1 /* 2 * 2002-10-18 written by Jim Houston jim.houston@ccur.com 3 * Copyright (C) 2002 by Concurrent Computer Corporation 4 * Distributed under the GNU GPL license version 2. 5 * 6 * Modified by George Anzinger to reuse immediately and to use 7 * find bit instructions. Also removed _irq on spinlocks. 8 * 9 * Modified by Nadia Derbey to make it RCU safe. 10 * 11 * Small id to pointer translation service. 12 * 13 * It uses a radix tree like structure as a sparse array indexed 14 * by the id to obtain the pointer. The bitmap makes allocating 15 * a new id quick. 16 * 17 * You call it to allocate an id (an int) an associate with that id a 18 * pointer or what ever, we treat it as a (void *). You can pass this 19 * id to a user for him to pass back at a later time. You then pass 20 * that id to this code and it returns your pointer. 21 22 * You can release ids at any time. When all ids are released, most of 23 * the memory is returned (we keep MAX_IDR_FREE) in a local pool so we 24 * don't need to go to the memory "store" during an id allocate, just 25 * so you don't need to be too concerned about locking and conflicts 26 * with the slab allocator. 27 */ 28 29 #ifndef TEST // to test in user space... 30 #include <linux/slab.h> 31 #include <linux/init.h> 32 #include <linux/export.h> 33 #endif 34 #include <linux/err.h> 35 #include <linux/string.h> 36 #include <linux/idr.h> 37 #include <linux/spinlock.h> 38 #include <linux/percpu.h> 39 #include <linux/hardirq.h> 40 41 #define MAX_IDR_SHIFT (sizeof(int) * 8 - 1) 42 #define MAX_IDR_BIT (1U << MAX_IDR_SHIFT) 43 44 /* Leave the possibility of an incomplete final layer */ 45 #define MAX_IDR_LEVEL ((MAX_IDR_SHIFT + IDR_BITS - 1) / IDR_BITS) 46 47 /* Number of id_layer structs to leave in free list */ 48 #define MAX_IDR_FREE (MAX_IDR_LEVEL * 2) 49 50 static struct kmem_cache *idr_layer_cache; 51 static DEFINE_PER_CPU(struct idr_layer *, idr_preload_head); 52 static DEFINE_PER_CPU(int, idr_preload_cnt); 53 static DEFINE_SPINLOCK(simple_ida_lock); 54 55 /* the maximum ID which can be allocated given idr->layers */ 56 static int idr_max(int layers) 57 { 58 int bits = min_t(int, layers * IDR_BITS, MAX_IDR_SHIFT); 59 60 return (1 << bits) - 1; 61 } 62 63 /* 64 * Prefix mask for an idr_layer at @layer. For layer 0, the prefix mask is 65 * all bits except for the lower IDR_BITS. For layer 1, 2 * IDR_BITS, and 66 * so on. 67 */ 68 static int idr_layer_prefix_mask(int layer) 69 { 70 return ~idr_max(layer + 1); 71 } 72 73 static struct idr_layer *get_from_free_list(struct idr *idp) 74 { 75 struct idr_layer *p; 76 unsigned long flags; 77 78 spin_lock_irqsave(&idp->lock, flags); 79 if ((p = idp->id_free)) { 80 idp->id_free = p->ary[0]; 81 idp->id_free_cnt--; 82 p->ary[0] = NULL; 83 } 84 spin_unlock_irqrestore(&idp->lock, flags); 85 return(p); 86 } 87 88 /** 89 * idr_layer_alloc - allocate a new idr_layer 90 * @gfp_mask: allocation mask 91 * @layer_idr: optional idr to allocate from 92 * 93 * If @layer_idr is %NULL, directly allocate one using @gfp_mask or fetch 94 * one from the per-cpu preload buffer. If @layer_idr is not %NULL, fetch 95 * an idr_layer from @idr->id_free. 96 * 97 * @layer_idr is to maintain backward compatibility with the old alloc 98 * interface - idr_pre_get() and idr_get_new*() - and will be removed 99 * together with per-pool preload buffer. 100 */ 101 static struct idr_layer *idr_layer_alloc(gfp_t gfp_mask, struct idr *layer_idr) 102 { 103 struct idr_layer *new; 104 105 /* this is the old path, bypass to get_from_free_list() */ 106 if (layer_idr) 107 return get_from_free_list(layer_idr); 108 109 /* try to allocate directly from kmem_cache */ 110 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask); 111 if (new) 112 return new; 113 114 /* 115 * Try to fetch one from the per-cpu preload buffer if in process 116 * context. See idr_preload() for details. 117 */ 118 if (in_interrupt()) 119 return NULL; 120 121 preempt_disable(); 122 new = __this_cpu_read(idr_preload_head); 123 if (new) { 124 __this_cpu_write(idr_preload_head, new->ary[0]); 125 __this_cpu_dec(idr_preload_cnt); 126 new->ary[0] = NULL; 127 } 128 preempt_enable(); 129 return new; 130 } 131 132 static void idr_layer_rcu_free(struct rcu_head *head) 133 { 134 struct idr_layer *layer; 135 136 layer = container_of(head, struct idr_layer, rcu_head); 137 kmem_cache_free(idr_layer_cache, layer); 138 } 139 140 static inline void free_layer(struct idr *idr, struct idr_layer *p) 141 { 142 if (idr->hint && idr->hint == p) 143 RCU_INIT_POINTER(idr->hint, NULL); 144 call_rcu(&p->rcu_head, idr_layer_rcu_free); 145 } 146 147 /* only called when idp->lock is held */ 148 static void __move_to_free_list(struct idr *idp, struct idr_layer *p) 149 { 150 p->ary[0] = idp->id_free; 151 idp->id_free = p; 152 idp->id_free_cnt++; 153 } 154 155 static void move_to_free_list(struct idr *idp, struct idr_layer *p) 156 { 157 unsigned long flags; 158 159 /* 160 * Depends on the return element being zeroed. 161 */ 162 spin_lock_irqsave(&idp->lock, flags); 163 __move_to_free_list(idp, p); 164 spin_unlock_irqrestore(&idp->lock, flags); 165 } 166 167 static void idr_mark_full(struct idr_layer **pa, int id) 168 { 169 struct idr_layer *p = pa[0]; 170 int l = 0; 171 172 __set_bit(id & IDR_MASK, p->bitmap); 173 /* 174 * If this layer is full mark the bit in the layer above to 175 * show that this part of the radix tree is full. This may 176 * complete the layer above and require walking up the radix 177 * tree. 178 */ 179 while (bitmap_full(p->bitmap, IDR_SIZE)) { 180 if (!(p = pa[++l])) 181 break; 182 id = id >> IDR_BITS; 183 __set_bit((id & IDR_MASK), p->bitmap); 184 } 185 } 186 187 /** 188 * idr_pre_get - reserve resources for idr allocation 189 * @idp: idr handle 190 * @gfp_mask: memory allocation flags 191 * 192 * This function should be called prior to calling the idr_get_new* functions. 193 * It preallocates enough memory to satisfy the worst possible allocation. The 194 * caller should pass in GFP_KERNEL if possible. This of course requires that 195 * no spinning locks be held. 196 * 197 * If the system is REALLY out of memory this function returns %0, 198 * otherwise %1. 199 */ 200 int idr_pre_get(struct idr *idp, gfp_t gfp_mask) 201 { 202 while (idp->id_free_cnt < MAX_IDR_FREE) { 203 struct idr_layer *new; 204 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask); 205 if (new == NULL) 206 return (0); 207 move_to_free_list(idp, new); 208 } 209 return 1; 210 } 211 EXPORT_SYMBOL(idr_pre_get); 212 213 /** 214 * sub_alloc - try to allocate an id without growing the tree depth 215 * @idp: idr handle 216 * @starting_id: id to start search at 217 * @id: pointer to the allocated handle 218 * @pa: idr_layer[MAX_IDR_LEVEL] used as backtrack buffer 219 * @gfp_mask: allocation mask for idr_layer_alloc() 220 * @layer_idr: optional idr passed to idr_layer_alloc() 221 * 222 * Allocate an id in range [@starting_id, INT_MAX] from @idp without 223 * growing its depth. Returns 224 * 225 * the allocated id >= 0 if successful, 226 * -EAGAIN if the tree needs to grow for allocation to succeed, 227 * -ENOSPC if the id space is exhausted, 228 * -ENOMEM if more idr_layers need to be allocated. 229 */ 230 static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa, 231 gfp_t gfp_mask, struct idr *layer_idr) 232 { 233 int n, m, sh; 234 struct idr_layer *p, *new; 235 int l, id, oid; 236 237 id = *starting_id; 238 restart: 239 p = idp->top; 240 l = idp->layers; 241 pa[l--] = NULL; 242 while (1) { 243 /* 244 * We run around this while until we reach the leaf node... 245 */ 246 n = (id >> (IDR_BITS*l)) & IDR_MASK; 247 m = find_next_zero_bit(p->bitmap, IDR_SIZE, n); 248 if (m == IDR_SIZE) { 249 /* no space available go back to previous layer. */ 250 l++; 251 oid = id; 252 id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1; 253 254 /* if already at the top layer, we need to grow */ 255 if (id >= 1 << (idp->layers * IDR_BITS)) { 256 *starting_id = id; 257 return -EAGAIN; 258 } 259 p = pa[l]; 260 BUG_ON(!p); 261 262 /* If we need to go up one layer, continue the 263 * loop; otherwise, restart from the top. 264 */ 265 sh = IDR_BITS * (l + 1); 266 if (oid >> sh == id >> sh) 267 continue; 268 else 269 goto restart; 270 } 271 if (m != n) { 272 sh = IDR_BITS*l; 273 id = ((id >> sh) ^ n ^ m) << sh; 274 } 275 if ((id >= MAX_IDR_BIT) || (id < 0)) 276 return -ENOSPC; 277 if (l == 0) 278 break; 279 /* 280 * Create the layer below if it is missing. 281 */ 282 if (!p->ary[m]) { 283 new = idr_layer_alloc(gfp_mask, layer_idr); 284 if (!new) 285 return -ENOMEM; 286 new->layer = l-1; 287 new->prefix = id & idr_layer_prefix_mask(new->layer); 288 rcu_assign_pointer(p->ary[m], new); 289 p->count++; 290 } 291 pa[l--] = p; 292 p = p->ary[m]; 293 } 294 295 pa[l] = p; 296 return id; 297 } 298 299 static int idr_get_empty_slot(struct idr *idp, int starting_id, 300 struct idr_layer **pa, gfp_t gfp_mask, 301 struct idr *layer_idr) 302 { 303 struct idr_layer *p, *new; 304 int layers, v, id; 305 unsigned long flags; 306 307 id = starting_id; 308 build_up: 309 p = idp->top; 310 layers = idp->layers; 311 if (unlikely(!p)) { 312 if (!(p = idr_layer_alloc(gfp_mask, layer_idr))) 313 return -ENOMEM; 314 p->layer = 0; 315 layers = 1; 316 } 317 /* 318 * Add a new layer to the top of the tree if the requested 319 * id is larger than the currently allocated space. 320 */ 321 while (id > idr_max(layers)) { 322 layers++; 323 if (!p->count) { 324 /* special case: if the tree is currently empty, 325 * then we grow the tree by moving the top node 326 * upwards. 327 */ 328 p->layer++; 329 WARN_ON_ONCE(p->prefix); 330 continue; 331 } 332 if (!(new = idr_layer_alloc(gfp_mask, layer_idr))) { 333 /* 334 * The allocation failed. If we built part of 335 * the structure tear it down. 336 */ 337 spin_lock_irqsave(&idp->lock, flags); 338 for (new = p; p && p != idp->top; new = p) { 339 p = p->ary[0]; 340 new->ary[0] = NULL; 341 new->count = 0; 342 bitmap_clear(new->bitmap, 0, IDR_SIZE); 343 __move_to_free_list(idp, new); 344 } 345 spin_unlock_irqrestore(&idp->lock, flags); 346 return -ENOMEM; 347 } 348 new->ary[0] = p; 349 new->count = 1; 350 new->layer = layers-1; 351 new->prefix = id & idr_layer_prefix_mask(new->layer); 352 if (bitmap_full(p->bitmap, IDR_SIZE)) 353 __set_bit(0, new->bitmap); 354 p = new; 355 } 356 rcu_assign_pointer(idp->top, p); 357 idp->layers = layers; 358 v = sub_alloc(idp, &id, pa, gfp_mask, layer_idr); 359 if (v == -EAGAIN) 360 goto build_up; 361 return(v); 362 } 363 364 /* 365 * @id and @pa are from a successful allocation from idr_get_empty_slot(). 366 * Install the user pointer @ptr and mark the slot full. 367 */ 368 static void idr_fill_slot(struct idr *idr, void *ptr, int id, 369 struct idr_layer **pa) 370 { 371 /* update hint used for lookup, cleared from free_layer() */ 372 rcu_assign_pointer(idr->hint, pa[0]); 373 374 rcu_assign_pointer(pa[0]->ary[id & IDR_MASK], (struct idr_layer *)ptr); 375 pa[0]->count++; 376 idr_mark_full(pa, id); 377 } 378 379 /** 380 * idr_get_new_above - allocate new idr entry above or equal to a start id 381 * @idp: idr handle 382 * @ptr: pointer you want associated with the id 383 * @starting_id: id to start search at 384 * @id: pointer to the allocated handle 385 * 386 * This is the allocate id function. It should be called with any 387 * required locks. 388 * 389 * If allocation from IDR's private freelist fails, idr_get_new_above() will 390 * return %-EAGAIN. The caller should retry the idr_pre_get() call to refill 391 * IDR's preallocation and then retry the idr_get_new_above() call. 392 * 393 * If the idr is full idr_get_new_above() will return %-ENOSPC. 394 * 395 * @id returns a value in the range @starting_id ... %0x7fffffff 396 */ 397 int idr_get_new_above(struct idr *idp, void *ptr, int starting_id, int *id) 398 { 399 struct idr_layer *pa[MAX_IDR_LEVEL + 1]; 400 int rv; 401 402 rv = idr_get_empty_slot(idp, starting_id, pa, 0, idp); 403 if (rv < 0) 404 return rv == -ENOMEM ? -EAGAIN : rv; 405 406 idr_fill_slot(idp, ptr, rv, pa); 407 *id = rv; 408 return 0; 409 } 410 EXPORT_SYMBOL(idr_get_new_above); 411 412 /** 413 * idr_preload - preload for idr_alloc() 414 * @gfp_mask: allocation mask to use for preloading 415 * 416 * Preload per-cpu layer buffer for idr_alloc(). Can only be used from 417 * process context and each idr_preload() invocation should be matched with 418 * idr_preload_end(). Note that preemption is disabled while preloaded. 419 * 420 * The first idr_alloc() in the preloaded section can be treated as if it 421 * were invoked with @gfp_mask used for preloading. This allows using more 422 * permissive allocation masks for idrs protected by spinlocks. 423 * 424 * For example, if idr_alloc() below fails, the failure can be treated as 425 * if idr_alloc() were called with GFP_KERNEL rather than GFP_NOWAIT. 426 * 427 * idr_preload(GFP_KERNEL); 428 * spin_lock(lock); 429 * 430 * id = idr_alloc(idr, ptr, start, end, GFP_NOWAIT); 431 * 432 * spin_unlock(lock); 433 * idr_preload_end(); 434 * if (id < 0) 435 * error; 436 */ 437 void idr_preload(gfp_t gfp_mask) 438 { 439 /* 440 * Consuming preload buffer from non-process context breaks preload 441 * allocation guarantee. Disallow usage from those contexts. 442 */ 443 WARN_ON_ONCE(in_interrupt()); 444 might_sleep_if(gfp_mask & __GFP_WAIT); 445 446 preempt_disable(); 447 448 /* 449 * idr_alloc() is likely to succeed w/o full idr_layer buffer and 450 * return value from idr_alloc() needs to be checked for failure 451 * anyway. Silently give up if allocation fails. The caller can 452 * treat failures from idr_alloc() as if idr_alloc() were called 453 * with @gfp_mask which should be enough. 454 */ 455 while (__this_cpu_read(idr_preload_cnt) < MAX_IDR_FREE) { 456 struct idr_layer *new; 457 458 preempt_enable(); 459 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask); 460 preempt_disable(); 461 if (!new) 462 break; 463 464 /* link the new one to per-cpu preload list */ 465 new->ary[0] = __this_cpu_read(idr_preload_head); 466 __this_cpu_write(idr_preload_head, new); 467 __this_cpu_inc(idr_preload_cnt); 468 } 469 } 470 EXPORT_SYMBOL(idr_preload); 471 472 /** 473 * idr_alloc - allocate new idr entry 474 * @idr: the (initialized) idr 475 * @ptr: pointer to be associated with the new id 476 * @start: the minimum id (inclusive) 477 * @end: the maximum id (exclusive, <= 0 for max) 478 * @gfp_mask: memory allocation flags 479 * 480 * Allocate an id in [start, end) and associate it with @ptr. If no ID is 481 * available in the specified range, returns -ENOSPC. On memory allocation 482 * failure, returns -ENOMEM. 483 * 484 * Note that @end is treated as max when <= 0. This is to always allow 485 * using @start + N as @end as long as N is inside integer range. 486 * 487 * The user is responsible for exclusively synchronizing all operations 488 * which may modify @idr. However, read-only accesses such as idr_find() 489 * or iteration can be performed under RCU read lock provided the user 490 * destroys @ptr in RCU-safe way after removal from idr. 491 */ 492 int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp_mask) 493 { 494 int max = end > 0 ? end - 1 : INT_MAX; /* inclusive upper limit */ 495 struct idr_layer *pa[MAX_IDR_LEVEL + 1]; 496 int id; 497 498 might_sleep_if(gfp_mask & __GFP_WAIT); 499 500 /* sanity checks */ 501 if (WARN_ON_ONCE(start < 0)) 502 return -EINVAL; 503 if (unlikely(max < start)) 504 return -ENOSPC; 505 506 /* allocate id */ 507 id = idr_get_empty_slot(idr, start, pa, gfp_mask, NULL); 508 if (unlikely(id < 0)) 509 return id; 510 if (unlikely(id > max)) 511 return -ENOSPC; 512 513 idr_fill_slot(idr, ptr, id, pa); 514 return id; 515 } 516 EXPORT_SYMBOL_GPL(idr_alloc); 517 518 static void idr_remove_warning(int id) 519 { 520 printk(KERN_WARNING 521 "idr_remove called for id=%d which is not allocated.\n", id); 522 dump_stack(); 523 } 524 525 static void sub_remove(struct idr *idp, int shift, int id) 526 { 527 struct idr_layer *p = idp->top; 528 struct idr_layer **pa[MAX_IDR_LEVEL + 1]; 529 struct idr_layer ***paa = &pa[0]; 530 struct idr_layer *to_free; 531 int n; 532 533 *paa = NULL; 534 *++paa = &idp->top; 535 536 while ((shift > 0) && p) { 537 n = (id >> shift) & IDR_MASK; 538 __clear_bit(n, p->bitmap); 539 *++paa = &p->ary[n]; 540 p = p->ary[n]; 541 shift -= IDR_BITS; 542 } 543 n = id & IDR_MASK; 544 if (likely(p != NULL && test_bit(n, p->bitmap))) { 545 __clear_bit(n, p->bitmap); 546 rcu_assign_pointer(p->ary[n], NULL); 547 to_free = NULL; 548 while(*paa && ! --((**paa)->count)){ 549 if (to_free) 550 free_layer(idp, to_free); 551 to_free = **paa; 552 **paa-- = NULL; 553 } 554 if (!*paa) 555 idp->layers = 0; 556 if (to_free) 557 free_layer(idp, to_free); 558 } else 559 idr_remove_warning(id); 560 } 561 562 /** 563 * idr_remove - remove the given id and free its slot 564 * @idp: idr handle 565 * @id: unique key 566 */ 567 void idr_remove(struct idr *idp, int id) 568 { 569 struct idr_layer *p; 570 struct idr_layer *to_free; 571 572 if (id < 0) 573 return; 574 575 sub_remove(idp, (idp->layers - 1) * IDR_BITS, id); 576 if (idp->top && idp->top->count == 1 && (idp->layers > 1) && 577 idp->top->ary[0]) { 578 /* 579 * Single child at leftmost slot: we can shrink the tree. 580 * This level is not needed anymore since when layers are 581 * inserted, they are inserted at the top of the existing 582 * tree. 583 */ 584 to_free = idp->top; 585 p = idp->top->ary[0]; 586 rcu_assign_pointer(idp->top, p); 587 --idp->layers; 588 to_free->count = 0; 589 bitmap_clear(to_free->bitmap, 0, IDR_SIZE); 590 free_layer(idp, to_free); 591 } 592 while (idp->id_free_cnt >= MAX_IDR_FREE) { 593 p = get_from_free_list(idp); 594 /* 595 * Note: we don't call the rcu callback here, since the only 596 * layers that fall into the freelist are those that have been 597 * preallocated. 598 */ 599 kmem_cache_free(idr_layer_cache, p); 600 } 601 return; 602 } 603 EXPORT_SYMBOL(idr_remove); 604 605 void __idr_remove_all(struct idr *idp) 606 { 607 int n, id, max; 608 int bt_mask; 609 struct idr_layer *p; 610 struct idr_layer *pa[MAX_IDR_LEVEL + 1]; 611 struct idr_layer **paa = &pa[0]; 612 613 n = idp->layers * IDR_BITS; 614 p = idp->top; 615 rcu_assign_pointer(idp->top, NULL); 616 max = idr_max(idp->layers); 617 618 id = 0; 619 while (id >= 0 && id <= max) { 620 while (n > IDR_BITS && p) { 621 n -= IDR_BITS; 622 *paa++ = p; 623 p = p->ary[(id >> n) & IDR_MASK]; 624 } 625 626 bt_mask = id; 627 id += 1 << n; 628 /* Get the highest bit that the above add changed from 0->1. */ 629 while (n < fls(id ^ bt_mask)) { 630 if (p) 631 free_layer(idp, p); 632 n += IDR_BITS; 633 p = *--paa; 634 } 635 } 636 idp->layers = 0; 637 } 638 EXPORT_SYMBOL(__idr_remove_all); 639 640 /** 641 * idr_destroy - release all cached layers within an idr tree 642 * @idp: idr handle 643 * 644 * Free all id mappings and all idp_layers. After this function, @idp is 645 * completely unused and can be freed / recycled. The caller is 646 * responsible for ensuring that no one else accesses @idp during or after 647 * idr_destroy(). 648 * 649 * A typical clean-up sequence for objects stored in an idr tree will use 650 * idr_for_each() to free all objects, if necessay, then idr_destroy() to 651 * free up the id mappings and cached idr_layers. 652 */ 653 void idr_destroy(struct idr *idp) 654 { 655 __idr_remove_all(idp); 656 657 while (idp->id_free_cnt) { 658 struct idr_layer *p = get_from_free_list(idp); 659 kmem_cache_free(idr_layer_cache, p); 660 } 661 } 662 EXPORT_SYMBOL(idr_destroy); 663 664 void *idr_find_slowpath(struct idr *idp, int id) 665 { 666 int n; 667 struct idr_layer *p; 668 669 if (id < 0) 670 return NULL; 671 672 p = rcu_dereference_raw(idp->top); 673 if (!p) 674 return NULL; 675 n = (p->layer+1) * IDR_BITS; 676 677 if (id > idr_max(p->layer + 1)) 678 return NULL; 679 BUG_ON(n == 0); 680 681 while (n > 0 && p) { 682 n -= IDR_BITS; 683 BUG_ON(n != p->layer*IDR_BITS); 684 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]); 685 } 686 return((void *)p); 687 } 688 EXPORT_SYMBOL(idr_find_slowpath); 689 690 /** 691 * idr_for_each - iterate through all stored pointers 692 * @idp: idr handle 693 * @fn: function to be called for each pointer 694 * @data: data passed back to callback function 695 * 696 * Iterate over the pointers registered with the given idr. The 697 * callback function will be called for each pointer currently 698 * registered, passing the id, the pointer and the data pointer passed 699 * to this function. It is not safe to modify the idr tree while in 700 * the callback, so functions such as idr_get_new and idr_remove are 701 * not allowed. 702 * 703 * We check the return of @fn each time. If it returns anything other 704 * than %0, we break out and return that value. 705 * 706 * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove(). 707 */ 708 int idr_for_each(struct idr *idp, 709 int (*fn)(int id, void *p, void *data), void *data) 710 { 711 int n, id, max, error = 0; 712 struct idr_layer *p; 713 struct idr_layer *pa[MAX_IDR_LEVEL + 1]; 714 struct idr_layer **paa = &pa[0]; 715 716 n = idp->layers * IDR_BITS; 717 p = rcu_dereference_raw(idp->top); 718 max = idr_max(idp->layers); 719 720 id = 0; 721 while (id >= 0 && id <= max) { 722 while (n > 0 && p) { 723 n -= IDR_BITS; 724 *paa++ = p; 725 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]); 726 } 727 728 if (p) { 729 error = fn(id, (void *)p, data); 730 if (error) 731 break; 732 } 733 734 id += 1 << n; 735 while (n < fls(id)) { 736 n += IDR_BITS; 737 p = *--paa; 738 } 739 } 740 741 return error; 742 } 743 EXPORT_SYMBOL(idr_for_each); 744 745 /** 746 * idr_get_next - lookup next object of id to given id. 747 * @idp: idr handle 748 * @nextidp: pointer to lookup key 749 * 750 * Returns pointer to registered object with id, which is next number to 751 * given id. After being looked up, *@nextidp will be updated for the next 752 * iteration. 753 * 754 * This function can be called under rcu_read_lock(), given that the leaf 755 * pointers lifetimes are correctly managed. 756 */ 757 void *idr_get_next(struct idr *idp, int *nextidp) 758 { 759 struct idr_layer *p, *pa[MAX_IDR_LEVEL + 1]; 760 struct idr_layer **paa = &pa[0]; 761 int id = *nextidp; 762 int n, max; 763 764 /* find first ent */ 765 p = rcu_dereference_raw(idp->top); 766 if (!p) 767 return NULL; 768 n = (p->layer + 1) * IDR_BITS; 769 max = idr_max(p->layer + 1); 770 771 while (id >= 0 && id <= max) { 772 while (n > 0 && p) { 773 n -= IDR_BITS; 774 *paa++ = p; 775 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]); 776 } 777 778 if (p) { 779 *nextidp = id; 780 return p; 781 } 782 783 /* 784 * Proceed to the next layer at the current level. Unlike 785 * idr_for_each(), @id isn't guaranteed to be aligned to 786 * layer boundary at this point and adding 1 << n may 787 * incorrectly skip IDs. Make sure we jump to the 788 * beginning of the next layer using round_up(). 789 */ 790 id = round_up(id + 1, 1 << n); 791 while (n < fls(id)) { 792 n += IDR_BITS; 793 p = *--paa; 794 } 795 } 796 return NULL; 797 } 798 EXPORT_SYMBOL(idr_get_next); 799 800 801 /** 802 * idr_replace - replace pointer for given id 803 * @idp: idr handle 804 * @ptr: pointer you want associated with the id 805 * @id: lookup key 806 * 807 * Replace the pointer registered with an id and return the old value. 808 * A %-ENOENT return indicates that @id was not found. 809 * A %-EINVAL return indicates that @id was not within valid constraints. 810 * 811 * The caller must serialize with writers. 812 */ 813 void *idr_replace(struct idr *idp, void *ptr, int id) 814 { 815 int n; 816 struct idr_layer *p, *old_p; 817 818 if (id < 0) 819 return ERR_PTR(-EINVAL); 820 821 p = idp->top; 822 if (!p) 823 return ERR_PTR(-EINVAL); 824 825 n = (p->layer+1) * IDR_BITS; 826 827 if (id >= (1 << n)) 828 return ERR_PTR(-EINVAL); 829 830 n -= IDR_BITS; 831 while ((n > 0) && p) { 832 p = p->ary[(id >> n) & IDR_MASK]; 833 n -= IDR_BITS; 834 } 835 836 n = id & IDR_MASK; 837 if (unlikely(p == NULL || !test_bit(n, p->bitmap))) 838 return ERR_PTR(-ENOENT); 839 840 old_p = p->ary[n]; 841 rcu_assign_pointer(p->ary[n], ptr); 842 843 return old_p; 844 } 845 EXPORT_SYMBOL(idr_replace); 846 847 void __init idr_init_cache(void) 848 { 849 idr_layer_cache = kmem_cache_create("idr_layer_cache", 850 sizeof(struct idr_layer), 0, SLAB_PANIC, NULL); 851 } 852 853 /** 854 * idr_init - initialize idr handle 855 * @idp: idr handle 856 * 857 * This function is use to set up the handle (@idp) that you will pass 858 * to the rest of the functions. 859 */ 860 void idr_init(struct idr *idp) 861 { 862 memset(idp, 0, sizeof(struct idr)); 863 spin_lock_init(&idp->lock); 864 } 865 EXPORT_SYMBOL(idr_init); 866 867 868 /** 869 * DOC: IDA description 870 * IDA - IDR based ID allocator 871 * 872 * This is id allocator without id -> pointer translation. Memory 873 * usage is much lower than full blown idr because each id only 874 * occupies a bit. ida uses a custom leaf node which contains 875 * IDA_BITMAP_BITS slots. 876 * 877 * 2007-04-25 written by Tejun Heo <htejun@gmail.com> 878 */ 879 880 static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap) 881 { 882 unsigned long flags; 883 884 if (!ida->free_bitmap) { 885 spin_lock_irqsave(&ida->idr.lock, flags); 886 if (!ida->free_bitmap) { 887 ida->free_bitmap = bitmap; 888 bitmap = NULL; 889 } 890 spin_unlock_irqrestore(&ida->idr.lock, flags); 891 } 892 893 kfree(bitmap); 894 } 895 896 /** 897 * ida_pre_get - reserve resources for ida allocation 898 * @ida: ida handle 899 * @gfp_mask: memory allocation flag 900 * 901 * This function should be called prior to locking and calling the 902 * following function. It preallocates enough memory to satisfy the 903 * worst possible allocation. 904 * 905 * If the system is REALLY out of memory this function returns %0, 906 * otherwise %1. 907 */ 908 int ida_pre_get(struct ida *ida, gfp_t gfp_mask) 909 { 910 /* allocate idr_layers */ 911 if (!idr_pre_get(&ida->idr, gfp_mask)) 912 return 0; 913 914 /* allocate free_bitmap */ 915 if (!ida->free_bitmap) { 916 struct ida_bitmap *bitmap; 917 918 bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask); 919 if (!bitmap) 920 return 0; 921 922 free_bitmap(ida, bitmap); 923 } 924 925 return 1; 926 } 927 EXPORT_SYMBOL(ida_pre_get); 928 929 /** 930 * ida_get_new_above - allocate new ID above or equal to a start id 931 * @ida: ida handle 932 * @starting_id: id to start search at 933 * @p_id: pointer to the allocated handle 934 * 935 * Allocate new ID above or equal to @starting_id. It should be called 936 * with any required locks. 937 * 938 * If memory is required, it will return %-EAGAIN, you should unlock 939 * and go back to the ida_pre_get() call. If the ida is full, it will 940 * return %-ENOSPC. 941 * 942 * @p_id returns a value in the range @starting_id ... %0x7fffffff. 943 */ 944 int ida_get_new_above(struct ida *ida, int starting_id, int *p_id) 945 { 946 struct idr_layer *pa[MAX_IDR_LEVEL + 1]; 947 struct ida_bitmap *bitmap; 948 unsigned long flags; 949 int idr_id = starting_id / IDA_BITMAP_BITS; 950 int offset = starting_id % IDA_BITMAP_BITS; 951 int t, id; 952 953 restart: 954 /* get vacant slot */ 955 t = idr_get_empty_slot(&ida->idr, idr_id, pa, 0, &ida->idr); 956 if (t < 0) 957 return t == -ENOMEM ? -EAGAIN : t; 958 959 if (t * IDA_BITMAP_BITS >= MAX_IDR_BIT) 960 return -ENOSPC; 961 962 if (t != idr_id) 963 offset = 0; 964 idr_id = t; 965 966 /* if bitmap isn't there, create a new one */ 967 bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK]; 968 if (!bitmap) { 969 spin_lock_irqsave(&ida->idr.lock, flags); 970 bitmap = ida->free_bitmap; 971 ida->free_bitmap = NULL; 972 spin_unlock_irqrestore(&ida->idr.lock, flags); 973 974 if (!bitmap) 975 return -EAGAIN; 976 977 memset(bitmap, 0, sizeof(struct ida_bitmap)); 978 rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK], 979 (void *)bitmap); 980 pa[0]->count++; 981 } 982 983 /* lookup for empty slot */ 984 t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset); 985 if (t == IDA_BITMAP_BITS) { 986 /* no empty slot after offset, continue to the next chunk */ 987 idr_id++; 988 offset = 0; 989 goto restart; 990 } 991 992 id = idr_id * IDA_BITMAP_BITS + t; 993 if (id >= MAX_IDR_BIT) 994 return -ENOSPC; 995 996 __set_bit(t, bitmap->bitmap); 997 if (++bitmap->nr_busy == IDA_BITMAP_BITS) 998 idr_mark_full(pa, idr_id); 999 1000 *p_id = id; 1001 1002 /* Each leaf node can handle nearly a thousand slots and the 1003 * whole idea of ida is to have small memory foot print. 1004 * Throw away extra resources one by one after each successful 1005 * allocation. 1006 */ 1007 if (ida->idr.id_free_cnt || ida->free_bitmap) { 1008 struct idr_layer *p = get_from_free_list(&ida->idr); 1009 if (p) 1010 kmem_cache_free(idr_layer_cache, p); 1011 } 1012 1013 return 0; 1014 } 1015 EXPORT_SYMBOL(ida_get_new_above); 1016 1017 /** 1018 * ida_remove - remove the given ID 1019 * @ida: ida handle 1020 * @id: ID to free 1021 */ 1022 void ida_remove(struct ida *ida, int id) 1023 { 1024 struct idr_layer *p = ida->idr.top; 1025 int shift = (ida->idr.layers - 1) * IDR_BITS; 1026 int idr_id = id / IDA_BITMAP_BITS; 1027 int offset = id % IDA_BITMAP_BITS; 1028 int n; 1029 struct ida_bitmap *bitmap; 1030 1031 /* clear full bits while looking up the leaf idr_layer */ 1032 while ((shift > 0) && p) { 1033 n = (idr_id >> shift) & IDR_MASK; 1034 __clear_bit(n, p->bitmap); 1035 p = p->ary[n]; 1036 shift -= IDR_BITS; 1037 } 1038 1039 if (p == NULL) 1040 goto err; 1041 1042 n = idr_id & IDR_MASK; 1043 __clear_bit(n, p->bitmap); 1044 1045 bitmap = (void *)p->ary[n]; 1046 if (!test_bit(offset, bitmap->bitmap)) 1047 goto err; 1048 1049 /* update bitmap and remove it if empty */ 1050 __clear_bit(offset, bitmap->bitmap); 1051 if (--bitmap->nr_busy == 0) { 1052 __set_bit(n, p->bitmap); /* to please idr_remove() */ 1053 idr_remove(&ida->idr, idr_id); 1054 free_bitmap(ida, bitmap); 1055 } 1056 1057 return; 1058 1059 err: 1060 printk(KERN_WARNING 1061 "ida_remove called for id=%d which is not allocated.\n", id); 1062 } 1063 EXPORT_SYMBOL(ida_remove); 1064 1065 /** 1066 * ida_destroy - release all cached layers within an ida tree 1067 * @ida: ida handle 1068 */ 1069 void ida_destroy(struct ida *ida) 1070 { 1071 idr_destroy(&ida->idr); 1072 kfree(ida->free_bitmap); 1073 } 1074 EXPORT_SYMBOL(ida_destroy); 1075 1076 /** 1077 * ida_simple_get - get a new id. 1078 * @ida: the (initialized) ida. 1079 * @start: the minimum id (inclusive, < 0x8000000) 1080 * @end: the maximum id (exclusive, < 0x8000000 or 0) 1081 * @gfp_mask: memory allocation flags 1082 * 1083 * Allocates an id in the range start <= id < end, or returns -ENOSPC. 1084 * On memory allocation failure, returns -ENOMEM. 1085 * 1086 * Use ida_simple_remove() to get rid of an id. 1087 */ 1088 int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end, 1089 gfp_t gfp_mask) 1090 { 1091 int ret, id; 1092 unsigned int max; 1093 unsigned long flags; 1094 1095 BUG_ON((int)start < 0); 1096 BUG_ON((int)end < 0); 1097 1098 if (end == 0) 1099 max = 0x80000000; 1100 else { 1101 BUG_ON(end < start); 1102 max = end - 1; 1103 } 1104 1105 again: 1106 if (!ida_pre_get(ida, gfp_mask)) 1107 return -ENOMEM; 1108 1109 spin_lock_irqsave(&simple_ida_lock, flags); 1110 ret = ida_get_new_above(ida, start, &id); 1111 if (!ret) { 1112 if (id > max) { 1113 ida_remove(ida, id); 1114 ret = -ENOSPC; 1115 } else { 1116 ret = id; 1117 } 1118 } 1119 spin_unlock_irqrestore(&simple_ida_lock, flags); 1120 1121 if (unlikely(ret == -EAGAIN)) 1122 goto again; 1123 1124 return ret; 1125 } 1126 EXPORT_SYMBOL(ida_simple_get); 1127 1128 /** 1129 * ida_simple_remove - remove an allocated id. 1130 * @ida: the (initialized) ida. 1131 * @id: the id returned by ida_simple_get. 1132 */ 1133 void ida_simple_remove(struct ida *ida, unsigned int id) 1134 { 1135 unsigned long flags; 1136 1137 BUG_ON((int)id < 0); 1138 spin_lock_irqsave(&simple_ida_lock, flags); 1139 ida_remove(ida, id); 1140 spin_unlock_irqrestore(&simple_ida_lock, flags); 1141 } 1142 EXPORT_SYMBOL(ida_simple_remove); 1143 1144 /** 1145 * ida_init - initialize ida handle 1146 * @ida: ida handle 1147 * 1148 * This function is use to set up the handle (@ida) that you will pass 1149 * to the rest of the functions. 1150 */ 1151 void ida_init(struct ida *ida) 1152 { 1153 memset(ida, 0, sizeof(struct ida)); 1154 idr_init(&ida->idr); 1155 1156 } 1157 EXPORT_SYMBOL(ida_init); 1158