xref: /linux/lib/idr.c (revision c41b20e721ea4f6f20f66a66e7f0c3c97a2ca9c2)
1 /*
2  * 2002-10-18  written by Jim Houston jim.houston@ccur.com
3  *	Copyright (C) 2002 by Concurrent Computer Corporation
4  *	Distributed under the GNU GPL license version 2.
5  *
6  * Modified by George Anzinger to reuse immediately and to use
7  * find bit instructions.  Also removed _irq on spinlocks.
8  *
9  * Modified by Nadia Derbey to make it RCU safe.
10  *
11  * Small id to pointer translation service.
12  *
13  * It uses a radix tree like structure as a sparse array indexed
14  * by the id to obtain the pointer.  The bitmap makes allocating
15  * a new id quick.
16  *
17  * You call it to allocate an id (an int) an associate with that id a
18  * pointer or what ever, we treat it as a (void *).  You can pass this
19  * id to a user for him to pass back at a later time.  You then pass
20  * that id to this code and it returns your pointer.
21 
22  * You can release ids at any time. When all ids are released, most of
23  * the memory is returned (we keep IDR_FREE_MAX) in a local pool so we
24  * don't need to go to the memory "store" during an id allocate, just
25  * so you don't need to be too concerned about locking and conflicts
26  * with the slab allocator.
27  */
28 
29 #ifndef TEST                        // to test in user space...
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/module.h>
33 #endif
34 #include <linux/err.h>
35 #include <linux/string.h>
36 #include <linux/idr.h>
37 
38 static struct kmem_cache *idr_layer_cache;
39 
40 static struct idr_layer *get_from_free_list(struct idr *idp)
41 {
42 	struct idr_layer *p;
43 	unsigned long flags;
44 
45 	spin_lock_irqsave(&idp->lock, flags);
46 	if ((p = idp->id_free)) {
47 		idp->id_free = p->ary[0];
48 		idp->id_free_cnt--;
49 		p->ary[0] = NULL;
50 	}
51 	spin_unlock_irqrestore(&idp->lock, flags);
52 	return(p);
53 }
54 
55 static void idr_layer_rcu_free(struct rcu_head *head)
56 {
57 	struct idr_layer *layer;
58 
59 	layer = container_of(head, struct idr_layer, rcu_head);
60 	kmem_cache_free(idr_layer_cache, layer);
61 }
62 
63 static inline void free_layer(struct idr_layer *p)
64 {
65 	call_rcu(&p->rcu_head, idr_layer_rcu_free);
66 }
67 
68 /* only called when idp->lock is held */
69 static void __move_to_free_list(struct idr *idp, struct idr_layer *p)
70 {
71 	p->ary[0] = idp->id_free;
72 	idp->id_free = p;
73 	idp->id_free_cnt++;
74 }
75 
76 static void move_to_free_list(struct idr *idp, struct idr_layer *p)
77 {
78 	unsigned long flags;
79 
80 	/*
81 	 * Depends on the return element being zeroed.
82 	 */
83 	spin_lock_irqsave(&idp->lock, flags);
84 	__move_to_free_list(idp, p);
85 	spin_unlock_irqrestore(&idp->lock, flags);
86 }
87 
88 static void idr_mark_full(struct idr_layer **pa, int id)
89 {
90 	struct idr_layer *p = pa[0];
91 	int l = 0;
92 
93 	__set_bit(id & IDR_MASK, &p->bitmap);
94 	/*
95 	 * If this layer is full mark the bit in the layer above to
96 	 * show that this part of the radix tree is full.  This may
97 	 * complete the layer above and require walking up the radix
98 	 * tree.
99 	 */
100 	while (p->bitmap == IDR_FULL) {
101 		if (!(p = pa[++l]))
102 			break;
103 		id = id >> IDR_BITS;
104 		__set_bit((id & IDR_MASK), &p->bitmap);
105 	}
106 }
107 
108 /**
109  * idr_pre_get - reserver resources for idr allocation
110  * @idp:	idr handle
111  * @gfp_mask:	memory allocation flags
112  *
113  * This function should be called prior to locking and calling the
114  * idr_get_new* functions. It preallocates enough memory to satisfy
115  * the worst possible allocation.
116  *
117  * If the system is REALLY out of memory this function returns 0,
118  * otherwise 1.
119  */
120 int idr_pre_get(struct idr *idp, gfp_t gfp_mask)
121 {
122 	while (idp->id_free_cnt < IDR_FREE_MAX) {
123 		struct idr_layer *new;
124 		new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
125 		if (new == NULL)
126 			return (0);
127 		move_to_free_list(idp, new);
128 	}
129 	return 1;
130 }
131 EXPORT_SYMBOL(idr_pre_get);
132 
133 static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa)
134 {
135 	int n, m, sh;
136 	struct idr_layer *p, *new;
137 	int l, id, oid;
138 	unsigned long bm;
139 
140 	id = *starting_id;
141  restart:
142 	p = idp->top;
143 	l = p->layer;
144 	while (1) {
145 		/*
146 		 * We run around this while until we reach the leaf node...
147 		 */
148 		n = (id >> (IDR_BITS*l)) & IDR_MASK;
149 		bm = ~p->bitmap;
150 		m = find_next_bit(&bm, IDR_SIZE, n);
151 		if (m == IDR_SIZE) {
152 			/* no space available go back to previous layer. */
153 			l++;
154 			oid = id;
155 			id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1;
156 
157 			/* did id go over the limit? */
158 			if (id >= (1 << (idp->layers * IDR_BITS))) {
159 				*starting_id = id;
160 				return IDR_NEED_TO_GROW;
161 			}
162 
163 			/* If we need to go up one layer, continue the
164 			 * loop; otherwise, restart from the top.
165 			 */
166 			sh = IDR_BITS * (l + 1);
167 			if (oid >> sh == id >> sh)
168 				continue;
169 			else
170 				goto restart;
171 		}
172 		if (m != n) {
173 			sh = IDR_BITS*l;
174 			id = ((id >> sh) ^ n ^ m) << sh;
175 		}
176 		if ((id >= MAX_ID_BIT) || (id < 0))
177 			return IDR_NOMORE_SPACE;
178 		if (l == 0)
179 			break;
180 		/*
181 		 * Create the layer below if it is missing.
182 		 */
183 		if (!p->ary[m]) {
184 			new = get_from_free_list(idp);
185 			if (!new)
186 				return -1;
187 			new->layer = l-1;
188 			rcu_assign_pointer(p->ary[m], new);
189 			p->count++;
190 		}
191 		pa[l--] = p;
192 		p = p->ary[m];
193 	}
194 
195 	pa[l] = p;
196 	return id;
197 }
198 
199 static int idr_get_empty_slot(struct idr *idp, int starting_id,
200 			      struct idr_layer **pa)
201 {
202 	struct idr_layer *p, *new;
203 	int layers, v, id;
204 	unsigned long flags;
205 
206 	id = starting_id;
207 build_up:
208 	p = idp->top;
209 	layers = idp->layers;
210 	if (unlikely(!p)) {
211 		if (!(p = get_from_free_list(idp)))
212 			return -1;
213 		p->layer = 0;
214 		layers = 1;
215 	}
216 	/*
217 	 * Add a new layer to the top of the tree if the requested
218 	 * id is larger than the currently allocated space.
219 	 */
220 	while ((layers < (MAX_LEVEL - 1)) && (id >= (1 << (layers*IDR_BITS)))) {
221 		layers++;
222 		if (!p->count) {
223 			/* special case: if the tree is currently empty,
224 			 * then we grow the tree by moving the top node
225 			 * upwards.
226 			 */
227 			p->layer++;
228 			continue;
229 		}
230 		if (!(new = get_from_free_list(idp))) {
231 			/*
232 			 * The allocation failed.  If we built part of
233 			 * the structure tear it down.
234 			 */
235 			spin_lock_irqsave(&idp->lock, flags);
236 			for (new = p; p && p != idp->top; new = p) {
237 				p = p->ary[0];
238 				new->ary[0] = NULL;
239 				new->bitmap = new->count = 0;
240 				__move_to_free_list(idp, new);
241 			}
242 			spin_unlock_irqrestore(&idp->lock, flags);
243 			return -1;
244 		}
245 		new->ary[0] = p;
246 		new->count = 1;
247 		new->layer = layers-1;
248 		if (p->bitmap == IDR_FULL)
249 			__set_bit(0, &new->bitmap);
250 		p = new;
251 	}
252 	rcu_assign_pointer(idp->top, p);
253 	idp->layers = layers;
254 	v = sub_alloc(idp, &id, pa);
255 	if (v == IDR_NEED_TO_GROW)
256 		goto build_up;
257 	return(v);
258 }
259 
260 static int idr_get_new_above_int(struct idr *idp, void *ptr, int starting_id)
261 {
262 	struct idr_layer *pa[MAX_LEVEL];
263 	int id;
264 
265 	id = idr_get_empty_slot(idp, starting_id, pa);
266 	if (id >= 0) {
267 		/*
268 		 * Successfully found an empty slot.  Install the user
269 		 * pointer and mark the slot full.
270 		 */
271 		rcu_assign_pointer(pa[0]->ary[id & IDR_MASK],
272 				(struct idr_layer *)ptr);
273 		pa[0]->count++;
274 		idr_mark_full(pa, id);
275 	}
276 
277 	return id;
278 }
279 
280 /**
281  * idr_get_new_above - allocate new idr entry above or equal to a start id
282  * @idp: idr handle
283  * @ptr: pointer you want associated with the id
284  * @start_id: id to start search at
285  * @id: pointer to the allocated handle
286  *
287  * This is the allocate id function.  It should be called with any
288  * required locks.
289  *
290  * If memory is required, it will return -EAGAIN, you should unlock
291  * and go back to the idr_pre_get() call.  If the idr is full, it will
292  * return -ENOSPC.
293  *
294  * @id returns a value in the range @starting_id ... 0x7fffffff
295  */
296 int idr_get_new_above(struct idr *idp, void *ptr, int starting_id, int *id)
297 {
298 	int rv;
299 
300 	rv = idr_get_new_above_int(idp, ptr, starting_id);
301 	/*
302 	 * This is a cheap hack until the IDR code can be fixed to
303 	 * return proper error values.
304 	 */
305 	if (rv < 0)
306 		return _idr_rc_to_errno(rv);
307 	*id = rv;
308 	return 0;
309 }
310 EXPORT_SYMBOL(idr_get_new_above);
311 
312 /**
313  * idr_get_new - allocate new idr entry
314  * @idp: idr handle
315  * @ptr: pointer you want associated with the id
316  * @id: pointer to the allocated handle
317  *
318  * This is the allocate id function.  It should be called with any
319  * required locks.
320  *
321  * If memory is required, it will return -EAGAIN, you should unlock
322  * and go back to the idr_pre_get() call.  If the idr is full, it will
323  * return -ENOSPC.
324  *
325  * @id returns a value in the range 0 ... 0x7fffffff
326  */
327 int idr_get_new(struct idr *idp, void *ptr, int *id)
328 {
329 	int rv;
330 
331 	rv = idr_get_new_above_int(idp, ptr, 0);
332 	/*
333 	 * This is a cheap hack until the IDR code can be fixed to
334 	 * return proper error values.
335 	 */
336 	if (rv < 0)
337 		return _idr_rc_to_errno(rv);
338 	*id = rv;
339 	return 0;
340 }
341 EXPORT_SYMBOL(idr_get_new);
342 
343 static void idr_remove_warning(int id)
344 {
345 	printk(KERN_WARNING
346 		"idr_remove called for id=%d which is not allocated.\n", id);
347 	dump_stack();
348 }
349 
350 static void sub_remove(struct idr *idp, int shift, int id)
351 {
352 	struct idr_layer *p = idp->top;
353 	struct idr_layer **pa[MAX_LEVEL];
354 	struct idr_layer ***paa = &pa[0];
355 	struct idr_layer *to_free;
356 	int n;
357 
358 	*paa = NULL;
359 	*++paa = &idp->top;
360 
361 	while ((shift > 0) && p) {
362 		n = (id >> shift) & IDR_MASK;
363 		__clear_bit(n, &p->bitmap);
364 		*++paa = &p->ary[n];
365 		p = p->ary[n];
366 		shift -= IDR_BITS;
367 	}
368 	n = id & IDR_MASK;
369 	if (likely(p != NULL && test_bit(n, &p->bitmap))){
370 		__clear_bit(n, &p->bitmap);
371 		rcu_assign_pointer(p->ary[n], NULL);
372 		to_free = NULL;
373 		while(*paa && ! --((**paa)->count)){
374 			if (to_free)
375 				free_layer(to_free);
376 			to_free = **paa;
377 			**paa-- = NULL;
378 		}
379 		if (!*paa)
380 			idp->layers = 0;
381 		if (to_free)
382 			free_layer(to_free);
383 	} else
384 		idr_remove_warning(id);
385 }
386 
387 /**
388  * idr_remove - remove the given id and free it's slot
389  * @idp: idr handle
390  * @id: unique key
391  */
392 void idr_remove(struct idr *idp, int id)
393 {
394 	struct idr_layer *p;
395 	struct idr_layer *to_free;
396 
397 	/* Mask off upper bits we don't use for the search. */
398 	id &= MAX_ID_MASK;
399 
400 	sub_remove(idp, (idp->layers - 1) * IDR_BITS, id);
401 	if (idp->top && idp->top->count == 1 && (idp->layers > 1) &&
402 	    idp->top->ary[0]) {
403 		/*
404 		 * Single child at leftmost slot: we can shrink the tree.
405 		 * This level is not needed anymore since when layers are
406 		 * inserted, they are inserted at the top of the existing
407 		 * tree.
408 		 */
409 		to_free = idp->top;
410 		p = idp->top->ary[0];
411 		rcu_assign_pointer(idp->top, p);
412 		--idp->layers;
413 		to_free->bitmap = to_free->count = 0;
414 		free_layer(to_free);
415 	}
416 	while (idp->id_free_cnt >= IDR_FREE_MAX) {
417 		p = get_from_free_list(idp);
418 		/*
419 		 * Note: we don't call the rcu callback here, since the only
420 		 * layers that fall into the freelist are those that have been
421 		 * preallocated.
422 		 */
423 		kmem_cache_free(idr_layer_cache, p);
424 	}
425 	return;
426 }
427 EXPORT_SYMBOL(idr_remove);
428 
429 /**
430  * idr_remove_all - remove all ids from the given idr tree
431  * @idp: idr handle
432  *
433  * idr_destroy() only frees up unused, cached idp_layers, but this
434  * function will remove all id mappings and leave all idp_layers
435  * unused.
436  *
437  * A typical clean-up sequence for objects stored in an idr tree, will
438  * use idr_for_each() to free all objects, if necessay, then
439  * idr_remove_all() to remove all ids, and idr_destroy() to free
440  * up the cached idr_layers.
441  */
442 void idr_remove_all(struct idr *idp)
443 {
444 	int n, id, max;
445 	struct idr_layer *p;
446 	struct idr_layer *pa[MAX_LEVEL];
447 	struct idr_layer **paa = &pa[0];
448 
449 	n = idp->layers * IDR_BITS;
450 	p = idp->top;
451 	rcu_assign_pointer(idp->top, NULL);
452 	max = 1 << n;
453 
454 	id = 0;
455 	while (id < max) {
456 		while (n > IDR_BITS && p) {
457 			n -= IDR_BITS;
458 			*paa++ = p;
459 			p = p->ary[(id >> n) & IDR_MASK];
460 		}
461 
462 		id += 1 << n;
463 		while (n < fls(id)) {
464 			if (p)
465 				free_layer(p);
466 			n += IDR_BITS;
467 			p = *--paa;
468 		}
469 	}
470 	idp->layers = 0;
471 }
472 EXPORT_SYMBOL(idr_remove_all);
473 
474 /**
475  * idr_destroy - release all cached layers within an idr tree
476  * idp: idr handle
477  */
478 void idr_destroy(struct idr *idp)
479 {
480 	while (idp->id_free_cnt) {
481 		struct idr_layer *p = get_from_free_list(idp);
482 		kmem_cache_free(idr_layer_cache, p);
483 	}
484 }
485 EXPORT_SYMBOL(idr_destroy);
486 
487 /**
488  * idr_find - return pointer for given id
489  * @idp: idr handle
490  * @id: lookup key
491  *
492  * Return the pointer given the id it has been registered with.  A %NULL
493  * return indicates that @id is not valid or you passed %NULL in
494  * idr_get_new().
495  *
496  * This function can be called under rcu_read_lock(), given that the leaf
497  * pointers lifetimes are correctly managed.
498  */
499 void *idr_find(struct idr *idp, int id)
500 {
501 	int n;
502 	struct idr_layer *p;
503 
504 	p = rcu_dereference(idp->top);
505 	if (!p)
506 		return NULL;
507 	n = (p->layer+1) * IDR_BITS;
508 
509 	/* Mask off upper bits we don't use for the search. */
510 	id &= MAX_ID_MASK;
511 
512 	if (id >= (1 << n))
513 		return NULL;
514 	BUG_ON(n == 0);
515 
516 	while (n > 0 && p) {
517 		n -= IDR_BITS;
518 		BUG_ON(n != p->layer*IDR_BITS);
519 		p = rcu_dereference(p->ary[(id >> n) & IDR_MASK]);
520 	}
521 	return((void *)p);
522 }
523 EXPORT_SYMBOL(idr_find);
524 
525 /**
526  * idr_for_each - iterate through all stored pointers
527  * @idp: idr handle
528  * @fn: function to be called for each pointer
529  * @data: data passed back to callback function
530  *
531  * Iterate over the pointers registered with the given idr.  The
532  * callback function will be called for each pointer currently
533  * registered, passing the id, the pointer and the data pointer passed
534  * to this function.  It is not safe to modify the idr tree while in
535  * the callback, so functions such as idr_get_new and idr_remove are
536  * not allowed.
537  *
538  * We check the return of @fn each time. If it returns anything other
539  * than 0, we break out and return that value.
540  *
541  * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove().
542  */
543 int idr_for_each(struct idr *idp,
544 		 int (*fn)(int id, void *p, void *data), void *data)
545 {
546 	int n, id, max, error = 0;
547 	struct idr_layer *p;
548 	struct idr_layer *pa[MAX_LEVEL];
549 	struct idr_layer **paa = &pa[0];
550 
551 	n = idp->layers * IDR_BITS;
552 	p = rcu_dereference(idp->top);
553 	max = 1 << n;
554 
555 	id = 0;
556 	while (id < max) {
557 		while (n > 0 && p) {
558 			n -= IDR_BITS;
559 			*paa++ = p;
560 			p = rcu_dereference(p->ary[(id >> n) & IDR_MASK]);
561 		}
562 
563 		if (p) {
564 			error = fn(id, (void *)p, data);
565 			if (error)
566 				break;
567 		}
568 
569 		id += 1 << n;
570 		while (n < fls(id)) {
571 			n += IDR_BITS;
572 			p = *--paa;
573 		}
574 	}
575 
576 	return error;
577 }
578 EXPORT_SYMBOL(idr_for_each);
579 
580 /**
581  * idr_get_next - lookup next object of id to given id.
582  * @idp: idr handle
583  * @id:  pointer to lookup key
584  *
585  * Returns pointer to registered object with id, which is next number to
586  * given id.
587  */
588 
589 void *idr_get_next(struct idr *idp, int *nextidp)
590 {
591 	struct idr_layer *p, *pa[MAX_LEVEL];
592 	struct idr_layer **paa = &pa[0];
593 	int id = *nextidp;
594 	int n, max;
595 
596 	/* find first ent */
597 	n = idp->layers * IDR_BITS;
598 	max = 1 << n;
599 	p = rcu_dereference(idp->top);
600 	if (!p)
601 		return NULL;
602 
603 	while (id < max) {
604 		while (n > 0 && p) {
605 			n -= IDR_BITS;
606 			*paa++ = p;
607 			p = rcu_dereference(p->ary[(id >> n) & IDR_MASK]);
608 		}
609 
610 		if (p) {
611 			*nextidp = id;
612 			return p;
613 		}
614 
615 		id += 1 << n;
616 		while (n < fls(id)) {
617 			n += IDR_BITS;
618 			p = *--paa;
619 		}
620 	}
621 	return NULL;
622 }
623 
624 
625 
626 /**
627  * idr_replace - replace pointer for given id
628  * @idp: idr handle
629  * @ptr: pointer you want associated with the id
630  * @id: lookup key
631  *
632  * Replace the pointer registered with an id and return the old value.
633  * A -ENOENT return indicates that @id was not found.
634  * A -EINVAL return indicates that @id was not within valid constraints.
635  *
636  * The caller must serialize with writers.
637  */
638 void *idr_replace(struct idr *idp, void *ptr, int id)
639 {
640 	int n;
641 	struct idr_layer *p, *old_p;
642 
643 	p = idp->top;
644 	if (!p)
645 		return ERR_PTR(-EINVAL);
646 
647 	n = (p->layer+1) * IDR_BITS;
648 
649 	id &= MAX_ID_MASK;
650 
651 	if (id >= (1 << n))
652 		return ERR_PTR(-EINVAL);
653 
654 	n -= IDR_BITS;
655 	while ((n > 0) && p) {
656 		p = p->ary[(id >> n) & IDR_MASK];
657 		n -= IDR_BITS;
658 	}
659 
660 	n = id & IDR_MASK;
661 	if (unlikely(p == NULL || !test_bit(n, &p->bitmap)))
662 		return ERR_PTR(-ENOENT);
663 
664 	old_p = p->ary[n];
665 	rcu_assign_pointer(p->ary[n], ptr);
666 
667 	return old_p;
668 }
669 EXPORT_SYMBOL(idr_replace);
670 
671 void __init idr_init_cache(void)
672 {
673 	idr_layer_cache = kmem_cache_create("idr_layer_cache",
674 				sizeof(struct idr_layer), 0, SLAB_PANIC, NULL);
675 }
676 
677 /**
678  * idr_init - initialize idr handle
679  * @idp:	idr handle
680  *
681  * This function is use to set up the handle (@idp) that you will pass
682  * to the rest of the functions.
683  */
684 void idr_init(struct idr *idp)
685 {
686 	memset(idp, 0, sizeof(struct idr));
687 	spin_lock_init(&idp->lock);
688 }
689 EXPORT_SYMBOL(idr_init);
690 
691 
692 /*
693  * IDA - IDR based ID allocator
694  *
695  * this is id allocator without id -> pointer translation.  Memory
696  * usage is much lower than full blown idr because each id only
697  * occupies a bit.  ida uses a custom leaf node which contains
698  * IDA_BITMAP_BITS slots.
699  *
700  * 2007-04-25  written by Tejun Heo <htejun@gmail.com>
701  */
702 
703 static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap)
704 {
705 	unsigned long flags;
706 
707 	if (!ida->free_bitmap) {
708 		spin_lock_irqsave(&ida->idr.lock, flags);
709 		if (!ida->free_bitmap) {
710 			ida->free_bitmap = bitmap;
711 			bitmap = NULL;
712 		}
713 		spin_unlock_irqrestore(&ida->idr.lock, flags);
714 	}
715 
716 	kfree(bitmap);
717 }
718 
719 /**
720  * ida_pre_get - reserve resources for ida allocation
721  * @ida:	ida handle
722  * @gfp_mask:	memory allocation flag
723  *
724  * This function should be called prior to locking and calling the
725  * following function.  It preallocates enough memory to satisfy the
726  * worst possible allocation.
727  *
728  * If the system is REALLY out of memory this function returns 0,
729  * otherwise 1.
730  */
731 int ida_pre_get(struct ida *ida, gfp_t gfp_mask)
732 {
733 	/* allocate idr_layers */
734 	if (!idr_pre_get(&ida->idr, gfp_mask))
735 		return 0;
736 
737 	/* allocate free_bitmap */
738 	if (!ida->free_bitmap) {
739 		struct ida_bitmap *bitmap;
740 
741 		bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask);
742 		if (!bitmap)
743 			return 0;
744 
745 		free_bitmap(ida, bitmap);
746 	}
747 
748 	return 1;
749 }
750 EXPORT_SYMBOL(ida_pre_get);
751 
752 /**
753  * ida_get_new_above - allocate new ID above or equal to a start id
754  * @ida:	ida handle
755  * @staring_id:	id to start search at
756  * @p_id:	pointer to the allocated handle
757  *
758  * Allocate new ID above or equal to @ida.  It should be called with
759  * any required locks.
760  *
761  * If memory is required, it will return -EAGAIN, you should unlock
762  * and go back to the ida_pre_get() call.  If the ida is full, it will
763  * return -ENOSPC.
764  *
765  * @p_id returns a value in the range @starting_id ... 0x7fffffff.
766  */
767 int ida_get_new_above(struct ida *ida, int starting_id, int *p_id)
768 {
769 	struct idr_layer *pa[MAX_LEVEL];
770 	struct ida_bitmap *bitmap;
771 	unsigned long flags;
772 	int idr_id = starting_id / IDA_BITMAP_BITS;
773 	int offset = starting_id % IDA_BITMAP_BITS;
774 	int t, id;
775 
776  restart:
777 	/* get vacant slot */
778 	t = idr_get_empty_slot(&ida->idr, idr_id, pa);
779 	if (t < 0)
780 		return _idr_rc_to_errno(t);
781 
782 	if (t * IDA_BITMAP_BITS >= MAX_ID_BIT)
783 		return -ENOSPC;
784 
785 	if (t != idr_id)
786 		offset = 0;
787 	idr_id = t;
788 
789 	/* if bitmap isn't there, create a new one */
790 	bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK];
791 	if (!bitmap) {
792 		spin_lock_irqsave(&ida->idr.lock, flags);
793 		bitmap = ida->free_bitmap;
794 		ida->free_bitmap = NULL;
795 		spin_unlock_irqrestore(&ida->idr.lock, flags);
796 
797 		if (!bitmap)
798 			return -EAGAIN;
799 
800 		memset(bitmap, 0, sizeof(struct ida_bitmap));
801 		rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK],
802 				(void *)bitmap);
803 		pa[0]->count++;
804 	}
805 
806 	/* lookup for empty slot */
807 	t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset);
808 	if (t == IDA_BITMAP_BITS) {
809 		/* no empty slot after offset, continue to the next chunk */
810 		idr_id++;
811 		offset = 0;
812 		goto restart;
813 	}
814 
815 	id = idr_id * IDA_BITMAP_BITS + t;
816 	if (id >= MAX_ID_BIT)
817 		return -ENOSPC;
818 
819 	__set_bit(t, bitmap->bitmap);
820 	if (++bitmap->nr_busy == IDA_BITMAP_BITS)
821 		idr_mark_full(pa, idr_id);
822 
823 	*p_id = id;
824 
825 	/* Each leaf node can handle nearly a thousand slots and the
826 	 * whole idea of ida is to have small memory foot print.
827 	 * Throw away extra resources one by one after each successful
828 	 * allocation.
829 	 */
830 	if (ida->idr.id_free_cnt || ida->free_bitmap) {
831 		struct idr_layer *p = get_from_free_list(&ida->idr);
832 		if (p)
833 			kmem_cache_free(idr_layer_cache, p);
834 	}
835 
836 	return 0;
837 }
838 EXPORT_SYMBOL(ida_get_new_above);
839 
840 /**
841  * ida_get_new - allocate new ID
842  * @ida:	idr handle
843  * @p_id:	pointer to the allocated handle
844  *
845  * Allocate new ID.  It should be called with any required locks.
846  *
847  * If memory is required, it will return -EAGAIN, you should unlock
848  * and go back to the idr_pre_get() call.  If the idr is full, it will
849  * return -ENOSPC.
850  *
851  * @id returns a value in the range 0 ... 0x7fffffff.
852  */
853 int ida_get_new(struct ida *ida, int *p_id)
854 {
855 	return ida_get_new_above(ida, 0, p_id);
856 }
857 EXPORT_SYMBOL(ida_get_new);
858 
859 /**
860  * ida_remove - remove the given ID
861  * @ida:	ida handle
862  * @id:		ID to free
863  */
864 void ida_remove(struct ida *ida, int id)
865 {
866 	struct idr_layer *p = ida->idr.top;
867 	int shift = (ida->idr.layers - 1) * IDR_BITS;
868 	int idr_id = id / IDA_BITMAP_BITS;
869 	int offset = id % IDA_BITMAP_BITS;
870 	int n;
871 	struct ida_bitmap *bitmap;
872 
873 	/* clear full bits while looking up the leaf idr_layer */
874 	while ((shift > 0) && p) {
875 		n = (idr_id >> shift) & IDR_MASK;
876 		__clear_bit(n, &p->bitmap);
877 		p = p->ary[n];
878 		shift -= IDR_BITS;
879 	}
880 
881 	if (p == NULL)
882 		goto err;
883 
884 	n = idr_id & IDR_MASK;
885 	__clear_bit(n, &p->bitmap);
886 
887 	bitmap = (void *)p->ary[n];
888 	if (!test_bit(offset, bitmap->bitmap))
889 		goto err;
890 
891 	/* update bitmap and remove it if empty */
892 	__clear_bit(offset, bitmap->bitmap);
893 	if (--bitmap->nr_busy == 0) {
894 		__set_bit(n, &p->bitmap);	/* to please idr_remove() */
895 		idr_remove(&ida->idr, idr_id);
896 		free_bitmap(ida, bitmap);
897 	}
898 
899 	return;
900 
901  err:
902 	printk(KERN_WARNING
903 	       "ida_remove called for id=%d which is not allocated.\n", id);
904 }
905 EXPORT_SYMBOL(ida_remove);
906 
907 /**
908  * ida_destroy - release all cached layers within an ida tree
909  * ida:		ida handle
910  */
911 void ida_destroy(struct ida *ida)
912 {
913 	idr_destroy(&ida->idr);
914 	kfree(ida->free_bitmap);
915 }
916 EXPORT_SYMBOL(ida_destroy);
917 
918 /**
919  * ida_init - initialize ida handle
920  * @ida:	ida handle
921  *
922  * This function is use to set up the handle (@ida) that you will pass
923  * to the rest of the functions.
924  */
925 void ida_init(struct ida *ida)
926 {
927 	memset(ida, 0, sizeof(struct ida));
928 	idr_init(&ida->idr);
929 
930 }
931 EXPORT_SYMBOL(ida_init);
932