1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/export.h> 3 #include <linux/bvec.h> 4 #include <linux/fault-inject-usercopy.h> 5 #include <linux/uio.h> 6 #include <linux/pagemap.h> 7 #include <linux/highmem.h> 8 #include <linux/slab.h> 9 #include <linux/vmalloc.h> 10 #include <linux/splice.h> 11 #include <linux/compat.h> 12 #include <linux/scatterlist.h> 13 #include <linux/instrumented.h> 14 #include <linux/iov_iter.h> 15 16 static __always_inline 17 size_t copy_to_user_iter(void __user *iter_to, size_t progress, 18 size_t len, void *from, void *priv2) 19 { 20 if (should_fail_usercopy()) 21 return len; 22 if (access_ok(iter_to, len)) { 23 from += progress; 24 instrument_copy_to_user(iter_to, from, len); 25 len = raw_copy_to_user(iter_to, from, len); 26 } 27 return len; 28 } 29 30 static __always_inline 31 size_t copy_to_user_iter_nofault(void __user *iter_to, size_t progress, 32 size_t len, void *from, void *priv2) 33 { 34 ssize_t res; 35 36 if (should_fail_usercopy()) 37 return len; 38 39 from += progress; 40 res = copy_to_user_nofault(iter_to, from, len); 41 return res < 0 ? len : res; 42 } 43 44 static __always_inline 45 size_t copy_from_user_iter(void __user *iter_from, size_t progress, 46 size_t len, void *to, void *priv2) 47 { 48 size_t res = len; 49 50 if (should_fail_usercopy()) 51 return len; 52 if (access_ok(iter_from, len)) { 53 to += progress; 54 instrument_copy_from_user_before(to, iter_from, len); 55 res = raw_copy_from_user(to, iter_from, len); 56 instrument_copy_from_user_after(to, iter_from, len, res); 57 } 58 return res; 59 } 60 61 static __always_inline 62 size_t memcpy_to_iter(void *iter_to, size_t progress, 63 size_t len, void *from, void *priv2) 64 { 65 memcpy(iter_to, from + progress, len); 66 return 0; 67 } 68 69 static __always_inline 70 size_t memcpy_from_iter(void *iter_from, size_t progress, 71 size_t len, void *to, void *priv2) 72 { 73 memcpy(to + progress, iter_from, len); 74 return 0; 75 } 76 77 /* 78 * fault_in_iov_iter_readable - fault in iov iterator for reading 79 * @i: iterator 80 * @size: maximum length 81 * 82 * Fault in one or more iovecs of the given iov_iter, to a maximum length of 83 * @size. For each iovec, fault in each page that constitutes the iovec. 84 * 85 * Returns the number of bytes not faulted in (like copy_to_user() and 86 * copy_from_user()). 87 * 88 * Always returns 0 for non-userspace iterators. 89 */ 90 size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size) 91 { 92 if (iter_is_ubuf(i)) { 93 size_t n = min(size, iov_iter_count(i)); 94 n -= fault_in_readable(i->ubuf + i->iov_offset, n); 95 return size - n; 96 } else if (iter_is_iovec(i)) { 97 size_t count = min(size, iov_iter_count(i)); 98 const struct iovec *p; 99 size_t skip; 100 101 size -= count; 102 for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) { 103 size_t len = min(count, p->iov_len - skip); 104 size_t ret; 105 106 if (unlikely(!len)) 107 continue; 108 ret = fault_in_readable(p->iov_base + skip, len); 109 count -= len - ret; 110 if (ret) 111 break; 112 } 113 return count + size; 114 } 115 return 0; 116 } 117 EXPORT_SYMBOL(fault_in_iov_iter_readable); 118 119 /* 120 * fault_in_iov_iter_writeable - fault in iov iterator for writing 121 * @i: iterator 122 * @size: maximum length 123 * 124 * Faults in the iterator using get_user_pages(), i.e., without triggering 125 * hardware page faults. This is primarily useful when we already know that 126 * some or all of the pages in @i aren't in memory. 127 * 128 * Returns the number of bytes not faulted in, like copy_to_user() and 129 * copy_from_user(). 130 * 131 * Always returns 0 for non-user-space iterators. 132 */ 133 size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size) 134 { 135 if (iter_is_ubuf(i)) { 136 size_t n = min(size, iov_iter_count(i)); 137 n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n); 138 return size - n; 139 } else if (iter_is_iovec(i)) { 140 size_t count = min(size, iov_iter_count(i)); 141 const struct iovec *p; 142 size_t skip; 143 144 size -= count; 145 for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) { 146 size_t len = min(count, p->iov_len - skip); 147 size_t ret; 148 149 if (unlikely(!len)) 150 continue; 151 ret = fault_in_safe_writeable(p->iov_base + skip, len); 152 count -= len - ret; 153 if (ret) 154 break; 155 } 156 return count + size; 157 } 158 return 0; 159 } 160 EXPORT_SYMBOL(fault_in_iov_iter_writeable); 161 162 void iov_iter_init(struct iov_iter *i, unsigned int direction, 163 const struct iovec *iov, unsigned long nr_segs, 164 size_t count) 165 { 166 WARN_ON(direction & ~(READ | WRITE)); 167 *i = (struct iov_iter) { 168 .iter_type = ITER_IOVEC, 169 .nofault = false, 170 .data_source = direction, 171 .__iov = iov, 172 .nr_segs = nr_segs, 173 .iov_offset = 0, 174 .count = count 175 }; 176 } 177 EXPORT_SYMBOL(iov_iter_init); 178 179 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i) 180 { 181 if (WARN_ON_ONCE(i->data_source)) 182 return 0; 183 if (user_backed_iter(i)) 184 might_fault(); 185 return iterate_and_advance(i, bytes, (void *)addr, 186 copy_to_user_iter, memcpy_to_iter); 187 } 188 EXPORT_SYMBOL(_copy_to_iter); 189 190 #ifdef CONFIG_ARCH_HAS_COPY_MC 191 static __always_inline 192 size_t copy_to_user_iter_mc(void __user *iter_to, size_t progress, 193 size_t len, void *from, void *priv2) 194 { 195 if (access_ok(iter_to, len)) { 196 from += progress; 197 instrument_copy_to_user(iter_to, from, len); 198 len = copy_mc_to_user(iter_to, from, len); 199 } 200 return len; 201 } 202 203 static __always_inline 204 size_t memcpy_to_iter_mc(void *iter_to, size_t progress, 205 size_t len, void *from, void *priv2) 206 { 207 return copy_mc_to_kernel(iter_to, from + progress, len); 208 } 209 210 /** 211 * _copy_mc_to_iter - copy to iter with source memory error exception handling 212 * @addr: source kernel address 213 * @bytes: total transfer length 214 * @i: destination iterator 215 * 216 * The pmem driver deploys this for the dax operation 217 * (dax_copy_to_iter()) for dax reads (bypass page-cache and the 218 * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes 219 * successfully copied. 220 * 221 * The main differences between this and typical _copy_to_iter(). 222 * 223 * * Typical tail/residue handling after a fault retries the copy 224 * byte-by-byte until the fault happens again. Re-triggering machine 225 * checks is potentially fatal so the implementation uses source 226 * alignment and poison alignment assumptions to avoid re-triggering 227 * hardware exceptions. 228 * 229 * * ITER_KVEC and ITER_BVEC can return short copies. Compare to 230 * copy_to_iter() where only ITER_IOVEC attempts might return a short copy. 231 * 232 * Return: number of bytes copied (may be %0) 233 */ 234 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i) 235 { 236 if (WARN_ON_ONCE(i->data_source)) 237 return 0; 238 if (user_backed_iter(i)) 239 might_fault(); 240 return iterate_and_advance(i, bytes, (void *)addr, 241 copy_to_user_iter_mc, memcpy_to_iter_mc); 242 } 243 EXPORT_SYMBOL_GPL(_copy_mc_to_iter); 244 #endif /* CONFIG_ARCH_HAS_COPY_MC */ 245 246 static __always_inline 247 size_t __copy_from_iter(void *addr, size_t bytes, struct iov_iter *i) 248 { 249 return iterate_and_advance(i, bytes, addr, 250 copy_from_user_iter, memcpy_from_iter); 251 } 252 253 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i) 254 { 255 if (WARN_ON_ONCE(!i->data_source)) 256 return 0; 257 258 if (user_backed_iter(i)) 259 might_fault(); 260 return __copy_from_iter(addr, bytes, i); 261 } 262 EXPORT_SYMBOL(_copy_from_iter); 263 264 static __always_inline 265 size_t copy_from_user_iter_nocache(void __user *iter_from, size_t progress, 266 size_t len, void *to, void *priv2) 267 { 268 return __copy_from_user_inatomic_nocache(to + progress, iter_from, len); 269 } 270 271 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i) 272 { 273 if (WARN_ON_ONCE(!i->data_source)) 274 return 0; 275 276 return iterate_and_advance(i, bytes, addr, 277 copy_from_user_iter_nocache, 278 memcpy_from_iter); 279 } 280 EXPORT_SYMBOL(_copy_from_iter_nocache); 281 282 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE 283 static __always_inline 284 size_t copy_from_user_iter_flushcache(void __user *iter_from, size_t progress, 285 size_t len, void *to, void *priv2) 286 { 287 return __copy_from_user_flushcache(to + progress, iter_from, len); 288 } 289 290 static __always_inline 291 size_t memcpy_from_iter_flushcache(void *iter_from, size_t progress, 292 size_t len, void *to, void *priv2) 293 { 294 memcpy_flushcache(to + progress, iter_from, len); 295 return 0; 296 } 297 298 /** 299 * _copy_from_iter_flushcache - write destination through cpu cache 300 * @addr: destination kernel address 301 * @bytes: total transfer length 302 * @i: source iterator 303 * 304 * The pmem driver arranges for filesystem-dax to use this facility via 305 * dax_copy_from_iter() for ensuring that writes to persistent memory 306 * are flushed through the CPU cache. It is differentiated from 307 * _copy_from_iter_nocache() in that guarantees all data is flushed for 308 * all iterator types. The _copy_from_iter_nocache() only attempts to 309 * bypass the cache for the ITER_IOVEC case, and on some archs may use 310 * instructions that strand dirty-data in the cache. 311 * 312 * Return: number of bytes copied (may be %0) 313 */ 314 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i) 315 { 316 if (WARN_ON_ONCE(!i->data_source)) 317 return 0; 318 319 return iterate_and_advance(i, bytes, addr, 320 copy_from_user_iter_flushcache, 321 memcpy_from_iter_flushcache); 322 } 323 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache); 324 #endif 325 326 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n) 327 { 328 struct page *head; 329 size_t v = n + offset; 330 331 /* 332 * The general case needs to access the page order in order 333 * to compute the page size. 334 * However, we mostly deal with order-0 pages and thus can 335 * avoid a possible cache line miss for requests that fit all 336 * page orders. 337 */ 338 if (n <= v && v <= PAGE_SIZE) 339 return true; 340 341 head = compound_head(page); 342 v += (page - head) << PAGE_SHIFT; 343 344 if (WARN_ON(n > v || v > page_size(head))) 345 return false; 346 return true; 347 } 348 349 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes, 350 struct iov_iter *i) 351 { 352 size_t res = 0; 353 if (!page_copy_sane(page, offset, bytes)) 354 return 0; 355 if (WARN_ON_ONCE(i->data_source)) 356 return 0; 357 page += offset / PAGE_SIZE; // first subpage 358 offset %= PAGE_SIZE; 359 while (1) { 360 void *kaddr = kmap_local_page(page); 361 size_t n = min(bytes, (size_t)PAGE_SIZE - offset); 362 n = _copy_to_iter(kaddr + offset, n, i); 363 kunmap_local(kaddr); 364 res += n; 365 bytes -= n; 366 if (!bytes || !n) 367 break; 368 offset += n; 369 if (offset == PAGE_SIZE) { 370 page++; 371 offset = 0; 372 } 373 } 374 return res; 375 } 376 EXPORT_SYMBOL(copy_page_to_iter); 377 378 size_t copy_page_to_iter_nofault(struct page *page, unsigned offset, size_t bytes, 379 struct iov_iter *i) 380 { 381 size_t res = 0; 382 383 if (!page_copy_sane(page, offset, bytes)) 384 return 0; 385 if (WARN_ON_ONCE(i->data_source)) 386 return 0; 387 page += offset / PAGE_SIZE; // first subpage 388 offset %= PAGE_SIZE; 389 while (1) { 390 void *kaddr = kmap_local_page(page); 391 size_t n = min(bytes, (size_t)PAGE_SIZE - offset); 392 393 n = iterate_and_advance(i, n, kaddr + offset, 394 copy_to_user_iter_nofault, 395 memcpy_to_iter); 396 kunmap_local(kaddr); 397 res += n; 398 bytes -= n; 399 if (!bytes || !n) 400 break; 401 offset += n; 402 if (offset == PAGE_SIZE) { 403 page++; 404 offset = 0; 405 } 406 } 407 return res; 408 } 409 EXPORT_SYMBOL(copy_page_to_iter_nofault); 410 411 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes, 412 struct iov_iter *i) 413 { 414 size_t res = 0; 415 if (!page_copy_sane(page, offset, bytes)) 416 return 0; 417 page += offset / PAGE_SIZE; // first subpage 418 offset %= PAGE_SIZE; 419 while (1) { 420 void *kaddr = kmap_local_page(page); 421 size_t n = min(bytes, (size_t)PAGE_SIZE - offset); 422 n = _copy_from_iter(kaddr + offset, n, i); 423 kunmap_local(kaddr); 424 res += n; 425 bytes -= n; 426 if (!bytes || !n) 427 break; 428 offset += n; 429 if (offset == PAGE_SIZE) { 430 page++; 431 offset = 0; 432 } 433 } 434 return res; 435 } 436 EXPORT_SYMBOL(copy_page_from_iter); 437 438 static __always_inline 439 size_t zero_to_user_iter(void __user *iter_to, size_t progress, 440 size_t len, void *priv, void *priv2) 441 { 442 return clear_user(iter_to, len); 443 } 444 445 static __always_inline 446 size_t zero_to_iter(void *iter_to, size_t progress, 447 size_t len, void *priv, void *priv2) 448 { 449 memset(iter_to, 0, len); 450 return 0; 451 } 452 453 size_t iov_iter_zero(size_t bytes, struct iov_iter *i) 454 { 455 return iterate_and_advance(i, bytes, NULL, 456 zero_to_user_iter, zero_to_iter); 457 } 458 EXPORT_SYMBOL(iov_iter_zero); 459 460 size_t copy_folio_from_iter_atomic(struct folio *folio, size_t offset, 461 size_t bytes, struct iov_iter *i) 462 { 463 size_t n, copied = 0; 464 465 if (!page_copy_sane(&folio->page, offset, bytes)) 466 return 0; 467 if (WARN_ON_ONCE(!i->data_source)) 468 return 0; 469 470 do { 471 char *to = kmap_local_folio(folio, offset); 472 473 n = bytes - copied; 474 if (folio_test_partial_kmap(folio) && 475 n > PAGE_SIZE - offset_in_page(offset)) 476 n = PAGE_SIZE - offset_in_page(offset); 477 478 pagefault_disable(); 479 n = __copy_from_iter(to, n, i); 480 pagefault_enable(); 481 kunmap_local(to); 482 copied += n; 483 offset += n; 484 } while (copied != bytes && n > 0); 485 486 return copied; 487 } 488 EXPORT_SYMBOL(copy_folio_from_iter_atomic); 489 490 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size) 491 { 492 const struct bio_vec *bvec, *end; 493 494 if (!i->count) 495 return; 496 i->count -= size; 497 498 size += i->iov_offset; 499 500 for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) { 501 if (likely(size < bvec->bv_len)) 502 break; 503 size -= bvec->bv_len; 504 } 505 i->iov_offset = size; 506 i->nr_segs -= bvec - i->bvec; 507 i->bvec = bvec; 508 } 509 510 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size) 511 { 512 const struct iovec *iov, *end; 513 514 if (!i->count) 515 return; 516 i->count -= size; 517 518 size += i->iov_offset; // from beginning of current segment 519 for (iov = iter_iov(i), end = iov + i->nr_segs; iov < end; iov++) { 520 if (likely(size < iov->iov_len)) 521 break; 522 size -= iov->iov_len; 523 } 524 i->iov_offset = size; 525 i->nr_segs -= iov - iter_iov(i); 526 i->__iov = iov; 527 } 528 529 static void iov_iter_folioq_advance(struct iov_iter *i, size_t size) 530 { 531 const struct folio_queue *folioq = i->folioq; 532 unsigned int slot = i->folioq_slot; 533 534 if (!i->count) 535 return; 536 i->count -= size; 537 538 if (slot >= folioq_nr_slots(folioq)) { 539 folioq = folioq->next; 540 slot = 0; 541 } 542 543 size += i->iov_offset; /* From beginning of current segment. */ 544 do { 545 size_t fsize = folioq_folio_size(folioq, slot); 546 547 if (likely(size < fsize)) 548 break; 549 size -= fsize; 550 slot++; 551 if (slot >= folioq_nr_slots(folioq) && folioq->next) { 552 folioq = folioq->next; 553 slot = 0; 554 } 555 } while (size); 556 557 i->iov_offset = size; 558 i->folioq_slot = slot; 559 i->folioq = folioq; 560 } 561 562 void iov_iter_advance(struct iov_iter *i, size_t size) 563 { 564 if (unlikely(i->count < size)) 565 size = i->count; 566 if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) { 567 i->iov_offset += size; 568 i->count -= size; 569 } else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) { 570 /* iovec and kvec have identical layouts */ 571 iov_iter_iovec_advance(i, size); 572 } else if (iov_iter_is_bvec(i)) { 573 iov_iter_bvec_advance(i, size); 574 } else if (iov_iter_is_folioq(i)) { 575 iov_iter_folioq_advance(i, size); 576 } else if (iov_iter_is_discard(i)) { 577 i->count -= size; 578 } 579 } 580 EXPORT_SYMBOL(iov_iter_advance); 581 582 static void iov_iter_folioq_revert(struct iov_iter *i, size_t unroll) 583 { 584 const struct folio_queue *folioq = i->folioq; 585 unsigned int slot = i->folioq_slot; 586 587 for (;;) { 588 size_t fsize; 589 590 if (slot == 0) { 591 folioq = folioq->prev; 592 slot = folioq_nr_slots(folioq); 593 } 594 slot--; 595 596 fsize = folioq_folio_size(folioq, slot); 597 if (unroll <= fsize) { 598 i->iov_offset = fsize - unroll; 599 break; 600 } 601 unroll -= fsize; 602 } 603 604 i->folioq_slot = slot; 605 i->folioq = folioq; 606 } 607 608 void iov_iter_revert(struct iov_iter *i, size_t unroll) 609 { 610 if (!unroll) 611 return; 612 if (WARN_ON(unroll > MAX_RW_COUNT)) 613 return; 614 i->count += unroll; 615 if (unlikely(iov_iter_is_discard(i))) 616 return; 617 if (unroll <= i->iov_offset) { 618 i->iov_offset -= unroll; 619 return; 620 } 621 unroll -= i->iov_offset; 622 if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) { 623 BUG(); /* We should never go beyond the start of the specified 624 * range since we might then be straying into pages that 625 * aren't pinned. 626 */ 627 } else if (iov_iter_is_bvec(i)) { 628 const struct bio_vec *bvec = i->bvec; 629 while (1) { 630 size_t n = (--bvec)->bv_len; 631 i->nr_segs++; 632 if (unroll <= n) { 633 i->bvec = bvec; 634 i->iov_offset = n - unroll; 635 return; 636 } 637 unroll -= n; 638 } 639 } else if (iov_iter_is_folioq(i)) { 640 i->iov_offset = 0; 641 iov_iter_folioq_revert(i, unroll); 642 } else { /* same logics for iovec and kvec */ 643 const struct iovec *iov = iter_iov(i); 644 while (1) { 645 size_t n = (--iov)->iov_len; 646 i->nr_segs++; 647 if (unroll <= n) { 648 i->__iov = iov; 649 i->iov_offset = n - unroll; 650 return; 651 } 652 unroll -= n; 653 } 654 } 655 } 656 EXPORT_SYMBOL(iov_iter_revert); 657 658 /* 659 * Return the count of just the current iov_iter segment. 660 */ 661 size_t iov_iter_single_seg_count(const struct iov_iter *i) 662 { 663 if (i->nr_segs > 1) { 664 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) 665 return min(i->count, iter_iov(i)->iov_len - i->iov_offset); 666 if (iov_iter_is_bvec(i)) 667 return min(i->count, i->bvec->bv_len - i->iov_offset); 668 } 669 if (unlikely(iov_iter_is_folioq(i))) 670 return !i->count ? 0 : 671 umin(folioq_folio_size(i->folioq, i->folioq_slot), i->count); 672 return i->count; 673 } 674 EXPORT_SYMBOL(iov_iter_single_seg_count); 675 676 void iov_iter_kvec(struct iov_iter *i, unsigned int direction, 677 const struct kvec *kvec, unsigned long nr_segs, 678 size_t count) 679 { 680 WARN_ON(direction & ~(READ | WRITE)); 681 *i = (struct iov_iter){ 682 .iter_type = ITER_KVEC, 683 .data_source = direction, 684 .kvec = kvec, 685 .nr_segs = nr_segs, 686 .iov_offset = 0, 687 .count = count 688 }; 689 } 690 EXPORT_SYMBOL(iov_iter_kvec); 691 692 void iov_iter_bvec(struct iov_iter *i, unsigned int direction, 693 const struct bio_vec *bvec, unsigned long nr_segs, 694 size_t count) 695 { 696 WARN_ON(direction & ~(READ | WRITE)); 697 *i = (struct iov_iter){ 698 .iter_type = ITER_BVEC, 699 .data_source = direction, 700 .bvec = bvec, 701 .nr_segs = nr_segs, 702 .iov_offset = 0, 703 .count = count 704 }; 705 } 706 EXPORT_SYMBOL(iov_iter_bvec); 707 708 /** 709 * iov_iter_folio_queue - Initialise an I/O iterator to use the folios in a folio queue 710 * @i: The iterator to initialise. 711 * @direction: The direction of the transfer. 712 * @folioq: The starting point in the folio queue. 713 * @first_slot: The first slot in the folio queue to use 714 * @offset: The offset into the folio in the first slot to start at 715 * @count: The size of the I/O buffer in bytes. 716 * 717 * Set up an I/O iterator to either draw data out of the pages attached to an 718 * inode or to inject data into those pages. The pages *must* be prevented 719 * from evaporation, either by taking a ref on them or locking them by the 720 * caller. 721 */ 722 void iov_iter_folio_queue(struct iov_iter *i, unsigned int direction, 723 const struct folio_queue *folioq, unsigned int first_slot, 724 unsigned int offset, size_t count) 725 { 726 BUG_ON(direction & ~1); 727 *i = (struct iov_iter) { 728 .iter_type = ITER_FOLIOQ, 729 .data_source = direction, 730 .folioq = folioq, 731 .folioq_slot = first_slot, 732 .count = count, 733 .iov_offset = offset, 734 }; 735 } 736 EXPORT_SYMBOL(iov_iter_folio_queue); 737 738 /** 739 * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray 740 * @i: The iterator to initialise. 741 * @direction: The direction of the transfer. 742 * @xarray: The xarray to access. 743 * @start: The start file position. 744 * @count: The size of the I/O buffer in bytes. 745 * 746 * Set up an I/O iterator to either draw data out of the pages attached to an 747 * inode or to inject data into those pages. The pages *must* be prevented 748 * from evaporation, either by taking a ref on them or locking them by the 749 * caller. 750 */ 751 void iov_iter_xarray(struct iov_iter *i, unsigned int direction, 752 struct xarray *xarray, loff_t start, size_t count) 753 { 754 BUG_ON(direction & ~1); 755 *i = (struct iov_iter) { 756 .iter_type = ITER_XARRAY, 757 .data_source = direction, 758 .xarray = xarray, 759 .xarray_start = start, 760 .count = count, 761 .iov_offset = 0 762 }; 763 } 764 EXPORT_SYMBOL(iov_iter_xarray); 765 766 /** 767 * iov_iter_discard - Initialise an I/O iterator that discards data 768 * @i: The iterator to initialise. 769 * @direction: The direction of the transfer. 770 * @count: The size of the I/O buffer in bytes. 771 * 772 * Set up an I/O iterator that just discards everything that's written to it. 773 * It's only available as a READ iterator. 774 */ 775 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count) 776 { 777 BUG_ON(direction != READ); 778 *i = (struct iov_iter){ 779 .iter_type = ITER_DISCARD, 780 .data_source = false, 781 .count = count, 782 .iov_offset = 0 783 }; 784 } 785 EXPORT_SYMBOL(iov_iter_discard); 786 787 static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask, 788 unsigned len_mask) 789 { 790 const struct iovec *iov = iter_iov(i); 791 size_t size = i->count; 792 size_t skip = i->iov_offset; 793 794 do { 795 size_t len = iov->iov_len - skip; 796 797 if (len > size) 798 len = size; 799 if (len & len_mask) 800 return false; 801 if ((unsigned long)(iov->iov_base + skip) & addr_mask) 802 return false; 803 804 iov++; 805 size -= len; 806 skip = 0; 807 } while (size); 808 809 return true; 810 } 811 812 static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask, 813 unsigned len_mask) 814 { 815 const struct bio_vec *bvec = i->bvec; 816 unsigned skip = i->iov_offset; 817 size_t size = i->count; 818 819 do { 820 size_t len = bvec->bv_len - skip; 821 822 if (len > size) 823 len = size; 824 if (len & len_mask) 825 return false; 826 if ((unsigned long)(bvec->bv_offset + skip) & addr_mask) 827 return false; 828 829 bvec++; 830 size -= len; 831 skip = 0; 832 } while (size); 833 834 return true; 835 } 836 837 /** 838 * iov_iter_is_aligned() - Check if the addresses and lengths of each segments 839 * are aligned to the parameters. 840 * 841 * @i: &struct iov_iter to restore 842 * @addr_mask: bit mask to check against the iov element's addresses 843 * @len_mask: bit mask to check against the iov element's lengths 844 * 845 * Return: false if any addresses or lengths intersect with the provided masks 846 */ 847 bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask, 848 unsigned len_mask) 849 { 850 if (likely(iter_is_ubuf(i))) { 851 if (i->count & len_mask) 852 return false; 853 if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask) 854 return false; 855 return true; 856 } 857 858 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) 859 return iov_iter_aligned_iovec(i, addr_mask, len_mask); 860 861 if (iov_iter_is_bvec(i)) 862 return iov_iter_aligned_bvec(i, addr_mask, len_mask); 863 864 /* With both xarray and folioq types, we're dealing with whole folios. */ 865 if (iov_iter_is_xarray(i)) { 866 if (i->count & len_mask) 867 return false; 868 if ((i->xarray_start + i->iov_offset) & addr_mask) 869 return false; 870 } 871 if (iov_iter_is_folioq(i)) { 872 if (i->count & len_mask) 873 return false; 874 if (i->iov_offset & addr_mask) 875 return false; 876 } 877 878 return true; 879 } 880 EXPORT_SYMBOL_GPL(iov_iter_is_aligned); 881 882 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i) 883 { 884 const struct iovec *iov = iter_iov(i); 885 unsigned long res = 0; 886 size_t size = i->count; 887 size_t skip = i->iov_offset; 888 889 do { 890 size_t len = iov->iov_len - skip; 891 if (len) { 892 res |= (unsigned long)iov->iov_base + skip; 893 if (len > size) 894 len = size; 895 res |= len; 896 size -= len; 897 } 898 iov++; 899 skip = 0; 900 } while (size); 901 return res; 902 } 903 904 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i) 905 { 906 const struct bio_vec *bvec = i->bvec; 907 unsigned res = 0; 908 size_t size = i->count; 909 unsigned skip = i->iov_offset; 910 911 do { 912 size_t len = bvec->bv_len - skip; 913 res |= (unsigned long)bvec->bv_offset + skip; 914 if (len > size) 915 len = size; 916 res |= len; 917 bvec++; 918 size -= len; 919 skip = 0; 920 } while (size); 921 922 return res; 923 } 924 925 unsigned long iov_iter_alignment(const struct iov_iter *i) 926 { 927 if (likely(iter_is_ubuf(i))) { 928 size_t size = i->count; 929 if (size) 930 return ((unsigned long)i->ubuf + i->iov_offset) | size; 931 return 0; 932 } 933 934 /* iovec and kvec have identical layouts */ 935 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) 936 return iov_iter_alignment_iovec(i); 937 938 if (iov_iter_is_bvec(i)) 939 return iov_iter_alignment_bvec(i); 940 941 /* With both xarray and folioq types, we're dealing with whole folios. */ 942 if (iov_iter_is_folioq(i)) 943 return i->iov_offset | i->count; 944 if (iov_iter_is_xarray(i)) 945 return (i->xarray_start + i->iov_offset) | i->count; 946 947 return 0; 948 } 949 EXPORT_SYMBOL(iov_iter_alignment); 950 951 unsigned long iov_iter_gap_alignment(const struct iov_iter *i) 952 { 953 unsigned long res = 0; 954 unsigned long v = 0; 955 size_t size = i->count; 956 unsigned k; 957 958 if (iter_is_ubuf(i)) 959 return 0; 960 961 if (WARN_ON(!iter_is_iovec(i))) 962 return ~0U; 963 964 for (k = 0; k < i->nr_segs; k++) { 965 const struct iovec *iov = iter_iov(i) + k; 966 if (iov->iov_len) { 967 unsigned long base = (unsigned long)iov->iov_base; 968 if (v) // if not the first one 969 res |= base | v; // this start | previous end 970 v = base + iov->iov_len; 971 if (size <= iov->iov_len) 972 break; 973 size -= iov->iov_len; 974 } 975 } 976 return res; 977 } 978 EXPORT_SYMBOL(iov_iter_gap_alignment); 979 980 static int want_pages_array(struct page ***res, size_t size, 981 size_t start, unsigned int maxpages) 982 { 983 unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE); 984 985 if (count > maxpages) 986 count = maxpages; 987 WARN_ON(!count); // caller should've prevented that 988 if (!*res) { 989 *res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL); 990 if (!*res) 991 return 0; 992 } 993 return count; 994 } 995 996 static ssize_t iter_folioq_get_pages(struct iov_iter *iter, 997 struct page ***ppages, size_t maxsize, 998 unsigned maxpages, size_t *_start_offset) 999 { 1000 const struct folio_queue *folioq = iter->folioq; 1001 struct page **pages; 1002 unsigned int slot = iter->folioq_slot; 1003 size_t extracted = 0, count = iter->count, iov_offset = iter->iov_offset; 1004 1005 if (slot >= folioq_nr_slots(folioq)) { 1006 folioq = folioq->next; 1007 slot = 0; 1008 if (WARN_ON(iov_offset != 0)) 1009 return -EIO; 1010 } 1011 1012 maxpages = want_pages_array(ppages, maxsize, iov_offset & ~PAGE_MASK, maxpages); 1013 if (!maxpages) 1014 return -ENOMEM; 1015 *_start_offset = iov_offset & ~PAGE_MASK; 1016 pages = *ppages; 1017 1018 for (;;) { 1019 struct folio *folio = folioq_folio(folioq, slot); 1020 size_t offset = iov_offset, fsize = folioq_folio_size(folioq, slot); 1021 size_t part = PAGE_SIZE - offset % PAGE_SIZE; 1022 1023 if (offset < fsize) { 1024 part = umin(part, umin(maxsize - extracted, fsize - offset)); 1025 count -= part; 1026 iov_offset += part; 1027 extracted += part; 1028 1029 *pages = folio_page(folio, offset / PAGE_SIZE); 1030 get_page(*pages); 1031 pages++; 1032 maxpages--; 1033 } 1034 1035 if (maxpages == 0 || extracted >= maxsize) 1036 break; 1037 1038 if (iov_offset >= fsize) { 1039 iov_offset = 0; 1040 slot++; 1041 if (slot == folioq_nr_slots(folioq) && folioq->next) { 1042 folioq = folioq->next; 1043 slot = 0; 1044 } 1045 } 1046 } 1047 1048 iter->count = count; 1049 iter->iov_offset = iov_offset; 1050 iter->folioq = folioq; 1051 iter->folioq_slot = slot; 1052 return extracted; 1053 } 1054 1055 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa, 1056 pgoff_t index, unsigned int nr_pages) 1057 { 1058 XA_STATE(xas, xa, index); 1059 struct folio *folio; 1060 unsigned int ret = 0; 1061 1062 rcu_read_lock(); 1063 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) { 1064 if (xas_retry(&xas, folio)) 1065 continue; 1066 1067 /* Has the folio moved or been split? */ 1068 if (unlikely(folio != xas_reload(&xas))) { 1069 xas_reset(&xas); 1070 continue; 1071 } 1072 1073 pages[ret] = folio_file_page(folio, xas.xa_index); 1074 folio_get(folio); 1075 if (++ret == nr_pages) 1076 break; 1077 } 1078 rcu_read_unlock(); 1079 return ret; 1080 } 1081 1082 static ssize_t iter_xarray_get_pages(struct iov_iter *i, 1083 struct page ***pages, size_t maxsize, 1084 unsigned maxpages, size_t *_start_offset) 1085 { 1086 unsigned nr, offset, count; 1087 pgoff_t index; 1088 loff_t pos; 1089 1090 pos = i->xarray_start + i->iov_offset; 1091 index = pos >> PAGE_SHIFT; 1092 offset = pos & ~PAGE_MASK; 1093 *_start_offset = offset; 1094 1095 count = want_pages_array(pages, maxsize, offset, maxpages); 1096 if (!count) 1097 return -ENOMEM; 1098 nr = iter_xarray_populate_pages(*pages, i->xarray, index, count); 1099 if (nr == 0) 1100 return 0; 1101 1102 maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize); 1103 i->iov_offset += maxsize; 1104 i->count -= maxsize; 1105 return maxsize; 1106 } 1107 1108 /* must be done on non-empty ITER_UBUF or ITER_IOVEC one */ 1109 static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size) 1110 { 1111 size_t skip; 1112 long k; 1113 1114 if (iter_is_ubuf(i)) 1115 return (unsigned long)i->ubuf + i->iov_offset; 1116 1117 for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) { 1118 const struct iovec *iov = iter_iov(i) + k; 1119 size_t len = iov->iov_len - skip; 1120 1121 if (unlikely(!len)) 1122 continue; 1123 if (*size > len) 1124 *size = len; 1125 return (unsigned long)iov->iov_base + skip; 1126 } 1127 BUG(); // if it had been empty, we wouldn't get called 1128 } 1129 1130 /* must be done on non-empty ITER_BVEC one */ 1131 static struct page *first_bvec_segment(const struct iov_iter *i, 1132 size_t *size, size_t *start) 1133 { 1134 struct page *page; 1135 size_t skip = i->iov_offset, len; 1136 1137 len = i->bvec->bv_len - skip; 1138 if (*size > len) 1139 *size = len; 1140 skip += i->bvec->bv_offset; 1141 page = i->bvec->bv_page + skip / PAGE_SIZE; 1142 *start = skip % PAGE_SIZE; 1143 return page; 1144 } 1145 1146 static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i, 1147 struct page ***pages, size_t maxsize, 1148 unsigned int maxpages, size_t *start) 1149 { 1150 unsigned int n, gup_flags = 0; 1151 1152 if (maxsize > i->count) 1153 maxsize = i->count; 1154 if (!maxsize) 1155 return 0; 1156 if (maxsize > MAX_RW_COUNT) 1157 maxsize = MAX_RW_COUNT; 1158 1159 if (likely(user_backed_iter(i))) { 1160 unsigned long addr; 1161 int res; 1162 1163 if (iov_iter_rw(i) != WRITE) 1164 gup_flags |= FOLL_WRITE; 1165 if (i->nofault) 1166 gup_flags |= FOLL_NOFAULT; 1167 1168 addr = first_iovec_segment(i, &maxsize); 1169 *start = addr % PAGE_SIZE; 1170 addr &= PAGE_MASK; 1171 n = want_pages_array(pages, maxsize, *start, maxpages); 1172 if (!n) 1173 return -ENOMEM; 1174 res = get_user_pages_fast(addr, n, gup_flags, *pages); 1175 if (unlikely(res <= 0)) 1176 return res; 1177 maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start); 1178 iov_iter_advance(i, maxsize); 1179 return maxsize; 1180 } 1181 if (iov_iter_is_bvec(i)) { 1182 struct page **p; 1183 struct page *page; 1184 1185 page = first_bvec_segment(i, &maxsize, start); 1186 n = want_pages_array(pages, maxsize, *start, maxpages); 1187 if (!n) 1188 return -ENOMEM; 1189 p = *pages; 1190 for (int k = 0; k < n; k++) { 1191 struct folio *folio = page_folio(page + k); 1192 p[k] = page + k; 1193 if (!folio_test_slab(folio)) 1194 folio_get(folio); 1195 } 1196 maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start); 1197 i->count -= maxsize; 1198 i->iov_offset += maxsize; 1199 if (i->iov_offset == i->bvec->bv_len) { 1200 i->iov_offset = 0; 1201 i->bvec++; 1202 i->nr_segs--; 1203 } 1204 return maxsize; 1205 } 1206 if (iov_iter_is_folioq(i)) 1207 return iter_folioq_get_pages(i, pages, maxsize, maxpages, start); 1208 if (iov_iter_is_xarray(i)) 1209 return iter_xarray_get_pages(i, pages, maxsize, maxpages, start); 1210 return -EFAULT; 1211 } 1212 1213 ssize_t iov_iter_get_pages2(struct iov_iter *i, struct page **pages, 1214 size_t maxsize, unsigned maxpages, size_t *start) 1215 { 1216 if (!maxpages) 1217 return 0; 1218 BUG_ON(!pages); 1219 1220 return __iov_iter_get_pages_alloc(i, &pages, maxsize, maxpages, start); 1221 } 1222 EXPORT_SYMBOL(iov_iter_get_pages2); 1223 1224 ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i, 1225 struct page ***pages, size_t maxsize, size_t *start) 1226 { 1227 ssize_t len; 1228 1229 *pages = NULL; 1230 1231 len = __iov_iter_get_pages_alloc(i, pages, maxsize, ~0U, start); 1232 if (len <= 0) { 1233 kvfree(*pages); 1234 *pages = NULL; 1235 } 1236 return len; 1237 } 1238 EXPORT_SYMBOL(iov_iter_get_pages_alloc2); 1239 1240 static int iov_npages(const struct iov_iter *i, int maxpages) 1241 { 1242 size_t skip = i->iov_offset, size = i->count; 1243 const struct iovec *p; 1244 int npages = 0; 1245 1246 for (p = iter_iov(i); size; skip = 0, p++) { 1247 unsigned offs = offset_in_page(p->iov_base + skip); 1248 size_t len = min(p->iov_len - skip, size); 1249 1250 if (len) { 1251 size -= len; 1252 npages += DIV_ROUND_UP(offs + len, PAGE_SIZE); 1253 if (unlikely(npages > maxpages)) 1254 return maxpages; 1255 } 1256 } 1257 return npages; 1258 } 1259 1260 static int bvec_npages(const struct iov_iter *i, int maxpages) 1261 { 1262 size_t skip = i->iov_offset, size = i->count; 1263 const struct bio_vec *p; 1264 int npages = 0; 1265 1266 for (p = i->bvec; size; skip = 0, p++) { 1267 unsigned offs = (p->bv_offset + skip) % PAGE_SIZE; 1268 size_t len = min(p->bv_len - skip, size); 1269 1270 size -= len; 1271 npages += DIV_ROUND_UP(offs + len, PAGE_SIZE); 1272 if (unlikely(npages > maxpages)) 1273 return maxpages; 1274 } 1275 return npages; 1276 } 1277 1278 int iov_iter_npages(const struct iov_iter *i, int maxpages) 1279 { 1280 if (unlikely(!i->count)) 1281 return 0; 1282 if (likely(iter_is_ubuf(i))) { 1283 unsigned offs = offset_in_page(i->ubuf + i->iov_offset); 1284 int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE); 1285 return min(npages, maxpages); 1286 } 1287 /* iovec and kvec have identical layouts */ 1288 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) 1289 return iov_npages(i, maxpages); 1290 if (iov_iter_is_bvec(i)) 1291 return bvec_npages(i, maxpages); 1292 if (iov_iter_is_folioq(i)) { 1293 unsigned offset = i->iov_offset % PAGE_SIZE; 1294 int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE); 1295 return min(npages, maxpages); 1296 } 1297 if (iov_iter_is_xarray(i)) { 1298 unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE; 1299 int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE); 1300 return min(npages, maxpages); 1301 } 1302 return 0; 1303 } 1304 EXPORT_SYMBOL(iov_iter_npages); 1305 1306 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags) 1307 { 1308 *new = *old; 1309 if (iov_iter_is_bvec(new)) 1310 return new->bvec = kmemdup(new->bvec, 1311 new->nr_segs * sizeof(struct bio_vec), 1312 flags); 1313 else if (iov_iter_is_kvec(new) || iter_is_iovec(new)) 1314 /* iovec and kvec have identical layout */ 1315 return new->__iov = kmemdup(new->__iov, 1316 new->nr_segs * sizeof(struct iovec), 1317 flags); 1318 return NULL; 1319 } 1320 EXPORT_SYMBOL(dup_iter); 1321 1322 static __noclone int copy_compat_iovec_from_user(struct iovec *iov, 1323 const struct iovec __user *uvec, u32 nr_segs) 1324 { 1325 const struct compat_iovec __user *uiov = 1326 (const struct compat_iovec __user *)uvec; 1327 int ret = -EFAULT; 1328 u32 i; 1329 1330 if (!user_access_begin(uiov, nr_segs * sizeof(*uiov))) 1331 return -EFAULT; 1332 1333 for (i = 0; i < nr_segs; i++) { 1334 compat_uptr_t buf; 1335 compat_ssize_t len; 1336 1337 unsafe_get_user(len, &uiov[i].iov_len, uaccess_end); 1338 unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end); 1339 1340 /* check for compat_size_t not fitting in compat_ssize_t .. */ 1341 if (len < 0) { 1342 ret = -EINVAL; 1343 goto uaccess_end; 1344 } 1345 iov[i].iov_base = compat_ptr(buf); 1346 iov[i].iov_len = len; 1347 } 1348 1349 ret = 0; 1350 uaccess_end: 1351 user_access_end(); 1352 return ret; 1353 } 1354 1355 static __noclone int copy_iovec_from_user(struct iovec *iov, 1356 const struct iovec __user *uiov, unsigned long nr_segs) 1357 { 1358 int ret = -EFAULT; 1359 1360 if (!user_access_begin(uiov, nr_segs * sizeof(*uiov))) 1361 return -EFAULT; 1362 1363 do { 1364 void __user *buf; 1365 ssize_t len; 1366 1367 unsafe_get_user(len, &uiov->iov_len, uaccess_end); 1368 unsafe_get_user(buf, &uiov->iov_base, uaccess_end); 1369 1370 /* check for size_t not fitting in ssize_t .. */ 1371 if (unlikely(len < 0)) { 1372 ret = -EINVAL; 1373 goto uaccess_end; 1374 } 1375 iov->iov_base = buf; 1376 iov->iov_len = len; 1377 1378 uiov++; iov++; 1379 } while (--nr_segs); 1380 1381 ret = 0; 1382 uaccess_end: 1383 user_access_end(); 1384 return ret; 1385 } 1386 1387 struct iovec *iovec_from_user(const struct iovec __user *uvec, 1388 unsigned long nr_segs, unsigned long fast_segs, 1389 struct iovec *fast_iov, bool compat) 1390 { 1391 struct iovec *iov = fast_iov; 1392 int ret; 1393 1394 /* 1395 * SuS says "The readv() function *may* fail if the iovcnt argument was 1396 * less than or equal to 0, or greater than {IOV_MAX}. Linux has 1397 * traditionally returned zero for zero segments, so... 1398 */ 1399 if (nr_segs == 0) 1400 return iov; 1401 if (nr_segs > UIO_MAXIOV) 1402 return ERR_PTR(-EINVAL); 1403 if (nr_segs > fast_segs) { 1404 iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL); 1405 if (!iov) 1406 return ERR_PTR(-ENOMEM); 1407 } 1408 1409 if (unlikely(compat)) 1410 ret = copy_compat_iovec_from_user(iov, uvec, nr_segs); 1411 else 1412 ret = copy_iovec_from_user(iov, uvec, nr_segs); 1413 if (ret) { 1414 if (iov != fast_iov) 1415 kfree(iov); 1416 return ERR_PTR(ret); 1417 } 1418 1419 return iov; 1420 } 1421 1422 /* 1423 * Single segment iovec supplied by the user, import it as ITER_UBUF. 1424 */ 1425 static ssize_t __import_iovec_ubuf(int type, const struct iovec __user *uvec, 1426 struct iovec **iovp, struct iov_iter *i, 1427 bool compat) 1428 { 1429 struct iovec *iov = *iovp; 1430 ssize_t ret; 1431 1432 *iovp = NULL; 1433 1434 if (compat) 1435 ret = copy_compat_iovec_from_user(iov, uvec, 1); 1436 else 1437 ret = copy_iovec_from_user(iov, uvec, 1); 1438 if (unlikely(ret)) 1439 return ret; 1440 1441 ret = import_ubuf(type, iov->iov_base, iov->iov_len, i); 1442 if (unlikely(ret)) 1443 return ret; 1444 return i->count; 1445 } 1446 1447 ssize_t __import_iovec(int type, const struct iovec __user *uvec, 1448 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp, 1449 struct iov_iter *i, bool compat) 1450 { 1451 ssize_t total_len = 0; 1452 unsigned long seg; 1453 struct iovec *iov; 1454 1455 if (nr_segs == 1) 1456 return __import_iovec_ubuf(type, uvec, iovp, i, compat); 1457 1458 iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat); 1459 if (IS_ERR(iov)) { 1460 *iovp = NULL; 1461 return PTR_ERR(iov); 1462 } 1463 1464 /* 1465 * According to the Single Unix Specification we should return EINVAL if 1466 * an element length is < 0 when cast to ssize_t or if the total length 1467 * would overflow the ssize_t return value of the system call. 1468 * 1469 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the 1470 * overflow case. 1471 */ 1472 for (seg = 0; seg < nr_segs; seg++) { 1473 ssize_t len = (ssize_t)iov[seg].iov_len; 1474 1475 if (!access_ok(iov[seg].iov_base, len)) { 1476 if (iov != *iovp) 1477 kfree(iov); 1478 *iovp = NULL; 1479 return -EFAULT; 1480 } 1481 1482 if (len > MAX_RW_COUNT - total_len) { 1483 len = MAX_RW_COUNT - total_len; 1484 iov[seg].iov_len = len; 1485 } 1486 total_len += len; 1487 } 1488 1489 iov_iter_init(i, type, iov, nr_segs, total_len); 1490 if (iov == *iovp) 1491 *iovp = NULL; 1492 else 1493 *iovp = iov; 1494 return total_len; 1495 } 1496 1497 /** 1498 * import_iovec() - Copy an array of &struct iovec from userspace 1499 * into the kernel, check that it is valid, and initialize a new 1500 * &struct iov_iter iterator to access it. 1501 * 1502 * @type: One of %READ or %WRITE. 1503 * @uvec: Pointer to the userspace array. 1504 * @nr_segs: Number of elements in userspace array. 1505 * @fast_segs: Number of elements in @iov. 1506 * @iovp: (input and output parameter) Pointer to pointer to (usually small 1507 * on-stack) kernel array. 1508 * @i: Pointer to iterator that will be initialized on success. 1509 * 1510 * If the array pointed to by *@iov is large enough to hold all @nr_segs, 1511 * then this function places %NULL in *@iov on return. Otherwise, a new 1512 * array will be allocated and the result placed in *@iov. This means that 1513 * the caller may call kfree() on *@iov regardless of whether the small 1514 * on-stack array was used or not (and regardless of whether this function 1515 * returns an error or not). 1516 * 1517 * Return: Negative error code on error, bytes imported on success 1518 */ 1519 ssize_t import_iovec(int type, const struct iovec __user *uvec, 1520 unsigned nr_segs, unsigned fast_segs, 1521 struct iovec **iovp, struct iov_iter *i) 1522 { 1523 return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i, 1524 in_compat_syscall()); 1525 } 1526 EXPORT_SYMBOL(import_iovec); 1527 1528 int import_ubuf(int rw, void __user *buf, size_t len, struct iov_iter *i) 1529 { 1530 if (len > MAX_RW_COUNT) 1531 len = MAX_RW_COUNT; 1532 if (unlikely(!access_ok(buf, len))) 1533 return -EFAULT; 1534 1535 iov_iter_ubuf(i, rw, buf, len); 1536 return 0; 1537 } 1538 EXPORT_SYMBOL_GPL(import_ubuf); 1539 1540 /** 1541 * iov_iter_restore() - Restore a &struct iov_iter to the same state as when 1542 * iov_iter_save_state() was called. 1543 * 1544 * @i: &struct iov_iter to restore 1545 * @state: state to restore from 1546 * 1547 * Used after iov_iter_save_state() to bring restore @i, if operations may 1548 * have advanced it. 1549 * 1550 * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC 1551 */ 1552 void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state) 1553 { 1554 if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i) && 1555 !iter_is_ubuf(i)) && !iov_iter_is_kvec(i)) 1556 return; 1557 i->iov_offset = state->iov_offset; 1558 i->count = state->count; 1559 if (iter_is_ubuf(i)) 1560 return; 1561 /* 1562 * For the *vec iters, nr_segs + iov is constant - if we increment 1563 * the vec, then we also decrement the nr_segs count. Hence we don't 1564 * need to track both of these, just one is enough and we can deduct 1565 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct 1566 * size, so we can just increment the iov pointer as they are unionzed. 1567 * ITER_BVEC _may_ be the same size on some archs, but on others it is 1568 * not. Be safe and handle it separately. 1569 */ 1570 BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec)); 1571 if (iov_iter_is_bvec(i)) 1572 i->bvec -= state->nr_segs - i->nr_segs; 1573 else 1574 i->__iov -= state->nr_segs - i->nr_segs; 1575 i->nr_segs = state->nr_segs; 1576 } 1577 1578 /* 1579 * Extract a list of contiguous pages from an ITER_FOLIOQ iterator. This does 1580 * not get references on the pages, nor does it get a pin on them. 1581 */ 1582 static ssize_t iov_iter_extract_folioq_pages(struct iov_iter *i, 1583 struct page ***pages, size_t maxsize, 1584 unsigned int maxpages, 1585 iov_iter_extraction_t extraction_flags, 1586 size_t *offset0) 1587 { 1588 const struct folio_queue *folioq = i->folioq; 1589 struct page **p; 1590 unsigned int nr = 0; 1591 size_t extracted = 0, offset, slot = i->folioq_slot; 1592 1593 if (slot >= folioq_nr_slots(folioq)) { 1594 folioq = folioq->next; 1595 slot = 0; 1596 if (WARN_ON(i->iov_offset != 0)) 1597 return -EIO; 1598 } 1599 1600 offset = i->iov_offset & ~PAGE_MASK; 1601 *offset0 = offset; 1602 1603 maxpages = want_pages_array(pages, maxsize, offset, maxpages); 1604 if (!maxpages) 1605 return -ENOMEM; 1606 p = *pages; 1607 1608 for (;;) { 1609 struct folio *folio = folioq_folio(folioq, slot); 1610 size_t offset = i->iov_offset, fsize = folioq_folio_size(folioq, slot); 1611 size_t part = PAGE_SIZE - offset % PAGE_SIZE; 1612 1613 if (offset < fsize) { 1614 part = umin(part, umin(maxsize - extracted, fsize - offset)); 1615 i->count -= part; 1616 i->iov_offset += part; 1617 extracted += part; 1618 1619 p[nr++] = folio_page(folio, offset / PAGE_SIZE); 1620 } 1621 1622 if (nr >= maxpages || extracted >= maxsize) 1623 break; 1624 1625 if (i->iov_offset >= fsize) { 1626 i->iov_offset = 0; 1627 slot++; 1628 if (slot == folioq_nr_slots(folioq) && folioq->next) { 1629 folioq = folioq->next; 1630 slot = 0; 1631 } 1632 } 1633 } 1634 1635 i->folioq = folioq; 1636 i->folioq_slot = slot; 1637 return extracted; 1638 } 1639 1640 /* 1641 * Extract a list of contiguous pages from an ITER_XARRAY iterator. This does not 1642 * get references on the pages, nor does it get a pin on them. 1643 */ 1644 static ssize_t iov_iter_extract_xarray_pages(struct iov_iter *i, 1645 struct page ***pages, size_t maxsize, 1646 unsigned int maxpages, 1647 iov_iter_extraction_t extraction_flags, 1648 size_t *offset0) 1649 { 1650 struct page **p; 1651 struct folio *folio; 1652 unsigned int nr = 0, offset; 1653 loff_t pos = i->xarray_start + i->iov_offset; 1654 XA_STATE(xas, i->xarray, pos >> PAGE_SHIFT); 1655 1656 offset = pos & ~PAGE_MASK; 1657 *offset0 = offset; 1658 1659 maxpages = want_pages_array(pages, maxsize, offset, maxpages); 1660 if (!maxpages) 1661 return -ENOMEM; 1662 p = *pages; 1663 1664 rcu_read_lock(); 1665 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) { 1666 if (xas_retry(&xas, folio)) 1667 continue; 1668 1669 /* Has the folio moved or been split? */ 1670 if (unlikely(folio != xas_reload(&xas))) { 1671 xas_reset(&xas); 1672 continue; 1673 } 1674 1675 p[nr++] = folio_file_page(folio, xas.xa_index); 1676 if (nr == maxpages) 1677 break; 1678 } 1679 rcu_read_unlock(); 1680 1681 maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize); 1682 iov_iter_advance(i, maxsize); 1683 return maxsize; 1684 } 1685 1686 /* 1687 * Extract a list of virtually contiguous pages from an ITER_BVEC iterator. 1688 * This does not get references on the pages, nor does it get a pin on them. 1689 */ 1690 static ssize_t iov_iter_extract_bvec_pages(struct iov_iter *i, 1691 struct page ***pages, size_t maxsize, 1692 unsigned int maxpages, 1693 iov_iter_extraction_t extraction_flags, 1694 size_t *offset0) 1695 { 1696 size_t skip = i->iov_offset, size = 0; 1697 struct bvec_iter bi; 1698 int k = 0; 1699 1700 if (i->nr_segs == 0) 1701 return 0; 1702 1703 if (i->iov_offset == i->bvec->bv_len) { 1704 i->iov_offset = 0; 1705 i->nr_segs--; 1706 i->bvec++; 1707 skip = 0; 1708 } 1709 bi.bi_idx = 0; 1710 bi.bi_size = maxsize; 1711 bi.bi_bvec_done = skip; 1712 1713 maxpages = want_pages_array(pages, maxsize, skip, maxpages); 1714 1715 while (bi.bi_size && bi.bi_idx < i->nr_segs) { 1716 struct bio_vec bv = bvec_iter_bvec(i->bvec, bi); 1717 1718 /* 1719 * The iov_iter_extract_pages interface only allows an offset 1720 * into the first page. Break out of the loop if we see an 1721 * offset into subsequent pages, the caller will have to call 1722 * iov_iter_extract_pages again for the reminder. 1723 */ 1724 if (k) { 1725 if (bv.bv_offset) 1726 break; 1727 } else { 1728 *offset0 = bv.bv_offset; 1729 } 1730 1731 (*pages)[k++] = bv.bv_page; 1732 size += bv.bv_len; 1733 1734 if (k >= maxpages) 1735 break; 1736 1737 /* 1738 * We are done when the end of the bvec doesn't align to a page 1739 * boundary as that would create a hole in the returned space. 1740 * The caller will handle this with another call to 1741 * iov_iter_extract_pages. 1742 */ 1743 if (bv.bv_offset + bv.bv_len != PAGE_SIZE) 1744 break; 1745 1746 bvec_iter_advance_single(i->bvec, &bi, bv.bv_len); 1747 } 1748 1749 iov_iter_advance(i, size); 1750 return size; 1751 } 1752 1753 /* 1754 * Extract a list of virtually contiguous pages from an ITER_KVEC iterator. 1755 * This does not get references on the pages, nor does it get a pin on them. 1756 */ 1757 static ssize_t iov_iter_extract_kvec_pages(struct iov_iter *i, 1758 struct page ***pages, size_t maxsize, 1759 unsigned int maxpages, 1760 iov_iter_extraction_t extraction_flags, 1761 size_t *offset0) 1762 { 1763 struct page **p, *page; 1764 const void *kaddr; 1765 size_t skip = i->iov_offset, offset, len, size; 1766 int k; 1767 1768 for (;;) { 1769 if (i->nr_segs == 0) 1770 return 0; 1771 size = min(maxsize, i->kvec->iov_len - skip); 1772 if (size) 1773 break; 1774 i->iov_offset = 0; 1775 i->nr_segs--; 1776 i->kvec++; 1777 skip = 0; 1778 } 1779 1780 kaddr = i->kvec->iov_base + skip; 1781 offset = (unsigned long)kaddr & ~PAGE_MASK; 1782 *offset0 = offset; 1783 1784 maxpages = want_pages_array(pages, size, offset, maxpages); 1785 if (!maxpages) 1786 return -ENOMEM; 1787 p = *pages; 1788 1789 kaddr -= offset; 1790 len = offset + size; 1791 for (k = 0; k < maxpages; k++) { 1792 size_t seg = min_t(size_t, len, PAGE_SIZE); 1793 1794 if (is_vmalloc_or_module_addr(kaddr)) 1795 page = vmalloc_to_page(kaddr); 1796 else 1797 page = virt_to_page(kaddr); 1798 1799 p[k] = page; 1800 len -= seg; 1801 kaddr += PAGE_SIZE; 1802 } 1803 1804 size = min_t(size_t, size, maxpages * PAGE_SIZE - offset); 1805 iov_iter_advance(i, size); 1806 return size; 1807 } 1808 1809 /* 1810 * Extract a list of contiguous pages from a user iterator and get a pin on 1811 * each of them. This should only be used if the iterator is user-backed 1812 * (IOBUF/UBUF). 1813 * 1814 * It does not get refs on the pages, but the pages must be unpinned by the 1815 * caller once the transfer is complete. 1816 * 1817 * This is safe to be used where background IO/DMA *is* going to be modifying 1818 * the buffer; using a pin rather than a ref makes forces fork() to give the 1819 * child a copy of the page. 1820 */ 1821 static ssize_t iov_iter_extract_user_pages(struct iov_iter *i, 1822 struct page ***pages, 1823 size_t maxsize, 1824 unsigned int maxpages, 1825 iov_iter_extraction_t extraction_flags, 1826 size_t *offset0) 1827 { 1828 unsigned long addr; 1829 unsigned int gup_flags = 0; 1830 size_t offset; 1831 int res; 1832 1833 if (i->data_source == ITER_DEST) 1834 gup_flags |= FOLL_WRITE; 1835 if (extraction_flags & ITER_ALLOW_P2PDMA) 1836 gup_flags |= FOLL_PCI_P2PDMA; 1837 if (i->nofault) 1838 gup_flags |= FOLL_NOFAULT; 1839 1840 addr = first_iovec_segment(i, &maxsize); 1841 *offset0 = offset = addr % PAGE_SIZE; 1842 addr &= PAGE_MASK; 1843 maxpages = want_pages_array(pages, maxsize, offset, maxpages); 1844 if (!maxpages) 1845 return -ENOMEM; 1846 res = pin_user_pages_fast(addr, maxpages, gup_flags, *pages); 1847 if (unlikely(res <= 0)) 1848 return res; 1849 maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - offset); 1850 iov_iter_advance(i, maxsize); 1851 return maxsize; 1852 } 1853 1854 /** 1855 * iov_iter_extract_pages - Extract a list of contiguous pages from an iterator 1856 * @i: The iterator to extract from 1857 * @pages: Where to return the list of pages 1858 * @maxsize: The maximum amount of iterator to extract 1859 * @maxpages: The maximum size of the list of pages 1860 * @extraction_flags: Flags to qualify request 1861 * @offset0: Where to return the starting offset into (*@pages)[0] 1862 * 1863 * Extract a list of contiguous pages from the current point of the iterator, 1864 * advancing the iterator. The maximum number of pages and the maximum amount 1865 * of page contents can be set. 1866 * 1867 * If *@pages is NULL, a page list will be allocated to the required size and 1868 * *@pages will be set to its base. If *@pages is not NULL, it will be assumed 1869 * that the caller allocated a page list at least @maxpages in size and this 1870 * will be filled in. 1871 * 1872 * @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA 1873 * be allowed on the pages extracted. 1874 * 1875 * The iov_iter_extract_will_pin() function can be used to query how cleanup 1876 * should be performed. 1877 * 1878 * Extra refs or pins on the pages may be obtained as follows: 1879 * 1880 * (*) If the iterator is user-backed (ITER_IOVEC/ITER_UBUF), pins will be 1881 * added to the pages, but refs will not be taken. 1882 * iov_iter_extract_will_pin() will return true. 1883 * 1884 * (*) If the iterator is ITER_KVEC, ITER_BVEC, ITER_FOLIOQ or ITER_XARRAY, the 1885 * pages are merely listed; no extra refs or pins are obtained. 1886 * iov_iter_extract_will_pin() will return 0. 1887 * 1888 * Note also: 1889 * 1890 * (*) Use with ITER_DISCARD is not supported as that has no content. 1891 * 1892 * On success, the function sets *@pages to the new pagelist, if allocated, and 1893 * sets *offset0 to the offset into the first page. 1894 * 1895 * It may also return -ENOMEM and -EFAULT. 1896 */ 1897 ssize_t iov_iter_extract_pages(struct iov_iter *i, 1898 struct page ***pages, 1899 size_t maxsize, 1900 unsigned int maxpages, 1901 iov_iter_extraction_t extraction_flags, 1902 size_t *offset0) 1903 { 1904 maxsize = min_t(size_t, min_t(size_t, maxsize, i->count), MAX_RW_COUNT); 1905 if (!maxsize) 1906 return 0; 1907 1908 if (likely(user_backed_iter(i))) 1909 return iov_iter_extract_user_pages(i, pages, maxsize, 1910 maxpages, extraction_flags, 1911 offset0); 1912 if (iov_iter_is_kvec(i)) 1913 return iov_iter_extract_kvec_pages(i, pages, maxsize, 1914 maxpages, extraction_flags, 1915 offset0); 1916 if (iov_iter_is_bvec(i)) 1917 return iov_iter_extract_bvec_pages(i, pages, maxsize, 1918 maxpages, extraction_flags, 1919 offset0); 1920 if (iov_iter_is_folioq(i)) 1921 return iov_iter_extract_folioq_pages(i, pages, maxsize, 1922 maxpages, extraction_flags, 1923 offset0); 1924 if (iov_iter_is_xarray(i)) 1925 return iov_iter_extract_xarray_pages(i, pages, maxsize, 1926 maxpages, extraction_flags, 1927 offset0); 1928 return -EFAULT; 1929 } 1930 EXPORT_SYMBOL_GPL(iov_iter_extract_pages); 1931