xref: /linux/lib/idr.c (revision ebf68996de0ab250c5d520eb2291ab65643e9a1e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/bitmap.h>
3 #include <linux/bug.h>
4 #include <linux/export.h>
5 #include <linux/idr.h>
6 #include <linux/slab.h>
7 #include <linux/spinlock.h>
8 #include <linux/xarray.h>
9 
10 /**
11  * idr_alloc_u32() - Allocate an ID.
12  * @idr: IDR handle.
13  * @ptr: Pointer to be associated with the new ID.
14  * @nextid: Pointer to an ID.
15  * @max: The maximum ID to allocate (inclusive).
16  * @gfp: Memory allocation flags.
17  *
18  * Allocates an unused ID in the range specified by @nextid and @max.
19  * Note that @max is inclusive whereas the @end parameter to idr_alloc()
20  * is exclusive.  The new ID is assigned to @nextid before the pointer
21  * is inserted into the IDR, so if @nextid points into the object pointed
22  * to by @ptr, a concurrent lookup will not find an uninitialised ID.
23  *
24  * The caller should provide their own locking to ensure that two
25  * concurrent modifications to the IDR are not possible.  Read-only
26  * accesses to the IDR may be done under the RCU read lock or may
27  * exclude simultaneous writers.
28  *
29  * Return: 0 if an ID was allocated, -ENOMEM if memory allocation failed,
30  * or -ENOSPC if no free IDs could be found.  If an error occurred,
31  * @nextid is unchanged.
32  */
33 int idr_alloc_u32(struct idr *idr, void *ptr, u32 *nextid,
34 			unsigned long max, gfp_t gfp)
35 {
36 	struct radix_tree_iter iter;
37 	void __rcu **slot;
38 	unsigned int base = idr->idr_base;
39 	unsigned int id = *nextid;
40 
41 	if (WARN_ON_ONCE(!(idr->idr_rt.xa_flags & ROOT_IS_IDR)))
42 		idr->idr_rt.xa_flags |= IDR_RT_MARKER;
43 
44 	id = (id < base) ? 0 : id - base;
45 	radix_tree_iter_init(&iter, id);
46 	slot = idr_get_free(&idr->idr_rt, &iter, gfp, max - base);
47 	if (IS_ERR(slot))
48 		return PTR_ERR(slot);
49 
50 	*nextid = iter.index + base;
51 	/* there is a memory barrier inside radix_tree_iter_replace() */
52 	radix_tree_iter_replace(&idr->idr_rt, &iter, slot, ptr);
53 	radix_tree_iter_tag_clear(&idr->idr_rt, &iter, IDR_FREE);
54 
55 	return 0;
56 }
57 EXPORT_SYMBOL_GPL(idr_alloc_u32);
58 
59 /**
60  * idr_alloc() - Allocate an ID.
61  * @idr: IDR handle.
62  * @ptr: Pointer to be associated with the new ID.
63  * @start: The minimum ID (inclusive).
64  * @end: The maximum ID (exclusive).
65  * @gfp: Memory allocation flags.
66  *
67  * Allocates an unused ID in the range specified by @start and @end.  If
68  * @end is <= 0, it is treated as one larger than %INT_MAX.  This allows
69  * callers to use @start + N as @end as long as N is within integer range.
70  *
71  * The caller should provide their own locking to ensure that two
72  * concurrent modifications to the IDR are not possible.  Read-only
73  * accesses to the IDR may be done under the RCU read lock or may
74  * exclude simultaneous writers.
75  *
76  * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
77  * or -ENOSPC if no free IDs could be found.
78  */
79 int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
80 {
81 	u32 id = start;
82 	int ret;
83 
84 	if (WARN_ON_ONCE(start < 0))
85 		return -EINVAL;
86 
87 	ret = idr_alloc_u32(idr, ptr, &id, end > 0 ? end - 1 : INT_MAX, gfp);
88 	if (ret)
89 		return ret;
90 
91 	return id;
92 }
93 EXPORT_SYMBOL_GPL(idr_alloc);
94 
95 /**
96  * idr_alloc_cyclic() - Allocate an ID cyclically.
97  * @idr: IDR handle.
98  * @ptr: Pointer to be associated with the new ID.
99  * @start: The minimum ID (inclusive).
100  * @end: The maximum ID (exclusive).
101  * @gfp: Memory allocation flags.
102  *
103  * Allocates an unused ID in the range specified by @nextid and @end.  If
104  * @end is <= 0, it is treated as one larger than %INT_MAX.  This allows
105  * callers to use @start + N as @end as long as N is within integer range.
106  * The search for an unused ID will start at the last ID allocated and will
107  * wrap around to @start if no free IDs are found before reaching @end.
108  *
109  * The caller should provide their own locking to ensure that two
110  * concurrent modifications to the IDR are not possible.  Read-only
111  * accesses to the IDR may be done under the RCU read lock or may
112  * exclude simultaneous writers.
113  *
114  * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
115  * or -ENOSPC if no free IDs could be found.
116  */
117 int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
118 {
119 	u32 id = idr->idr_next;
120 	int err, max = end > 0 ? end - 1 : INT_MAX;
121 
122 	if ((int)id < start)
123 		id = start;
124 
125 	err = idr_alloc_u32(idr, ptr, &id, max, gfp);
126 	if ((err == -ENOSPC) && (id > start)) {
127 		id = start;
128 		err = idr_alloc_u32(idr, ptr, &id, max, gfp);
129 	}
130 	if (err)
131 		return err;
132 
133 	idr->idr_next = id + 1;
134 	return id;
135 }
136 EXPORT_SYMBOL(idr_alloc_cyclic);
137 
138 /**
139  * idr_remove() - Remove an ID from the IDR.
140  * @idr: IDR handle.
141  * @id: Pointer ID.
142  *
143  * Removes this ID from the IDR.  If the ID was not previously in the IDR,
144  * this function returns %NULL.
145  *
146  * Since this function modifies the IDR, the caller should provide their
147  * own locking to ensure that concurrent modification of the same IDR is
148  * not possible.
149  *
150  * Return: The pointer formerly associated with this ID.
151  */
152 void *idr_remove(struct idr *idr, unsigned long id)
153 {
154 	return radix_tree_delete_item(&idr->idr_rt, id - idr->idr_base, NULL);
155 }
156 EXPORT_SYMBOL_GPL(idr_remove);
157 
158 /**
159  * idr_find() - Return pointer for given ID.
160  * @idr: IDR handle.
161  * @id: Pointer ID.
162  *
163  * Looks up the pointer associated with this ID.  A %NULL pointer may
164  * indicate that @id is not allocated or that the %NULL pointer was
165  * associated with this ID.
166  *
167  * This function can be called under rcu_read_lock(), given that the leaf
168  * pointers lifetimes are correctly managed.
169  *
170  * Return: The pointer associated with this ID.
171  */
172 void *idr_find(const struct idr *idr, unsigned long id)
173 {
174 	return radix_tree_lookup(&idr->idr_rt, id - idr->idr_base);
175 }
176 EXPORT_SYMBOL_GPL(idr_find);
177 
178 /**
179  * idr_for_each() - Iterate through all stored pointers.
180  * @idr: IDR handle.
181  * @fn: Function to be called for each pointer.
182  * @data: Data passed to callback function.
183  *
184  * The callback function will be called for each entry in @idr, passing
185  * the ID, the entry and @data.
186  *
187  * If @fn returns anything other than %0, the iteration stops and that
188  * value is returned from this function.
189  *
190  * idr_for_each() can be called concurrently with idr_alloc() and
191  * idr_remove() if protected by RCU.  Newly added entries may not be
192  * seen and deleted entries may be seen, but adding and removing entries
193  * will not cause other entries to be skipped, nor spurious ones to be seen.
194  */
195 int idr_for_each(const struct idr *idr,
196 		int (*fn)(int id, void *p, void *data), void *data)
197 {
198 	struct radix_tree_iter iter;
199 	void __rcu **slot;
200 	int base = idr->idr_base;
201 
202 	radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, 0) {
203 		int ret;
204 		unsigned long id = iter.index + base;
205 
206 		if (WARN_ON_ONCE(id > INT_MAX))
207 			break;
208 		ret = fn(id, rcu_dereference_raw(*slot), data);
209 		if (ret)
210 			return ret;
211 	}
212 
213 	return 0;
214 }
215 EXPORT_SYMBOL(idr_for_each);
216 
217 /**
218  * idr_get_next() - Find next populated entry.
219  * @idr: IDR handle.
220  * @nextid: Pointer to an ID.
221  *
222  * Returns the next populated entry in the tree with an ID greater than
223  * or equal to the value pointed to by @nextid.  On exit, @nextid is updated
224  * to the ID of the found value.  To use in a loop, the value pointed to by
225  * nextid must be incremented by the user.
226  */
227 void *idr_get_next(struct idr *idr, int *nextid)
228 {
229 	struct radix_tree_iter iter;
230 	void __rcu **slot;
231 	unsigned long base = idr->idr_base;
232 	unsigned long id = *nextid;
233 
234 	id = (id < base) ? 0 : id - base;
235 	slot = radix_tree_iter_find(&idr->idr_rt, &iter, id);
236 	if (!slot)
237 		return NULL;
238 	id = iter.index + base;
239 
240 	if (WARN_ON_ONCE(id > INT_MAX))
241 		return NULL;
242 
243 	*nextid = id;
244 	return rcu_dereference_raw(*slot);
245 }
246 EXPORT_SYMBOL(idr_get_next);
247 
248 /**
249  * idr_get_next_ul() - Find next populated entry.
250  * @idr: IDR handle.
251  * @nextid: Pointer to an ID.
252  *
253  * Returns the next populated entry in the tree with an ID greater than
254  * or equal to the value pointed to by @nextid.  On exit, @nextid is updated
255  * to the ID of the found value.  To use in a loop, the value pointed to by
256  * nextid must be incremented by the user.
257  */
258 void *idr_get_next_ul(struct idr *idr, unsigned long *nextid)
259 {
260 	struct radix_tree_iter iter;
261 	void __rcu **slot;
262 	unsigned long base = idr->idr_base;
263 	unsigned long id = *nextid;
264 
265 	id = (id < base) ? 0 : id - base;
266 	slot = radix_tree_iter_find(&idr->idr_rt, &iter, id);
267 	if (!slot)
268 		return NULL;
269 
270 	*nextid = iter.index + base;
271 	return rcu_dereference_raw(*slot);
272 }
273 EXPORT_SYMBOL(idr_get_next_ul);
274 
275 /**
276  * idr_replace() - replace pointer for given ID.
277  * @idr: IDR handle.
278  * @ptr: New pointer to associate with the ID.
279  * @id: ID to change.
280  *
281  * Replace the pointer registered with an ID and return the old value.
282  * This function can be called under the RCU read lock concurrently with
283  * idr_alloc() and idr_remove() (as long as the ID being removed is not
284  * the one being replaced!).
285  *
286  * Returns: the old value on success.  %-ENOENT indicates that @id was not
287  * found.  %-EINVAL indicates that @ptr was not valid.
288  */
289 void *idr_replace(struct idr *idr, void *ptr, unsigned long id)
290 {
291 	struct radix_tree_node *node;
292 	void __rcu **slot = NULL;
293 	void *entry;
294 
295 	id -= idr->idr_base;
296 
297 	entry = __radix_tree_lookup(&idr->idr_rt, id, &node, &slot);
298 	if (!slot || radix_tree_tag_get(&idr->idr_rt, id, IDR_FREE))
299 		return ERR_PTR(-ENOENT);
300 
301 	__radix_tree_replace(&idr->idr_rt, node, slot, ptr);
302 
303 	return entry;
304 }
305 EXPORT_SYMBOL(idr_replace);
306 
307 /**
308  * DOC: IDA description
309  *
310  * The IDA is an ID allocator which does not provide the ability to
311  * associate an ID with a pointer.  As such, it only needs to store one
312  * bit per ID, and so is more space efficient than an IDR.  To use an IDA,
313  * define it using DEFINE_IDA() (or embed a &struct ida in a data structure,
314  * then initialise it using ida_init()).  To allocate a new ID, call
315  * ida_alloc(), ida_alloc_min(), ida_alloc_max() or ida_alloc_range().
316  * To free an ID, call ida_free().
317  *
318  * ida_destroy() can be used to dispose of an IDA without needing to
319  * free the individual IDs in it.  You can use ida_is_empty() to find
320  * out whether the IDA has any IDs currently allocated.
321  *
322  * The IDA handles its own locking.  It is safe to call any of the IDA
323  * functions without synchronisation in your code.
324  *
325  * IDs are currently limited to the range [0-INT_MAX].  If this is an awkward
326  * limitation, it should be quite straightforward to raise the maximum.
327  */
328 
329 /*
330  * Developer's notes:
331  *
332  * The IDA uses the functionality provided by the XArray to store bitmaps in
333  * each entry.  The XA_FREE_MARK is only cleared when all bits in the bitmap
334  * have been set.
335  *
336  * I considered telling the XArray that each slot is an order-10 node
337  * and indexing by bit number, but the XArray can't allow a single multi-index
338  * entry in the head, which would significantly increase memory consumption
339  * for the IDA.  So instead we divide the index by the number of bits in the
340  * leaf bitmap before doing a radix tree lookup.
341  *
342  * As an optimisation, if there are only a few low bits set in any given
343  * leaf, instead of allocating a 128-byte bitmap, we store the bits
344  * as a value entry.  Value entries never have the XA_FREE_MARK cleared
345  * because we can always convert them into a bitmap entry.
346  *
347  * It would be possible to optimise further; once we've run out of a
348  * single 128-byte bitmap, we currently switch to a 576-byte node, put
349  * the 128-byte bitmap in the first entry and then start allocating extra
350  * 128-byte entries.  We could instead use the 512 bytes of the node's
351  * data as a bitmap before moving to that scheme.  I do not believe this
352  * is a worthwhile optimisation; Rasmus Villemoes surveyed the current
353  * users of the IDA and almost none of them use more than 1024 entries.
354  * Those that do use more than the 8192 IDs that the 512 bytes would
355  * provide.
356  *
357  * The IDA always uses a lock to alloc/free.  If we add a 'test_bit'
358  * equivalent, it will still need locking.  Going to RCU lookup would require
359  * using RCU to free bitmaps, and that's not trivial without embedding an
360  * RCU head in the bitmap, which adds a 2-pointer overhead to each 128-byte
361  * bitmap, which is excessive.
362  */
363 
364 /**
365  * ida_alloc_range() - Allocate an unused ID.
366  * @ida: IDA handle.
367  * @min: Lowest ID to allocate.
368  * @max: Highest ID to allocate.
369  * @gfp: Memory allocation flags.
370  *
371  * Allocate an ID between @min and @max, inclusive.  The allocated ID will
372  * not exceed %INT_MAX, even if @max is larger.
373  *
374  * Context: Any context.
375  * Return: The allocated ID, or %-ENOMEM if memory could not be allocated,
376  * or %-ENOSPC if there are no free IDs.
377  */
378 int ida_alloc_range(struct ida *ida, unsigned int min, unsigned int max,
379 			gfp_t gfp)
380 {
381 	XA_STATE(xas, &ida->xa, min / IDA_BITMAP_BITS);
382 	unsigned bit = min % IDA_BITMAP_BITS;
383 	unsigned long flags;
384 	struct ida_bitmap *bitmap, *alloc = NULL;
385 
386 	if ((int)min < 0)
387 		return -ENOSPC;
388 
389 	if ((int)max < 0)
390 		max = INT_MAX;
391 
392 retry:
393 	xas_lock_irqsave(&xas, flags);
394 next:
395 	bitmap = xas_find_marked(&xas, max / IDA_BITMAP_BITS, XA_FREE_MARK);
396 	if (xas.xa_index > min / IDA_BITMAP_BITS)
397 		bit = 0;
398 	if (xas.xa_index * IDA_BITMAP_BITS + bit > max)
399 		goto nospc;
400 
401 	if (xa_is_value(bitmap)) {
402 		unsigned long tmp = xa_to_value(bitmap);
403 
404 		if (bit < BITS_PER_XA_VALUE) {
405 			bit = find_next_zero_bit(&tmp, BITS_PER_XA_VALUE, bit);
406 			if (xas.xa_index * IDA_BITMAP_BITS + bit > max)
407 				goto nospc;
408 			if (bit < BITS_PER_XA_VALUE) {
409 				tmp |= 1UL << bit;
410 				xas_store(&xas, xa_mk_value(tmp));
411 				goto out;
412 			}
413 		}
414 		bitmap = alloc;
415 		if (!bitmap)
416 			bitmap = kzalloc(sizeof(*bitmap), GFP_NOWAIT);
417 		if (!bitmap)
418 			goto alloc;
419 		bitmap->bitmap[0] = tmp;
420 		xas_store(&xas, bitmap);
421 		if (xas_error(&xas)) {
422 			bitmap->bitmap[0] = 0;
423 			goto out;
424 		}
425 	}
426 
427 	if (bitmap) {
428 		bit = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, bit);
429 		if (xas.xa_index * IDA_BITMAP_BITS + bit > max)
430 			goto nospc;
431 		if (bit == IDA_BITMAP_BITS)
432 			goto next;
433 
434 		__set_bit(bit, bitmap->bitmap);
435 		if (bitmap_full(bitmap->bitmap, IDA_BITMAP_BITS))
436 			xas_clear_mark(&xas, XA_FREE_MARK);
437 	} else {
438 		if (bit < BITS_PER_XA_VALUE) {
439 			bitmap = xa_mk_value(1UL << bit);
440 		} else {
441 			bitmap = alloc;
442 			if (!bitmap)
443 				bitmap = kzalloc(sizeof(*bitmap), GFP_NOWAIT);
444 			if (!bitmap)
445 				goto alloc;
446 			__set_bit(bit, bitmap->bitmap);
447 		}
448 		xas_store(&xas, bitmap);
449 	}
450 out:
451 	xas_unlock_irqrestore(&xas, flags);
452 	if (xas_nomem(&xas, gfp)) {
453 		xas.xa_index = min / IDA_BITMAP_BITS;
454 		bit = min % IDA_BITMAP_BITS;
455 		goto retry;
456 	}
457 	if (bitmap != alloc)
458 		kfree(alloc);
459 	if (xas_error(&xas))
460 		return xas_error(&xas);
461 	return xas.xa_index * IDA_BITMAP_BITS + bit;
462 alloc:
463 	xas_unlock_irqrestore(&xas, flags);
464 	alloc = kzalloc(sizeof(*bitmap), gfp);
465 	if (!alloc)
466 		return -ENOMEM;
467 	xas_set(&xas, min / IDA_BITMAP_BITS);
468 	bit = min % IDA_BITMAP_BITS;
469 	goto retry;
470 nospc:
471 	xas_unlock_irqrestore(&xas, flags);
472 	return -ENOSPC;
473 }
474 EXPORT_SYMBOL(ida_alloc_range);
475 
476 /**
477  * ida_free() - Release an allocated ID.
478  * @ida: IDA handle.
479  * @id: Previously allocated ID.
480  *
481  * Context: Any context.
482  */
483 void ida_free(struct ida *ida, unsigned int id)
484 {
485 	XA_STATE(xas, &ida->xa, id / IDA_BITMAP_BITS);
486 	unsigned bit = id % IDA_BITMAP_BITS;
487 	struct ida_bitmap *bitmap;
488 	unsigned long flags;
489 
490 	BUG_ON((int)id < 0);
491 
492 	xas_lock_irqsave(&xas, flags);
493 	bitmap = xas_load(&xas);
494 
495 	if (xa_is_value(bitmap)) {
496 		unsigned long v = xa_to_value(bitmap);
497 		if (bit >= BITS_PER_XA_VALUE)
498 			goto err;
499 		if (!(v & (1UL << bit)))
500 			goto err;
501 		v &= ~(1UL << bit);
502 		if (!v)
503 			goto delete;
504 		xas_store(&xas, xa_mk_value(v));
505 	} else {
506 		if (!test_bit(bit, bitmap->bitmap))
507 			goto err;
508 		__clear_bit(bit, bitmap->bitmap);
509 		xas_set_mark(&xas, XA_FREE_MARK);
510 		if (bitmap_empty(bitmap->bitmap, IDA_BITMAP_BITS)) {
511 			kfree(bitmap);
512 delete:
513 			xas_store(&xas, NULL);
514 		}
515 	}
516 	xas_unlock_irqrestore(&xas, flags);
517 	return;
518  err:
519 	xas_unlock_irqrestore(&xas, flags);
520 	WARN(1, "ida_free called for id=%d which is not allocated.\n", id);
521 }
522 EXPORT_SYMBOL(ida_free);
523 
524 /**
525  * ida_destroy() - Free all IDs.
526  * @ida: IDA handle.
527  *
528  * Calling this function frees all IDs and releases all resources used
529  * by an IDA.  When this call returns, the IDA is empty and can be reused
530  * or freed.  If the IDA is already empty, there is no need to call this
531  * function.
532  *
533  * Context: Any context.
534  */
535 void ida_destroy(struct ida *ida)
536 {
537 	XA_STATE(xas, &ida->xa, 0);
538 	struct ida_bitmap *bitmap;
539 	unsigned long flags;
540 
541 	xas_lock_irqsave(&xas, flags);
542 	xas_for_each(&xas, bitmap, ULONG_MAX) {
543 		if (!xa_is_value(bitmap))
544 			kfree(bitmap);
545 		xas_store(&xas, NULL);
546 	}
547 	xas_unlock_irqrestore(&xas, flags);
548 }
549 EXPORT_SYMBOL(ida_destroy);
550 
551 #ifndef __KERNEL__
552 extern void xa_dump_index(unsigned long index, unsigned int shift);
553 #define IDA_CHUNK_SHIFT		ilog2(IDA_BITMAP_BITS)
554 
555 static void ida_dump_entry(void *entry, unsigned long index)
556 {
557 	unsigned long i;
558 
559 	if (!entry)
560 		return;
561 
562 	if (xa_is_node(entry)) {
563 		struct xa_node *node = xa_to_node(entry);
564 		unsigned int shift = node->shift + IDA_CHUNK_SHIFT +
565 			XA_CHUNK_SHIFT;
566 
567 		xa_dump_index(index * IDA_BITMAP_BITS, shift);
568 		xa_dump_node(node);
569 		for (i = 0; i < XA_CHUNK_SIZE; i++)
570 			ida_dump_entry(node->slots[i],
571 					index | (i << node->shift));
572 	} else if (xa_is_value(entry)) {
573 		xa_dump_index(index * IDA_BITMAP_BITS, ilog2(BITS_PER_LONG));
574 		pr_cont("value: data %lx [%px]\n", xa_to_value(entry), entry);
575 	} else {
576 		struct ida_bitmap *bitmap = entry;
577 
578 		xa_dump_index(index * IDA_BITMAP_BITS, IDA_CHUNK_SHIFT);
579 		pr_cont("bitmap: %p data", bitmap);
580 		for (i = 0; i < IDA_BITMAP_LONGS; i++)
581 			pr_cont(" %lx", bitmap->bitmap[i]);
582 		pr_cont("\n");
583 	}
584 }
585 
586 static void ida_dump(struct ida *ida)
587 {
588 	struct xarray *xa = &ida->xa;
589 	pr_debug("ida: %p node %p free %d\n", ida, xa->xa_head,
590 				xa->xa_flags >> ROOT_TAG_SHIFT);
591 	ida_dump_entry(xa->xa_head, 0);
592 }
593 #endif
594