1 #include <linux/export.h> 2 #include <linux/bvec.h> 3 #include <linux/uio.h> 4 #include <linux/pagemap.h> 5 #include <linux/slab.h> 6 #include <linux/vmalloc.h> 7 #include <linux/splice.h> 8 #include <net/checksum.h> 9 #include <linux/scatterlist.h> 10 11 #define PIPE_PARANOIA /* for now */ 12 13 #define iterate_iovec(i, n, __v, __p, skip, STEP) { \ 14 size_t left; \ 15 size_t wanted = n; \ 16 __p = i->iov; \ 17 __v.iov_len = min(n, __p->iov_len - skip); \ 18 if (likely(__v.iov_len)) { \ 19 __v.iov_base = __p->iov_base + skip; \ 20 left = (STEP); \ 21 __v.iov_len -= left; \ 22 skip += __v.iov_len; \ 23 n -= __v.iov_len; \ 24 } else { \ 25 left = 0; \ 26 } \ 27 while (unlikely(!left && n)) { \ 28 __p++; \ 29 __v.iov_len = min(n, __p->iov_len); \ 30 if (unlikely(!__v.iov_len)) \ 31 continue; \ 32 __v.iov_base = __p->iov_base; \ 33 left = (STEP); \ 34 __v.iov_len -= left; \ 35 skip = __v.iov_len; \ 36 n -= __v.iov_len; \ 37 } \ 38 n = wanted - n; \ 39 } 40 41 #define iterate_kvec(i, n, __v, __p, skip, STEP) { \ 42 size_t wanted = n; \ 43 __p = i->kvec; \ 44 __v.iov_len = min(n, __p->iov_len - skip); \ 45 if (likely(__v.iov_len)) { \ 46 __v.iov_base = __p->iov_base + skip; \ 47 (void)(STEP); \ 48 skip += __v.iov_len; \ 49 n -= __v.iov_len; \ 50 } \ 51 while (unlikely(n)) { \ 52 __p++; \ 53 __v.iov_len = min(n, __p->iov_len); \ 54 if (unlikely(!__v.iov_len)) \ 55 continue; \ 56 __v.iov_base = __p->iov_base; \ 57 (void)(STEP); \ 58 skip = __v.iov_len; \ 59 n -= __v.iov_len; \ 60 } \ 61 n = wanted; \ 62 } 63 64 #define iterate_bvec(i, n, __v, __bi, skip, STEP) { \ 65 struct bvec_iter __start; \ 66 __start.bi_size = n; \ 67 __start.bi_bvec_done = skip; \ 68 __start.bi_idx = 0; \ 69 for_each_bvec(__v, i->bvec, __bi, __start) { \ 70 if (!__v.bv_len) \ 71 continue; \ 72 (void)(STEP); \ 73 } \ 74 } 75 76 #define iterate_all_kinds(i, n, v, I, B, K) { \ 77 if (likely(n)) { \ 78 size_t skip = i->iov_offset; \ 79 if (unlikely(i->type & ITER_BVEC)) { \ 80 struct bio_vec v; \ 81 struct bvec_iter __bi; \ 82 iterate_bvec(i, n, v, __bi, skip, (B)) \ 83 } else if (unlikely(i->type & ITER_KVEC)) { \ 84 const struct kvec *kvec; \ 85 struct kvec v; \ 86 iterate_kvec(i, n, v, kvec, skip, (K)) \ 87 } else if (unlikely(i->type & ITER_DISCARD)) { \ 88 } else { \ 89 const struct iovec *iov; \ 90 struct iovec v; \ 91 iterate_iovec(i, n, v, iov, skip, (I)) \ 92 } \ 93 } \ 94 } 95 96 #define iterate_and_advance(i, n, v, I, B, K) { \ 97 if (unlikely(i->count < n)) \ 98 n = i->count; \ 99 if (i->count) { \ 100 size_t skip = i->iov_offset; \ 101 if (unlikely(i->type & ITER_BVEC)) { \ 102 const struct bio_vec *bvec = i->bvec; \ 103 struct bio_vec v; \ 104 struct bvec_iter __bi; \ 105 iterate_bvec(i, n, v, __bi, skip, (B)) \ 106 i->bvec = __bvec_iter_bvec(i->bvec, __bi); \ 107 i->nr_segs -= i->bvec - bvec; \ 108 skip = __bi.bi_bvec_done; \ 109 } else if (unlikely(i->type & ITER_KVEC)) { \ 110 const struct kvec *kvec; \ 111 struct kvec v; \ 112 iterate_kvec(i, n, v, kvec, skip, (K)) \ 113 if (skip == kvec->iov_len) { \ 114 kvec++; \ 115 skip = 0; \ 116 } \ 117 i->nr_segs -= kvec - i->kvec; \ 118 i->kvec = kvec; \ 119 } else if (unlikely(i->type & ITER_DISCARD)) { \ 120 skip += n; \ 121 } else { \ 122 const struct iovec *iov; \ 123 struct iovec v; \ 124 iterate_iovec(i, n, v, iov, skip, (I)) \ 125 if (skip == iov->iov_len) { \ 126 iov++; \ 127 skip = 0; \ 128 } \ 129 i->nr_segs -= iov - i->iov; \ 130 i->iov = iov; \ 131 } \ 132 i->count -= n; \ 133 i->iov_offset = skip; \ 134 } \ 135 } 136 137 static int copyout(void __user *to, const void *from, size_t n) 138 { 139 if (access_ok(to, n)) { 140 kasan_check_read(from, n); 141 n = raw_copy_to_user(to, from, n); 142 } 143 return n; 144 } 145 146 static int copyin(void *to, const void __user *from, size_t n) 147 { 148 if (access_ok(from, n)) { 149 kasan_check_write(to, n); 150 n = raw_copy_from_user(to, from, n); 151 } 152 return n; 153 } 154 155 static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes, 156 struct iov_iter *i) 157 { 158 size_t skip, copy, left, wanted; 159 const struct iovec *iov; 160 char __user *buf; 161 void *kaddr, *from; 162 163 if (unlikely(bytes > i->count)) 164 bytes = i->count; 165 166 if (unlikely(!bytes)) 167 return 0; 168 169 might_fault(); 170 wanted = bytes; 171 iov = i->iov; 172 skip = i->iov_offset; 173 buf = iov->iov_base + skip; 174 copy = min(bytes, iov->iov_len - skip); 175 176 if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_writeable(buf, copy)) { 177 kaddr = kmap_atomic(page); 178 from = kaddr + offset; 179 180 /* first chunk, usually the only one */ 181 left = copyout(buf, from, copy); 182 copy -= left; 183 skip += copy; 184 from += copy; 185 bytes -= copy; 186 187 while (unlikely(!left && bytes)) { 188 iov++; 189 buf = iov->iov_base; 190 copy = min(bytes, iov->iov_len); 191 left = copyout(buf, from, copy); 192 copy -= left; 193 skip = copy; 194 from += copy; 195 bytes -= copy; 196 } 197 if (likely(!bytes)) { 198 kunmap_atomic(kaddr); 199 goto done; 200 } 201 offset = from - kaddr; 202 buf += copy; 203 kunmap_atomic(kaddr); 204 copy = min(bytes, iov->iov_len - skip); 205 } 206 /* Too bad - revert to non-atomic kmap */ 207 208 kaddr = kmap(page); 209 from = kaddr + offset; 210 left = copyout(buf, from, copy); 211 copy -= left; 212 skip += copy; 213 from += copy; 214 bytes -= copy; 215 while (unlikely(!left && bytes)) { 216 iov++; 217 buf = iov->iov_base; 218 copy = min(bytes, iov->iov_len); 219 left = copyout(buf, from, copy); 220 copy -= left; 221 skip = copy; 222 from += copy; 223 bytes -= copy; 224 } 225 kunmap(page); 226 227 done: 228 if (skip == iov->iov_len) { 229 iov++; 230 skip = 0; 231 } 232 i->count -= wanted - bytes; 233 i->nr_segs -= iov - i->iov; 234 i->iov = iov; 235 i->iov_offset = skip; 236 return wanted - bytes; 237 } 238 239 static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes, 240 struct iov_iter *i) 241 { 242 size_t skip, copy, left, wanted; 243 const struct iovec *iov; 244 char __user *buf; 245 void *kaddr, *to; 246 247 if (unlikely(bytes > i->count)) 248 bytes = i->count; 249 250 if (unlikely(!bytes)) 251 return 0; 252 253 might_fault(); 254 wanted = bytes; 255 iov = i->iov; 256 skip = i->iov_offset; 257 buf = iov->iov_base + skip; 258 copy = min(bytes, iov->iov_len - skip); 259 260 if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_readable(buf, copy)) { 261 kaddr = kmap_atomic(page); 262 to = kaddr + offset; 263 264 /* first chunk, usually the only one */ 265 left = copyin(to, buf, copy); 266 copy -= left; 267 skip += copy; 268 to += copy; 269 bytes -= copy; 270 271 while (unlikely(!left && bytes)) { 272 iov++; 273 buf = iov->iov_base; 274 copy = min(bytes, iov->iov_len); 275 left = copyin(to, buf, copy); 276 copy -= left; 277 skip = copy; 278 to += copy; 279 bytes -= copy; 280 } 281 if (likely(!bytes)) { 282 kunmap_atomic(kaddr); 283 goto done; 284 } 285 offset = to - kaddr; 286 buf += copy; 287 kunmap_atomic(kaddr); 288 copy = min(bytes, iov->iov_len - skip); 289 } 290 /* Too bad - revert to non-atomic kmap */ 291 292 kaddr = kmap(page); 293 to = kaddr + offset; 294 left = copyin(to, buf, copy); 295 copy -= left; 296 skip += copy; 297 to += copy; 298 bytes -= copy; 299 while (unlikely(!left && bytes)) { 300 iov++; 301 buf = iov->iov_base; 302 copy = min(bytes, iov->iov_len); 303 left = copyin(to, buf, copy); 304 copy -= left; 305 skip = copy; 306 to += copy; 307 bytes -= copy; 308 } 309 kunmap(page); 310 311 done: 312 if (skip == iov->iov_len) { 313 iov++; 314 skip = 0; 315 } 316 i->count -= wanted - bytes; 317 i->nr_segs -= iov - i->iov; 318 i->iov = iov; 319 i->iov_offset = skip; 320 return wanted - bytes; 321 } 322 323 #ifdef PIPE_PARANOIA 324 static bool sanity(const struct iov_iter *i) 325 { 326 struct pipe_inode_info *pipe = i->pipe; 327 int idx = i->idx; 328 int next = pipe->curbuf + pipe->nrbufs; 329 if (i->iov_offset) { 330 struct pipe_buffer *p; 331 if (unlikely(!pipe->nrbufs)) 332 goto Bad; // pipe must be non-empty 333 if (unlikely(idx != ((next - 1) & (pipe->buffers - 1)))) 334 goto Bad; // must be at the last buffer... 335 336 p = &pipe->bufs[idx]; 337 if (unlikely(p->offset + p->len != i->iov_offset)) 338 goto Bad; // ... at the end of segment 339 } else { 340 if (idx != (next & (pipe->buffers - 1))) 341 goto Bad; // must be right after the last buffer 342 } 343 return true; 344 Bad: 345 printk(KERN_ERR "idx = %d, offset = %zd\n", i->idx, i->iov_offset); 346 printk(KERN_ERR "curbuf = %d, nrbufs = %d, buffers = %d\n", 347 pipe->curbuf, pipe->nrbufs, pipe->buffers); 348 for (idx = 0; idx < pipe->buffers; idx++) 349 printk(KERN_ERR "[%p %p %d %d]\n", 350 pipe->bufs[idx].ops, 351 pipe->bufs[idx].page, 352 pipe->bufs[idx].offset, 353 pipe->bufs[idx].len); 354 WARN_ON(1); 355 return false; 356 } 357 #else 358 #define sanity(i) true 359 #endif 360 361 static inline int next_idx(int idx, struct pipe_inode_info *pipe) 362 { 363 return (idx + 1) & (pipe->buffers - 1); 364 } 365 366 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes, 367 struct iov_iter *i) 368 { 369 struct pipe_inode_info *pipe = i->pipe; 370 struct pipe_buffer *buf; 371 size_t off; 372 int idx; 373 374 if (unlikely(bytes > i->count)) 375 bytes = i->count; 376 377 if (unlikely(!bytes)) 378 return 0; 379 380 if (!sanity(i)) 381 return 0; 382 383 off = i->iov_offset; 384 idx = i->idx; 385 buf = &pipe->bufs[idx]; 386 if (off) { 387 if (offset == off && buf->page == page) { 388 /* merge with the last one */ 389 buf->len += bytes; 390 i->iov_offset += bytes; 391 goto out; 392 } 393 idx = next_idx(idx, pipe); 394 buf = &pipe->bufs[idx]; 395 } 396 if (idx == pipe->curbuf && pipe->nrbufs) 397 return 0; 398 pipe->nrbufs++; 399 buf->ops = &page_cache_pipe_buf_ops; 400 get_page(buf->page = page); 401 buf->offset = offset; 402 buf->len = bytes; 403 i->iov_offset = offset + bytes; 404 i->idx = idx; 405 out: 406 i->count -= bytes; 407 return bytes; 408 } 409 410 /* 411 * Fault in one or more iovecs of the given iov_iter, to a maximum length of 412 * bytes. For each iovec, fault in each page that constitutes the iovec. 413 * 414 * Return 0 on success, or non-zero if the memory could not be accessed (i.e. 415 * because it is an invalid address). 416 */ 417 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes) 418 { 419 size_t skip = i->iov_offset; 420 const struct iovec *iov; 421 int err; 422 struct iovec v; 423 424 if (!(i->type & (ITER_BVEC|ITER_KVEC))) { 425 iterate_iovec(i, bytes, v, iov, skip, ({ 426 err = fault_in_pages_readable(v.iov_base, v.iov_len); 427 if (unlikely(err)) 428 return err; 429 0;})) 430 } 431 return 0; 432 } 433 EXPORT_SYMBOL(iov_iter_fault_in_readable); 434 435 void iov_iter_init(struct iov_iter *i, unsigned int direction, 436 const struct iovec *iov, unsigned long nr_segs, 437 size_t count) 438 { 439 WARN_ON(direction & ~(READ | WRITE)); 440 direction &= READ | WRITE; 441 442 /* It will get better. Eventually... */ 443 if (uaccess_kernel()) { 444 i->type = ITER_KVEC | direction; 445 i->kvec = (struct kvec *)iov; 446 } else { 447 i->type = ITER_IOVEC | direction; 448 i->iov = iov; 449 } 450 i->nr_segs = nr_segs; 451 i->iov_offset = 0; 452 i->count = count; 453 } 454 EXPORT_SYMBOL(iov_iter_init); 455 456 static void memcpy_from_page(char *to, struct page *page, size_t offset, size_t len) 457 { 458 char *from = kmap_atomic(page); 459 memcpy(to, from + offset, len); 460 kunmap_atomic(from); 461 } 462 463 static void memcpy_to_page(struct page *page, size_t offset, const char *from, size_t len) 464 { 465 char *to = kmap_atomic(page); 466 memcpy(to + offset, from, len); 467 kunmap_atomic(to); 468 } 469 470 static void memzero_page(struct page *page, size_t offset, size_t len) 471 { 472 char *addr = kmap_atomic(page); 473 memset(addr + offset, 0, len); 474 kunmap_atomic(addr); 475 } 476 477 static inline bool allocated(struct pipe_buffer *buf) 478 { 479 return buf->ops == &default_pipe_buf_ops; 480 } 481 482 static inline void data_start(const struct iov_iter *i, int *idxp, size_t *offp) 483 { 484 size_t off = i->iov_offset; 485 int idx = i->idx; 486 if (off && (!allocated(&i->pipe->bufs[idx]) || off == PAGE_SIZE)) { 487 idx = next_idx(idx, i->pipe); 488 off = 0; 489 } 490 *idxp = idx; 491 *offp = off; 492 } 493 494 static size_t push_pipe(struct iov_iter *i, size_t size, 495 int *idxp, size_t *offp) 496 { 497 struct pipe_inode_info *pipe = i->pipe; 498 size_t off; 499 int idx; 500 ssize_t left; 501 502 if (unlikely(size > i->count)) 503 size = i->count; 504 if (unlikely(!size)) 505 return 0; 506 507 left = size; 508 data_start(i, &idx, &off); 509 *idxp = idx; 510 *offp = off; 511 if (off) { 512 left -= PAGE_SIZE - off; 513 if (left <= 0) { 514 pipe->bufs[idx].len += size; 515 return size; 516 } 517 pipe->bufs[idx].len = PAGE_SIZE; 518 idx = next_idx(idx, pipe); 519 } 520 while (idx != pipe->curbuf || !pipe->nrbufs) { 521 struct page *page = alloc_page(GFP_USER); 522 if (!page) 523 break; 524 pipe->nrbufs++; 525 pipe->bufs[idx].ops = &default_pipe_buf_ops; 526 pipe->bufs[idx].page = page; 527 pipe->bufs[idx].offset = 0; 528 if (left <= PAGE_SIZE) { 529 pipe->bufs[idx].len = left; 530 return size; 531 } 532 pipe->bufs[idx].len = PAGE_SIZE; 533 left -= PAGE_SIZE; 534 idx = next_idx(idx, pipe); 535 } 536 return size - left; 537 } 538 539 static size_t copy_pipe_to_iter(const void *addr, size_t bytes, 540 struct iov_iter *i) 541 { 542 struct pipe_inode_info *pipe = i->pipe; 543 size_t n, off; 544 int idx; 545 546 if (!sanity(i)) 547 return 0; 548 549 bytes = n = push_pipe(i, bytes, &idx, &off); 550 if (unlikely(!n)) 551 return 0; 552 for ( ; n; idx = next_idx(idx, pipe), off = 0) { 553 size_t chunk = min_t(size_t, n, PAGE_SIZE - off); 554 memcpy_to_page(pipe->bufs[idx].page, off, addr, chunk); 555 i->idx = idx; 556 i->iov_offset = off + chunk; 557 n -= chunk; 558 addr += chunk; 559 } 560 i->count -= bytes; 561 return bytes; 562 } 563 564 static __wsum csum_and_memcpy(void *to, const void *from, size_t len, 565 __wsum sum, size_t off) 566 { 567 __wsum next = csum_partial_copy_nocheck(from, to, len, 0); 568 return csum_block_add(sum, next, off); 569 } 570 571 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes, 572 __wsum *csum, struct iov_iter *i) 573 { 574 struct pipe_inode_info *pipe = i->pipe; 575 size_t n, r; 576 size_t off = 0; 577 __wsum sum = *csum; 578 int idx; 579 580 if (!sanity(i)) 581 return 0; 582 583 bytes = n = push_pipe(i, bytes, &idx, &r); 584 if (unlikely(!n)) 585 return 0; 586 for ( ; n; idx = next_idx(idx, pipe), r = 0) { 587 size_t chunk = min_t(size_t, n, PAGE_SIZE - r); 588 char *p = kmap_atomic(pipe->bufs[idx].page); 589 sum = csum_and_memcpy(p + r, addr, chunk, sum, off); 590 kunmap_atomic(p); 591 i->idx = idx; 592 i->iov_offset = r + chunk; 593 n -= chunk; 594 off += chunk; 595 addr += chunk; 596 } 597 i->count -= bytes; 598 *csum = sum; 599 return bytes; 600 } 601 602 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i) 603 { 604 const char *from = addr; 605 if (unlikely(iov_iter_is_pipe(i))) 606 return copy_pipe_to_iter(addr, bytes, i); 607 if (iter_is_iovec(i)) 608 might_fault(); 609 iterate_and_advance(i, bytes, v, 610 copyout(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len), 611 memcpy_to_page(v.bv_page, v.bv_offset, 612 (from += v.bv_len) - v.bv_len, v.bv_len), 613 memcpy(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len) 614 ) 615 616 return bytes; 617 } 618 EXPORT_SYMBOL(_copy_to_iter); 619 620 #ifdef CONFIG_ARCH_HAS_UACCESS_MCSAFE 621 static int copyout_mcsafe(void __user *to, const void *from, size_t n) 622 { 623 if (access_ok(to, n)) { 624 kasan_check_read(from, n); 625 n = copy_to_user_mcsafe((__force void *) to, from, n); 626 } 627 return n; 628 } 629 630 static unsigned long memcpy_mcsafe_to_page(struct page *page, size_t offset, 631 const char *from, size_t len) 632 { 633 unsigned long ret; 634 char *to; 635 636 to = kmap_atomic(page); 637 ret = memcpy_mcsafe(to + offset, from, len); 638 kunmap_atomic(to); 639 640 return ret; 641 } 642 643 static size_t copy_pipe_to_iter_mcsafe(const void *addr, size_t bytes, 644 struct iov_iter *i) 645 { 646 struct pipe_inode_info *pipe = i->pipe; 647 size_t n, off, xfer = 0; 648 int idx; 649 650 if (!sanity(i)) 651 return 0; 652 653 bytes = n = push_pipe(i, bytes, &idx, &off); 654 if (unlikely(!n)) 655 return 0; 656 for ( ; n; idx = next_idx(idx, pipe), off = 0) { 657 size_t chunk = min_t(size_t, n, PAGE_SIZE - off); 658 unsigned long rem; 659 660 rem = memcpy_mcsafe_to_page(pipe->bufs[idx].page, off, addr, 661 chunk); 662 i->idx = idx; 663 i->iov_offset = off + chunk - rem; 664 xfer += chunk - rem; 665 if (rem) 666 break; 667 n -= chunk; 668 addr += chunk; 669 } 670 i->count -= xfer; 671 return xfer; 672 } 673 674 /** 675 * _copy_to_iter_mcsafe - copy to user with source-read error exception handling 676 * @addr: source kernel address 677 * @bytes: total transfer length 678 * @iter: destination iterator 679 * 680 * The pmem driver arranges for filesystem-dax to use this facility via 681 * dax_copy_to_iter() for protecting read/write to persistent memory. 682 * Unless / until an architecture can guarantee identical performance 683 * between _copy_to_iter_mcsafe() and _copy_to_iter() it would be a 684 * performance regression to switch more users to the mcsafe version. 685 * 686 * Otherwise, the main differences between this and typical _copy_to_iter(). 687 * 688 * * Typical tail/residue handling after a fault retries the copy 689 * byte-by-byte until the fault happens again. Re-triggering machine 690 * checks is potentially fatal so the implementation uses source 691 * alignment and poison alignment assumptions to avoid re-triggering 692 * hardware exceptions. 693 * 694 * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies. 695 * Compare to copy_to_iter() where only ITER_IOVEC attempts might return 696 * a short copy. 697 * 698 * See MCSAFE_TEST for self-test. 699 */ 700 size_t _copy_to_iter_mcsafe(const void *addr, size_t bytes, struct iov_iter *i) 701 { 702 const char *from = addr; 703 unsigned long rem, curr_addr, s_addr = (unsigned long) addr; 704 705 if (unlikely(iov_iter_is_pipe(i))) 706 return copy_pipe_to_iter_mcsafe(addr, bytes, i); 707 if (iter_is_iovec(i)) 708 might_fault(); 709 iterate_and_advance(i, bytes, v, 710 copyout_mcsafe(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len), 711 ({ 712 rem = memcpy_mcsafe_to_page(v.bv_page, v.bv_offset, 713 (from += v.bv_len) - v.bv_len, v.bv_len); 714 if (rem) { 715 curr_addr = (unsigned long) from; 716 bytes = curr_addr - s_addr - rem; 717 return bytes; 718 } 719 }), 720 ({ 721 rem = memcpy_mcsafe(v.iov_base, (from += v.iov_len) - v.iov_len, 722 v.iov_len); 723 if (rem) { 724 curr_addr = (unsigned long) from; 725 bytes = curr_addr - s_addr - rem; 726 return bytes; 727 } 728 }) 729 ) 730 731 return bytes; 732 } 733 EXPORT_SYMBOL_GPL(_copy_to_iter_mcsafe); 734 #endif /* CONFIG_ARCH_HAS_UACCESS_MCSAFE */ 735 736 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i) 737 { 738 char *to = addr; 739 if (unlikely(iov_iter_is_pipe(i))) { 740 WARN_ON(1); 741 return 0; 742 } 743 if (iter_is_iovec(i)) 744 might_fault(); 745 iterate_and_advance(i, bytes, v, 746 copyin((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len), 747 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page, 748 v.bv_offset, v.bv_len), 749 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len) 750 ) 751 752 return bytes; 753 } 754 EXPORT_SYMBOL(_copy_from_iter); 755 756 bool _copy_from_iter_full(void *addr, size_t bytes, struct iov_iter *i) 757 { 758 char *to = addr; 759 if (unlikely(iov_iter_is_pipe(i))) { 760 WARN_ON(1); 761 return false; 762 } 763 if (unlikely(i->count < bytes)) 764 return false; 765 766 if (iter_is_iovec(i)) 767 might_fault(); 768 iterate_all_kinds(i, bytes, v, ({ 769 if (copyin((to += v.iov_len) - v.iov_len, 770 v.iov_base, v.iov_len)) 771 return false; 772 0;}), 773 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page, 774 v.bv_offset, v.bv_len), 775 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len) 776 ) 777 778 iov_iter_advance(i, bytes); 779 return true; 780 } 781 EXPORT_SYMBOL(_copy_from_iter_full); 782 783 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i) 784 { 785 char *to = addr; 786 if (unlikely(iov_iter_is_pipe(i))) { 787 WARN_ON(1); 788 return 0; 789 } 790 iterate_and_advance(i, bytes, v, 791 __copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len, 792 v.iov_base, v.iov_len), 793 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page, 794 v.bv_offset, v.bv_len), 795 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len) 796 ) 797 798 return bytes; 799 } 800 EXPORT_SYMBOL(_copy_from_iter_nocache); 801 802 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE 803 /** 804 * _copy_from_iter_flushcache - write destination through cpu cache 805 * @addr: destination kernel address 806 * @bytes: total transfer length 807 * @iter: source iterator 808 * 809 * The pmem driver arranges for filesystem-dax to use this facility via 810 * dax_copy_from_iter() for ensuring that writes to persistent memory 811 * are flushed through the CPU cache. It is differentiated from 812 * _copy_from_iter_nocache() in that guarantees all data is flushed for 813 * all iterator types. The _copy_from_iter_nocache() only attempts to 814 * bypass the cache for the ITER_IOVEC case, and on some archs may use 815 * instructions that strand dirty-data in the cache. 816 */ 817 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i) 818 { 819 char *to = addr; 820 if (unlikely(iov_iter_is_pipe(i))) { 821 WARN_ON(1); 822 return 0; 823 } 824 iterate_and_advance(i, bytes, v, 825 __copy_from_user_flushcache((to += v.iov_len) - v.iov_len, 826 v.iov_base, v.iov_len), 827 memcpy_page_flushcache((to += v.bv_len) - v.bv_len, v.bv_page, 828 v.bv_offset, v.bv_len), 829 memcpy_flushcache((to += v.iov_len) - v.iov_len, v.iov_base, 830 v.iov_len) 831 ) 832 833 return bytes; 834 } 835 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache); 836 #endif 837 838 bool _copy_from_iter_full_nocache(void *addr, size_t bytes, struct iov_iter *i) 839 { 840 char *to = addr; 841 if (unlikely(iov_iter_is_pipe(i))) { 842 WARN_ON(1); 843 return false; 844 } 845 if (unlikely(i->count < bytes)) 846 return false; 847 iterate_all_kinds(i, bytes, v, ({ 848 if (__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len, 849 v.iov_base, v.iov_len)) 850 return false; 851 0;}), 852 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page, 853 v.bv_offset, v.bv_len), 854 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len) 855 ) 856 857 iov_iter_advance(i, bytes); 858 return true; 859 } 860 EXPORT_SYMBOL(_copy_from_iter_full_nocache); 861 862 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n) 863 { 864 struct page *head = compound_head(page); 865 size_t v = n + offset + page_address(page) - page_address(head); 866 867 if (likely(n <= v && v <= (PAGE_SIZE << compound_order(head)))) 868 return true; 869 WARN_ON(1); 870 return false; 871 } 872 873 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes, 874 struct iov_iter *i) 875 { 876 if (unlikely(!page_copy_sane(page, offset, bytes))) 877 return 0; 878 if (i->type & (ITER_BVEC|ITER_KVEC)) { 879 void *kaddr = kmap_atomic(page); 880 size_t wanted = copy_to_iter(kaddr + offset, bytes, i); 881 kunmap_atomic(kaddr); 882 return wanted; 883 } else if (unlikely(iov_iter_is_discard(i))) 884 return bytes; 885 else if (likely(!iov_iter_is_pipe(i))) 886 return copy_page_to_iter_iovec(page, offset, bytes, i); 887 else 888 return copy_page_to_iter_pipe(page, offset, bytes, i); 889 } 890 EXPORT_SYMBOL(copy_page_to_iter); 891 892 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes, 893 struct iov_iter *i) 894 { 895 if (unlikely(!page_copy_sane(page, offset, bytes))) 896 return 0; 897 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) { 898 WARN_ON(1); 899 return 0; 900 } 901 if (i->type & (ITER_BVEC|ITER_KVEC)) { 902 void *kaddr = kmap_atomic(page); 903 size_t wanted = _copy_from_iter(kaddr + offset, bytes, i); 904 kunmap_atomic(kaddr); 905 return wanted; 906 } else 907 return copy_page_from_iter_iovec(page, offset, bytes, i); 908 } 909 EXPORT_SYMBOL(copy_page_from_iter); 910 911 static size_t pipe_zero(size_t bytes, struct iov_iter *i) 912 { 913 struct pipe_inode_info *pipe = i->pipe; 914 size_t n, off; 915 int idx; 916 917 if (!sanity(i)) 918 return 0; 919 920 bytes = n = push_pipe(i, bytes, &idx, &off); 921 if (unlikely(!n)) 922 return 0; 923 924 for ( ; n; idx = next_idx(idx, pipe), off = 0) { 925 size_t chunk = min_t(size_t, n, PAGE_SIZE - off); 926 memzero_page(pipe->bufs[idx].page, off, chunk); 927 i->idx = idx; 928 i->iov_offset = off + chunk; 929 n -= chunk; 930 } 931 i->count -= bytes; 932 return bytes; 933 } 934 935 size_t iov_iter_zero(size_t bytes, struct iov_iter *i) 936 { 937 if (unlikely(iov_iter_is_pipe(i))) 938 return pipe_zero(bytes, i); 939 iterate_and_advance(i, bytes, v, 940 clear_user(v.iov_base, v.iov_len), 941 memzero_page(v.bv_page, v.bv_offset, v.bv_len), 942 memset(v.iov_base, 0, v.iov_len) 943 ) 944 945 return bytes; 946 } 947 EXPORT_SYMBOL(iov_iter_zero); 948 949 size_t iov_iter_copy_from_user_atomic(struct page *page, 950 struct iov_iter *i, unsigned long offset, size_t bytes) 951 { 952 char *kaddr = kmap_atomic(page), *p = kaddr + offset; 953 if (unlikely(!page_copy_sane(page, offset, bytes))) { 954 kunmap_atomic(kaddr); 955 return 0; 956 } 957 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) { 958 kunmap_atomic(kaddr); 959 WARN_ON(1); 960 return 0; 961 } 962 iterate_all_kinds(i, bytes, v, 963 copyin((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len), 964 memcpy_from_page((p += v.bv_len) - v.bv_len, v.bv_page, 965 v.bv_offset, v.bv_len), 966 memcpy((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len) 967 ) 968 kunmap_atomic(kaddr); 969 return bytes; 970 } 971 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic); 972 973 static inline void pipe_truncate(struct iov_iter *i) 974 { 975 struct pipe_inode_info *pipe = i->pipe; 976 if (pipe->nrbufs) { 977 size_t off = i->iov_offset; 978 int idx = i->idx; 979 int nrbufs = (idx - pipe->curbuf) & (pipe->buffers - 1); 980 if (off) { 981 pipe->bufs[idx].len = off - pipe->bufs[idx].offset; 982 idx = next_idx(idx, pipe); 983 nrbufs++; 984 } 985 while (pipe->nrbufs > nrbufs) { 986 pipe_buf_release(pipe, &pipe->bufs[idx]); 987 idx = next_idx(idx, pipe); 988 pipe->nrbufs--; 989 } 990 } 991 } 992 993 static void pipe_advance(struct iov_iter *i, size_t size) 994 { 995 struct pipe_inode_info *pipe = i->pipe; 996 if (unlikely(i->count < size)) 997 size = i->count; 998 if (size) { 999 struct pipe_buffer *buf; 1000 size_t off = i->iov_offset, left = size; 1001 int idx = i->idx; 1002 if (off) /* make it relative to the beginning of buffer */ 1003 left += off - pipe->bufs[idx].offset; 1004 while (1) { 1005 buf = &pipe->bufs[idx]; 1006 if (left <= buf->len) 1007 break; 1008 left -= buf->len; 1009 idx = next_idx(idx, pipe); 1010 } 1011 i->idx = idx; 1012 i->iov_offset = buf->offset + left; 1013 } 1014 i->count -= size; 1015 /* ... and discard everything past that point */ 1016 pipe_truncate(i); 1017 } 1018 1019 void iov_iter_advance(struct iov_iter *i, size_t size) 1020 { 1021 if (unlikely(iov_iter_is_pipe(i))) { 1022 pipe_advance(i, size); 1023 return; 1024 } 1025 if (unlikely(iov_iter_is_discard(i))) { 1026 i->count -= size; 1027 return; 1028 } 1029 iterate_and_advance(i, size, v, 0, 0, 0) 1030 } 1031 EXPORT_SYMBOL(iov_iter_advance); 1032 1033 void iov_iter_revert(struct iov_iter *i, size_t unroll) 1034 { 1035 if (!unroll) 1036 return; 1037 if (WARN_ON(unroll > MAX_RW_COUNT)) 1038 return; 1039 i->count += unroll; 1040 if (unlikely(iov_iter_is_pipe(i))) { 1041 struct pipe_inode_info *pipe = i->pipe; 1042 int idx = i->idx; 1043 size_t off = i->iov_offset; 1044 while (1) { 1045 size_t n = off - pipe->bufs[idx].offset; 1046 if (unroll < n) { 1047 off -= unroll; 1048 break; 1049 } 1050 unroll -= n; 1051 if (!unroll && idx == i->start_idx) { 1052 off = 0; 1053 break; 1054 } 1055 if (!idx--) 1056 idx = pipe->buffers - 1; 1057 off = pipe->bufs[idx].offset + pipe->bufs[idx].len; 1058 } 1059 i->iov_offset = off; 1060 i->idx = idx; 1061 pipe_truncate(i); 1062 return; 1063 } 1064 if (unlikely(iov_iter_is_discard(i))) 1065 return; 1066 if (unroll <= i->iov_offset) { 1067 i->iov_offset -= unroll; 1068 return; 1069 } 1070 unroll -= i->iov_offset; 1071 if (iov_iter_is_bvec(i)) { 1072 const struct bio_vec *bvec = i->bvec; 1073 while (1) { 1074 size_t n = (--bvec)->bv_len; 1075 i->nr_segs++; 1076 if (unroll <= n) { 1077 i->bvec = bvec; 1078 i->iov_offset = n - unroll; 1079 return; 1080 } 1081 unroll -= n; 1082 } 1083 } else { /* same logics for iovec and kvec */ 1084 const struct iovec *iov = i->iov; 1085 while (1) { 1086 size_t n = (--iov)->iov_len; 1087 i->nr_segs++; 1088 if (unroll <= n) { 1089 i->iov = iov; 1090 i->iov_offset = n - unroll; 1091 return; 1092 } 1093 unroll -= n; 1094 } 1095 } 1096 } 1097 EXPORT_SYMBOL(iov_iter_revert); 1098 1099 /* 1100 * Return the count of just the current iov_iter segment. 1101 */ 1102 size_t iov_iter_single_seg_count(const struct iov_iter *i) 1103 { 1104 if (unlikely(iov_iter_is_pipe(i))) 1105 return i->count; // it is a silly place, anyway 1106 if (i->nr_segs == 1) 1107 return i->count; 1108 if (unlikely(iov_iter_is_discard(i))) 1109 return i->count; 1110 else if (iov_iter_is_bvec(i)) 1111 return min(i->count, i->bvec->bv_len - i->iov_offset); 1112 else 1113 return min(i->count, i->iov->iov_len - i->iov_offset); 1114 } 1115 EXPORT_SYMBOL(iov_iter_single_seg_count); 1116 1117 void iov_iter_kvec(struct iov_iter *i, unsigned int direction, 1118 const struct kvec *kvec, unsigned long nr_segs, 1119 size_t count) 1120 { 1121 WARN_ON(direction & ~(READ | WRITE)); 1122 i->type = ITER_KVEC | (direction & (READ | WRITE)); 1123 i->kvec = kvec; 1124 i->nr_segs = nr_segs; 1125 i->iov_offset = 0; 1126 i->count = count; 1127 } 1128 EXPORT_SYMBOL(iov_iter_kvec); 1129 1130 void iov_iter_bvec(struct iov_iter *i, unsigned int direction, 1131 const struct bio_vec *bvec, unsigned long nr_segs, 1132 size_t count) 1133 { 1134 WARN_ON(direction & ~(READ | WRITE)); 1135 i->type = ITER_BVEC | (direction & (READ | WRITE)); 1136 i->bvec = bvec; 1137 i->nr_segs = nr_segs; 1138 i->iov_offset = 0; 1139 i->count = count; 1140 } 1141 EXPORT_SYMBOL(iov_iter_bvec); 1142 1143 void iov_iter_pipe(struct iov_iter *i, unsigned int direction, 1144 struct pipe_inode_info *pipe, 1145 size_t count) 1146 { 1147 BUG_ON(direction != READ); 1148 WARN_ON(pipe->nrbufs == pipe->buffers); 1149 i->type = ITER_PIPE | READ; 1150 i->pipe = pipe; 1151 i->idx = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1); 1152 i->iov_offset = 0; 1153 i->count = count; 1154 i->start_idx = i->idx; 1155 } 1156 EXPORT_SYMBOL(iov_iter_pipe); 1157 1158 /** 1159 * iov_iter_discard - Initialise an I/O iterator that discards data 1160 * @i: The iterator to initialise. 1161 * @direction: The direction of the transfer. 1162 * @count: The size of the I/O buffer in bytes. 1163 * 1164 * Set up an I/O iterator that just discards everything that's written to it. 1165 * It's only available as a READ iterator. 1166 */ 1167 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count) 1168 { 1169 BUG_ON(direction != READ); 1170 i->type = ITER_DISCARD | READ; 1171 i->count = count; 1172 i->iov_offset = 0; 1173 } 1174 EXPORT_SYMBOL(iov_iter_discard); 1175 1176 unsigned long iov_iter_alignment(const struct iov_iter *i) 1177 { 1178 unsigned long res = 0; 1179 size_t size = i->count; 1180 1181 if (unlikely(iov_iter_is_pipe(i))) { 1182 if (size && i->iov_offset && allocated(&i->pipe->bufs[i->idx])) 1183 return size | i->iov_offset; 1184 return size; 1185 } 1186 iterate_all_kinds(i, size, v, 1187 (res |= (unsigned long)v.iov_base | v.iov_len, 0), 1188 res |= v.bv_offset | v.bv_len, 1189 res |= (unsigned long)v.iov_base | v.iov_len 1190 ) 1191 return res; 1192 } 1193 EXPORT_SYMBOL(iov_iter_alignment); 1194 1195 unsigned long iov_iter_gap_alignment(const struct iov_iter *i) 1196 { 1197 unsigned long res = 0; 1198 size_t size = i->count; 1199 1200 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) { 1201 WARN_ON(1); 1202 return ~0U; 1203 } 1204 1205 iterate_all_kinds(i, size, v, 1206 (res |= (!res ? 0 : (unsigned long)v.iov_base) | 1207 (size != v.iov_len ? size : 0), 0), 1208 (res |= (!res ? 0 : (unsigned long)v.bv_offset) | 1209 (size != v.bv_len ? size : 0)), 1210 (res |= (!res ? 0 : (unsigned long)v.iov_base) | 1211 (size != v.iov_len ? size : 0)) 1212 ); 1213 return res; 1214 } 1215 EXPORT_SYMBOL(iov_iter_gap_alignment); 1216 1217 static inline ssize_t __pipe_get_pages(struct iov_iter *i, 1218 size_t maxsize, 1219 struct page **pages, 1220 int idx, 1221 size_t *start) 1222 { 1223 struct pipe_inode_info *pipe = i->pipe; 1224 ssize_t n = push_pipe(i, maxsize, &idx, start); 1225 if (!n) 1226 return -EFAULT; 1227 1228 maxsize = n; 1229 n += *start; 1230 while (n > 0) { 1231 get_page(*pages++ = pipe->bufs[idx].page); 1232 idx = next_idx(idx, pipe); 1233 n -= PAGE_SIZE; 1234 } 1235 1236 return maxsize; 1237 } 1238 1239 static ssize_t pipe_get_pages(struct iov_iter *i, 1240 struct page **pages, size_t maxsize, unsigned maxpages, 1241 size_t *start) 1242 { 1243 unsigned npages; 1244 size_t capacity; 1245 int idx; 1246 1247 if (!maxsize) 1248 return 0; 1249 1250 if (!sanity(i)) 1251 return -EFAULT; 1252 1253 data_start(i, &idx, start); 1254 /* some of this one + all after this one */ 1255 npages = ((i->pipe->curbuf - idx - 1) & (i->pipe->buffers - 1)) + 1; 1256 capacity = min(npages,maxpages) * PAGE_SIZE - *start; 1257 1258 return __pipe_get_pages(i, min(maxsize, capacity), pages, idx, start); 1259 } 1260 1261 ssize_t iov_iter_get_pages(struct iov_iter *i, 1262 struct page **pages, size_t maxsize, unsigned maxpages, 1263 size_t *start) 1264 { 1265 if (maxsize > i->count) 1266 maxsize = i->count; 1267 1268 if (unlikely(iov_iter_is_pipe(i))) 1269 return pipe_get_pages(i, pages, maxsize, maxpages, start); 1270 if (unlikely(iov_iter_is_discard(i))) 1271 return -EFAULT; 1272 1273 iterate_all_kinds(i, maxsize, v, ({ 1274 unsigned long addr = (unsigned long)v.iov_base; 1275 size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1)); 1276 int n; 1277 int res; 1278 1279 if (len > maxpages * PAGE_SIZE) 1280 len = maxpages * PAGE_SIZE; 1281 addr &= ~(PAGE_SIZE - 1); 1282 n = DIV_ROUND_UP(len, PAGE_SIZE); 1283 res = get_user_pages_fast(addr, n, iov_iter_rw(i) != WRITE, pages); 1284 if (unlikely(res < 0)) 1285 return res; 1286 return (res == n ? len : res * PAGE_SIZE) - *start; 1287 0;}),({ 1288 /* can't be more than PAGE_SIZE */ 1289 *start = v.bv_offset; 1290 get_page(*pages = v.bv_page); 1291 return v.bv_len; 1292 }),({ 1293 return -EFAULT; 1294 }) 1295 ) 1296 return 0; 1297 } 1298 EXPORT_SYMBOL(iov_iter_get_pages); 1299 1300 static struct page **get_pages_array(size_t n) 1301 { 1302 return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL); 1303 } 1304 1305 static ssize_t pipe_get_pages_alloc(struct iov_iter *i, 1306 struct page ***pages, size_t maxsize, 1307 size_t *start) 1308 { 1309 struct page **p; 1310 ssize_t n; 1311 int idx; 1312 int npages; 1313 1314 if (!maxsize) 1315 return 0; 1316 1317 if (!sanity(i)) 1318 return -EFAULT; 1319 1320 data_start(i, &idx, start); 1321 /* some of this one + all after this one */ 1322 npages = ((i->pipe->curbuf - idx - 1) & (i->pipe->buffers - 1)) + 1; 1323 n = npages * PAGE_SIZE - *start; 1324 if (maxsize > n) 1325 maxsize = n; 1326 else 1327 npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE); 1328 p = get_pages_array(npages); 1329 if (!p) 1330 return -ENOMEM; 1331 n = __pipe_get_pages(i, maxsize, p, idx, start); 1332 if (n > 0) 1333 *pages = p; 1334 else 1335 kvfree(p); 1336 return n; 1337 } 1338 1339 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i, 1340 struct page ***pages, size_t maxsize, 1341 size_t *start) 1342 { 1343 struct page **p; 1344 1345 if (maxsize > i->count) 1346 maxsize = i->count; 1347 1348 if (unlikely(iov_iter_is_pipe(i))) 1349 return pipe_get_pages_alloc(i, pages, maxsize, start); 1350 if (unlikely(iov_iter_is_discard(i))) 1351 return -EFAULT; 1352 1353 iterate_all_kinds(i, maxsize, v, ({ 1354 unsigned long addr = (unsigned long)v.iov_base; 1355 size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1)); 1356 int n; 1357 int res; 1358 1359 addr &= ~(PAGE_SIZE - 1); 1360 n = DIV_ROUND_UP(len, PAGE_SIZE); 1361 p = get_pages_array(n); 1362 if (!p) 1363 return -ENOMEM; 1364 res = get_user_pages_fast(addr, n, iov_iter_rw(i) != WRITE, p); 1365 if (unlikely(res < 0)) { 1366 kvfree(p); 1367 return res; 1368 } 1369 *pages = p; 1370 return (res == n ? len : res * PAGE_SIZE) - *start; 1371 0;}),({ 1372 /* can't be more than PAGE_SIZE */ 1373 *start = v.bv_offset; 1374 *pages = p = get_pages_array(1); 1375 if (!p) 1376 return -ENOMEM; 1377 get_page(*p = v.bv_page); 1378 return v.bv_len; 1379 }),({ 1380 return -EFAULT; 1381 }) 1382 ) 1383 return 0; 1384 } 1385 EXPORT_SYMBOL(iov_iter_get_pages_alloc); 1386 1387 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum, 1388 struct iov_iter *i) 1389 { 1390 char *to = addr; 1391 __wsum sum, next; 1392 size_t off = 0; 1393 sum = *csum; 1394 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) { 1395 WARN_ON(1); 1396 return 0; 1397 } 1398 iterate_and_advance(i, bytes, v, ({ 1399 int err = 0; 1400 next = csum_and_copy_from_user(v.iov_base, 1401 (to += v.iov_len) - v.iov_len, 1402 v.iov_len, 0, &err); 1403 if (!err) { 1404 sum = csum_block_add(sum, next, off); 1405 off += v.iov_len; 1406 } 1407 err ? v.iov_len : 0; 1408 }), ({ 1409 char *p = kmap_atomic(v.bv_page); 1410 sum = csum_and_memcpy((to += v.bv_len) - v.bv_len, 1411 p + v.bv_offset, v.bv_len, 1412 sum, off); 1413 kunmap_atomic(p); 1414 off += v.bv_len; 1415 }),({ 1416 sum = csum_and_memcpy((to += v.iov_len) - v.iov_len, 1417 v.iov_base, v.iov_len, 1418 sum, off); 1419 off += v.iov_len; 1420 }) 1421 ) 1422 *csum = sum; 1423 return bytes; 1424 } 1425 EXPORT_SYMBOL(csum_and_copy_from_iter); 1426 1427 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, 1428 struct iov_iter *i) 1429 { 1430 char *to = addr; 1431 __wsum sum, next; 1432 size_t off = 0; 1433 sum = *csum; 1434 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) { 1435 WARN_ON(1); 1436 return false; 1437 } 1438 if (unlikely(i->count < bytes)) 1439 return false; 1440 iterate_all_kinds(i, bytes, v, ({ 1441 int err = 0; 1442 next = csum_and_copy_from_user(v.iov_base, 1443 (to += v.iov_len) - v.iov_len, 1444 v.iov_len, 0, &err); 1445 if (err) 1446 return false; 1447 sum = csum_block_add(sum, next, off); 1448 off += v.iov_len; 1449 0; 1450 }), ({ 1451 char *p = kmap_atomic(v.bv_page); 1452 sum = csum_and_memcpy((to += v.bv_len) - v.bv_len, 1453 p + v.bv_offset, v.bv_len, 1454 sum, off); 1455 kunmap_atomic(p); 1456 off += v.bv_len; 1457 }),({ 1458 sum = csum_and_memcpy((to += v.iov_len) - v.iov_len, 1459 v.iov_base, v.iov_len, 1460 sum, off); 1461 off += v.iov_len; 1462 }) 1463 ) 1464 *csum = sum; 1465 iov_iter_advance(i, bytes); 1466 return true; 1467 } 1468 EXPORT_SYMBOL(csum_and_copy_from_iter_full); 1469 1470 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *csump, 1471 struct iov_iter *i) 1472 { 1473 const char *from = addr; 1474 __wsum *csum = csump; 1475 __wsum sum, next; 1476 size_t off = 0; 1477 1478 if (unlikely(iov_iter_is_pipe(i))) 1479 return csum_and_copy_to_pipe_iter(addr, bytes, csum, i); 1480 1481 sum = *csum; 1482 if (unlikely(iov_iter_is_discard(i))) { 1483 WARN_ON(1); /* for now */ 1484 return 0; 1485 } 1486 iterate_and_advance(i, bytes, v, ({ 1487 int err = 0; 1488 next = csum_and_copy_to_user((from += v.iov_len) - v.iov_len, 1489 v.iov_base, 1490 v.iov_len, 0, &err); 1491 if (!err) { 1492 sum = csum_block_add(sum, next, off); 1493 off += v.iov_len; 1494 } 1495 err ? v.iov_len : 0; 1496 }), ({ 1497 char *p = kmap_atomic(v.bv_page); 1498 sum = csum_and_memcpy(p + v.bv_offset, 1499 (from += v.bv_len) - v.bv_len, 1500 v.bv_len, sum, off); 1501 kunmap_atomic(p); 1502 off += v.bv_len; 1503 }),({ 1504 sum = csum_and_memcpy(v.iov_base, 1505 (from += v.iov_len) - v.iov_len, 1506 v.iov_len, sum, off); 1507 off += v.iov_len; 1508 }) 1509 ) 1510 *csum = sum; 1511 return bytes; 1512 } 1513 EXPORT_SYMBOL(csum_and_copy_to_iter); 1514 1515 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp, 1516 struct iov_iter *i) 1517 { 1518 struct ahash_request *hash = hashp; 1519 struct scatterlist sg; 1520 size_t copied; 1521 1522 copied = copy_to_iter(addr, bytes, i); 1523 sg_init_one(&sg, addr, copied); 1524 ahash_request_set_crypt(hash, &sg, NULL, copied); 1525 crypto_ahash_update(hash); 1526 return copied; 1527 } 1528 EXPORT_SYMBOL(hash_and_copy_to_iter); 1529 1530 int iov_iter_npages(const struct iov_iter *i, int maxpages) 1531 { 1532 size_t size = i->count; 1533 int npages = 0; 1534 1535 if (!size) 1536 return 0; 1537 if (unlikely(iov_iter_is_discard(i))) 1538 return 0; 1539 1540 if (unlikely(iov_iter_is_pipe(i))) { 1541 struct pipe_inode_info *pipe = i->pipe; 1542 size_t off; 1543 int idx; 1544 1545 if (!sanity(i)) 1546 return 0; 1547 1548 data_start(i, &idx, &off); 1549 /* some of this one + all after this one */ 1550 npages = ((pipe->curbuf - idx - 1) & (pipe->buffers - 1)) + 1; 1551 if (npages >= maxpages) 1552 return maxpages; 1553 } else iterate_all_kinds(i, size, v, ({ 1554 unsigned long p = (unsigned long)v.iov_base; 1555 npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE) 1556 - p / PAGE_SIZE; 1557 if (npages >= maxpages) 1558 return maxpages; 1559 0;}),({ 1560 npages++; 1561 if (npages >= maxpages) 1562 return maxpages; 1563 }),({ 1564 unsigned long p = (unsigned long)v.iov_base; 1565 npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE) 1566 - p / PAGE_SIZE; 1567 if (npages >= maxpages) 1568 return maxpages; 1569 }) 1570 ) 1571 return npages; 1572 } 1573 EXPORT_SYMBOL(iov_iter_npages); 1574 1575 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags) 1576 { 1577 *new = *old; 1578 if (unlikely(iov_iter_is_pipe(new))) { 1579 WARN_ON(1); 1580 return NULL; 1581 } 1582 if (unlikely(iov_iter_is_discard(new))) 1583 return NULL; 1584 if (iov_iter_is_bvec(new)) 1585 return new->bvec = kmemdup(new->bvec, 1586 new->nr_segs * sizeof(struct bio_vec), 1587 flags); 1588 else 1589 /* iovec and kvec have identical layout */ 1590 return new->iov = kmemdup(new->iov, 1591 new->nr_segs * sizeof(struct iovec), 1592 flags); 1593 } 1594 EXPORT_SYMBOL(dup_iter); 1595 1596 /** 1597 * import_iovec() - Copy an array of &struct iovec from userspace 1598 * into the kernel, check that it is valid, and initialize a new 1599 * &struct iov_iter iterator to access it. 1600 * 1601 * @type: One of %READ or %WRITE. 1602 * @uvector: Pointer to the userspace array. 1603 * @nr_segs: Number of elements in userspace array. 1604 * @fast_segs: Number of elements in @iov. 1605 * @iov: (input and output parameter) Pointer to pointer to (usually small 1606 * on-stack) kernel array. 1607 * @i: Pointer to iterator that will be initialized on success. 1608 * 1609 * If the array pointed to by *@iov is large enough to hold all @nr_segs, 1610 * then this function places %NULL in *@iov on return. Otherwise, a new 1611 * array will be allocated and the result placed in *@iov. This means that 1612 * the caller may call kfree() on *@iov regardless of whether the small 1613 * on-stack array was used or not (and regardless of whether this function 1614 * returns an error or not). 1615 * 1616 * Return: 0 on success or negative error code on error. 1617 */ 1618 int import_iovec(int type, const struct iovec __user * uvector, 1619 unsigned nr_segs, unsigned fast_segs, 1620 struct iovec **iov, struct iov_iter *i) 1621 { 1622 ssize_t n; 1623 struct iovec *p; 1624 n = rw_copy_check_uvector(type, uvector, nr_segs, fast_segs, 1625 *iov, &p); 1626 if (n < 0) { 1627 if (p != *iov) 1628 kfree(p); 1629 *iov = NULL; 1630 return n; 1631 } 1632 iov_iter_init(i, type, p, nr_segs, n); 1633 *iov = p == *iov ? NULL : p; 1634 return 0; 1635 } 1636 EXPORT_SYMBOL(import_iovec); 1637 1638 #ifdef CONFIG_COMPAT 1639 #include <linux/compat.h> 1640 1641 int compat_import_iovec(int type, const struct compat_iovec __user * uvector, 1642 unsigned nr_segs, unsigned fast_segs, 1643 struct iovec **iov, struct iov_iter *i) 1644 { 1645 ssize_t n; 1646 struct iovec *p; 1647 n = compat_rw_copy_check_uvector(type, uvector, nr_segs, fast_segs, 1648 *iov, &p); 1649 if (n < 0) { 1650 if (p != *iov) 1651 kfree(p); 1652 *iov = NULL; 1653 return n; 1654 } 1655 iov_iter_init(i, type, p, nr_segs, n); 1656 *iov = p == *iov ? NULL : p; 1657 return 0; 1658 } 1659 #endif 1660 1661 int import_single_range(int rw, void __user *buf, size_t len, 1662 struct iovec *iov, struct iov_iter *i) 1663 { 1664 if (len > MAX_RW_COUNT) 1665 len = MAX_RW_COUNT; 1666 if (unlikely(!access_ok(buf, len))) 1667 return -EFAULT; 1668 1669 iov->iov_base = buf; 1670 iov->iov_len = len; 1671 iov_iter_init(i, rw, iov, 1, len); 1672 return 0; 1673 } 1674 EXPORT_SYMBOL(import_single_range); 1675 1676 int iov_iter_for_each_range(struct iov_iter *i, size_t bytes, 1677 int (*f)(struct kvec *vec, void *context), 1678 void *context) 1679 { 1680 struct kvec w; 1681 int err = -EINVAL; 1682 if (!bytes) 1683 return 0; 1684 1685 iterate_all_kinds(i, bytes, v, -EINVAL, ({ 1686 w.iov_base = kmap(v.bv_page) + v.bv_offset; 1687 w.iov_len = v.bv_len; 1688 err = f(&w, context); 1689 kunmap(v.bv_page); 1690 err;}), ({ 1691 w = v; 1692 err = f(&w, context);}) 1693 ) 1694 return err; 1695 } 1696 EXPORT_SYMBOL(iov_iter_for_each_range); 1697