1 #include <linux/export.h> 2 #include <linux/bvec.h> 3 #include <linux/uio.h> 4 #include <linux/pagemap.h> 5 #include <linux/slab.h> 6 #include <linux/vmalloc.h> 7 #include <linux/splice.h> 8 #include <net/checksum.h> 9 #include <linux/scatterlist.h> 10 11 #define PIPE_PARANOIA /* for now */ 12 13 #define iterate_iovec(i, n, __v, __p, skip, STEP) { \ 14 size_t left; \ 15 size_t wanted = n; \ 16 __p = i->iov; \ 17 __v.iov_len = min(n, __p->iov_len - skip); \ 18 if (likely(__v.iov_len)) { \ 19 __v.iov_base = __p->iov_base + skip; \ 20 left = (STEP); \ 21 __v.iov_len -= left; \ 22 skip += __v.iov_len; \ 23 n -= __v.iov_len; \ 24 } else { \ 25 left = 0; \ 26 } \ 27 while (unlikely(!left && n)) { \ 28 __p++; \ 29 __v.iov_len = min(n, __p->iov_len); \ 30 if (unlikely(!__v.iov_len)) \ 31 continue; \ 32 __v.iov_base = __p->iov_base; \ 33 left = (STEP); \ 34 __v.iov_len -= left; \ 35 skip = __v.iov_len; \ 36 n -= __v.iov_len; \ 37 } \ 38 n = wanted - n; \ 39 } 40 41 #define iterate_kvec(i, n, __v, __p, skip, STEP) { \ 42 size_t wanted = n; \ 43 __p = i->kvec; \ 44 __v.iov_len = min(n, __p->iov_len - skip); \ 45 if (likely(__v.iov_len)) { \ 46 __v.iov_base = __p->iov_base + skip; \ 47 (void)(STEP); \ 48 skip += __v.iov_len; \ 49 n -= __v.iov_len; \ 50 } \ 51 while (unlikely(n)) { \ 52 __p++; \ 53 __v.iov_len = min(n, __p->iov_len); \ 54 if (unlikely(!__v.iov_len)) \ 55 continue; \ 56 __v.iov_base = __p->iov_base; \ 57 (void)(STEP); \ 58 skip = __v.iov_len; \ 59 n -= __v.iov_len; \ 60 } \ 61 n = wanted; \ 62 } 63 64 #define iterate_bvec(i, n, __v, __bi, skip, STEP) { \ 65 struct bvec_iter __start; \ 66 __start.bi_size = n; \ 67 __start.bi_bvec_done = skip; \ 68 __start.bi_idx = 0; \ 69 for_each_bvec(__v, i->bvec, __bi, __start) { \ 70 if (!__v.bv_len) \ 71 continue; \ 72 (void)(STEP); \ 73 } \ 74 } 75 76 #define iterate_all_kinds(i, n, v, I, B, K) { \ 77 if (likely(n)) { \ 78 size_t skip = i->iov_offset; \ 79 if (unlikely(i->type & ITER_BVEC)) { \ 80 struct bio_vec v; \ 81 struct bvec_iter __bi; \ 82 iterate_bvec(i, n, v, __bi, skip, (B)) \ 83 } else if (unlikely(i->type & ITER_KVEC)) { \ 84 const struct kvec *kvec; \ 85 struct kvec v; \ 86 iterate_kvec(i, n, v, kvec, skip, (K)) \ 87 } else if (unlikely(i->type & ITER_DISCARD)) { \ 88 } else { \ 89 const struct iovec *iov; \ 90 struct iovec v; \ 91 iterate_iovec(i, n, v, iov, skip, (I)) \ 92 } \ 93 } \ 94 } 95 96 #define iterate_and_advance(i, n, v, I, B, K) { \ 97 if (unlikely(i->count < n)) \ 98 n = i->count; \ 99 if (i->count) { \ 100 size_t skip = i->iov_offset; \ 101 if (unlikely(i->type & ITER_BVEC)) { \ 102 const struct bio_vec *bvec = i->bvec; \ 103 struct bio_vec v; \ 104 struct bvec_iter __bi; \ 105 iterate_bvec(i, n, v, __bi, skip, (B)) \ 106 i->bvec = __bvec_iter_bvec(i->bvec, __bi); \ 107 i->nr_segs -= i->bvec - bvec; \ 108 skip = __bi.bi_bvec_done; \ 109 } else if (unlikely(i->type & ITER_KVEC)) { \ 110 const struct kvec *kvec; \ 111 struct kvec v; \ 112 iterate_kvec(i, n, v, kvec, skip, (K)) \ 113 if (skip == kvec->iov_len) { \ 114 kvec++; \ 115 skip = 0; \ 116 } \ 117 i->nr_segs -= kvec - i->kvec; \ 118 i->kvec = kvec; \ 119 } else if (unlikely(i->type & ITER_DISCARD)) { \ 120 skip += n; \ 121 } else { \ 122 const struct iovec *iov; \ 123 struct iovec v; \ 124 iterate_iovec(i, n, v, iov, skip, (I)) \ 125 if (skip == iov->iov_len) { \ 126 iov++; \ 127 skip = 0; \ 128 } \ 129 i->nr_segs -= iov - i->iov; \ 130 i->iov = iov; \ 131 } \ 132 i->count -= n; \ 133 i->iov_offset = skip; \ 134 } \ 135 } 136 137 static int copyout(void __user *to, const void *from, size_t n) 138 { 139 if (access_ok(to, n)) { 140 kasan_check_read(from, n); 141 n = raw_copy_to_user(to, from, n); 142 } 143 return n; 144 } 145 146 static int copyin(void *to, const void __user *from, size_t n) 147 { 148 if (access_ok(from, n)) { 149 kasan_check_write(to, n); 150 n = raw_copy_from_user(to, from, n); 151 } 152 return n; 153 } 154 155 static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes, 156 struct iov_iter *i) 157 { 158 size_t skip, copy, left, wanted; 159 const struct iovec *iov; 160 char __user *buf; 161 void *kaddr, *from; 162 163 if (unlikely(bytes > i->count)) 164 bytes = i->count; 165 166 if (unlikely(!bytes)) 167 return 0; 168 169 might_fault(); 170 wanted = bytes; 171 iov = i->iov; 172 skip = i->iov_offset; 173 buf = iov->iov_base + skip; 174 copy = min(bytes, iov->iov_len - skip); 175 176 if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_writeable(buf, copy)) { 177 kaddr = kmap_atomic(page); 178 from = kaddr + offset; 179 180 /* first chunk, usually the only one */ 181 left = copyout(buf, from, copy); 182 copy -= left; 183 skip += copy; 184 from += copy; 185 bytes -= copy; 186 187 while (unlikely(!left && bytes)) { 188 iov++; 189 buf = iov->iov_base; 190 copy = min(bytes, iov->iov_len); 191 left = copyout(buf, from, copy); 192 copy -= left; 193 skip = copy; 194 from += copy; 195 bytes -= copy; 196 } 197 if (likely(!bytes)) { 198 kunmap_atomic(kaddr); 199 goto done; 200 } 201 offset = from - kaddr; 202 buf += copy; 203 kunmap_atomic(kaddr); 204 copy = min(bytes, iov->iov_len - skip); 205 } 206 /* Too bad - revert to non-atomic kmap */ 207 208 kaddr = kmap(page); 209 from = kaddr + offset; 210 left = copyout(buf, from, copy); 211 copy -= left; 212 skip += copy; 213 from += copy; 214 bytes -= copy; 215 while (unlikely(!left && bytes)) { 216 iov++; 217 buf = iov->iov_base; 218 copy = min(bytes, iov->iov_len); 219 left = copyout(buf, from, copy); 220 copy -= left; 221 skip = copy; 222 from += copy; 223 bytes -= copy; 224 } 225 kunmap(page); 226 227 done: 228 if (skip == iov->iov_len) { 229 iov++; 230 skip = 0; 231 } 232 i->count -= wanted - bytes; 233 i->nr_segs -= iov - i->iov; 234 i->iov = iov; 235 i->iov_offset = skip; 236 return wanted - bytes; 237 } 238 239 static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes, 240 struct iov_iter *i) 241 { 242 size_t skip, copy, left, wanted; 243 const struct iovec *iov; 244 char __user *buf; 245 void *kaddr, *to; 246 247 if (unlikely(bytes > i->count)) 248 bytes = i->count; 249 250 if (unlikely(!bytes)) 251 return 0; 252 253 might_fault(); 254 wanted = bytes; 255 iov = i->iov; 256 skip = i->iov_offset; 257 buf = iov->iov_base + skip; 258 copy = min(bytes, iov->iov_len - skip); 259 260 if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_readable(buf, copy)) { 261 kaddr = kmap_atomic(page); 262 to = kaddr + offset; 263 264 /* first chunk, usually the only one */ 265 left = copyin(to, buf, copy); 266 copy -= left; 267 skip += copy; 268 to += copy; 269 bytes -= copy; 270 271 while (unlikely(!left && bytes)) { 272 iov++; 273 buf = iov->iov_base; 274 copy = min(bytes, iov->iov_len); 275 left = copyin(to, buf, copy); 276 copy -= left; 277 skip = copy; 278 to += copy; 279 bytes -= copy; 280 } 281 if (likely(!bytes)) { 282 kunmap_atomic(kaddr); 283 goto done; 284 } 285 offset = to - kaddr; 286 buf += copy; 287 kunmap_atomic(kaddr); 288 copy = min(bytes, iov->iov_len - skip); 289 } 290 /* Too bad - revert to non-atomic kmap */ 291 292 kaddr = kmap(page); 293 to = kaddr + offset; 294 left = copyin(to, buf, copy); 295 copy -= left; 296 skip += copy; 297 to += copy; 298 bytes -= copy; 299 while (unlikely(!left && bytes)) { 300 iov++; 301 buf = iov->iov_base; 302 copy = min(bytes, iov->iov_len); 303 left = copyin(to, buf, copy); 304 copy -= left; 305 skip = copy; 306 to += copy; 307 bytes -= copy; 308 } 309 kunmap(page); 310 311 done: 312 if (skip == iov->iov_len) { 313 iov++; 314 skip = 0; 315 } 316 i->count -= wanted - bytes; 317 i->nr_segs -= iov - i->iov; 318 i->iov = iov; 319 i->iov_offset = skip; 320 return wanted - bytes; 321 } 322 323 #ifdef PIPE_PARANOIA 324 static bool sanity(const struct iov_iter *i) 325 { 326 struct pipe_inode_info *pipe = i->pipe; 327 int idx = i->idx; 328 int next = pipe->curbuf + pipe->nrbufs; 329 if (i->iov_offset) { 330 struct pipe_buffer *p; 331 if (unlikely(!pipe->nrbufs)) 332 goto Bad; // pipe must be non-empty 333 if (unlikely(idx != ((next - 1) & (pipe->buffers - 1)))) 334 goto Bad; // must be at the last buffer... 335 336 p = &pipe->bufs[idx]; 337 if (unlikely(p->offset + p->len != i->iov_offset)) 338 goto Bad; // ... at the end of segment 339 } else { 340 if (idx != (next & (pipe->buffers - 1))) 341 goto Bad; // must be right after the last buffer 342 } 343 return true; 344 Bad: 345 printk(KERN_ERR "idx = %d, offset = %zd\n", i->idx, i->iov_offset); 346 printk(KERN_ERR "curbuf = %d, nrbufs = %d, buffers = %d\n", 347 pipe->curbuf, pipe->nrbufs, pipe->buffers); 348 for (idx = 0; idx < pipe->buffers; idx++) 349 printk(KERN_ERR "[%p %p %d %d]\n", 350 pipe->bufs[idx].ops, 351 pipe->bufs[idx].page, 352 pipe->bufs[idx].offset, 353 pipe->bufs[idx].len); 354 WARN_ON(1); 355 return false; 356 } 357 #else 358 #define sanity(i) true 359 #endif 360 361 static inline int next_idx(int idx, struct pipe_inode_info *pipe) 362 { 363 return (idx + 1) & (pipe->buffers - 1); 364 } 365 366 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes, 367 struct iov_iter *i) 368 { 369 struct pipe_inode_info *pipe = i->pipe; 370 struct pipe_buffer *buf; 371 size_t off; 372 int idx; 373 374 if (unlikely(bytes > i->count)) 375 bytes = i->count; 376 377 if (unlikely(!bytes)) 378 return 0; 379 380 if (!sanity(i)) 381 return 0; 382 383 off = i->iov_offset; 384 idx = i->idx; 385 buf = &pipe->bufs[idx]; 386 if (off) { 387 if (offset == off && buf->page == page) { 388 /* merge with the last one */ 389 buf->len += bytes; 390 i->iov_offset += bytes; 391 goto out; 392 } 393 idx = next_idx(idx, pipe); 394 buf = &pipe->bufs[idx]; 395 } 396 if (idx == pipe->curbuf && pipe->nrbufs) 397 return 0; 398 pipe->nrbufs++; 399 buf->ops = &page_cache_pipe_buf_ops; 400 get_page(buf->page = page); 401 buf->offset = offset; 402 buf->len = bytes; 403 i->iov_offset = offset + bytes; 404 i->idx = idx; 405 out: 406 i->count -= bytes; 407 return bytes; 408 } 409 410 /* 411 * Fault in one or more iovecs of the given iov_iter, to a maximum length of 412 * bytes. For each iovec, fault in each page that constitutes the iovec. 413 * 414 * Return 0 on success, or non-zero if the memory could not be accessed (i.e. 415 * because it is an invalid address). 416 */ 417 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes) 418 { 419 size_t skip = i->iov_offset; 420 const struct iovec *iov; 421 int err; 422 struct iovec v; 423 424 if (!(i->type & (ITER_BVEC|ITER_KVEC))) { 425 iterate_iovec(i, bytes, v, iov, skip, ({ 426 err = fault_in_pages_readable(v.iov_base, v.iov_len); 427 if (unlikely(err)) 428 return err; 429 0;})) 430 } 431 return 0; 432 } 433 EXPORT_SYMBOL(iov_iter_fault_in_readable); 434 435 void iov_iter_init(struct iov_iter *i, unsigned int direction, 436 const struct iovec *iov, unsigned long nr_segs, 437 size_t count) 438 { 439 WARN_ON(direction & ~(READ | WRITE)); 440 direction &= READ | WRITE; 441 442 /* It will get better. Eventually... */ 443 if (uaccess_kernel()) { 444 i->type = ITER_KVEC | direction; 445 i->kvec = (struct kvec *)iov; 446 } else { 447 i->type = ITER_IOVEC | direction; 448 i->iov = iov; 449 } 450 i->nr_segs = nr_segs; 451 i->iov_offset = 0; 452 i->count = count; 453 } 454 EXPORT_SYMBOL(iov_iter_init); 455 456 static void memcpy_from_page(char *to, struct page *page, size_t offset, size_t len) 457 { 458 char *from = kmap_atomic(page); 459 memcpy(to, from + offset, len); 460 kunmap_atomic(from); 461 } 462 463 static void memcpy_to_page(struct page *page, size_t offset, const char *from, size_t len) 464 { 465 char *to = kmap_atomic(page); 466 memcpy(to + offset, from, len); 467 kunmap_atomic(to); 468 } 469 470 static void memzero_page(struct page *page, size_t offset, size_t len) 471 { 472 char *addr = kmap_atomic(page); 473 memset(addr + offset, 0, len); 474 kunmap_atomic(addr); 475 } 476 477 static inline bool allocated(struct pipe_buffer *buf) 478 { 479 return buf->ops == &default_pipe_buf_ops; 480 } 481 482 static inline void data_start(const struct iov_iter *i, int *idxp, size_t *offp) 483 { 484 size_t off = i->iov_offset; 485 int idx = i->idx; 486 if (off && (!allocated(&i->pipe->bufs[idx]) || off == PAGE_SIZE)) { 487 idx = next_idx(idx, i->pipe); 488 off = 0; 489 } 490 *idxp = idx; 491 *offp = off; 492 } 493 494 static size_t push_pipe(struct iov_iter *i, size_t size, 495 int *idxp, size_t *offp) 496 { 497 struct pipe_inode_info *pipe = i->pipe; 498 size_t off; 499 int idx; 500 ssize_t left; 501 502 if (unlikely(size > i->count)) 503 size = i->count; 504 if (unlikely(!size)) 505 return 0; 506 507 left = size; 508 data_start(i, &idx, &off); 509 *idxp = idx; 510 *offp = off; 511 if (off) { 512 left -= PAGE_SIZE - off; 513 if (left <= 0) { 514 pipe->bufs[idx].len += size; 515 return size; 516 } 517 pipe->bufs[idx].len = PAGE_SIZE; 518 idx = next_idx(idx, pipe); 519 } 520 while (idx != pipe->curbuf || !pipe->nrbufs) { 521 struct page *page = alloc_page(GFP_USER); 522 if (!page) 523 break; 524 pipe->nrbufs++; 525 pipe->bufs[idx].ops = &default_pipe_buf_ops; 526 pipe->bufs[idx].page = page; 527 pipe->bufs[idx].offset = 0; 528 if (left <= PAGE_SIZE) { 529 pipe->bufs[idx].len = left; 530 return size; 531 } 532 pipe->bufs[idx].len = PAGE_SIZE; 533 left -= PAGE_SIZE; 534 idx = next_idx(idx, pipe); 535 } 536 return size - left; 537 } 538 539 static size_t copy_pipe_to_iter(const void *addr, size_t bytes, 540 struct iov_iter *i) 541 { 542 struct pipe_inode_info *pipe = i->pipe; 543 size_t n, off; 544 int idx; 545 546 if (!sanity(i)) 547 return 0; 548 549 bytes = n = push_pipe(i, bytes, &idx, &off); 550 if (unlikely(!n)) 551 return 0; 552 for ( ; n; idx = next_idx(idx, pipe), off = 0) { 553 size_t chunk = min_t(size_t, n, PAGE_SIZE - off); 554 memcpy_to_page(pipe->bufs[idx].page, off, addr, chunk); 555 i->idx = idx; 556 i->iov_offset = off + chunk; 557 n -= chunk; 558 addr += chunk; 559 } 560 i->count -= bytes; 561 return bytes; 562 } 563 564 static __wsum csum_and_memcpy(void *to, const void *from, size_t len, 565 __wsum sum, size_t off) 566 { 567 __wsum next = csum_partial_copy_nocheck(from, to, len, 0); 568 return csum_block_add(sum, next, off); 569 } 570 571 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes, 572 __wsum *csum, struct iov_iter *i) 573 { 574 struct pipe_inode_info *pipe = i->pipe; 575 size_t n, r; 576 size_t off = 0; 577 __wsum sum = *csum; 578 int idx; 579 580 if (!sanity(i)) 581 return 0; 582 583 bytes = n = push_pipe(i, bytes, &idx, &r); 584 if (unlikely(!n)) 585 return 0; 586 for ( ; n; idx = next_idx(idx, pipe), r = 0) { 587 size_t chunk = min_t(size_t, n, PAGE_SIZE - r); 588 char *p = kmap_atomic(pipe->bufs[idx].page); 589 sum = csum_and_memcpy(p + r, addr, chunk, sum, off); 590 kunmap_atomic(p); 591 i->idx = idx; 592 i->iov_offset = r + chunk; 593 n -= chunk; 594 off += chunk; 595 addr += chunk; 596 } 597 i->count -= bytes; 598 *csum = sum; 599 return bytes; 600 } 601 602 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i) 603 { 604 const char *from = addr; 605 if (unlikely(iov_iter_is_pipe(i))) 606 return copy_pipe_to_iter(addr, bytes, i); 607 if (iter_is_iovec(i)) 608 might_fault(); 609 iterate_and_advance(i, bytes, v, 610 copyout(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len), 611 memcpy_to_page(v.bv_page, v.bv_offset, 612 (from += v.bv_len) - v.bv_len, v.bv_len), 613 memcpy(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len) 614 ) 615 616 return bytes; 617 } 618 EXPORT_SYMBOL(_copy_to_iter); 619 620 #ifdef CONFIG_ARCH_HAS_UACCESS_MCSAFE 621 static int copyout_mcsafe(void __user *to, const void *from, size_t n) 622 { 623 if (access_ok(to, n)) { 624 kasan_check_read(from, n); 625 n = copy_to_user_mcsafe((__force void *) to, from, n); 626 } 627 return n; 628 } 629 630 static unsigned long memcpy_mcsafe_to_page(struct page *page, size_t offset, 631 const char *from, size_t len) 632 { 633 unsigned long ret; 634 char *to; 635 636 to = kmap_atomic(page); 637 ret = memcpy_mcsafe(to + offset, from, len); 638 kunmap_atomic(to); 639 640 return ret; 641 } 642 643 static size_t copy_pipe_to_iter_mcsafe(const void *addr, size_t bytes, 644 struct iov_iter *i) 645 { 646 struct pipe_inode_info *pipe = i->pipe; 647 size_t n, off, xfer = 0; 648 int idx; 649 650 if (!sanity(i)) 651 return 0; 652 653 bytes = n = push_pipe(i, bytes, &idx, &off); 654 if (unlikely(!n)) 655 return 0; 656 for ( ; n; idx = next_idx(idx, pipe), off = 0) { 657 size_t chunk = min_t(size_t, n, PAGE_SIZE - off); 658 unsigned long rem; 659 660 rem = memcpy_mcsafe_to_page(pipe->bufs[idx].page, off, addr, 661 chunk); 662 i->idx = idx; 663 i->iov_offset = off + chunk - rem; 664 xfer += chunk - rem; 665 if (rem) 666 break; 667 n -= chunk; 668 addr += chunk; 669 } 670 i->count -= xfer; 671 return xfer; 672 } 673 674 /** 675 * _copy_to_iter_mcsafe - copy to user with source-read error exception handling 676 * @addr: source kernel address 677 * @bytes: total transfer length 678 * @iter: destination iterator 679 * 680 * The pmem driver arranges for filesystem-dax to use this facility via 681 * dax_copy_to_iter() for protecting read/write to persistent memory. 682 * Unless / until an architecture can guarantee identical performance 683 * between _copy_to_iter_mcsafe() and _copy_to_iter() it would be a 684 * performance regression to switch more users to the mcsafe version. 685 * 686 * Otherwise, the main differences between this and typical _copy_to_iter(). 687 * 688 * * Typical tail/residue handling after a fault retries the copy 689 * byte-by-byte until the fault happens again. Re-triggering machine 690 * checks is potentially fatal so the implementation uses source 691 * alignment and poison alignment assumptions to avoid re-triggering 692 * hardware exceptions. 693 * 694 * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies. 695 * Compare to copy_to_iter() where only ITER_IOVEC attempts might return 696 * a short copy. 697 * 698 * See MCSAFE_TEST for self-test. 699 */ 700 size_t _copy_to_iter_mcsafe(const void *addr, size_t bytes, struct iov_iter *i) 701 { 702 const char *from = addr; 703 unsigned long rem, curr_addr, s_addr = (unsigned long) addr; 704 705 if (unlikely(iov_iter_is_pipe(i))) 706 return copy_pipe_to_iter_mcsafe(addr, bytes, i); 707 if (iter_is_iovec(i)) 708 might_fault(); 709 iterate_and_advance(i, bytes, v, 710 copyout_mcsafe(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len), 711 ({ 712 rem = memcpy_mcsafe_to_page(v.bv_page, v.bv_offset, 713 (from += v.bv_len) - v.bv_len, v.bv_len); 714 if (rem) { 715 curr_addr = (unsigned long) from; 716 bytes = curr_addr - s_addr - rem; 717 return bytes; 718 } 719 }), 720 ({ 721 rem = memcpy_mcsafe(v.iov_base, (from += v.iov_len) - v.iov_len, 722 v.iov_len); 723 if (rem) { 724 curr_addr = (unsigned long) from; 725 bytes = curr_addr - s_addr - rem; 726 return bytes; 727 } 728 }) 729 ) 730 731 return bytes; 732 } 733 EXPORT_SYMBOL_GPL(_copy_to_iter_mcsafe); 734 #endif /* CONFIG_ARCH_HAS_UACCESS_MCSAFE */ 735 736 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i) 737 { 738 char *to = addr; 739 if (unlikely(iov_iter_is_pipe(i))) { 740 WARN_ON(1); 741 return 0; 742 } 743 if (iter_is_iovec(i)) 744 might_fault(); 745 iterate_and_advance(i, bytes, v, 746 copyin((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len), 747 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page, 748 v.bv_offset, v.bv_len), 749 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len) 750 ) 751 752 return bytes; 753 } 754 EXPORT_SYMBOL(_copy_from_iter); 755 756 bool _copy_from_iter_full(void *addr, size_t bytes, struct iov_iter *i) 757 { 758 char *to = addr; 759 if (unlikely(iov_iter_is_pipe(i))) { 760 WARN_ON(1); 761 return false; 762 } 763 if (unlikely(i->count < bytes)) 764 return false; 765 766 if (iter_is_iovec(i)) 767 might_fault(); 768 iterate_all_kinds(i, bytes, v, ({ 769 if (copyin((to += v.iov_len) - v.iov_len, 770 v.iov_base, v.iov_len)) 771 return false; 772 0;}), 773 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page, 774 v.bv_offset, v.bv_len), 775 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len) 776 ) 777 778 iov_iter_advance(i, bytes); 779 return true; 780 } 781 EXPORT_SYMBOL(_copy_from_iter_full); 782 783 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i) 784 { 785 char *to = addr; 786 if (unlikely(iov_iter_is_pipe(i))) { 787 WARN_ON(1); 788 return 0; 789 } 790 iterate_and_advance(i, bytes, v, 791 __copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len, 792 v.iov_base, v.iov_len), 793 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page, 794 v.bv_offset, v.bv_len), 795 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len) 796 ) 797 798 return bytes; 799 } 800 EXPORT_SYMBOL(_copy_from_iter_nocache); 801 802 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE 803 /** 804 * _copy_from_iter_flushcache - write destination through cpu cache 805 * @addr: destination kernel address 806 * @bytes: total transfer length 807 * @iter: source iterator 808 * 809 * The pmem driver arranges for filesystem-dax to use this facility via 810 * dax_copy_from_iter() for ensuring that writes to persistent memory 811 * are flushed through the CPU cache. It is differentiated from 812 * _copy_from_iter_nocache() in that guarantees all data is flushed for 813 * all iterator types. The _copy_from_iter_nocache() only attempts to 814 * bypass the cache for the ITER_IOVEC case, and on some archs may use 815 * instructions that strand dirty-data in the cache. 816 */ 817 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i) 818 { 819 char *to = addr; 820 if (unlikely(iov_iter_is_pipe(i))) { 821 WARN_ON(1); 822 return 0; 823 } 824 iterate_and_advance(i, bytes, v, 825 __copy_from_user_flushcache((to += v.iov_len) - v.iov_len, 826 v.iov_base, v.iov_len), 827 memcpy_page_flushcache((to += v.bv_len) - v.bv_len, v.bv_page, 828 v.bv_offset, v.bv_len), 829 memcpy_flushcache((to += v.iov_len) - v.iov_len, v.iov_base, 830 v.iov_len) 831 ) 832 833 return bytes; 834 } 835 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache); 836 #endif 837 838 bool _copy_from_iter_full_nocache(void *addr, size_t bytes, struct iov_iter *i) 839 { 840 char *to = addr; 841 if (unlikely(iov_iter_is_pipe(i))) { 842 WARN_ON(1); 843 return false; 844 } 845 if (unlikely(i->count < bytes)) 846 return false; 847 iterate_all_kinds(i, bytes, v, ({ 848 if (__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len, 849 v.iov_base, v.iov_len)) 850 return false; 851 0;}), 852 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page, 853 v.bv_offset, v.bv_len), 854 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len) 855 ) 856 857 iov_iter_advance(i, bytes); 858 return true; 859 } 860 EXPORT_SYMBOL(_copy_from_iter_full_nocache); 861 862 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n) 863 { 864 struct page *head; 865 size_t v = n + offset; 866 867 /* 868 * The general case needs to access the page order in order 869 * to compute the page size. 870 * However, we mostly deal with order-0 pages and thus can 871 * avoid a possible cache line miss for requests that fit all 872 * page orders. 873 */ 874 if (n <= v && v <= PAGE_SIZE) 875 return true; 876 877 head = compound_head(page); 878 v += (page - head) << PAGE_SHIFT; 879 880 if (likely(n <= v && v <= (PAGE_SIZE << compound_order(head)))) 881 return true; 882 WARN_ON(1); 883 return false; 884 } 885 886 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes, 887 struct iov_iter *i) 888 { 889 if (unlikely(!page_copy_sane(page, offset, bytes))) 890 return 0; 891 if (i->type & (ITER_BVEC|ITER_KVEC)) { 892 void *kaddr = kmap_atomic(page); 893 size_t wanted = copy_to_iter(kaddr + offset, bytes, i); 894 kunmap_atomic(kaddr); 895 return wanted; 896 } else if (unlikely(iov_iter_is_discard(i))) 897 return bytes; 898 else if (likely(!iov_iter_is_pipe(i))) 899 return copy_page_to_iter_iovec(page, offset, bytes, i); 900 else 901 return copy_page_to_iter_pipe(page, offset, bytes, i); 902 } 903 EXPORT_SYMBOL(copy_page_to_iter); 904 905 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes, 906 struct iov_iter *i) 907 { 908 if (unlikely(!page_copy_sane(page, offset, bytes))) 909 return 0; 910 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) { 911 WARN_ON(1); 912 return 0; 913 } 914 if (i->type & (ITER_BVEC|ITER_KVEC)) { 915 void *kaddr = kmap_atomic(page); 916 size_t wanted = _copy_from_iter(kaddr + offset, bytes, i); 917 kunmap_atomic(kaddr); 918 return wanted; 919 } else 920 return copy_page_from_iter_iovec(page, offset, bytes, i); 921 } 922 EXPORT_SYMBOL(copy_page_from_iter); 923 924 static size_t pipe_zero(size_t bytes, struct iov_iter *i) 925 { 926 struct pipe_inode_info *pipe = i->pipe; 927 size_t n, off; 928 int idx; 929 930 if (!sanity(i)) 931 return 0; 932 933 bytes = n = push_pipe(i, bytes, &idx, &off); 934 if (unlikely(!n)) 935 return 0; 936 937 for ( ; n; idx = next_idx(idx, pipe), off = 0) { 938 size_t chunk = min_t(size_t, n, PAGE_SIZE - off); 939 memzero_page(pipe->bufs[idx].page, off, chunk); 940 i->idx = idx; 941 i->iov_offset = off + chunk; 942 n -= chunk; 943 } 944 i->count -= bytes; 945 return bytes; 946 } 947 948 size_t iov_iter_zero(size_t bytes, struct iov_iter *i) 949 { 950 if (unlikely(iov_iter_is_pipe(i))) 951 return pipe_zero(bytes, i); 952 iterate_and_advance(i, bytes, v, 953 clear_user(v.iov_base, v.iov_len), 954 memzero_page(v.bv_page, v.bv_offset, v.bv_len), 955 memset(v.iov_base, 0, v.iov_len) 956 ) 957 958 return bytes; 959 } 960 EXPORT_SYMBOL(iov_iter_zero); 961 962 size_t iov_iter_copy_from_user_atomic(struct page *page, 963 struct iov_iter *i, unsigned long offset, size_t bytes) 964 { 965 char *kaddr = kmap_atomic(page), *p = kaddr + offset; 966 if (unlikely(!page_copy_sane(page, offset, bytes))) { 967 kunmap_atomic(kaddr); 968 return 0; 969 } 970 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) { 971 kunmap_atomic(kaddr); 972 WARN_ON(1); 973 return 0; 974 } 975 iterate_all_kinds(i, bytes, v, 976 copyin((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len), 977 memcpy_from_page((p += v.bv_len) - v.bv_len, v.bv_page, 978 v.bv_offset, v.bv_len), 979 memcpy((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len) 980 ) 981 kunmap_atomic(kaddr); 982 return bytes; 983 } 984 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic); 985 986 static inline void pipe_truncate(struct iov_iter *i) 987 { 988 struct pipe_inode_info *pipe = i->pipe; 989 if (pipe->nrbufs) { 990 size_t off = i->iov_offset; 991 int idx = i->idx; 992 int nrbufs = (idx - pipe->curbuf) & (pipe->buffers - 1); 993 if (off) { 994 pipe->bufs[idx].len = off - pipe->bufs[idx].offset; 995 idx = next_idx(idx, pipe); 996 nrbufs++; 997 } 998 while (pipe->nrbufs > nrbufs) { 999 pipe_buf_release(pipe, &pipe->bufs[idx]); 1000 idx = next_idx(idx, pipe); 1001 pipe->nrbufs--; 1002 } 1003 } 1004 } 1005 1006 static void pipe_advance(struct iov_iter *i, size_t size) 1007 { 1008 struct pipe_inode_info *pipe = i->pipe; 1009 if (unlikely(i->count < size)) 1010 size = i->count; 1011 if (size) { 1012 struct pipe_buffer *buf; 1013 size_t off = i->iov_offset, left = size; 1014 int idx = i->idx; 1015 if (off) /* make it relative to the beginning of buffer */ 1016 left += off - pipe->bufs[idx].offset; 1017 while (1) { 1018 buf = &pipe->bufs[idx]; 1019 if (left <= buf->len) 1020 break; 1021 left -= buf->len; 1022 idx = next_idx(idx, pipe); 1023 } 1024 i->idx = idx; 1025 i->iov_offset = buf->offset + left; 1026 } 1027 i->count -= size; 1028 /* ... and discard everything past that point */ 1029 pipe_truncate(i); 1030 } 1031 1032 void iov_iter_advance(struct iov_iter *i, size_t size) 1033 { 1034 if (unlikely(iov_iter_is_pipe(i))) { 1035 pipe_advance(i, size); 1036 return; 1037 } 1038 if (unlikely(iov_iter_is_discard(i))) { 1039 i->count -= size; 1040 return; 1041 } 1042 iterate_and_advance(i, size, v, 0, 0, 0) 1043 } 1044 EXPORT_SYMBOL(iov_iter_advance); 1045 1046 void iov_iter_revert(struct iov_iter *i, size_t unroll) 1047 { 1048 if (!unroll) 1049 return; 1050 if (WARN_ON(unroll > MAX_RW_COUNT)) 1051 return; 1052 i->count += unroll; 1053 if (unlikely(iov_iter_is_pipe(i))) { 1054 struct pipe_inode_info *pipe = i->pipe; 1055 int idx = i->idx; 1056 size_t off = i->iov_offset; 1057 while (1) { 1058 size_t n = off - pipe->bufs[idx].offset; 1059 if (unroll < n) { 1060 off -= unroll; 1061 break; 1062 } 1063 unroll -= n; 1064 if (!unroll && idx == i->start_idx) { 1065 off = 0; 1066 break; 1067 } 1068 if (!idx--) 1069 idx = pipe->buffers - 1; 1070 off = pipe->bufs[idx].offset + pipe->bufs[idx].len; 1071 } 1072 i->iov_offset = off; 1073 i->idx = idx; 1074 pipe_truncate(i); 1075 return; 1076 } 1077 if (unlikely(iov_iter_is_discard(i))) 1078 return; 1079 if (unroll <= i->iov_offset) { 1080 i->iov_offset -= unroll; 1081 return; 1082 } 1083 unroll -= i->iov_offset; 1084 if (iov_iter_is_bvec(i)) { 1085 const struct bio_vec *bvec = i->bvec; 1086 while (1) { 1087 size_t n = (--bvec)->bv_len; 1088 i->nr_segs++; 1089 if (unroll <= n) { 1090 i->bvec = bvec; 1091 i->iov_offset = n - unroll; 1092 return; 1093 } 1094 unroll -= n; 1095 } 1096 } else { /* same logics for iovec and kvec */ 1097 const struct iovec *iov = i->iov; 1098 while (1) { 1099 size_t n = (--iov)->iov_len; 1100 i->nr_segs++; 1101 if (unroll <= n) { 1102 i->iov = iov; 1103 i->iov_offset = n - unroll; 1104 return; 1105 } 1106 unroll -= n; 1107 } 1108 } 1109 } 1110 EXPORT_SYMBOL(iov_iter_revert); 1111 1112 /* 1113 * Return the count of just the current iov_iter segment. 1114 */ 1115 size_t iov_iter_single_seg_count(const struct iov_iter *i) 1116 { 1117 if (unlikely(iov_iter_is_pipe(i))) 1118 return i->count; // it is a silly place, anyway 1119 if (i->nr_segs == 1) 1120 return i->count; 1121 if (unlikely(iov_iter_is_discard(i))) 1122 return i->count; 1123 else if (iov_iter_is_bvec(i)) 1124 return min(i->count, i->bvec->bv_len - i->iov_offset); 1125 else 1126 return min(i->count, i->iov->iov_len - i->iov_offset); 1127 } 1128 EXPORT_SYMBOL(iov_iter_single_seg_count); 1129 1130 void iov_iter_kvec(struct iov_iter *i, unsigned int direction, 1131 const struct kvec *kvec, unsigned long nr_segs, 1132 size_t count) 1133 { 1134 WARN_ON(direction & ~(READ | WRITE)); 1135 i->type = ITER_KVEC | (direction & (READ | WRITE)); 1136 i->kvec = kvec; 1137 i->nr_segs = nr_segs; 1138 i->iov_offset = 0; 1139 i->count = count; 1140 } 1141 EXPORT_SYMBOL(iov_iter_kvec); 1142 1143 void iov_iter_bvec(struct iov_iter *i, unsigned int direction, 1144 const struct bio_vec *bvec, unsigned long nr_segs, 1145 size_t count) 1146 { 1147 WARN_ON(direction & ~(READ | WRITE)); 1148 i->type = ITER_BVEC | (direction & (READ | WRITE)); 1149 i->bvec = bvec; 1150 i->nr_segs = nr_segs; 1151 i->iov_offset = 0; 1152 i->count = count; 1153 } 1154 EXPORT_SYMBOL(iov_iter_bvec); 1155 1156 void iov_iter_pipe(struct iov_iter *i, unsigned int direction, 1157 struct pipe_inode_info *pipe, 1158 size_t count) 1159 { 1160 BUG_ON(direction != READ); 1161 WARN_ON(pipe->nrbufs == pipe->buffers); 1162 i->type = ITER_PIPE | READ; 1163 i->pipe = pipe; 1164 i->idx = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1); 1165 i->iov_offset = 0; 1166 i->count = count; 1167 i->start_idx = i->idx; 1168 } 1169 EXPORT_SYMBOL(iov_iter_pipe); 1170 1171 /** 1172 * iov_iter_discard - Initialise an I/O iterator that discards data 1173 * @i: The iterator to initialise. 1174 * @direction: The direction of the transfer. 1175 * @count: The size of the I/O buffer in bytes. 1176 * 1177 * Set up an I/O iterator that just discards everything that's written to it. 1178 * It's only available as a READ iterator. 1179 */ 1180 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count) 1181 { 1182 BUG_ON(direction != READ); 1183 i->type = ITER_DISCARD | READ; 1184 i->count = count; 1185 i->iov_offset = 0; 1186 } 1187 EXPORT_SYMBOL(iov_iter_discard); 1188 1189 unsigned long iov_iter_alignment(const struct iov_iter *i) 1190 { 1191 unsigned long res = 0; 1192 size_t size = i->count; 1193 1194 if (unlikely(iov_iter_is_pipe(i))) { 1195 if (size && i->iov_offset && allocated(&i->pipe->bufs[i->idx])) 1196 return size | i->iov_offset; 1197 return size; 1198 } 1199 iterate_all_kinds(i, size, v, 1200 (res |= (unsigned long)v.iov_base | v.iov_len, 0), 1201 res |= v.bv_offset | v.bv_len, 1202 res |= (unsigned long)v.iov_base | v.iov_len 1203 ) 1204 return res; 1205 } 1206 EXPORT_SYMBOL(iov_iter_alignment); 1207 1208 unsigned long iov_iter_gap_alignment(const struct iov_iter *i) 1209 { 1210 unsigned long res = 0; 1211 size_t size = i->count; 1212 1213 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) { 1214 WARN_ON(1); 1215 return ~0U; 1216 } 1217 1218 iterate_all_kinds(i, size, v, 1219 (res |= (!res ? 0 : (unsigned long)v.iov_base) | 1220 (size != v.iov_len ? size : 0), 0), 1221 (res |= (!res ? 0 : (unsigned long)v.bv_offset) | 1222 (size != v.bv_len ? size : 0)), 1223 (res |= (!res ? 0 : (unsigned long)v.iov_base) | 1224 (size != v.iov_len ? size : 0)) 1225 ); 1226 return res; 1227 } 1228 EXPORT_SYMBOL(iov_iter_gap_alignment); 1229 1230 static inline ssize_t __pipe_get_pages(struct iov_iter *i, 1231 size_t maxsize, 1232 struct page **pages, 1233 int idx, 1234 size_t *start) 1235 { 1236 struct pipe_inode_info *pipe = i->pipe; 1237 ssize_t n = push_pipe(i, maxsize, &idx, start); 1238 if (!n) 1239 return -EFAULT; 1240 1241 maxsize = n; 1242 n += *start; 1243 while (n > 0) { 1244 get_page(*pages++ = pipe->bufs[idx].page); 1245 idx = next_idx(idx, pipe); 1246 n -= PAGE_SIZE; 1247 } 1248 1249 return maxsize; 1250 } 1251 1252 static ssize_t pipe_get_pages(struct iov_iter *i, 1253 struct page **pages, size_t maxsize, unsigned maxpages, 1254 size_t *start) 1255 { 1256 unsigned npages; 1257 size_t capacity; 1258 int idx; 1259 1260 if (!maxsize) 1261 return 0; 1262 1263 if (!sanity(i)) 1264 return -EFAULT; 1265 1266 data_start(i, &idx, start); 1267 /* some of this one + all after this one */ 1268 npages = ((i->pipe->curbuf - idx - 1) & (i->pipe->buffers - 1)) + 1; 1269 capacity = min(npages,maxpages) * PAGE_SIZE - *start; 1270 1271 return __pipe_get_pages(i, min(maxsize, capacity), pages, idx, start); 1272 } 1273 1274 ssize_t iov_iter_get_pages(struct iov_iter *i, 1275 struct page **pages, size_t maxsize, unsigned maxpages, 1276 size_t *start) 1277 { 1278 if (maxsize > i->count) 1279 maxsize = i->count; 1280 1281 if (unlikely(iov_iter_is_pipe(i))) 1282 return pipe_get_pages(i, pages, maxsize, maxpages, start); 1283 if (unlikely(iov_iter_is_discard(i))) 1284 return -EFAULT; 1285 1286 iterate_all_kinds(i, maxsize, v, ({ 1287 unsigned long addr = (unsigned long)v.iov_base; 1288 size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1)); 1289 int n; 1290 int res; 1291 1292 if (len > maxpages * PAGE_SIZE) 1293 len = maxpages * PAGE_SIZE; 1294 addr &= ~(PAGE_SIZE - 1); 1295 n = DIV_ROUND_UP(len, PAGE_SIZE); 1296 res = get_user_pages_fast(addr, n, iov_iter_rw(i) != WRITE, pages); 1297 if (unlikely(res < 0)) 1298 return res; 1299 return (res == n ? len : res * PAGE_SIZE) - *start; 1300 0;}),({ 1301 /* can't be more than PAGE_SIZE */ 1302 *start = v.bv_offset; 1303 get_page(*pages = v.bv_page); 1304 return v.bv_len; 1305 }),({ 1306 return -EFAULT; 1307 }) 1308 ) 1309 return 0; 1310 } 1311 EXPORT_SYMBOL(iov_iter_get_pages); 1312 1313 static struct page **get_pages_array(size_t n) 1314 { 1315 return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL); 1316 } 1317 1318 static ssize_t pipe_get_pages_alloc(struct iov_iter *i, 1319 struct page ***pages, size_t maxsize, 1320 size_t *start) 1321 { 1322 struct page **p; 1323 ssize_t n; 1324 int idx; 1325 int npages; 1326 1327 if (!maxsize) 1328 return 0; 1329 1330 if (!sanity(i)) 1331 return -EFAULT; 1332 1333 data_start(i, &idx, start); 1334 /* some of this one + all after this one */ 1335 npages = ((i->pipe->curbuf - idx - 1) & (i->pipe->buffers - 1)) + 1; 1336 n = npages * PAGE_SIZE - *start; 1337 if (maxsize > n) 1338 maxsize = n; 1339 else 1340 npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE); 1341 p = get_pages_array(npages); 1342 if (!p) 1343 return -ENOMEM; 1344 n = __pipe_get_pages(i, maxsize, p, idx, start); 1345 if (n > 0) 1346 *pages = p; 1347 else 1348 kvfree(p); 1349 return n; 1350 } 1351 1352 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i, 1353 struct page ***pages, size_t maxsize, 1354 size_t *start) 1355 { 1356 struct page **p; 1357 1358 if (maxsize > i->count) 1359 maxsize = i->count; 1360 1361 if (unlikely(iov_iter_is_pipe(i))) 1362 return pipe_get_pages_alloc(i, pages, maxsize, start); 1363 if (unlikely(iov_iter_is_discard(i))) 1364 return -EFAULT; 1365 1366 iterate_all_kinds(i, maxsize, v, ({ 1367 unsigned long addr = (unsigned long)v.iov_base; 1368 size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1)); 1369 int n; 1370 int res; 1371 1372 addr &= ~(PAGE_SIZE - 1); 1373 n = DIV_ROUND_UP(len, PAGE_SIZE); 1374 p = get_pages_array(n); 1375 if (!p) 1376 return -ENOMEM; 1377 res = get_user_pages_fast(addr, n, iov_iter_rw(i) != WRITE, p); 1378 if (unlikely(res < 0)) { 1379 kvfree(p); 1380 return res; 1381 } 1382 *pages = p; 1383 return (res == n ? len : res * PAGE_SIZE) - *start; 1384 0;}),({ 1385 /* can't be more than PAGE_SIZE */ 1386 *start = v.bv_offset; 1387 *pages = p = get_pages_array(1); 1388 if (!p) 1389 return -ENOMEM; 1390 get_page(*p = v.bv_page); 1391 return v.bv_len; 1392 }),({ 1393 return -EFAULT; 1394 }) 1395 ) 1396 return 0; 1397 } 1398 EXPORT_SYMBOL(iov_iter_get_pages_alloc); 1399 1400 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum, 1401 struct iov_iter *i) 1402 { 1403 char *to = addr; 1404 __wsum sum, next; 1405 size_t off = 0; 1406 sum = *csum; 1407 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) { 1408 WARN_ON(1); 1409 return 0; 1410 } 1411 iterate_and_advance(i, bytes, v, ({ 1412 int err = 0; 1413 next = csum_and_copy_from_user(v.iov_base, 1414 (to += v.iov_len) - v.iov_len, 1415 v.iov_len, 0, &err); 1416 if (!err) { 1417 sum = csum_block_add(sum, next, off); 1418 off += v.iov_len; 1419 } 1420 err ? v.iov_len : 0; 1421 }), ({ 1422 char *p = kmap_atomic(v.bv_page); 1423 sum = csum_and_memcpy((to += v.bv_len) - v.bv_len, 1424 p + v.bv_offset, v.bv_len, 1425 sum, off); 1426 kunmap_atomic(p); 1427 off += v.bv_len; 1428 }),({ 1429 sum = csum_and_memcpy((to += v.iov_len) - v.iov_len, 1430 v.iov_base, v.iov_len, 1431 sum, off); 1432 off += v.iov_len; 1433 }) 1434 ) 1435 *csum = sum; 1436 return bytes; 1437 } 1438 EXPORT_SYMBOL(csum_and_copy_from_iter); 1439 1440 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, 1441 struct iov_iter *i) 1442 { 1443 char *to = addr; 1444 __wsum sum, next; 1445 size_t off = 0; 1446 sum = *csum; 1447 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) { 1448 WARN_ON(1); 1449 return false; 1450 } 1451 if (unlikely(i->count < bytes)) 1452 return false; 1453 iterate_all_kinds(i, bytes, v, ({ 1454 int err = 0; 1455 next = csum_and_copy_from_user(v.iov_base, 1456 (to += v.iov_len) - v.iov_len, 1457 v.iov_len, 0, &err); 1458 if (err) 1459 return false; 1460 sum = csum_block_add(sum, next, off); 1461 off += v.iov_len; 1462 0; 1463 }), ({ 1464 char *p = kmap_atomic(v.bv_page); 1465 sum = csum_and_memcpy((to += v.bv_len) - v.bv_len, 1466 p + v.bv_offset, v.bv_len, 1467 sum, off); 1468 kunmap_atomic(p); 1469 off += v.bv_len; 1470 }),({ 1471 sum = csum_and_memcpy((to += v.iov_len) - v.iov_len, 1472 v.iov_base, v.iov_len, 1473 sum, off); 1474 off += v.iov_len; 1475 }) 1476 ) 1477 *csum = sum; 1478 iov_iter_advance(i, bytes); 1479 return true; 1480 } 1481 EXPORT_SYMBOL(csum_and_copy_from_iter_full); 1482 1483 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *csump, 1484 struct iov_iter *i) 1485 { 1486 const char *from = addr; 1487 __wsum *csum = csump; 1488 __wsum sum, next; 1489 size_t off = 0; 1490 1491 if (unlikely(iov_iter_is_pipe(i))) 1492 return csum_and_copy_to_pipe_iter(addr, bytes, csum, i); 1493 1494 sum = *csum; 1495 if (unlikely(iov_iter_is_discard(i))) { 1496 WARN_ON(1); /* for now */ 1497 return 0; 1498 } 1499 iterate_and_advance(i, bytes, v, ({ 1500 int err = 0; 1501 next = csum_and_copy_to_user((from += v.iov_len) - v.iov_len, 1502 v.iov_base, 1503 v.iov_len, 0, &err); 1504 if (!err) { 1505 sum = csum_block_add(sum, next, off); 1506 off += v.iov_len; 1507 } 1508 err ? v.iov_len : 0; 1509 }), ({ 1510 char *p = kmap_atomic(v.bv_page); 1511 sum = csum_and_memcpy(p + v.bv_offset, 1512 (from += v.bv_len) - v.bv_len, 1513 v.bv_len, sum, off); 1514 kunmap_atomic(p); 1515 off += v.bv_len; 1516 }),({ 1517 sum = csum_and_memcpy(v.iov_base, 1518 (from += v.iov_len) - v.iov_len, 1519 v.iov_len, sum, off); 1520 off += v.iov_len; 1521 }) 1522 ) 1523 *csum = sum; 1524 return bytes; 1525 } 1526 EXPORT_SYMBOL(csum_and_copy_to_iter); 1527 1528 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp, 1529 struct iov_iter *i) 1530 { 1531 #ifdef CONFIG_CRYPTO 1532 struct ahash_request *hash = hashp; 1533 struct scatterlist sg; 1534 size_t copied; 1535 1536 copied = copy_to_iter(addr, bytes, i); 1537 sg_init_one(&sg, addr, copied); 1538 ahash_request_set_crypt(hash, &sg, NULL, copied); 1539 crypto_ahash_update(hash); 1540 return copied; 1541 #else 1542 return 0; 1543 #endif 1544 } 1545 EXPORT_SYMBOL(hash_and_copy_to_iter); 1546 1547 int iov_iter_npages(const struct iov_iter *i, int maxpages) 1548 { 1549 size_t size = i->count; 1550 int npages = 0; 1551 1552 if (!size) 1553 return 0; 1554 if (unlikely(iov_iter_is_discard(i))) 1555 return 0; 1556 1557 if (unlikely(iov_iter_is_pipe(i))) { 1558 struct pipe_inode_info *pipe = i->pipe; 1559 size_t off; 1560 int idx; 1561 1562 if (!sanity(i)) 1563 return 0; 1564 1565 data_start(i, &idx, &off); 1566 /* some of this one + all after this one */ 1567 npages = ((pipe->curbuf - idx - 1) & (pipe->buffers - 1)) + 1; 1568 if (npages >= maxpages) 1569 return maxpages; 1570 } else iterate_all_kinds(i, size, v, ({ 1571 unsigned long p = (unsigned long)v.iov_base; 1572 npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE) 1573 - p / PAGE_SIZE; 1574 if (npages >= maxpages) 1575 return maxpages; 1576 0;}),({ 1577 npages++; 1578 if (npages >= maxpages) 1579 return maxpages; 1580 }),({ 1581 unsigned long p = (unsigned long)v.iov_base; 1582 npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE) 1583 - p / PAGE_SIZE; 1584 if (npages >= maxpages) 1585 return maxpages; 1586 }) 1587 ) 1588 return npages; 1589 } 1590 EXPORT_SYMBOL(iov_iter_npages); 1591 1592 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags) 1593 { 1594 *new = *old; 1595 if (unlikely(iov_iter_is_pipe(new))) { 1596 WARN_ON(1); 1597 return NULL; 1598 } 1599 if (unlikely(iov_iter_is_discard(new))) 1600 return NULL; 1601 if (iov_iter_is_bvec(new)) 1602 return new->bvec = kmemdup(new->bvec, 1603 new->nr_segs * sizeof(struct bio_vec), 1604 flags); 1605 else 1606 /* iovec and kvec have identical layout */ 1607 return new->iov = kmemdup(new->iov, 1608 new->nr_segs * sizeof(struct iovec), 1609 flags); 1610 } 1611 EXPORT_SYMBOL(dup_iter); 1612 1613 /** 1614 * import_iovec() - Copy an array of &struct iovec from userspace 1615 * into the kernel, check that it is valid, and initialize a new 1616 * &struct iov_iter iterator to access it. 1617 * 1618 * @type: One of %READ or %WRITE. 1619 * @uvector: Pointer to the userspace array. 1620 * @nr_segs: Number of elements in userspace array. 1621 * @fast_segs: Number of elements in @iov. 1622 * @iov: (input and output parameter) Pointer to pointer to (usually small 1623 * on-stack) kernel array. 1624 * @i: Pointer to iterator that will be initialized on success. 1625 * 1626 * If the array pointed to by *@iov is large enough to hold all @nr_segs, 1627 * then this function places %NULL in *@iov on return. Otherwise, a new 1628 * array will be allocated and the result placed in *@iov. This means that 1629 * the caller may call kfree() on *@iov regardless of whether the small 1630 * on-stack array was used or not (and regardless of whether this function 1631 * returns an error or not). 1632 * 1633 * Return: 0 on success or negative error code on error. 1634 */ 1635 int import_iovec(int type, const struct iovec __user * uvector, 1636 unsigned nr_segs, unsigned fast_segs, 1637 struct iovec **iov, struct iov_iter *i) 1638 { 1639 ssize_t n; 1640 struct iovec *p; 1641 n = rw_copy_check_uvector(type, uvector, nr_segs, fast_segs, 1642 *iov, &p); 1643 if (n < 0) { 1644 if (p != *iov) 1645 kfree(p); 1646 *iov = NULL; 1647 return n; 1648 } 1649 iov_iter_init(i, type, p, nr_segs, n); 1650 *iov = p == *iov ? NULL : p; 1651 return 0; 1652 } 1653 EXPORT_SYMBOL(import_iovec); 1654 1655 #ifdef CONFIG_COMPAT 1656 #include <linux/compat.h> 1657 1658 int compat_import_iovec(int type, const struct compat_iovec __user * uvector, 1659 unsigned nr_segs, unsigned fast_segs, 1660 struct iovec **iov, struct iov_iter *i) 1661 { 1662 ssize_t n; 1663 struct iovec *p; 1664 n = compat_rw_copy_check_uvector(type, uvector, nr_segs, fast_segs, 1665 *iov, &p); 1666 if (n < 0) { 1667 if (p != *iov) 1668 kfree(p); 1669 *iov = NULL; 1670 return n; 1671 } 1672 iov_iter_init(i, type, p, nr_segs, n); 1673 *iov = p == *iov ? NULL : p; 1674 return 0; 1675 } 1676 #endif 1677 1678 int import_single_range(int rw, void __user *buf, size_t len, 1679 struct iovec *iov, struct iov_iter *i) 1680 { 1681 if (len > MAX_RW_COUNT) 1682 len = MAX_RW_COUNT; 1683 if (unlikely(!access_ok(buf, len))) 1684 return -EFAULT; 1685 1686 iov->iov_base = buf; 1687 iov->iov_len = len; 1688 iov_iter_init(i, rw, iov, 1, len); 1689 return 0; 1690 } 1691 EXPORT_SYMBOL(import_single_range); 1692 1693 int iov_iter_for_each_range(struct iov_iter *i, size_t bytes, 1694 int (*f)(struct kvec *vec, void *context), 1695 void *context) 1696 { 1697 struct kvec w; 1698 int err = -EINVAL; 1699 if (!bytes) 1700 return 0; 1701 1702 iterate_all_kinds(i, bytes, v, -EINVAL, ({ 1703 w.iov_base = kmap(v.bv_page) + v.bv_offset; 1704 w.iov_len = v.bv_len; 1705 err = f(&w, context); 1706 kunmap(v.bv_page); 1707 err;}), ({ 1708 w = v; 1709 err = f(&w, context);}) 1710 ) 1711 return err; 1712 } 1713 EXPORT_SYMBOL(iov_iter_for_each_range); 1714