT)
1438 		maxsize = MAX_RW_COUNT;
1439 	if (extraction_flags & ITER_ALLOW_P2PDMA)
1440 		gup_flags |= FOLL_PCI_P2PDMA;
1441 
1442 	if (likely(user_backed_iter(i))) {
1443 		unsigned long addr;
1444 		int res;
1445 
1446 		if (iov_iter_rw(i) != WRITE)
1447 			gup_flags |= FOLL_WRITE;
1448 		if (i->nofault)
1449 			gup_flags |= FOLL_NOFAULT;
1450 
1451 		addr = first_iovec_segment(i, &maxsize);
1452 		*start = addr % PAGE_SIZE;
1453 		addr &= PAGE_MASK;
1454 		n = want_pages_array(pages, maxsize, *start, maxpages);
1455 		if (!n)
1456 			return -ENOMEM;
1457 		res = get_user_pages_fast(addr, n, gup_flags, *pages);
1458 		if (unlikely(res <= 0))
1459 			return res;
1460 		maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start);
1461 		iov_iter_advance(i, maxsize);
1462 		return maxsize;
1463 	}
1464 	if (iov_iter_is_bvec(i)) {
1465 		struct page **p;
1466 		struct page *page;
1467 
1468 		page = first_bvec_segment(i, &maxsize, start);
1469 		n = want_pages_array(pages, maxsize, *start, maxpages);
1470 		if (!n)
1471 			return -ENOMEM;
1472 		p = *pages;
1473 		for (int k = 0; k < n; k++)
1474 			get_page(p[k] = page + k);
1475 		maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start);
1476 		i->count -= maxsize;
1477 		i->iov_offset += maxsize;
1478 		if (i->iov_offset == i->bvec->bv_len) {
1479 			i->iov_offset = 0;
1480 			i->bvec++;
1481 			i->nr_segs--;
1482 		}
1483 		return maxsize;
1484 	}
1485 	if (iov_iter_is_pipe(i))
1486 		return pipe_get_pages(i, pages, maxsize, maxpages, start);
1487 	if (iov_iter_is_xarray(i))
1488 		return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1489 	return -EFAULT;
1490 }
1491 
1492 ssize_t iov_iter_get_pages(struct iov_iter *i,
1493 		   struct page **pages, size_t maxsize, unsigned maxpages,
1494 		   size_t *start, iov_iter_extraction_t extraction_flags)
1495 {
1496 	if (!maxpages)
1497 		return 0;
1498 	BUG_ON(!pages);
1499 
1500 	return __iov_iter_get_pages_alloc(i, &pages, maxsize, maxpages,
1501 					  start, extraction_flags);
1502 }
1503 EXPORT_SYMBOL_GPL(iov_iter_get_pages);
1504 
1505 ssize_t iov_iter_get_pages2(struct iov_iter *i, struct page **pages,
1506 		size_t maxsize, unsigned maxpages, size_t *start)
1507 {
1508 	return iov_iter_get_pages(i, pages, maxsize, maxpages, start, 0);
1509 }
1510 EXPORT_SYMBOL(iov_iter_get_pages2);
1511 
1512 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1513 		   struct page ***pages, size_t maxsize,
1514 		   size_t *start, iov_iter_extraction_t extraction_flags)
1515 {
1516 	ssize_t len;
1517 
1518 	*pages = NULL;
1519 
1520 	len = __iov_iter_get_pages_alloc(i, pages, maxsize, ~0U, start,
1521 					 extraction_flags);
1522 	if (len <= 0) {
1523 		kvfree(*pages);
1524 		*pages = NULL;
1525 	}
1526 	return len;
1527 }
1528 EXPORT_SYMBOL_GPL(iov_iter_get_pages_alloc);
1529 
1530 ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i,
1531 		struct page ***pages, size_t maxsize, size_t *start)
1532 {
1533 	return iov_iter_get_pages_alloc(i, pages, maxsize, start, 0);
1534 }
1535 EXPORT_SYMBOL(iov_iter_get_pages_alloc2);
1536 
1537 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1538 			       struct iov_iter *i)
1539 {
1540 	__wsum sum, next;
1541 	sum = *csum;
1542 	if (WARN_ON_ONCE(!i->data_source))
1543 		return 0;
1544 
1545 	iterate_and_advance(i, bytes, base, len, off, ({
1546 		next = csum_and_copy_from_user(base, addr + off, len);
1547 		sum = csum_block_add(sum, next, off);
1548 		next ? 0 : len;
1549 	}), ({
1550 		sum = csum_and_memcpy(addr + off, base, len, sum, off);
1551 	})
1552 	)
1553 	*csum = sum;
1554 	return bytes;
1555 }
1556 EXPORT_SYMBOL(csum_and_copy_from_iter);
1557 
1558 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
1559 			     struct iov_iter *i)
1560 {
1561 	struct csum_state *csstate = _csstate;
1562 	__wsum sum, next;
1563 
1564 	if (WARN_ON_ONCE(i->data_source))
1565 		return 0;
1566 	if (unlikely(iov_iter_is_discard(i))) {
1567 		// can't use csum_memcpy() for that one - data is not copied
1568 		csstate->csum = csum_block_add(csstate->csum,
1569 					       csum_partial(addr, bytes, 0),
1570 					       csstate->off);
1571 		csstate->off += bytes;
1572 		return bytes;
1573 	}
1574 
1575 	sum = csum_shift(csstate->csum, csstate->off);
1576 	if (unlikely(iov_iter_is_pipe(i)))
1577 		bytes = csum_and_copy_to_pipe_iter(addr, bytes, i, &sum);
1578 	else iterate_and_advance(i, bytes, base, len, off, ({
1579 		next = csum_and_copy_to_user(addr + off, base, len);
1580 		sum = csum_block_add(sum, next, off);
1581 		next ? 0 : len;
1582 	}), ({
1583 		sum = csum_and_memcpy(base, addr + off, len, sum, off);
1584 	})
1585 	)
1586 	csstate->csum = csum_shift(sum, csstate->off);
1587 	csstate->off += bytes;
1588 	return bytes;
1589 }
1590 EXPORT_SYMBOL(csum_and_copy_to_iter);
1591 
1592 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1593 		struct iov_iter *i)
1594 {
1595 #ifdef CONFIG_CRYPTO_HASH
1596 	struct ahash_request *hash = hashp;
1597 	struct scatterlist sg;
1598 	size_t copied;
1599 
1600 	copied = copy_to_iter(addr, bytes, i);
1601 	sg_init_one(&sg, addr, copied);
1602 	ahash_request_set_crypt(hash, &sg, NULL, copied);
1603 	crypto_ahash_update(hash);
1604 	return copied;
1605 #else
1606 	return 0;
1607 #endif
1608 }
1609 EXPORT_SYMBOL(hash_and_copy_to_iter);
1610 
1611 static int iov_npages(const struct iov_iter *i, int maxpages)
1612 {
1613 	size_t skip = i->iov_offset, size = i->count;
1614 	const struct iovec *p;
1615 	int npages = 0;
1616 
1617 	for (p = i->iov; size; skip = 0, p++) {
1618 		unsigned offs = offset_in_page(p->iov_base + skip);
1619 		size_t len = min(p->iov_len - skip, size);
1620 
1621 		if (len) {
1622 			size -= len;
1623 			npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1624 			if (unlikely(npages > maxpages))
1625 				return maxpages;
1626 		}
1627 	}
1628 	return npages;
1629 }
1630 
1631 static int bvec_npages(const struct iov_iter *i, int maxpages)
1632 {
1633 	size_t skip = i->iov_offset, size = i->count;
1634 	const struct bio_vec *p;
1635 	int npages = 0;
1636 
1637 	for (p = i->bvec; size; skip = 0, p++) {
1638 		unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1639 		size_t len = min(p->bv_len - skip, size);
1640 
1641 		size -= len;
1642 		npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1643 		if (unlikely(npages > maxpages))
1644 			return maxpages;
1645 	}
1646 	return npages;
1647 }
1648 
1649 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1650 {
1651 	if (unlikely(!i->count))
1652 		return 0;
1653 	if (likely(iter_is_ubuf(i))) {
1654 		unsigned offs = offset_in_page(i->ubuf + i->iov_offset);
1655 		int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE);
1656 		return min(npages, maxpages);
1657 	}
1658 	/* iovec and kvec have identical layouts */
1659 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1660 		return iov_npages(i, maxpages);
1661 	if (iov_iter_is_bvec(i))
1662 		return bvec_npages(i, maxpages);
1663 	if (iov_iter_is_pipe(i)) {
1664 		int npages;
1665 
1666 		if (!sanity(i))
1667 			return 0;
1668 
1669 		pipe_npages(i, &npages);
1670 		return min(npages, maxpages);
1671 	}
1672 	if (iov_iter_is_xarray(i)) {
1673 		unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1674 		int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1675 		return min(npages, maxpages);
1676 	}
1677 	return 0;
1678 }
1679 EXPORT_SYMBOL(iov_iter_npages);
1680 
1681 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1682 {
1683 	*new = *old;
1684 	if (unlikely(iov_iter_is_pipe(new))) {
1685 		WARN_ON(1);
1686 		return NULL;
1687 	}
1688 	if (iov_iter_is_bvec(new))
1689 		return new->bvec = kmemdup(new->bvec,
1690 				    new->nr_segs * sizeof(struct bio_vec),
1691 				    flags);
1692 	else if (iov_iter_is_kvec(new) || iter_is_iovec(new))
1693 		/* iovec and kvec have identical layout */
1694 		return new->iov = kmemdup(new->iov,
1695 				   new->nr_segs * sizeof(struct iovec),
1696 				   flags);
1697 	return NULL;
1698 }
1699 EXPORT_SYMBOL(dup_iter);
1700 
1701 static int copy_compat_iovec_from_user(struct iovec *iov,
1702 		const struct iovec __user *uvec, unsigned long nr_segs)
1703 {
1704 	const struct compat_iovec __user *uiov =
1705 		(const struct compat_iovec __user *)uvec;
1706 	int ret = -EFAULT, i;
1707 
1708 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1709 		return -EFAULT;
1710 
1711 	for (i = 0; i < nr_segs; i++) {
1712 		compat_uptr_t buf;
1713 		compat_ssize_t len;
1714 
1715 		unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1716 		unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1717 
1718 		/* check for compat_size_t not fitting in compat_ssize_t .. */
1719 		if (len < 0) {
1720 			ret = -EINVAL;
1721 			goto uaccess_end;
1722 		}
1723 		iov[i].iov_base = compat_ptr(buf);
1724 		iov[i].iov_len = len;
1725 	}
1726 
1727 	ret = 0;
1728 uaccess_end:
1729 	user_access_end();
1730 	return ret;
1731 }
1732 
1733 static int copy_iovec_from_user(struct iovec *iov,
1734 		const struct iovec __user *uvec, unsigned long nr_segs)
1735 {
1736 	unsigned long seg;
1737 
1738 	if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec)))
1739 		return -EFAULT;
1740 	for (seg = 0; seg < nr_segs; seg++) {
1741 		if ((ssize_t)iov[seg].iov_len < 0)
1742 			return -EINVAL;
1743 	}
1744 
1745 	return 0;
1746 }
1747 
1748 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1749 		unsigned long nr_segs, unsigned long fast_segs,
1750 		struct iovec *fast_iov, bool compat)
1751 {
1752 	struct iovec *iov = fast_iov;
1753 	int ret;
1754 
1755 	/*
1756 	 * SuS says "The readv() function *may* fail if the iovcnt argument was
1757 	 * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1758 	 * traditionally returned zero for zero segments, so...
1759 	 */
1760 	if (nr_segs == 0)
1761 		return iov;
1762 	if (nr_segs > UIO_MAXIOV)
1763 		return ERR_PTR(-EINVAL);
1764 	if (nr_segs > fast_segs) {
1765 		iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1766 		if (!iov)
1767 			return ERR_PTR(-ENOMEM);
1768 	}
1769 
1770 	if (compat)
1771 		ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1772 	else
1773 		ret = copy_iovec_from_user(iov, uvec, nr_segs);
1774 	if (ret) {
1775 		if (iov != fast_iov)
1776 			kfree(iov);
1777 		return ERR_PTR(ret);
1778 	}
1779 
1780 	return iov;
1781 }
1782 
1783 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1784 		 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1785 		 struct iov_iter *i, bool compat)
1786 {
1787 	ssize_t total_len = 0;
1788 	unsigned long seg;
1789 	struct iovec *iov;
1790 
1791 	iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1792 	if (IS_ERR(iov)) {
1793 		*iovp = NULL;
1794 		return PTR_ERR(iov);
1795 	}
1796 
1797 	/*
1798 	 * According to the Single Unix Specification we should return EINVAL if
1799 	 * an element length is < 0 when cast to ssize_t or if the total length
1800 	 * would overflow the ssize_t return value of the system call.
1801 	 *
1802 	 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1803 	 * overflow case.
1804 	 */
1805 	for (seg = 0; seg < nr_segs; seg++) {
1806 		ssize_t len = (ssize_t)iov[seg].iov_len;
1807 
1808 		if (!access_ok(iov[seg].iov_base, len)) {
1809 			if (iov != *iovp)
1810 				kfree(iov);
1811 			*iovp = NULL;
1812 			return -EFAULT;
1813 		}
1814 
1815 		if (len > MAX_RW_COUNT - total_len) {
1816 			len = MAX_RW_COUNT - total_len;
1817 			iov[seg].iov_len = len;
1818 		}
1819 		total_len += len;
1820 	}
1821 
1822 	iov_iter_init(i, type, iov, nr_segs, total_len);
1823 	if (iov == *iovp)
1824 		*iovp = NULL;
1825 	else
1826 		*iovp = iov;
1827 	return total_len;
1828 }
1829 
1830 /**
1831  * import_iovec() - Copy an array of &struct iovec from userspace
1832  *     into the kernel, check that it is valid, and initialize a new
1833  *     &struct iov_iter iterator to access it.
1834  *
1835  * @type: One of %READ or %WRITE.
1836  * @uvec: Pointer to the userspace array.
1837  * @nr_segs: Number of elements in userspace array.
1838  * @fast_segs: Number of elements in @iov.
1839  * @iovp: (input and output parameter) Pointer to pointer to (usually small
1840  *     on-stack) kernel array.
1841  * @i: Pointer to iterator that will be initialized on success.
1842  *
1843  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1844  * then this function places %NULL in *@iov on return. Otherwise, a new
1845  * array will be allocated and the result placed in *@iov. This means that
1846  * the caller may call kfree() on *@iov regardless of whether the small
1847  * on-stack array was used or not (and regardless of whether this function
1848  * returns an error or not).
1849  *
1850  * Return: Negative error code on error, bytes imported on success
1851  */
1852 ssize_t import_iovec(int type, const struct iovec __user *uvec,
1853 		 unsigned nr_segs, unsigned fast_segs,
1854 		 struct iovec **iovp, struct iov_iter *i)
1855 {
1856 	return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1857 			      in_compat_syscall());
1858 }
1859 EXPORT_SYMBOL(import_iovec);
1860 
1861 int import_single_range(int rw, void __user *buf, size_t len,
1862 		 struct iovec *iov, struct iov_iter *i)
1863 {
1864 	if (len > MAX_RW_COUNT)
1865 		len = MAX_RW_COUNT;
1866 	if (unlikely(!access_ok(buf, len)))
1867 		return -EFAULT;
1868 
1869 	iov->iov_base = buf;
1870 	iov->iov_len = len;
1871 	iov_iter_init(i, rw, iov, 1, len);
1872 	return 0;
1873 }
1874 EXPORT_SYMBOL(import_single_range);
1875 
1876 int import_ubuf(int rw, void __user *buf, size_t len, struct iov_iter *i)
1877 {
1878 	if (len > MAX_RW_COUNT)
1879 		len = MAX_RW_COUNT;
1880 	if (unlikely(!access_ok(buf, len)))
1881 		return -EFAULT;
1882 
1883 	iov_iter_ubuf(i, rw, buf, len);
1884 	return 0;
1885 }
1886 
1887 /**
1888  * iov_iter_restore() - Restore a &struct iov_iter to the same state as when
1889  *     iov_iter_save_state() was called.
1890  *
1891  * @i: &struct iov_iter to restore
1892  * @state: state to restore from
1893  *
1894  * Used after iov_iter_save_state() to bring restore @i, if operations may
1895  * have advanced it.
1896  *
1897  * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC
1898  */
1899 void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state)
1900 {
1901 	if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i) &&
1902 			 !iter_is_ubuf(i)) && !iov_iter_is_kvec(i))
1903 		return;
1904 	i->iov_offset = state->iov_offset;
1905 	i->count = state->count;
1906 	if (iter_is_ubuf(i))
1907 		return;
1908 	/*
1909 	 * For the *vec iters, nr_segs + iov is constant - if we increment
1910 	 * the vec, then we also decrement the nr_segs count. Hence we don't
1911 	 * need to track both of these, just one is enough and we can deduct
1912 	 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct
1913 	 * size, so we can just increment the iov pointer as they are unionzed.
1914 	 * ITER_BVEC _may_ be the same size on some archs, but on others it is
1915 	 * not. Be safe and handle it separately.
1916 	 */
1917 	BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec));
1918 	if (iov_iter_is_bvec(i))
1919 		i->bvec -= state->nr_segs - i->nr_segs;
1920 	else
1921 		i->iov -= state->nr_segs - i->nr_segs;
1922 	i->nr_segs = state->nr_segs;
1923 }
1924 
1925 /*
1926  * Extract a list of contiguous pages from an ITER_XARRAY iterator.  This does not
1927  * get references on the pages, nor does it get a pin on them.
1928  */
1929 static ssize_t iov_iter_extract_xarray_pages(struct iov_iter *i,
1930 					     struct page ***pages, size_t maxsize,
1931 					     unsigned int maxpages,
1932 					     iov_iter_extraction_t extraction_flags,
1933 					     size_t *offset0)
1934 {
1935 	struct page *page, **p;
1936 	unsigned int nr = 0, offset;
1937 	loff_t pos = i->xarray_start + i->iov_offset;
1938 	pgoff_t index = pos >> PAGE_SHIFT;
1939 	XA_STATE(xas, i->xarray, index);
1940 
1941 	offset = pos & ~PAGE_MASK;
1942 	*offset0 = offset;
1943 
1944 	maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1945 	if (!maxpages)
1946 		return -ENOMEM;
1947 	p = *pages;
1948 
1949 	rcu_read_lock();
1950 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1951 		if (xas_retry(&xas, page))
1952 			continue;
1953 
1954 		/* Has the page moved or been split? */
1955 		if (unlikely(page != xas_reload(&xas))) {
1956 			xas_reset(&xas);
1957 			continue;
1958 		}
1959 
1960 		p[nr++] = find_subpage(page, xas.xa_index);
1961 		if (nr == maxpages)
1962 			break;
1963 	}
1964 	rcu_read_unlock();
1965 
1966 	maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1967 	iov_iter_advance(i, maxsize);
1968 	return maxsize;
1969 }
1970 
1971 /*
1972  * Extract a list of contiguous pages from an ITER_BVEC iterator.  This does
1973  * not get references on the pages, nor does it get a pin on them.
1974  */
1975 static ssize_t iov_iter_extract_bvec_pages(struct iov_iter *i,
1976 					   struct page ***pages, size_t maxsize,
1977 					   unsigned int maxpages,
1978 					   iov_iter_extraction_t extraction_flags,
1979 					   size_t *offset0)
1980 {
1981 	struct page **p, *page;
1982 	size_t skip = i->iov_offset, offset;
1983 	int k;
1984 
1985 	for (;;) {
1986 		if (i->nr_segs == 0)
1987 			return 0;
1988 		maxsize = min(maxsize, i->bvec->bv_len - skip);
1989 		if (maxsize)
1990 			break;
1991 		i->iov_offset = 0;
1992 		i->nr_segs--;
1993 		i->bvec++;
1994 		skip = 0;
1995 	}
1996 
1997 	skip += i->bvec->bv_offset;
1998 	page = i->bvec->bv_page + skip / PAGE_SIZE;
1999 	offset = skip % PAGE_SIZE;
2000 	*offset0 = offset;
2001 
2002 	maxpages = want_pages_array(pages, maxsize, offset, maxpages);
2003 	if (!maxpages)
2004 		return -ENOMEM;
2005 	p = *pages;
2006 	for (k = 0; k < maxpages; k++)
2007 		p[k] = page + k;
2008 
2009 	maxsize = min_t(size_t, maxsize, maxpages * PAGE_SIZE - offset);
2010 	iov_iter_advance(i, maxsize);
2011 	return maxsize;
2012 }
2013 
2014 /*
2015  * Extract a list of virtually contiguous pages from an ITER_KVEC iterator.
2016  * This does not get references on the pages, nor does it get a pin on them.
2017  */
2018 static ssize_t iov_iter_extract_kvec_pages(struct iov_iter *i,
2019 					   struct page ***pages, size_t maxsize,
2020 					   unsigned int maxpages,
2021 					   iov_iter_extraction_t extraction_flags,
2022 					   size_t *offset0)
2023 {
2024 	struct page **p, *page;
2025 	const void *kaddr;
2026 	size_t skip = i->iov_offset, offset, len;
2027 	int k;
2028 
2029 	for (;;) {
2030 		if (i->nr_segs == 0)
2031 			return 0;
2032 		maxsize = min(maxsize, i->kvec->iov_len - skip);
2033 		if (maxsize)
2034 			break;
2035 		i->iov_offset = 0;
2036 		i->nr_segs--;
2037 		i->kvec++;
2038 		skip = 0;
2039 	}
2040 
2041 	kaddr = i->kvec->iov_base + skip;
2042 	offset = (unsigned long)kaddr & ~PAGE_MASK;
2043 	*offset0 = offset;
2044 
2045 	maxpages = want_pages_array(pages, maxsize, offset, maxpages);
2046 	if (!maxpages)
2047 		return -ENOMEM;
2048 	p = *pages;
2049 
2050 	kaddr -= offset;
2051 	len = offset + maxsize;
2052 	for (k = 0; k < maxpages; k++) {
2053 		size_t seg = min_t(size_t, len, PAGE_SIZE);
2054 
2055 		if (is_vmalloc_or_module_addr(kaddr))
2056 			page = vmalloc_to_page(kaddr);
2057 		else
2058 			page = virt_to_page(kaddr);
2059 
2060 		p[k] = page;
2061 		len -= seg;
2062 		kaddr += PAGE_SIZE;
2063 	}
2064 
2065 	maxsize = min_t(size_t, maxsize, maxpages * PAGE_SIZE - offset);
2066 	iov_iter_advance(i, maxsize);
2067 	return maxsize;
2068 }
2069 
2070 /*
2071  * Extract a list of contiguous pages from a user iterator and get a pin on
2072  * each of them.  This should only be used if the iterator is user-backed
2073  * (IOBUF/UBUF).
2074  *
2075  * It does not get refs on the pages, but the pages must be unpinned by the
2076  * caller once the transfer is complete.
2077  *
2078  * This is safe to be used where background IO/DMA *is* going to be modifying
2079  * the buffer; using a pin rather than a ref makes forces fork() to give the
2080  * child a copy of the page.
2081  */
2082 static ssize_t iov_iter_extract_user_pages(struct iov_iter *i,
2083 					   struct page ***pages,
2084 					   size_t maxsize,
2085 					   unsigned int maxpages,
2086 					   iov_iter_extraction_t extraction_flags,
2087 					   size_t *offset0)
2088 {
2089 	unsigned long addr;
2090 	unsigned int gup_flags = 0;
2091 	size_t offset;
2092 	int res;
2093 
2094 	if (i->data_source == ITER_DEST)
2095 		gup_flags |= FOLL_WRITE;
2096 	if (extraction_flags & ITER_ALLOW_P2PDMA)
2097 		gup_flags |= FOLL_PCI_P2PDMA;
2098 	if (i->nofault)
2099 		gup_flags |= FOLL_NOFAULT;
2100 
2101 	addr = first_iovec_segment(i, &maxsize);
2102 	*offset0 = offset = addr % PAGE_SIZE;
2103 	addr &= PAGE_MASK;
2104 	maxpages = want_pages_array(pages, maxsize, offset, maxpages);
2105 	if (!maxpages)
2106 		return -ENOMEM;
2107 	res = pin_user_pages_fast(addr, maxpages, gup_flags, *pages);
2108 	if (unlikely(res <= 0))
2109 		return res;
2110 	maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - offset);
2111 	iov_iter_advance(i, maxsize);
2112 	return maxsize;
2113 }
2114 
2115 /**
2116  * iov_iter_extract_pages - Extract a list of contiguous pages from an iterator
2117  * @i: The iterator to extract from
2118  * @pages: Where to return the list of pages
2119  * @maxsize: The maximum amount of iterator to extract
2120  * @maxpages: The maximum size of the list of pages
2121  * @extraction_flags: Flags to qualify request
2122  * @offset0: Where to return the starting offset into (*@pages)[0]
2123  *
2124  * Extract a list of contiguous pages from the current point of the iterator,
2125  * advancing the iterator.  The maximum number of pages and the maximum amount
2126  * of page contents can be set.
2127  *
2128  * If *@pages is NULL, a page list will be allocated to the required size and
2129  * *@pages will be set to its base.  If *@pages is not NULL, it will be assumed
2130  * that the caller allocated a page list at least @maxpages in size and this
2131  * will be filled in.
2132  *
2133  * @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA
2134  * be allowed on the pages extracted.
2135  *
2136  * The iov_iter_extract_will_pin() function can be used to query how cleanup
2137  * should be performed.
2138  *
2139  * Extra refs or pins on the pages may be obtained as follows:
2140  *
2141  *  (*) If the iterator is user-backed (ITER_IOVEC/ITER_UBUF), pins will be
2142  *      added to the pages, but refs will not be taken.
2143  *      iov_iter_extract_will_pin() will return true.
2144  *
2145  *  (*) If the iterator is ITER_KVEC, ITER_BVEC or ITER_XARRAY, the pages are
2146  *      merely listed; no extra refs or pins are obtained.
2147  *      iov_iter_extract_will_pin() will return 0.
2148  *
2149  * Note also:
2150  *
2151  *  (*) Use with ITER_DISCARD is not supported as that has no content.
2152  *
2153  * On success, the function sets *@pages to the new pagelist, if allocated, and
2154  * sets *offset0 to the offset into the first page.
2155  *
2156  * It may also return -ENOMEM and -EFAULT.
2157  */
2158 ssize_t iov_iter_extract_pages(struct iov_iter *i,
2159 			       struct page ***pages,
2160 			       size_t maxsize,
2161 			       unsigned int maxpages,
2162 			       iov_iter_extraction_t extraction_flags,
2163 			       size_t *offset0)
2164 {
2165 	maxsize = min_t(size_t, min_t(size_t, maxsize, i->count), MAX_RW_COUNT);
2166 	if (!maxsize)
2167 		return 0;
2168 
2169 	if (likely(user_backed_iter(i)))
2170 		return iov_iter_extract_user_pages(i, pages, maxsize,
2171 						   maxpages, extraction_flags,
2172 						   offset0);
2173 	if (iov_iter_is_kvec(i))
2174 		return iov_iter_extract_kvec_pages(i, pages, maxsize,
2175 						   maxpages, extraction_flags,
2176 						   offset0);
2177 	if (iov_iter_is_bvec(i))
2178 		return iov_iter_extract_bvec_pages(i, pages, maxsize,
2179 						   maxpages, extraction_flags,
2180 						   offset0);
2181 	if (iov_iter_is_xarray(i))
2182 		return iov_iter_extract_xarray_pages(i, pages, maxsize,
2183 						     maxpages, extraction_flags,
2184 						     offset0);
2185 	return -EFAULT;
2186 }
2187 EXPORT_SYMBOL_GPL(iov_iter_extract_pages);
2188