xref: /linux/lib/iov_iter.c (revision 13b25489b6f8bd73ed65f07928f7c27a481f1820)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/export.h>
3 #include <linux/bvec.h>
4 #include <linux/fault-inject-usercopy.h>
5 #include <linux/uio.h>
6 #include <linux/pagemap.h>
7 #include <linux/highmem.h>
8 #include <linux/slab.h>
9 #include <linux/vmalloc.h>
10 #include <linux/splice.h>
11 #include <linux/compat.h>
12 #include <linux/scatterlist.h>
13 #include <linux/instrumented.h>
14 #include <linux/iov_iter.h>
15 
16 static __always_inline
17 size_t copy_to_user_iter(void __user *iter_to, size_t progress,
18 			 size_t len, void *from, void *priv2)
19 {
20 	if (should_fail_usercopy())
21 		return len;
22 	if (access_ok(iter_to, len)) {
23 		from += progress;
24 		instrument_copy_to_user(iter_to, from, len);
25 		len = raw_copy_to_user(iter_to, from, len);
26 	}
27 	return len;
28 }
29 
30 static __always_inline
31 size_t copy_to_user_iter_nofault(void __user *iter_to, size_t progress,
32 				 size_t len, void *from, void *priv2)
33 {
34 	ssize_t res;
35 
36 	if (should_fail_usercopy())
37 		return len;
38 
39 	from += progress;
40 	res = copy_to_user_nofault(iter_to, from, len);
41 	return res < 0 ? len : res;
42 }
43 
44 static __always_inline
45 size_t copy_from_user_iter(void __user *iter_from, size_t progress,
46 			   size_t len, void *to, void *priv2)
47 {
48 	size_t res = len;
49 
50 	if (should_fail_usercopy())
51 		return len;
52 	if (access_ok(iter_from, len)) {
53 		to += progress;
54 		instrument_copy_from_user_before(to, iter_from, len);
55 		res = raw_copy_from_user(to, iter_from, len);
56 		instrument_copy_from_user_after(to, iter_from, len, res);
57 	}
58 	return res;
59 }
60 
61 static __always_inline
62 size_t memcpy_to_iter(void *iter_to, size_t progress,
63 		      size_t len, void *from, void *priv2)
64 {
65 	memcpy(iter_to, from + progress, len);
66 	return 0;
67 }
68 
69 static __always_inline
70 size_t memcpy_from_iter(void *iter_from, size_t progress,
71 			size_t len, void *to, void *priv2)
72 {
73 	memcpy(to + progress, iter_from, len);
74 	return 0;
75 }
76 
77 /*
78  * fault_in_iov_iter_readable - fault in iov iterator for reading
79  * @i: iterator
80  * @size: maximum length
81  *
82  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
83  * @size.  For each iovec, fault in each page that constitutes the iovec.
84  *
85  * Returns the number of bytes not faulted in (like copy_to_user() and
86  * copy_from_user()).
87  *
88  * Always returns 0 for non-userspace iterators.
89  */
90 size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size)
91 {
92 	if (iter_is_ubuf(i)) {
93 		size_t n = min(size, iov_iter_count(i));
94 		n -= fault_in_readable(i->ubuf + i->iov_offset, n);
95 		return size - n;
96 	} else if (iter_is_iovec(i)) {
97 		size_t count = min(size, iov_iter_count(i));
98 		const struct iovec *p;
99 		size_t skip;
100 
101 		size -= count;
102 		for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) {
103 			size_t len = min(count, p->iov_len - skip);
104 			size_t ret;
105 
106 			if (unlikely(!len))
107 				continue;
108 			ret = fault_in_readable(p->iov_base + skip, len);
109 			count -= len - ret;
110 			if (ret)
111 				break;
112 		}
113 		return count + size;
114 	}
115 	return 0;
116 }
117 EXPORT_SYMBOL(fault_in_iov_iter_readable);
118 
119 /*
120  * fault_in_iov_iter_writeable - fault in iov iterator for writing
121  * @i: iterator
122  * @size: maximum length
123  *
124  * Faults in the iterator using get_user_pages(), i.e., without triggering
125  * hardware page faults.  This is primarily useful when we already know that
126  * some or all of the pages in @i aren't in memory.
127  *
128  * Returns the number of bytes not faulted in, like copy_to_user() and
129  * copy_from_user().
130  *
131  * Always returns 0 for non-user-space iterators.
132  */
133 size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size)
134 {
135 	if (iter_is_ubuf(i)) {
136 		size_t n = min(size, iov_iter_count(i));
137 		n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n);
138 		return size - n;
139 	} else if (iter_is_iovec(i)) {
140 		size_t count = min(size, iov_iter_count(i));
141 		const struct iovec *p;
142 		size_t skip;
143 
144 		size -= count;
145 		for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) {
146 			size_t len = min(count, p->iov_len - skip);
147 			size_t ret;
148 
149 			if (unlikely(!len))
150 				continue;
151 			ret = fault_in_safe_writeable(p->iov_base + skip, len);
152 			count -= len - ret;
153 			if (ret)
154 				break;
155 		}
156 		return count + size;
157 	}
158 	return 0;
159 }
160 EXPORT_SYMBOL(fault_in_iov_iter_writeable);
161 
162 void iov_iter_init(struct iov_iter *i, unsigned int direction,
163 			const struct iovec *iov, unsigned long nr_segs,
164 			size_t count)
165 {
166 	WARN_ON(direction & ~(READ | WRITE));
167 	*i = (struct iov_iter) {
168 		.iter_type = ITER_IOVEC,
169 		.nofault = false,
170 		.data_source = direction,
171 		.__iov = iov,
172 		.nr_segs = nr_segs,
173 		.iov_offset = 0,
174 		.count = count
175 	};
176 }
177 EXPORT_SYMBOL(iov_iter_init);
178 
179 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
180 {
181 	if (WARN_ON_ONCE(i->data_source))
182 		return 0;
183 	if (user_backed_iter(i))
184 		might_fault();
185 	return iterate_and_advance(i, bytes, (void *)addr,
186 				   copy_to_user_iter, memcpy_to_iter);
187 }
188 EXPORT_SYMBOL(_copy_to_iter);
189 
190 #ifdef CONFIG_ARCH_HAS_COPY_MC
191 static __always_inline
192 size_t copy_to_user_iter_mc(void __user *iter_to, size_t progress,
193 			    size_t len, void *from, void *priv2)
194 {
195 	if (access_ok(iter_to, len)) {
196 		from += progress;
197 		instrument_copy_to_user(iter_to, from, len);
198 		len = copy_mc_to_user(iter_to, from, len);
199 	}
200 	return len;
201 }
202 
203 static __always_inline
204 size_t memcpy_to_iter_mc(void *iter_to, size_t progress,
205 			 size_t len, void *from, void *priv2)
206 {
207 	return copy_mc_to_kernel(iter_to, from + progress, len);
208 }
209 
210 /**
211  * _copy_mc_to_iter - copy to iter with source memory error exception handling
212  * @addr: source kernel address
213  * @bytes: total transfer length
214  * @i: destination iterator
215  *
216  * The pmem driver deploys this for the dax operation
217  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
218  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
219  * successfully copied.
220  *
221  * The main differences between this and typical _copy_to_iter().
222  *
223  * * Typical tail/residue handling after a fault retries the copy
224  *   byte-by-byte until the fault happens again. Re-triggering machine
225  *   checks is potentially fatal so the implementation uses source
226  *   alignment and poison alignment assumptions to avoid re-triggering
227  *   hardware exceptions.
228  *
229  * * ITER_KVEC and ITER_BVEC can return short copies.  Compare to
230  *   copy_to_iter() where only ITER_IOVEC attempts might return a short copy.
231  *
232  * Return: number of bytes copied (may be %0)
233  */
234 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
235 {
236 	if (WARN_ON_ONCE(i->data_source))
237 		return 0;
238 	if (user_backed_iter(i))
239 		might_fault();
240 	return iterate_and_advance(i, bytes, (void *)addr,
241 				   copy_to_user_iter_mc, memcpy_to_iter_mc);
242 }
243 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
244 #endif /* CONFIG_ARCH_HAS_COPY_MC */
245 
246 static __always_inline
247 size_t __copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
248 {
249 	return iterate_and_advance(i, bytes, addr,
250 				   copy_from_user_iter, memcpy_from_iter);
251 }
252 
253 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
254 {
255 	if (WARN_ON_ONCE(!i->data_source))
256 		return 0;
257 
258 	if (user_backed_iter(i))
259 		might_fault();
260 	return __copy_from_iter(addr, bytes, i);
261 }
262 EXPORT_SYMBOL(_copy_from_iter);
263 
264 static __always_inline
265 size_t copy_from_user_iter_nocache(void __user *iter_from, size_t progress,
266 				   size_t len, void *to, void *priv2)
267 {
268 	return __copy_from_user_inatomic_nocache(to + progress, iter_from, len);
269 }
270 
271 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
272 {
273 	if (WARN_ON_ONCE(!i->data_source))
274 		return 0;
275 
276 	return iterate_and_advance(i, bytes, addr,
277 				   copy_from_user_iter_nocache,
278 				   memcpy_from_iter);
279 }
280 EXPORT_SYMBOL(_copy_from_iter_nocache);
281 
282 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
283 static __always_inline
284 size_t copy_from_user_iter_flushcache(void __user *iter_from, size_t progress,
285 				      size_t len, void *to, void *priv2)
286 {
287 	return __copy_from_user_flushcache(to + progress, iter_from, len);
288 }
289 
290 static __always_inline
291 size_t memcpy_from_iter_flushcache(void *iter_from, size_t progress,
292 				   size_t len, void *to, void *priv2)
293 {
294 	memcpy_flushcache(to + progress, iter_from, len);
295 	return 0;
296 }
297 
298 /**
299  * _copy_from_iter_flushcache - write destination through cpu cache
300  * @addr: destination kernel address
301  * @bytes: total transfer length
302  * @i: source iterator
303  *
304  * The pmem driver arranges for filesystem-dax to use this facility via
305  * dax_copy_from_iter() for ensuring that writes to persistent memory
306  * are flushed through the CPU cache. It is differentiated from
307  * _copy_from_iter_nocache() in that guarantees all data is flushed for
308  * all iterator types. The _copy_from_iter_nocache() only attempts to
309  * bypass the cache for the ITER_IOVEC case, and on some archs may use
310  * instructions that strand dirty-data in the cache.
311  *
312  * Return: number of bytes copied (may be %0)
313  */
314 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
315 {
316 	if (WARN_ON_ONCE(!i->data_source))
317 		return 0;
318 
319 	return iterate_and_advance(i, bytes, addr,
320 				   copy_from_user_iter_flushcache,
321 				   memcpy_from_iter_flushcache);
322 }
323 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
324 #endif
325 
326 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
327 {
328 	struct page *head;
329 	size_t v = n + offset;
330 
331 	/*
332 	 * The general case needs to access the page order in order
333 	 * to compute the page size.
334 	 * However, we mostly deal with order-0 pages and thus can
335 	 * avoid a possible cache line miss for requests that fit all
336 	 * page orders.
337 	 */
338 	if (n <= v && v <= PAGE_SIZE)
339 		return true;
340 
341 	head = compound_head(page);
342 	v += (page - head) << PAGE_SHIFT;
343 
344 	if (WARN_ON(n > v || v > page_size(head)))
345 		return false;
346 	return true;
347 }
348 
349 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
350 			 struct iov_iter *i)
351 {
352 	size_t res = 0;
353 	if (!page_copy_sane(page, offset, bytes))
354 		return 0;
355 	if (WARN_ON_ONCE(i->data_source))
356 		return 0;
357 	page += offset / PAGE_SIZE; // first subpage
358 	offset %= PAGE_SIZE;
359 	while (1) {
360 		void *kaddr = kmap_local_page(page);
361 		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
362 		n = _copy_to_iter(kaddr + offset, n, i);
363 		kunmap_local(kaddr);
364 		res += n;
365 		bytes -= n;
366 		if (!bytes || !n)
367 			break;
368 		offset += n;
369 		if (offset == PAGE_SIZE) {
370 			page++;
371 			offset = 0;
372 		}
373 	}
374 	return res;
375 }
376 EXPORT_SYMBOL(copy_page_to_iter);
377 
378 size_t copy_page_to_iter_nofault(struct page *page, unsigned offset, size_t bytes,
379 				 struct iov_iter *i)
380 {
381 	size_t res = 0;
382 
383 	if (!page_copy_sane(page, offset, bytes))
384 		return 0;
385 	if (WARN_ON_ONCE(i->data_source))
386 		return 0;
387 	page += offset / PAGE_SIZE; // first subpage
388 	offset %= PAGE_SIZE;
389 	while (1) {
390 		void *kaddr = kmap_local_page(page);
391 		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
392 
393 		n = iterate_and_advance(i, n, kaddr + offset,
394 					copy_to_user_iter_nofault,
395 					memcpy_to_iter);
396 		kunmap_local(kaddr);
397 		res += n;
398 		bytes -= n;
399 		if (!bytes || !n)
400 			break;
401 		offset += n;
402 		if (offset == PAGE_SIZE) {
403 			page++;
404 			offset = 0;
405 		}
406 	}
407 	return res;
408 }
409 EXPORT_SYMBOL(copy_page_to_iter_nofault);
410 
411 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
412 			 struct iov_iter *i)
413 {
414 	size_t res = 0;
415 	if (!page_copy_sane(page, offset, bytes))
416 		return 0;
417 	page += offset / PAGE_SIZE; // first subpage
418 	offset %= PAGE_SIZE;
419 	while (1) {
420 		void *kaddr = kmap_local_page(page);
421 		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
422 		n = _copy_from_iter(kaddr + offset, n, i);
423 		kunmap_local(kaddr);
424 		res += n;
425 		bytes -= n;
426 		if (!bytes || !n)
427 			break;
428 		offset += n;
429 		if (offset == PAGE_SIZE) {
430 			page++;
431 			offset = 0;
432 		}
433 	}
434 	return res;
435 }
436 EXPORT_SYMBOL(copy_page_from_iter);
437 
438 static __always_inline
439 size_t zero_to_user_iter(void __user *iter_to, size_t progress,
440 			 size_t len, void *priv, void *priv2)
441 {
442 	return clear_user(iter_to, len);
443 }
444 
445 static __always_inline
446 size_t zero_to_iter(void *iter_to, size_t progress,
447 		    size_t len, void *priv, void *priv2)
448 {
449 	memset(iter_to, 0, len);
450 	return 0;
451 }
452 
453 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
454 {
455 	return iterate_and_advance(i, bytes, NULL,
456 				   zero_to_user_iter, zero_to_iter);
457 }
458 EXPORT_SYMBOL(iov_iter_zero);
459 
460 size_t copy_page_from_iter_atomic(struct page *page, size_t offset,
461 		size_t bytes, struct iov_iter *i)
462 {
463 	size_t n, copied = 0;
464 	bool uses_kmap = IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) ||
465 			 PageHighMem(page);
466 
467 	if (!page_copy_sane(page, offset, bytes))
468 		return 0;
469 	if (WARN_ON_ONCE(!i->data_source))
470 		return 0;
471 
472 	do {
473 		char *p;
474 
475 		n = bytes - copied;
476 		if (uses_kmap) {
477 			page += offset / PAGE_SIZE;
478 			offset %= PAGE_SIZE;
479 			n = min_t(size_t, n, PAGE_SIZE - offset);
480 		}
481 
482 		p = kmap_atomic(page) + offset;
483 		n = __copy_from_iter(p, n, i);
484 		kunmap_atomic(p);
485 		copied += n;
486 		offset += n;
487 	} while (uses_kmap && copied != bytes && n > 0);
488 
489 	return copied;
490 }
491 EXPORT_SYMBOL(copy_page_from_iter_atomic);
492 
493 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
494 {
495 	const struct bio_vec *bvec, *end;
496 
497 	if (!i->count)
498 		return;
499 	i->count -= size;
500 
501 	size += i->iov_offset;
502 
503 	for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) {
504 		if (likely(size < bvec->bv_len))
505 			break;
506 		size -= bvec->bv_len;
507 	}
508 	i->iov_offset = size;
509 	i->nr_segs -= bvec - i->bvec;
510 	i->bvec = bvec;
511 }
512 
513 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
514 {
515 	const struct iovec *iov, *end;
516 
517 	if (!i->count)
518 		return;
519 	i->count -= size;
520 
521 	size += i->iov_offset; // from beginning of current segment
522 	for (iov = iter_iov(i), end = iov + i->nr_segs; iov < end; iov++) {
523 		if (likely(size < iov->iov_len))
524 			break;
525 		size -= iov->iov_len;
526 	}
527 	i->iov_offset = size;
528 	i->nr_segs -= iov - iter_iov(i);
529 	i->__iov = iov;
530 }
531 
532 static void iov_iter_folioq_advance(struct iov_iter *i, size_t size)
533 {
534 	const struct folio_queue *folioq = i->folioq;
535 	unsigned int slot = i->folioq_slot;
536 
537 	if (!i->count)
538 		return;
539 	i->count -= size;
540 
541 	if (slot >= folioq_nr_slots(folioq)) {
542 		folioq = folioq->next;
543 		slot = 0;
544 	}
545 
546 	size += i->iov_offset; /* From beginning of current segment. */
547 	do {
548 		size_t fsize = folioq_folio_size(folioq, slot);
549 
550 		if (likely(size < fsize))
551 			break;
552 		size -= fsize;
553 		slot++;
554 		if (slot >= folioq_nr_slots(folioq) && folioq->next) {
555 			folioq = folioq->next;
556 			slot = 0;
557 		}
558 	} while (size);
559 
560 	i->iov_offset = size;
561 	i->folioq_slot = slot;
562 	i->folioq = folioq;
563 }
564 
565 void iov_iter_advance(struct iov_iter *i, size_t size)
566 {
567 	if (unlikely(i->count < size))
568 		size = i->count;
569 	if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) {
570 		i->iov_offset += size;
571 		i->count -= size;
572 	} else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
573 		/* iovec and kvec have identical layouts */
574 		iov_iter_iovec_advance(i, size);
575 	} else if (iov_iter_is_bvec(i)) {
576 		iov_iter_bvec_advance(i, size);
577 	} else if (iov_iter_is_folioq(i)) {
578 		iov_iter_folioq_advance(i, size);
579 	} else if (iov_iter_is_discard(i)) {
580 		i->count -= size;
581 	}
582 }
583 EXPORT_SYMBOL(iov_iter_advance);
584 
585 static void iov_iter_folioq_revert(struct iov_iter *i, size_t unroll)
586 {
587 	const struct folio_queue *folioq = i->folioq;
588 	unsigned int slot = i->folioq_slot;
589 
590 	for (;;) {
591 		size_t fsize;
592 
593 		if (slot == 0) {
594 			folioq = folioq->prev;
595 			slot = folioq_nr_slots(folioq);
596 		}
597 		slot--;
598 
599 		fsize = folioq_folio_size(folioq, slot);
600 		if (unroll <= fsize) {
601 			i->iov_offset = fsize - unroll;
602 			break;
603 		}
604 		unroll -= fsize;
605 	}
606 
607 	i->folioq_slot = slot;
608 	i->folioq = folioq;
609 }
610 
611 void iov_iter_revert(struct iov_iter *i, size_t unroll)
612 {
613 	if (!unroll)
614 		return;
615 	if (WARN_ON(unroll > MAX_RW_COUNT))
616 		return;
617 	i->count += unroll;
618 	if (unlikely(iov_iter_is_discard(i)))
619 		return;
620 	if (unroll <= i->iov_offset) {
621 		i->iov_offset -= unroll;
622 		return;
623 	}
624 	unroll -= i->iov_offset;
625 	if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) {
626 		BUG(); /* We should never go beyond the start of the specified
627 			* range since we might then be straying into pages that
628 			* aren't pinned.
629 			*/
630 	} else if (iov_iter_is_bvec(i)) {
631 		const struct bio_vec *bvec = i->bvec;
632 		while (1) {
633 			size_t n = (--bvec)->bv_len;
634 			i->nr_segs++;
635 			if (unroll <= n) {
636 				i->bvec = bvec;
637 				i->iov_offset = n - unroll;
638 				return;
639 			}
640 			unroll -= n;
641 		}
642 	} else if (iov_iter_is_folioq(i)) {
643 		i->iov_offset = 0;
644 		iov_iter_folioq_revert(i, unroll);
645 	} else { /* same logics for iovec and kvec */
646 		const struct iovec *iov = iter_iov(i);
647 		while (1) {
648 			size_t n = (--iov)->iov_len;
649 			i->nr_segs++;
650 			if (unroll <= n) {
651 				i->__iov = iov;
652 				i->iov_offset = n - unroll;
653 				return;
654 			}
655 			unroll -= n;
656 		}
657 	}
658 }
659 EXPORT_SYMBOL(iov_iter_revert);
660 
661 /*
662  * Return the count of just the current iov_iter segment.
663  */
664 size_t iov_iter_single_seg_count(const struct iov_iter *i)
665 {
666 	if (i->nr_segs > 1) {
667 		if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
668 			return min(i->count, iter_iov(i)->iov_len - i->iov_offset);
669 		if (iov_iter_is_bvec(i))
670 			return min(i->count, i->bvec->bv_len - i->iov_offset);
671 	}
672 	if (unlikely(iov_iter_is_folioq(i)))
673 		return !i->count ? 0 :
674 			umin(folioq_folio_size(i->folioq, i->folioq_slot), i->count);
675 	return i->count;
676 }
677 EXPORT_SYMBOL(iov_iter_single_seg_count);
678 
679 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
680 			const struct kvec *kvec, unsigned long nr_segs,
681 			size_t count)
682 {
683 	WARN_ON(direction & ~(READ | WRITE));
684 	*i = (struct iov_iter){
685 		.iter_type = ITER_KVEC,
686 		.data_source = direction,
687 		.kvec = kvec,
688 		.nr_segs = nr_segs,
689 		.iov_offset = 0,
690 		.count = count
691 	};
692 }
693 EXPORT_SYMBOL(iov_iter_kvec);
694 
695 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
696 			const struct bio_vec *bvec, unsigned long nr_segs,
697 			size_t count)
698 {
699 	WARN_ON(direction & ~(READ | WRITE));
700 	*i = (struct iov_iter){
701 		.iter_type = ITER_BVEC,
702 		.data_source = direction,
703 		.bvec = bvec,
704 		.nr_segs = nr_segs,
705 		.iov_offset = 0,
706 		.count = count
707 	};
708 }
709 EXPORT_SYMBOL(iov_iter_bvec);
710 
711 /**
712  * iov_iter_folio_queue - Initialise an I/O iterator to use the folios in a folio queue
713  * @i: The iterator to initialise.
714  * @direction: The direction of the transfer.
715  * @folioq: The starting point in the folio queue.
716  * @first_slot: The first slot in the folio queue to use
717  * @offset: The offset into the folio in the first slot to start at
718  * @count: The size of the I/O buffer in bytes.
719  *
720  * Set up an I/O iterator to either draw data out of the pages attached to an
721  * inode or to inject data into those pages.  The pages *must* be prevented
722  * from evaporation, either by taking a ref on them or locking them by the
723  * caller.
724  */
725 void iov_iter_folio_queue(struct iov_iter *i, unsigned int direction,
726 			  const struct folio_queue *folioq, unsigned int first_slot,
727 			  unsigned int offset, size_t count)
728 {
729 	BUG_ON(direction & ~1);
730 	*i = (struct iov_iter) {
731 		.iter_type = ITER_FOLIOQ,
732 		.data_source = direction,
733 		.folioq = folioq,
734 		.folioq_slot = first_slot,
735 		.count = count,
736 		.iov_offset = offset,
737 	};
738 }
739 EXPORT_SYMBOL(iov_iter_folio_queue);
740 
741 /**
742  * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
743  * @i: The iterator to initialise.
744  * @direction: The direction of the transfer.
745  * @xarray: The xarray to access.
746  * @start: The start file position.
747  * @count: The size of the I/O buffer in bytes.
748  *
749  * Set up an I/O iterator to either draw data out of the pages attached to an
750  * inode or to inject data into those pages.  The pages *must* be prevented
751  * from evaporation, either by taking a ref on them or locking them by the
752  * caller.
753  */
754 void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
755 		     struct xarray *xarray, loff_t start, size_t count)
756 {
757 	BUG_ON(direction & ~1);
758 	*i = (struct iov_iter) {
759 		.iter_type = ITER_XARRAY,
760 		.data_source = direction,
761 		.xarray = xarray,
762 		.xarray_start = start,
763 		.count = count,
764 		.iov_offset = 0
765 	};
766 }
767 EXPORT_SYMBOL(iov_iter_xarray);
768 
769 /**
770  * iov_iter_discard - Initialise an I/O iterator that discards data
771  * @i: The iterator to initialise.
772  * @direction: The direction of the transfer.
773  * @count: The size of the I/O buffer in bytes.
774  *
775  * Set up an I/O iterator that just discards everything that's written to it.
776  * It's only available as a READ iterator.
777  */
778 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
779 {
780 	BUG_ON(direction != READ);
781 	*i = (struct iov_iter){
782 		.iter_type = ITER_DISCARD,
783 		.data_source = false,
784 		.count = count,
785 		.iov_offset = 0
786 	};
787 }
788 EXPORT_SYMBOL(iov_iter_discard);
789 
790 static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask,
791 				   unsigned len_mask)
792 {
793 	const struct iovec *iov = iter_iov(i);
794 	size_t size = i->count;
795 	size_t skip = i->iov_offset;
796 
797 	do {
798 		size_t len = iov->iov_len - skip;
799 
800 		if (len > size)
801 			len = size;
802 		if (len & len_mask)
803 			return false;
804 		if ((unsigned long)(iov->iov_base + skip) & addr_mask)
805 			return false;
806 
807 		iov++;
808 		size -= len;
809 		skip = 0;
810 	} while (size);
811 
812 	return true;
813 }
814 
815 static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask,
816 				  unsigned len_mask)
817 {
818 	const struct bio_vec *bvec = i->bvec;
819 	unsigned skip = i->iov_offset;
820 	size_t size = i->count;
821 
822 	do {
823 		size_t len = bvec->bv_len;
824 
825 		if (len > size)
826 			len = size;
827 		if (len & len_mask)
828 			return false;
829 		if ((unsigned long)(bvec->bv_offset + skip) & addr_mask)
830 			return false;
831 
832 		bvec++;
833 		size -= len;
834 		skip = 0;
835 	} while (size);
836 
837 	return true;
838 }
839 
840 /**
841  * iov_iter_is_aligned() - Check if the addresses and lengths of each segments
842  * 	are aligned to the parameters.
843  *
844  * @i: &struct iov_iter to restore
845  * @addr_mask: bit mask to check against the iov element's addresses
846  * @len_mask: bit mask to check against the iov element's lengths
847  *
848  * Return: false if any addresses or lengths intersect with the provided masks
849  */
850 bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask,
851 			 unsigned len_mask)
852 {
853 	if (likely(iter_is_ubuf(i))) {
854 		if (i->count & len_mask)
855 			return false;
856 		if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask)
857 			return false;
858 		return true;
859 	}
860 
861 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
862 		return iov_iter_aligned_iovec(i, addr_mask, len_mask);
863 
864 	if (iov_iter_is_bvec(i))
865 		return iov_iter_aligned_bvec(i, addr_mask, len_mask);
866 
867 	/* With both xarray and folioq types, we're dealing with whole folios. */
868 	if (iov_iter_is_xarray(i)) {
869 		if (i->count & len_mask)
870 			return false;
871 		if ((i->xarray_start + i->iov_offset) & addr_mask)
872 			return false;
873 	}
874 	if (iov_iter_is_folioq(i)) {
875 		if (i->count & len_mask)
876 			return false;
877 		if (i->iov_offset & addr_mask)
878 			return false;
879 	}
880 
881 	return true;
882 }
883 EXPORT_SYMBOL_GPL(iov_iter_is_aligned);
884 
885 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
886 {
887 	const struct iovec *iov = iter_iov(i);
888 	unsigned long res = 0;
889 	size_t size = i->count;
890 	size_t skip = i->iov_offset;
891 
892 	do {
893 		size_t len = iov->iov_len - skip;
894 		if (len) {
895 			res |= (unsigned long)iov->iov_base + skip;
896 			if (len > size)
897 				len = size;
898 			res |= len;
899 			size -= len;
900 		}
901 		iov++;
902 		skip = 0;
903 	} while (size);
904 	return res;
905 }
906 
907 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
908 {
909 	const struct bio_vec *bvec = i->bvec;
910 	unsigned res = 0;
911 	size_t size = i->count;
912 	unsigned skip = i->iov_offset;
913 
914 	do {
915 		size_t len = bvec->bv_len - skip;
916 		res |= (unsigned long)bvec->bv_offset + skip;
917 		if (len > size)
918 			len = size;
919 		res |= len;
920 		bvec++;
921 		size -= len;
922 		skip = 0;
923 	} while (size);
924 
925 	return res;
926 }
927 
928 unsigned long iov_iter_alignment(const struct iov_iter *i)
929 {
930 	if (likely(iter_is_ubuf(i))) {
931 		size_t size = i->count;
932 		if (size)
933 			return ((unsigned long)i->ubuf + i->iov_offset) | size;
934 		return 0;
935 	}
936 
937 	/* iovec and kvec have identical layouts */
938 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
939 		return iov_iter_alignment_iovec(i);
940 
941 	if (iov_iter_is_bvec(i))
942 		return iov_iter_alignment_bvec(i);
943 
944 	/* With both xarray and folioq types, we're dealing with whole folios. */
945 	if (iov_iter_is_folioq(i))
946 		return i->iov_offset | i->count;
947 	if (iov_iter_is_xarray(i))
948 		return (i->xarray_start + i->iov_offset) | i->count;
949 
950 	return 0;
951 }
952 EXPORT_SYMBOL(iov_iter_alignment);
953 
954 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
955 {
956 	unsigned long res = 0;
957 	unsigned long v = 0;
958 	size_t size = i->count;
959 	unsigned k;
960 
961 	if (iter_is_ubuf(i))
962 		return 0;
963 
964 	if (WARN_ON(!iter_is_iovec(i)))
965 		return ~0U;
966 
967 	for (k = 0; k < i->nr_segs; k++) {
968 		const struct iovec *iov = iter_iov(i) + k;
969 		if (iov->iov_len) {
970 			unsigned long base = (unsigned long)iov->iov_base;
971 			if (v) // if not the first one
972 				res |= base | v; // this start | previous end
973 			v = base + iov->iov_len;
974 			if (size <= iov->iov_len)
975 				break;
976 			size -= iov->iov_len;
977 		}
978 	}
979 	return res;
980 }
981 EXPORT_SYMBOL(iov_iter_gap_alignment);
982 
983 static int want_pages_array(struct page ***res, size_t size,
984 			    size_t start, unsigned int maxpages)
985 {
986 	unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE);
987 
988 	if (count > maxpages)
989 		count = maxpages;
990 	WARN_ON(!count);	// caller should've prevented that
991 	if (!*res) {
992 		*res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL);
993 		if (!*res)
994 			return 0;
995 	}
996 	return count;
997 }
998 
999 static ssize_t iter_folioq_get_pages(struct iov_iter *iter,
1000 				     struct page ***ppages, size_t maxsize,
1001 				     unsigned maxpages, size_t *_start_offset)
1002 {
1003 	const struct folio_queue *folioq = iter->folioq;
1004 	struct page **pages;
1005 	unsigned int slot = iter->folioq_slot;
1006 	size_t extracted = 0, count = iter->count, iov_offset = iter->iov_offset;
1007 
1008 	if (slot >= folioq_nr_slots(folioq)) {
1009 		folioq = folioq->next;
1010 		slot = 0;
1011 		if (WARN_ON(iov_offset != 0))
1012 			return -EIO;
1013 	}
1014 
1015 	maxpages = want_pages_array(ppages, maxsize, iov_offset & ~PAGE_MASK, maxpages);
1016 	if (!maxpages)
1017 		return -ENOMEM;
1018 	*_start_offset = iov_offset & ~PAGE_MASK;
1019 	pages = *ppages;
1020 
1021 	for (;;) {
1022 		struct folio *folio = folioq_folio(folioq, slot);
1023 		size_t offset = iov_offset, fsize = folioq_folio_size(folioq, slot);
1024 		size_t part = PAGE_SIZE - offset % PAGE_SIZE;
1025 
1026 		if (offset < fsize) {
1027 			part = umin(part, umin(maxsize - extracted, fsize - offset));
1028 			count -= part;
1029 			iov_offset += part;
1030 			extracted += part;
1031 
1032 			*pages = folio_page(folio, offset / PAGE_SIZE);
1033 			get_page(*pages);
1034 			pages++;
1035 			maxpages--;
1036 		}
1037 
1038 		if (maxpages == 0 || extracted >= maxsize)
1039 			break;
1040 
1041 		if (iov_offset >= fsize) {
1042 			iov_offset = 0;
1043 			slot++;
1044 			if (slot == folioq_nr_slots(folioq) && folioq->next) {
1045 				folioq = folioq->next;
1046 				slot = 0;
1047 			}
1048 		}
1049 	}
1050 
1051 	iter->count = count;
1052 	iter->iov_offset = iov_offset;
1053 	iter->folioq = folioq;
1054 	iter->folioq_slot = slot;
1055 	return extracted;
1056 }
1057 
1058 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
1059 					  pgoff_t index, unsigned int nr_pages)
1060 {
1061 	XA_STATE(xas, xa, index);
1062 	struct page *page;
1063 	unsigned int ret = 0;
1064 
1065 	rcu_read_lock();
1066 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1067 		if (xas_retry(&xas, page))
1068 			continue;
1069 
1070 		/* Has the page moved or been split? */
1071 		if (unlikely(page != xas_reload(&xas))) {
1072 			xas_reset(&xas);
1073 			continue;
1074 		}
1075 
1076 		pages[ret] = find_subpage(page, xas.xa_index);
1077 		get_page(pages[ret]);
1078 		if (++ret == nr_pages)
1079 			break;
1080 	}
1081 	rcu_read_unlock();
1082 	return ret;
1083 }
1084 
1085 static ssize_t iter_xarray_get_pages(struct iov_iter *i,
1086 				     struct page ***pages, size_t maxsize,
1087 				     unsigned maxpages, size_t *_start_offset)
1088 {
1089 	unsigned nr, offset, count;
1090 	pgoff_t index;
1091 	loff_t pos;
1092 
1093 	pos = i->xarray_start + i->iov_offset;
1094 	index = pos >> PAGE_SHIFT;
1095 	offset = pos & ~PAGE_MASK;
1096 	*_start_offset = offset;
1097 
1098 	count = want_pages_array(pages, maxsize, offset, maxpages);
1099 	if (!count)
1100 		return -ENOMEM;
1101 	nr = iter_xarray_populate_pages(*pages, i->xarray, index, count);
1102 	if (nr == 0)
1103 		return 0;
1104 
1105 	maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1106 	i->iov_offset += maxsize;
1107 	i->count -= maxsize;
1108 	return maxsize;
1109 }
1110 
1111 /* must be done on non-empty ITER_UBUF or ITER_IOVEC one */
1112 static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size)
1113 {
1114 	size_t skip;
1115 	long k;
1116 
1117 	if (iter_is_ubuf(i))
1118 		return (unsigned long)i->ubuf + i->iov_offset;
1119 
1120 	for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
1121 		const struct iovec *iov = iter_iov(i) + k;
1122 		size_t len = iov->iov_len - skip;
1123 
1124 		if (unlikely(!len))
1125 			continue;
1126 		if (*size > len)
1127 			*size = len;
1128 		return (unsigned long)iov->iov_base + skip;
1129 	}
1130 	BUG(); // if it had been empty, we wouldn't get called
1131 }
1132 
1133 /* must be done on non-empty ITER_BVEC one */
1134 static struct page *first_bvec_segment(const struct iov_iter *i,
1135 				       size_t *size, size_t *start)
1136 {
1137 	struct page *page;
1138 	size_t skip = i->iov_offset, len;
1139 
1140 	len = i->bvec->bv_len - skip;
1141 	if (*size > len)
1142 		*size = len;
1143 	skip += i->bvec->bv_offset;
1144 	page = i->bvec->bv_page + skip / PAGE_SIZE;
1145 	*start = skip % PAGE_SIZE;
1146 	return page;
1147 }
1148 
1149 static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i,
1150 		   struct page ***pages, size_t maxsize,
1151 		   unsigned int maxpages, size_t *start)
1152 {
1153 	unsigned int n, gup_flags = 0;
1154 
1155 	if (maxsize > i->count)
1156 		maxsize = i->count;
1157 	if (!maxsize)
1158 		return 0;
1159 	if (maxsize > MAX_RW_COUNT)
1160 		maxsize = MAX_RW_COUNT;
1161 
1162 	if (likely(user_backed_iter(i))) {
1163 		unsigned long addr;
1164 		int res;
1165 
1166 		if (iov_iter_rw(i) != WRITE)
1167 			gup_flags |= FOLL_WRITE;
1168 		if (i->nofault)
1169 			gup_flags |= FOLL_NOFAULT;
1170 
1171 		addr = first_iovec_segment(i, &maxsize);
1172 		*start = addr % PAGE_SIZE;
1173 		addr &= PAGE_MASK;
1174 		n = want_pages_array(pages, maxsize, *start, maxpages);
1175 		if (!n)
1176 			return -ENOMEM;
1177 		res = get_user_pages_fast(addr, n, gup_flags, *pages);
1178 		if (unlikely(res <= 0))
1179 			return res;
1180 		maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start);
1181 		iov_iter_advance(i, maxsize);
1182 		return maxsize;
1183 	}
1184 	if (iov_iter_is_bvec(i)) {
1185 		struct page **p;
1186 		struct page *page;
1187 
1188 		page = first_bvec_segment(i, &maxsize, start);
1189 		n = want_pages_array(pages, maxsize, *start, maxpages);
1190 		if (!n)
1191 			return -ENOMEM;
1192 		p = *pages;
1193 		for (int k = 0; k < n; k++)
1194 			get_page(p[k] = page + k);
1195 		maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start);
1196 		i->count -= maxsize;
1197 		i->iov_offset += maxsize;
1198 		if (i->iov_offset == i->bvec->bv_len) {
1199 			i->iov_offset = 0;
1200 			i->bvec++;
1201 			i->nr_segs--;
1202 		}
1203 		return maxsize;
1204 	}
1205 	if (iov_iter_is_folioq(i))
1206 		return iter_folioq_get_pages(i, pages, maxsize, maxpages, start);
1207 	if (iov_iter_is_xarray(i))
1208 		return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1209 	return -EFAULT;
1210 }
1211 
1212 ssize_t iov_iter_get_pages2(struct iov_iter *i, struct page **pages,
1213 		size_t maxsize, unsigned maxpages, size_t *start)
1214 {
1215 	if (!maxpages)
1216 		return 0;
1217 	BUG_ON(!pages);
1218 
1219 	return __iov_iter_get_pages_alloc(i, &pages, maxsize, maxpages, start);
1220 }
1221 EXPORT_SYMBOL(iov_iter_get_pages2);
1222 
1223 ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i,
1224 		struct page ***pages, size_t maxsize, size_t *start)
1225 {
1226 	ssize_t len;
1227 
1228 	*pages = NULL;
1229 
1230 	len = __iov_iter_get_pages_alloc(i, pages, maxsize, ~0U, start);
1231 	if (len <= 0) {
1232 		kvfree(*pages);
1233 		*pages = NULL;
1234 	}
1235 	return len;
1236 }
1237 EXPORT_SYMBOL(iov_iter_get_pages_alloc2);
1238 
1239 static int iov_npages(const struct iov_iter *i, int maxpages)
1240 {
1241 	size_t skip = i->iov_offset, size = i->count;
1242 	const struct iovec *p;
1243 	int npages = 0;
1244 
1245 	for (p = iter_iov(i); size; skip = 0, p++) {
1246 		unsigned offs = offset_in_page(p->iov_base + skip);
1247 		size_t len = min(p->iov_len - skip, size);
1248 
1249 		if (len) {
1250 			size -= len;
1251 			npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1252 			if (unlikely(npages > maxpages))
1253 				return maxpages;
1254 		}
1255 	}
1256 	return npages;
1257 }
1258 
1259 static int bvec_npages(const struct iov_iter *i, int maxpages)
1260 {
1261 	size_t skip = i->iov_offset, size = i->count;
1262 	const struct bio_vec *p;
1263 	int npages = 0;
1264 
1265 	for (p = i->bvec; size; skip = 0, p++) {
1266 		unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1267 		size_t len = min(p->bv_len - skip, size);
1268 
1269 		size -= len;
1270 		npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1271 		if (unlikely(npages > maxpages))
1272 			return maxpages;
1273 	}
1274 	return npages;
1275 }
1276 
1277 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1278 {
1279 	if (unlikely(!i->count))
1280 		return 0;
1281 	if (likely(iter_is_ubuf(i))) {
1282 		unsigned offs = offset_in_page(i->ubuf + i->iov_offset);
1283 		int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE);
1284 		return min(npages, maxpages);
1285 	}
1286 	/* iovec and kvec have identical layouts */
1287 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1288 		return iov_npages(i, maxpages);
1289 	if (iov_iter_is_bvec(i))
1290 		return bvec_npages(i, maxpages);
1291 	if (iov_iter_is_folioq(i)) {
1292 		unsigned offset = i->iov_offset % PAGE_SIZE;
1293 		int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1294 		return min(npages, maxpages);
1295 	}
1296 	if (iov_iter_is_xarray(i)) {
1297 		unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1298 		int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1299 		return min(npages, maxpages);
1300 	}
1301 	return 0;
1302 }
1303 EXPORT_SYMBOL(iov_iter_npages);
1304 
1305 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1306 {
1307 	*new = *old;
1308 	if (iov_iter_is_bvec(new))
1309 		return new->bvec = kmemdup(new->bvec,
1310 				    new->nr_segs * sizeof(struct bio_vec),
1311 				    flags);
1312 	else if (iov_iter_is_kvec(new) || iter_is_iovec(new))
1313 		/* iovec and kvec have identical layout */
1314 		return new->__iov = kmemdup(new->__iov,
1315 				   new->nr_segs * sizeof(struct iovec),
1316 				   flags);
1317 	return NULL;
1318 }
1319 EXPORT_SYMBOL(dup_iter);
1320 
1321 static __noclone int copy_compat_iovec_from_user(struct iovec *iov,
1322 		const struct iovec __user *uvec, u32 nr_segs)
1323 {
1324 	const struct compat_iovec __user *uiov =
1325 		(const struct compat_iovec __user *)uvec;
1326 	int ret = -EFAULT;
1327 	u32 i;
1328 
1329 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1330 		return -EFAULT;
1331 
1332 	for (i = 0; i < nr_segs; i++) {
1333 		compat_uptr_t buf;
1334 		compat_ssize_t len;
1335 
1336 		unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1337 		unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1338 
1339 		/* check for compat_size_t not fitting in compat_ssize_t .. */
1340 		if (len < 0) {
1341 			ret = -EINVAL;
1342 			goto uaccess_end;
1343 		}
1344 		iov[i].iov_base = compat_ptr(buf);
1345 		iov[i].iov_len = len;
1346 	}
1347 
1348 	ret = 0;
1349 uaccess_end:
1350 	user_access_end();
1351 	return ret;
1352 }
1353 
1354 static __noclone int copy_iovec_from_user(struct iovec *iov,
1355 		const struct iovec __user *uiov, unsigned long nr_segs)
1356 {
1357 	int ret = -EFAULT;
1358 
1359 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1360 		return -EFAULT;
1361 
1362 	do {
1363 		void __user *buf;
1364 		ssize_t len;
1365 
1366 		unsafe_get_user(len, &uiov->iov_len, uaccess_end);
1367 		unsafe_get_user(buf, &uiov->iov_base, uaccess_end);
1368 
1369 		/* check for size_t not fitting in ssize_t .. */
1370 		if (unlikely(len < 0)) {
1371 			ret = -EINVAL;
1372 			goto uaccess_end;
1373 		}
1374 		iov->iov_base = buf;
1375 		iov->iov_len = len;
1376 
1377 		uiov++; iov++;
1378 	} while (--nr_segs);
1379 
1380 	ret = 0;
1381 uaccess_end:
1382 	user_access_end();
1383 	return ret;
1384 }
1385 
1386 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1387 		unsigned long nr_segs, unsigned long fast_segs,
1388 		struct iovec *fast_iov, bool compat)
1389 {
1390 	struct iovec *iov = fast_iov;
1391 	int ret;
1392 
1393 	/*
1394 	 * SuS says "The readv() function *may* fail if the iovcnt argument was
1395 	 * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1396 	 * traditionally returned zero for zero segments, so...
1397 	 */
1398 	if (nr_segs == 0)
1399 		return iov;
1400 	if (nr_segs > UIO_MAXIOV)
1401 		return ERR_PTR(-EINVAL);
1402 	if (nr_segs > fast_segs) {
1403 		iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1404 		if (!iov)
1405 			return ERR_PTR(-ENOMEM);
1406 	}
1407 
1408 	if (unlikely(compat))
1409 		ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1410 	else
1411 		ret = copy_iovec_from_user(iov, uvec, nr_segs);
1412 	if (ret) {
1413 		if (iov != fast_iov)
1414 			kfree(iov);
1415 		return ERR_PTR(ret);
1416 	}
1417 
1418 	return iov;
1419 }
1420 
1421 /*
1422  * Single segment iovec supplied by the user, import it as ITER_UBUF.
1423  */
1424 static ssize_t __import_iovec_ubuf(int type, const struct iovec __user *uvec,
1425 				   struct iovec **iovp, struct iov_iter *i,
1426 				   bool compat)
1427 {
1428 	struct iovec *iov = *iovp;
1429 	ssize_t ret;
1430 
1431 	if (compat)
1432 		ret = copy_compat_iovec_from_user(iov, uvec, 1);
1433 	else
1434 		ret = copy_iovec_from_user(iov, uvec, 1);
1435 	if (unlikely(ret))
1436 		return ret;
1437 
1438 	ret = import_ubuf(type, iov->iov_base, iov->iov_len, i);
1439 	if (unlikely(ret))
1440 		return ret;
1441 	*iovp = NULL;
1442 	return i->count;
1443 }
1444 
1445 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1446 		 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1447 		 struct iov_iter *i, bool compat)
1448 {
1449 	ssize_t total_len = 0;
1450 	unsigned long seg;
1451 	struct iovec *iov;
1452 
1453 	if (nr_segs == 1)
1454 		return __import_iovec_ubuf(type, uvec, iovp, i, compat);
1455 
1456 	iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1457 	if (IS_ERR(iov)) {
1458 		*iovp = NULL;
1459 		return PTR_ERR(iov);
1460 	}
1461 
1462 	/*
1463 	 * According to the Single Unix Specification we should return EINVAL if
1464 	 * an element length is < 0 when cast to ssize_t or if the total length
1465 	 * would overflow the ssize_t return value of the system call.
1466 	 *
1467 	 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1468 	 * overflow case.
1469 	 */
1470 	for (seg = 0; seg < nr_segs; seg++) {
1471 		ssize_t len = (ssize_t)iov[seg].iov_len;
1472 
1473 		if (!access_ok(iov[seg].iov_base, len)) {
1474 			if (iov != *iovp)
1475 				kfree(iov);
1476 			*iovp = NULL;
1477 			return -EFAULT;
1478 		}
1479 
1480 		if (len > MAX_RW_COUNT - total_len) {
1481 			len = MAX_RW_COUNT - total_len;
1482 			iov[seg].iov_len = len;
1483 		}
1484 		total_len += len;
1485 	}
1486 
1487 	iov_iter_init(i, type, iov, nr_segs, total_len);
1488 	if (iov == *iovp)
1489 		*iovp = NULL;
1490 	else
1491 		*iovp = iov;
1492 	return total_len;
1493 }
1494 
1495 /**
1496  * import_iovec() - Copy an array of &struct iovec from userspace
1497  *     into the kernel, check that it is valid, and initialize a new
1498  *     &struct iov_iter iterator to access it.
1499  *
1500  * @type: One of %READ or %WRITE.
1501  * @uvec: Pointer to the userspace array.
1502  * @nr_segs: Number of elements in userspace array.
1503  * @fast_segs: Number of elements in @iov.
1504  * @iovp: (input and output parameter) Pointer to pointer to (usually small
1505  *     on-stack) kernel array.
1506  * @i: Pointer to iterator that will be initialized on success.
1507  *
1508  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1509  * then this function places %NULL in *@iov on return. Otherwise, a new
1510  * array will be allocated and the result placed in *@iov. This means that
1511  * the caller may call kfree() on *@iov regardless of whether the small
1512  * on-stack array was used or not (and regardless of whether this function
1513  * returns an error or not).
1514  *
1515  * Return: Negative error code on error, bytes imported on success
1516  */
1517 ssize_t import_iovec(int type, const struct iovec __user *uvec,
1518 		 unsigned nr_segs, unsigned fast_segs,
1519 		 struct iovec **iovp, struct iov_iter *i)
1520 {
1521 	return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1522 			      in_compat_syscall());
1523 }
1524 EXPORT_SYMBOL(import_iovec);
1525 
1526 int import_ubuf(int rw, void __user *buf, size_t len, struct iov_iter *i)
1527 {
1528 	if (len > MAX_RW_COUNT)
1529 		len = MAX_RW_COUNT;
1530 	if (unlikely(!access_ok(buf, len)))
1531 		return -EFAULT;
1532 
1533 	iov_iter_ubuf(i, rw, buf, len);
1534 	return 0;
1535 }
1536 EXPORT_SYMBOL_GPL(import_ubuf);
1537 
1538 /**
1539  * iov_iter_restore() - Restore a &struct iov_iter to the same state as when
1540  *     iov_iter_save_state() was called.
1541  *
1542  * @i: &struct iov_iter to restore
1543  * @state: state to restore from
1544  *
1545  * Used after iov_iter_save_state() to bring restore @i, if operations may
1546  * have advanced it.
1547  *
1548  * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC
1549  */
1550 void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state)
1551 {
1552 	if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i) &&
1553 			 !iter_is_ubuf(i)) && !iov_iter_is_kvec(i))
1554 		return;
1555 	i->iov_offset = state->iov_offset;
1556 	i->count = state->count;
1557 	if (iter_is_ubuf(i))
1558 		return;
1559 	/*
1560 	 * For the *vec iters, nr_segs + iov is constant - if we increment
1561 	 * the vec, then we also decrement the nr_segs count. Hence we don't
1562 	 * need to track both of these, just one is enough and we can deduct
1563 	 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct
1564 	 * size, so we can just increment the iov pointer as they are unionzed.
1565 	 * ITER_BVEC _may_ be the same size on some archs, but on others it is
1566 	 * not. Be safe and handle it separately.
1567 	 */
1568 	BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec));
1569 	if (iov_iter_is_bvec(i))
1570 		i->bvec -= state->nr_segs - i->nr_segs;
1571 	else
1572 		i->__iov -= state->nr_segs - i->nr_segs;
1573 	i->nr_segs = state->nr_segs;
1574 }
1575 
1576 /*
1577  * Extract a list of contiguous pages from an ITER_FOLIOQ iterator.  This does
1578  * not get references on the pages, nor does it get a pin on them.
1579  */
1580 static ssize_t iov_iter_extract_folioq_pages(struct iov_iter *i,
1581 					     struct page ***pages, size_t maxsize,
1582 					     unsigned int maxpages,
1583 					     iov_iter_extraction_t extraction_flags,
1584 					     size_t *offset0)
1585 {
1586 	const struct folio_queue *folioq = i->folioq;
1587 	struct page **p;
1588 	unsigned int nr = 0;
1589 	size_t extracted = 0, offset, slot = i->folioq_slot;
1590 
1591 	if (slot >= folioq_nr_slots(folioq)) {
1592 		folioq = folioq->next;
1593 		slot = 0;
1594 		if (WARN_ON(i->iov_offset != 0))
1595 			return -EIO;
1596 	}
1597 
1598 	offset = i->iov_offset & ~PAGE_MASK;
1599 	*offset0 = offset;
1600 
1601 	maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1602 	if (!maxpages)
1603 		return -ENOMEM;
1604 	p = *pages;
1605 
1606 	for (;;) {
1607 		struct folio *folio = folioq_folio(folioq, slot);
1608 		size_t offset = i->iov_offset, fsize = folioq_folio_size(folioq, slot);
1609 		size_t part = PAGE_SIZE - offset % PAGE_SIZE;
1610 
1611 		if (offset < fsize) {
1612 			part = umin(part, umin(maxsize - extracted, fsize - offset));
1613 			i->count -= part;
1614 			i->iov_offset += part;
1615 			extracted += part;
1616 
1617 			p[nr++] = folio_page(folio, offset / PAGE_SIZE);
1618 		}
1619 
1620 		if (nr >= maxpages || extracted >= maxsize)
1621 			break;
1622 
1623 		if (i->iov_offset >= fsize) {
1624 			i->iov_offset = 0;
1625 			slot++;
1626 			if (slot == folioq_nr_slots(folioq) && folioq->next) {
1627 				folioq = folioq->next;
1628 				slot = 0;
1629 			}
1630 		}
1631 	}
1632 
1633 	i->folioq = folioq;
1634 	i->folioq_slot = slot;
1635 	return extracted;
1636 }
1637 
1638 /*
1639  * Extract a list of contiguous pages from an ITER_XARRAY iterator.  This does not
1640  * get references on the pages, nor does it get a pin on them.
1641  */
1642 static ssize_t iov_iter_extract_xarray_pages(struct iov_iter *i,
1643 					     struct page ***pages, size_t maxsize,
1644 					     unsigned int maxpages,
1645 					     iov_iter_extraction_t extraction_flags,
1646 					     size_t *offset0)
1647 {
1648 	struct page *page, **p;
1649 	unsigned int nr = 0, offset;
1650 	loff_t pos = i->xarray_start + i->iov_offset;
1651 	pgoff_t index = pos >> PAGE_SHIFT;
1652 	XA_STATE(xas, i->xarray, index);
1653 
1654 	offset = pos & ~PAGE_MASK;
1655 	*offset0 = offset;
1656 
1657 	maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1658 	if (!maxpages)
1659 		return -ENOMEM;
1660 	p = *pages;
1661 
1662 	rcu_read_lock();
1663 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1664 		if (xas_retry(&xas, page))
1665 			continue;
1666 
1667 		/* Has the page moved or been split? */
1668 		if (unlikely(page != xas_reload(&xas))) {
1669 			xas_reset(&xas);
1670 			continue;
1671 		}
1672 
1673 		p[nr++] = find_subpage(page, xas.xa_index);
1674 		if (nr == maxpages)
1675 			break;
1676 	}
1677 	rcu_read_unlock();
1678 
1679 	maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1680 	iov_iter_advance(i, maxsize);
1681 	return maxsize;
1682 }
1683 
1684 /*
1685  * Extract a list of contiguous pages from an ITER_BVEC iterator.  This does
1686  * not get references on the pages, nor does it get a pin on them.
1687  */
1688 static ssize_t iov_iter_extract_bvec_pages(struct iov_iter *i,
1689 					   struct page ***pages, size_t maxsize,
1690 					   unsigned int maxpages,
1691 					   iov_iter_extraction_t extraction_flags,
1692 					   size_t *offset0)
1693 {
1694 	struct page **p, *page;
1695 	size_t skip = i->iov_offset, offset, size;
1696 	int k;
1697 
1698 	for (;;) {
1699 		if (i->nr_segs == 0)
1700 			return 0;
1701 		size = min(maxsize, i->bvec->bv_len - skip);
1702 		if (size)
1703 			break;
1704 		i->iov_offset = 0;
1705 		i->nr_segs--;
1706 		i->bvec++;
1707 		skip = 0;
1708 	}
1709 
1710 	skip += i->bvec->bv_offset;
1711 	page = i->bvec->bv_page + skip / PAGE_SIZE;
1712 	offset = skip % PAGE_SIZE;
1713 	*offset0 = offset;
1714 
1715 	maxpages = want_pages_array(pages, size, offset, maxpages);
1716 	if (!maxpages)
1717 		return -ENOMEM;
1718 	p = *pages;
1719 	for (k = 0; k < maxpages; k++)
1720 		p[k] = page + k;
1721 
1722 	size = min_t(size_t, size, maxpages * PAGE_SIZE - offset);
1723 	iov_iter_advance(i, size);
1724 	return size;
1725 }
1726 
1727 /*
1728  * Extract a list of virtually contiguous pages from an ITER_KVEC iterator.
1729  * This does not get references on the pages, nor does it get a pin on them.
1730  */
1731 static ssize_t iov_iter_extract_kvec_pages(struct iov_iter *i,
1732 					   struct page ***pages, size_t maxsize,
1733 					   unsigned int maxpages,
1734 					   iov_iter_extraction_t extraction_flags,
1735 					   size_t *offset0)
1736 {
1737 	struct page **p, *page;
1738 	const void *kaddr;
1739 	size_t skip = i->iov_offset, offset, len, size;
1740 	int k;
1741 
1742 	for (;;) {
1743 		if (i->nr_segs == 0)
1744 			return 0;
1745 		size = min(maxsize, i->kvec->iov_len - skip);
1746 		if (size)
1747 			break;
1748 		i->iov_offset = 0;
1749 		i->nr_segs--;
1750 		i->kvec++;
1751 		skip = 0;
1752 	}
1753 
1754 	kaddr = i->kvec->iov_base + skip;
1755 	offset = (unsigned long)kaddr & ~PAGE_MASK;
1756 	*offset0 = offset;
1757 
1758 	maxpages = want_pages_array(pages, size, offset, maxpages);
1759 	if (!maxpages)
1760 		return -ENOMEM;
1761 	p = *pages;
1762 
1763 	kaddr -= offset;
1764 	len = offset + size;
1765 	for (k = 0; k < maxpages; k++) {
1766 		size_t seg = min_t(size_t, len, PAGE_SIZE);
1767 
1768 		if (is_vmalloc_or_module_addr(kaddr))
1769 			page = vmalloc_to_page(kaddr);
1770 		else
1771 			page = virt_to_page(kaddr);
1772 
1773 		p[k] = page;
1774 		len -= seg;
1775 		kaddr += PAGE_SIZE;
1776 	}
1777 
1778 	size = min_t(size_t, size, maxpages * PAGE_SIZE - offset);
1779 	iov_iter_advance(i, size);
1780 	return size;
1781 }
1782 
1783 /*
1784  * Extract a list of contiguous pages from a user iterator and get a pin on
1785  * each of them.  This should only be used if the iterator is user-backed
1786  * (IOBUF/UBUF).
1787  *
1788  * It does not get refs on the pages, but the pages must be unpinned by the
1789  * caller once the transfer is complete.
1790  *
1791  * This is safe to be used where background IO/DMA *is* going to be modifying
1792  * the buffer; using a pin rather than a ref makes forces fork() to give the
1793  * child a copy of the page.
1794  */
1795 static ssize_t iov_iter_extract_user_pages(struct iov_iter *i,
1796 					   struct page ***pages,
1797 					   size_t maxsize,
1798 					   unsigned int maxpages,
1799 					   iov_iter_extraction_t extraction_flags,
1800 					   size_t *offset0)
1801 {
1802 	unsigned long addr;
1803 	unsigned int gup_flags = 0;
1804 	size_t offset;
1805 	int res;
1806 
1807 	if (i->data_source == ITER_DEST)
1808 		gup_flags |= FOLL_WRITE;
1809 	if (extraction_flags & ITER_ALLOW_P2PDMA)
1810 		gup_flags |= FOLL_PCI_P2PDMA;
1811 	if (i->nofault)
1812 		gup_flags |= FOLL_NOFAULT;
1813 
1814 	addr = first_iovec_segment(i, &maxsize);
1815 	*offset0 = offset = addr % PAGE_SIZE;
1816 	addr &= PAGE_MASK;
1817 	maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1818 	if (!maxpages)
1819 		return -ENOMEM;
1820 	res = pin_user_pages_fast(addr, maxpages, gup_flags, *pages);
1821 	if (unlikely(res <= 0))
1822 		return res;
1823 	maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - offset);
1824 	iov_iter_advance(i, maxsize);
1825 	return maxsize;
1826 }
1827 
1828 /**
1829  * iov_iter_extract_pages - Extract a list of contiguous pages from an iterator
1830  * @i: The iterator to extract from
1831  * @pages: Where to return the list of pages
1832  * @maxsize: The maximum amount of iterator to extract
1833  * @maxpages: The maximum size of the list of pages
1834  * @extraction_flags: Flags to qualify request
1835  * @offset0: Where to return the starting offset into (*@pages)[0]
1836  *
1837  * Extract a list of contiguous pages from the current point of the iterator,
1838  * advancing the iterator.  The maximum number of pages and the maximum amount
1839  * of page contents can be set.
1840  *
1841  * If *@pages is NULL, a page list will be allocated to the required size and
1842  * *@pages will be set to its base.  If *@pages is not NULL, it will be assumed
1843  * that the caller allocated a page list at least @maxpages in size and this
1844  * will be filled in.
1845  *
1846  * @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA
1847  * be allowed on the pages extracted.
1848  *
1849  * The iov_iter_extract_will_pin() function can be used to query how cleanup
1850  * should be performed.
1851  *
1852  * Extra refs or pins on the pages may be obtained as follows:
1853  *
1854  *  (*) If the iterator is user-backed (ITER_IOVEC/ITER_UBUF), pins will be
1855  *      added to the pages, but refs will not be taken.
1856  *      iov_iter_extract_will_pin() will return true.
1857  *
1858  *  (*) If the iterator is ITER_KVEC, ITER_BVEC, ITER_FOLIOQ or ITER_XARRAY, the
1859  *      pages are merely listed; no extra refs or pins are obtained.
1860  *      iov_iter_extract_will_pin() will return 0.
1861  *
1862  * Note also:
1863  *
1864  *  (*) Use with ITER_DISCARD is not supported as that has no content.
1865  *
1866  * On success, the function sets *@pages to the new pagelist, if allocated, and
1867  * sets *offset0 to the offset into the first page.
1868  *
1869  * It may also return -ENOMEM and -EFAULT.
1870  */
1871 ssize_t iov_iter_extract_pages(struct iov_iter *i,
1872 			       struct page ***pages,
1873 			       size_t maxsize,
1874 			       unsigned int maxpages,
1875 			       iov_iter_extraction_t extraction_flags,
1876 			       size_t *offset0)
1877 {
1878 	maxsize = min_t(size_t, min_t(size_t, maxsize, i->count), MAX_RW_COUNT);
1879 	if (!maxsize)
1880 		return 0;
1881 
1882 	if (likely(user_backed_iter(i)))
1883 		return iov_iter_extract_user_pages(i, pages, maxsize,
1884 						   maxpages, extraction_flags,
1885 						   offset0);
1886 	if (iov_iter_is_kvec(i))
1887 		return iov_iter_extract_kvec_pages(i, pages, maxsize,
1888 						   maxpages, extraction_flags,
1889 						   offset0);
1890 	if (iov_iter_is_bvec(i))
1891 		return iov_iter_extract_bvec_pages(i, pages, maxsize,
1892 						   maxpages, extraction_flags,
1893 						   offset0);
1894 	if (iov_iter_is_folioq(i))
1895 		return iov_iter_extract_folioq_pages(i, pages, maxsize,
1896 						     maxpages, extraction_flags,
1897 						     offset0);
1898 	if (iov_iter_is_xarray(i))
1899 		return iov_iter_extract_xarray_pages(i, pages, maxsize,
1900 						     maxpages, extraction_flags,
1901 						     offset0);
1902 	return -EFAULT;
1903 }
1904 EXPORT_SYMBOL_GPL(iov_iter_extract_pages);
1905