xref: /linux/lib/idr.c (revision c3d6b628395fe6ec3442a83ddf02334c54867d43)
1 /*
2  * 2002-10-18  written by Jim Houston jim.houston@ccur.com
3  *	Copyright (C) 2002 by Concurrent Computer Corporation
4  *	Distributed under the GNU GPL license version 2.
5  *
6  * Modified by George Anzinger to reuse immediately and to use
7  * find bit instructions.  Also removed _irq on spinlocks.
8  *
9  * Modified by Nadia Derbey to make it RCU safe.
10  *
11  * Small id to pointer translation service.
12  *
13  * It uses a radix tree like structure as a sparse array indexed
14  * by the id to obtain the pointer.  The bitmap makes allocating
15  * a new id quick.
16  *
17  * You call it to allocate an id (an int) an associate with that id a
18  * pointer or what ever, we treat it as a (void *).  You can pass this
19  * id to a user for him to pass back at a later time.  You then pass
20  * that id to this code and it returns your pointer.
21 
22  * You can release ids at any time. When all ids are released, most of
23  * the memory is returned (we keep MAX_IDR_FREE) in a local pool so we
24  * don't need to go to the memory "store" during an id allocate, just
25  * so you don't need to be too concerned about locking and conflicts
26  * with the slab allocator.
27  */
28 
29 #ifndef TEST                        // to test in user space...
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/export.h>
33 #endif
34 #include <linux/err.h>
35 #include <linux/string.h>
36 #include <linux/idr.h>
37 #include <linux/spinlock.h>
38 #include <linux/percpu.h>
39 #include <linux/hardirq.h>
40 
41 #define MAX_IDR_SHIFT		(sizeof(int) * 8 - 1)
42 #define MAX_IDR_BIT		(1U << MAX_IDR_SHIFT)
43 
44 /* Leave the possibility of an incomplete final layer */
45 #define MAX_IDR_LEVEL ((MAX_IDR_SHIFT + IDR_BITS - 1) / IDR_BITS)
46 
47 /* Number of id_layer structs to leave in free list */
48 #define MAX_IDR_FREE (MAX_IDR_LEVEL * 2)
49 
50 static struct kmem_cache *idr_layer_cache;
51 static DEFINE_PER_CPU(struct idr_layer *, idr_preload_head);
52 static DEFINE_PER_CPU(int, idr_preload_cnt);
53 static DEFINE_SPINLOCK(simple_ida_lock);
54 
55 /* the maximum ID which can be allocated given idr->layers */
56 static int idr_max(int layers)
57 {
58 	int bits = min_t(int, layers * IDR_BITS, MAX_IDR_SHIFT);
59 
60 	return (1 << bits) - 1;
61 }
62 
63 /*
64  * Prefix mask for an idr_layer at @layer.  For layer 0, the prefix mask is
65  * all bits except for the lower IDR_BITS.  For layer 1, 2 * IDR_BITS, and
66  * so on.
67  */
68 static int idr_layer_prefix_mask(int layer)
69 {
70 	return ~idr_max(layer + 1);
71 }
72 
73 static struct idr_layer *get_from_free_list(struct idr *idp)
74 {
75 	struct idr_layer *p;
76 	unsigned long flags;
77 
78 	spin_lock_irqsave(&idp->lock, flags);
79 	if ((p = idp->id_free)) {
80 		idp->id_free = p->ary[0];
81 		idp->id_free_cnt--;
82 		p->ary[0] = NULL;
83 	}
84 	spin_unlock_irqrestore(&idp->lock, flags);
85 	return(p);
86 }
87 
88 /**
89  * idr_layer_alloc - allocate a new idr_layer
90  * @gfp_mask: allocation mask
91  * @layer_idr: optional idr to allocate from
92  *
93  * If @layer_idr is %NULL, directly allocate one using @gfp_mask or fetch
94  * one from the per-cpu preload buffer.  If @layer_idr is not %NULL, fetch
95  * an idr_layer from @idr->id_free.
96  *
97  * @layer_idr is to maintain backward compatibility with the old alloc
98  * interface - idr_pre_get() and idr_get_new*() - and will be removed
99  * together with per-pool preload buffer.
100  */
101 static struct idr_layer *idr_layer_alloc(gfp_t gfp_mask, struct idr *layer_idr)
102 {
103 	struct idr_layer *new;
104 
105 	/* this is the old path, bypass to get_from_free_list() */
106 	if (layer_idr)
107 		return get_from_free_list(layer_idr);
108 
109 	/* try to allocate directly from kmem_cache */
110 	new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
111 	if (new)
112 		return new;
113 
114 	/*
115 	 * Try to fetch one from the per-cpu preload buffer if in process
116 	 * context.  See idr_preload() for details.
117 	 */
118 	if (in_interrupt())
119 		return NULL;
120 
121 	preempt_disable();
122 	new = __this_cpu_read(idr_preload_head);
123 	if (new) {
124 		__this_cpu_write(idr_preload_head, new->ary[0]);
125 		__this_cpu_dec(idr_preload_cnt);
126 		new->ary[0] = NULL;
127 	}
128 	preempt_enable();
129 	return new;
130 }
131 
132 static void idr_layer_rcu_free(struct rcu_head *head)
133 {
134 	struct idr_layer *layer;
135 
136 	layer = container_of(head, struct idr_layer, rcu_head);
137 	kmem_cache_free(idr_layer_cache, layer);
138 }
139 
140 static inline void free_layer(struct idr *idr, struct idr_layer *p)
141 {
142 	if (idr->hint && idr->hint == p)
143 		RCU_INIT_POINTER(idr->hint, NULL);
144 	call_rcu(&p->rcu_head, idr_layer_rcu_free);
145 }
146 
147 /* only called when idp->lock is held */
148 static void __move_to_free_list(struct idr *idp, struct idr_layer *p)
149 {
150 	p->ary[0] = idp->id_free;
151 	idp->id_free = p;
152 	idp->id_free_cnt++;
153 }
154 
155 static void move_to_free_list(struct idr *idp, struct idr_layer *p)
156 {
157 	unsigned long flags;
158 
159 	/*
160 	 * Depends on the return element being zeroed.
161 	 */
162 	spin_lock_irqsave(&idp->lock, flags);
163 	__move_to_free_list(idp, p);
164 	spin_unlock_irqrestore(&idp->lock, flags);
165 }
166 
167 static void idr_mark_full(struct idr_layer **pa, int id)
168 {
169 	struct idr_layer *p = pa[0];
170 	int l = 0;
171 
172 	__set_bit(id & IDR_MASK, p->bitmap);
173 	/*
174 	 * If this layer is full mark the bit in the layer above to
175 	 * show that this part of the radix tree is full.  This may
176 	 * complete the layer above and require walking up the radix
177 	 * tree.
178 	 */
179 	while (bitmap_full(p->bitmap, IDR_SIZE)) {
180 		if (!(p = pa[++l]))
181 			break;
182 		id = id >> IDR_BITS;
183 		__set_bit((id & IDR_MASK), p->bitmap);
184 	}
185 }
186 
187 /**
188  * idr_pre_get - reserve resources for idr allocation
189  * @idp:	idr handle
190  * @gfp_mask:	memory allocation flags
191  *
192  * This function should be called prior to calling the idr_get_new* functions.
193  * It preallocates enough memory to satisfy the worst possible allocation. The
194  * caller should pass in GFP_KERNEL if possible.  This of course requires that
195  * no spinning locks be held.
196  *
197  * If the system is REALLY out of memory this function returns %0,
198  * otherwise %1.
199  */
200 int idr_pre_get(struct idr *idp, gfp_t gfp_mask)
201 {
202 	while (idp->id_free_cnt < MAX_IDR_FREE) {
203 		struct idr_layer *new;
204 		new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
205 		if (new == NULL)
206 			return (0);
207 		move_to_free_list(idp, new);
208 	}
209 	return 1;
210 }
211 EXPORT_SYMBOL(idr_pre_get);
212 
213 /**
214  * sub_alloc - try to allocate an id without growing the tree depth
215  * @idp: idr handle
216  * @starting_id: id to start search at
217  * @id: pointer to the allocated handle
218  * @pa: idr_layer[MAX_IDR_LEVEL] used as backtrack buffer
219  * @gfp_mask: allocation mask for idr_layer_alloc()
220  * @layer_idr: optional idr passed to idr_layer_alloc()
221  *
222  * Allocate an id in range [@starting_id, INT_MAX] from @idp without
223  * growing its depth.  Returns
224  *
225  *  the allocated id >= 0 if successful,
226  *  -EAGAIN if the tree needs to grow for allocation to succeed,
227  *  -ENOSPC if the id space is exhausted,
228  *  -ENOMEM if more idr_layers need to be allocated.
229  */
230 static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa,
231 		     gfp_t gfp_mask, struct idr *layer_idr)
232 {
233 	int n, m, sh;
234 	struct idr_layer *p, *new;
235 	int l, id, oid;
236 
237 	id = *starting_id;
238  restart:
239 	p = idp->top;
240 	l = idp->layers;
241 	pa[l--] = NULL;
242 	while (1) {
243 		/*
244 		 * We run around this while until we reach the leaf node...
245 		 */
246 		n = (id >> (IDR_BITS*l)) & IDR_MASK;
247 		m = find_next_zero_bit(p->bitmap, IDR_SIZE, n);
248 		if (m == IDR_SIZE) {
249 			/* no space available go back to previous layer. */
250 			l++;
251 			oid = id;
252 			id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1;
253 
254 			/* if already at the top layer, we need to grow */
255 			if (id >= 1 << (idp->layers * IDR_BITS)) {
256 				*starting_id = id;
257 				return -EAGAIN;
258 			}
259 			p = pa[l];
260 			BUG_ON(!p);
261 
262 			/* If we need to go up one layer, continue the
263 			 * loop; otherwise, restart from the top.
264 			 */
265 			sh = IDR_BITS * (l + 1);
266 			if (oid >> sh == id >> sh)
267 				continue;
268 			else
269 				goto restart;
270 		}
271 		if (m != n) {
272 			sh = IDR_BITS*l;
273 			id = ((id >> sh) ^ n ^ m) << sh;
274 		}
275 		if ((id >= MAX_IDR_BIT) || (id < 0))
276 			return -ENOSPC;
277 		if (l == 0)
278 			break;
279 		/*
280 		 * Create the layer below if it is missing.
281 		 */
282 		if (!p->ary[m]) {
283 			new = idr_layer_alloc(gfp_mask, layer_idr);
284 			if (!new)
285 				return -ENOMEM;
286 			new->layer = l-1;
287 			new->prefix = id & idr_layer_prefix_mask(new->layer);
288 			rcu_assign_pointer(p->ary[m], new);
289 			p->count++;
290 		}
291 		pa[l--] = p;
292 		p = p->ary[m];
293 	}
294 
295 	pa[l] = p;
296 	return id;
297 }
298 
299 static int idr_get_empty_slot(struct idr *idp, int starting_id,
300 			      struct idr_layer **pa, gfp_t gfp_mask,
301 			      struct idr *layer_idr)
302 {
303 	struct idr_layer *p, *new;
304 	int layers, v, id;
305 	unsigned long flags;
306 
307 	id = starting_id;
308 build_up:
309 	p = idp->top;
310 	layers = idp->layers;
311 	if (unlikely(!p)) {
312 		if (!(p = idr_layer_alloc(gfp_mask, layer_idr)))
313 			return -ENOMEM;
314 		p->layer = 0;
315 		layers = 1;
316 	}
317 	/*
318 	 * Add a new layer to the top of the tree if the requested
319 	 * id is larger than the currently allocated space.
320 	 */
321 	while (id > idr_max(layers)) {
322 		layers++;
323 		if (!p->count) {
324 			/* special case: if the tree is currently empty,
325 			 * then we grow the tree by moving the top node
326 			 * upwards.
327 			 */
328 			p->layer++;
329 			WARN_ON_ONCE(p->prefix);
330 			continue;
331 		}
332 		if (!(new = idr_layer_alloc(gfp_mask, layer_idr))) {
333 			/*
334 			 * The allocation failed.  If we built part of
335 			 * the structure tear it down.
336 			 */
337 			spin_lock_irqsave(&idp->lock, flags);
338 			for (new = p; p && p != idp->top; new = p) {
339 				p = p->ary[0];
340 				new->ary[0] = NULL;
341 				new->count = 0;
342 				bitmap_clear(new->bitmap, 0, IDR_SIZE);
343 				__move_to_free_list(idp, new);
344 			}
345 			spin_unlock_irqrestore(&idp->lock, flags);
346 			return -ENOMEM;
347 		}
348 		new->ary[0] = p;
349 		new->count = 1;
350 		new->layer = layers-1;
351 		new->prefix = id & idr_layer_prefix_mask(new->layer);
352 		if (bitmap_full(p->bitmap, IDR_SIZE))
353 			__set_bit(0, new->bitmap);
354 		p = new;
355 	}
356 	rcu_assign_pointer(idp->top, p);
357 	idp->layers = layers;
358 	v = sub_alloc(idp, &id, pa, gfp_mask, layer_idr);
359 	if (v == -EAGAIN)
360 		goto build_up;
361 	return(v);
362 }
363 
364 /*
365  * @id and @pa are from a successful allocation from idr_get_empty_slot().
366  * Install the user pointer @ptr and mark the slot full.
367  */
368 static void idr_fill_slot(struct idr *idr, void *ptr, int id,
369 			  struct idr_layer **pa)
370 {
371 	/* update hint used for lookup, cleared from free_layer() */
372 	rcu_assign_pointer(idr->hint, pa[0]);
373 
374 	rcu_assign_pointer(pa[0]->ary[id & IDR_MASK], (struct idr_layer *)ptr);
375 	pa[0]->count++;
376 	idr_mark_full(pa, id);
377 }
378 
379 /**
380  * idr_get_new_above - allocate new idr entry above or equal to a start id
381  * @idp: idr handle
382  * @ptr: pointer you want associated with the id
383  * @starting_id: id to start search at
384  * @id: pointer to the allocated handle
385  *
386  * This is the allocate id function.  It should be called with any
387  * required locks.
388  *
389  * If allocation from IDR's private freelist fails, idr_get_new_above() will
390  * return %-EAGAIN.  The caller should retry the idr_pre_get() call to refill
391  * IDR's preallocation and then retry the idr_get_new_above() call.
392  *
393  * If the idr is full idr_get_new_above() will return %-ENOSPC.
394  *
395  * @id returns a value in the range @starting_id ... %0x7fffffff
396  */
397 int idr_get_new_above(struct idr *idp, void *ptr, int starting_id, int *id)
398 {
399 	struct idr_layer *pa[MAX_IDR_LEVEL + 1];
400 	int rv;
401 
402 	rv = idr_get_empty_slot(idp, starting_id, pa, 0, idp);
403 	if (rv < 0)
404 		return rv == -ENOMEM ? -EAGAIN : rv;
405 
406 	idr_fill_slot(idp, ptr, rv, pa);
407 	*id = rv;
408 	return 0;
409 }
410 EXPORT_SYMBOL(idr_get_new_above);
411 
412 /**
413  * idr_preload - preload for idr_alloc()
414  * @gfp_mask: allocation mask to use for preloading
415  *
416  * Preload per-cpu layer buffer for idr_alloc().  Can only be used from
417  * process context and each idr_preload() invocation should be matched with
418  * idr_preload_end().  Note that preemption is disabled while preloaded.
419  *
420  * The first idr_alloc() in the preloaded section can be treated as if it
421  * were invoked with @gfp_mask used for preloading.  This allows using more
422  * permissive allocation masks for idrs protected by spinlocks.
423  *
424  * For example, if idr_alloc() below fails, the failure can be treated as
425  * if idr_alloc() were called with GFP_KERNEL rather than GFP_NOWAIT.
426  *
427  *	idr_preload(GFP_KERNEL);
428  *	spin_lock(lock);
429  *
430  *	id = idr_alloc(idr, ptr, start, end, GFP_NOWAIT);
431  *
432  *	spin_unlock(lock);
433  *	idr_preload_end();
434  *	if (id < 0)
435  *		error;
436  */
437 void idr_preload(gfp_t gfp_mask)
438 {
439 	/*
440 	 * Consuming preload buffer from non-process context breaks preload
441 	 * allocation guarantee.  Disallow usage from those contexts.
442 	 */
443 	WARN_ON_ONCE(in_interrupt());
444 	might_sleep_if(gfp_mask & __GFP_WAIT);
445 
446 	preempt_disable();
447 
448 	/*
449 	 * idr_alloc() is likely to succeed w/o full idr_layer buffer and
450 	 * return value from idr_alloc() needs to be checked for failure
451 	 * anyway.  Silently give up if allocation fails.  The caller can
452 	 * treat failures from idr_alloc() as if idr_alloc() were called
453 	 * with @gfp_mask which should be enough.
454 	 */
455 	while (__this_cpu_read(idr_preload_cnt) < MAX_IDR_FREE) {
456 		struct idr_layer *new;
457 
458 		preempt_enable();
459 		new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
460 		preempt_disable();
461 		if (!new)
462 			break;
463 
464 		/* link the new one to per-cpu preload list */
465 		new->ary[0] = __this_cpu_read(idr_preload_head);
466 		__this_cpu_write(idr_preload_head, new);
467 		__this_cpu_inc(idr_preload_cnt);
468 	}
469 }
470 EXPORT_SYMBOL(idr_preload);
471 
472 /**
473  * idr_alloc - allocate new idr entry
474  * @idr: the (initialized) idr
475  * @ptr: pointer to be associated with the new id
476  * @start: the minimum id (inclusive)
477  * @end: the maximum id (exclusive, <= 0 for max)
478  * @gfp_mask: memory allocation flags
479  *
480  * Allocate an id in [start, end) and associate it with @ptr.  If no ID is
481  * available in the specified range, returns -ENOSPC.  On memory allocation
482  * failure, returns -ENOMEM.
483  *
484  * Note that @end is treated as max when <= 0.  This is to always allow
485  * using @start + N as @end as long as N is inside integer range.
486  *
487  * The user is responsible for exclusively synchronizing all operations
488  * which may modify @idr.  However, read-only accesses such as idr_find()
489  * or iteration can be performed under RCU read lock provided the user
490  * destroys @ptr in RCU-safe way after removal from idr.
491  */
492 int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp_mask)
493 {
494 	int max = end > 0 ? end - 1 : INT_MAX;	/* inclusive upper limit */
495 	struct idr_layer *pa[MAX_IDR_LEVEL + 1];
496 	int id;
497 
498 	might_sleep_if(gfp_mask & __GFP_WAIT);
499 
500 	/* sanity checks */
501 	if (WARN_ON_ONCE(start < 0))
502 		return -EINVAL;
503 	if (unlikely(max < start))
504 		return -ENOSPC;
505 
506 	/* allocate id */
507 	id = idr_get_empty_slot(idr, start, pa, gfp_mask, NULL);
508 	if (unlikely(id < 0))
509 		return id;
510 	if (unlikely(id > max))
511 		return -ENOSPC;
512 
513 	idr_fill_slot(idr, ptr, id, pa);
514 	return id;
515 }
516 EXPORT_SYMBOL_GPL(idr_alloc);
517 
518 static void idr_remove_warning(int id)
519 {
520 	printk(KERN_WARNING
521 		"idr_remove called for id=%d which is not allocated.\n", id);
522 	dump_stack();
523 }
524 
525 static void sub_remove(struct idr *idp, int shift, int id)
526 {
527 	struct idr_layer *p = idp->top;
528 	struct idr_layer **pa[MAX_IDR_LEVEL + 1];
529 	struct idr_layer ***paa = &pa[0];
530 	struct idr_layer *to_free;
531 	int n;
532 
533 	*paa = NULL;
534 	*++paa = &idp->top;
535 
536 	while ((shift > 0) && p) {
537 		n = (id >> shift) & IDR_MASK;
538 		__clear_bit(n, p->bitmap);
539 		*++paa = &p->ary[n];
540 		p = p->ary[n];
541 		shift -= IDR_BITS;
542 	}
543 	n = id & IDR_MASK;
544 	if (likely(p != NULL && test_bit(n, p->bitmap))) {
545 		__clear_bit(n, p->bitmap);
546 		rcu_assign_pointer(p->ary[n], NULL);
547 		to_free = NULL;
548 		while(*paa && ! --((**paa)->count)){
549 			if (to_free)
550 				free_layer(idp, to_free);
551 			to_free = **paa;
552 			**paa-- = NULL;
553 		}
554 		if (!*paa)
555 			idp->layers = 0;
556 		if (to_free)
557 			free_layer(idp, to_free);
558 	} else
559 		idr_remove_warning(id);
560 }
561 
562 /**
563  * idr_remove - remove the given id and free its slot
564  * @idp: idr handle
565  * @id: unique key
566  */
567 void idr_remove(struct idr *idp, int id)
568 {
569 	struct idr_layer *p;
570 	struct idr_layer *to_free;
571 
572 	if (id < 0)
573 		return;
574 
575 	sub_remove(idp, (idp->layers - 1) * IDR_BITS, id);
576 	if (idp->top && idp->top->count == 1 && (idp->layers > 1) &&
577 	    idp->top->ary[0]) {
578 		/*
579 		 * Single child at leftmost slot: we can shrink the tree.
580 		 * This level is not needed anymore since when layers are
581 		 * inserted, they are inserted at the top of the existing
582 		 * tree.
583 		 */
584 		to_free = idp->top;
585 		p = idp->top->ary[0];
586 		rcu_assign_pointer(idp->top, p);
587 		--idp->layers;
588 		to_free->count = 0;
589 		bitmap_clear(to_free->bitmap, 0, IDR_SIZE);
590 		free_layer(idp, to_free);
591 	}
592 	while (idp->id_free_cnt >= MAX_IDR_FREE) {
593 		p = get_from_free_list(idp);
594 		/*
595 		 * Note: we don't call the rcu callback here, since the only
596 		 * layers that fall into the freelist are those that have been
597 		 * preallocated.
598 		 */
599 		kmem_cache_free(idr_layer_cache, p);
600 	}
601 	return;
602 }
603 EXPORT_SYMBOL(idr_remove);
604 
605 void __idr_remove_all(struct idr *idp)
606 {
607 	int n, id, max;
608 	int bt_mask;
609 	struct idr_layer *p;
610 	struct idr_layer *pa[MAX_IDR_LEVEL + 1];
611 	struct idr_layer **paa = &pa[0];
612 
613 	n = idp->layers * IDR_BITS;
614 	p = idp->top;
615 	rcu_assign_pointer(idp->top, NULL);
616 	max = idr_max(idp->layers);
617 
618 	id = 0;
619 	while (id >= 0 && id <= max) {
620 		while (n > IDR_BITS && p) {
621 			n -= IDR_BITS;
622 			*paa++ = p;
623 			p = p->ary[(id >> n) & IDR_MASK];
624 		}
625 
626 		bt_mask = id;
627 		id += 1 << n;
628 		/* Get the highest bit that the above add changed from 0->1. */
629 		while (n < fls(id ^ bt_mask)) {
630 			if (p)
631 				free_layer(idp, p);
632 			n += IDR_BITS;
633 			p = *--paa;
634 		}
635 	}
636 	idp->layers = 0;
637 }
638 EXPORT_SYMBOL(__idr_remove_all);
639 
640 /**
641  * idr_destroy - release all cached layers within an idr tree
642  * @idp: idr handle
643  *
644  * Free all id mappings and all idp_layers.  After this function, @idp is
645  * completely unused and can be freed / recycled.  The caller is
646  * responsible for ensuring that no one else accesses @idp during or after
647  * idr_destroy().
648  *
649  * A typical clean-up sequence for objects stored in an idr tree will use
650  * idr_for_each() to free all objects, if necessay, then idr_destroy() to
651  * free up the id mappings and cached idr_layers.
652  */
653 void idr_destroy(struct idr *idp)
654 {
655 	__idr_remove_all(idp);
656 
657 	while (idp->id_free_cnt) {
658 		struct idr_layer *p = get_from_free_list(idp);
659 		kmem_cache_free(idr_layer_cache, p);
660 	}
661 }
662 EXPORT_SYMBOL(idr_destroy);
663 
664 void *idr_find_slowpath(struct idr *idp, int id)
665 {
666 	int n;
667 	struct idr_layer *p;
668 
669 	if (id < 0)
670 		return NULL;
671 
672 	p = rcu_dereference_raw(idp->top);
673 	if (!p)
674 		return NULL;
675 	n = (p->layer+1) * IDR_BITS;
676 
677 	if (id > idr_max(p->layer + 1))
678 		return NULL;
679 	BUG_ON(n == 0);
680 
681 	while (n > 0 && p) {
682 		n -= IDR_BITS;
683 		BUG_ON(n != p->layer*IDR_BITS);
684 		p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
685 	}
686 	return((void *)p);
687 }
688 EXPORT_SYMBOL(idr_find_slowpath);
689 
690 /**
691  * idr_for_each - iterate through all stored pointers
692  * @idp: idr handle
693  * @fn: function to be called for each pointer
694  * @data: data passed back to callback function
695  *
696  * Iterate over the pointers registered with the given idr.  The
697  * callback function will be called for each pointer currently
698  * registered, passing the id, the pointer and the data pointer passed
699  * to this function.  It is not safe to modify the idr tree while in
700  * the callback, so functions such as idr_get_new and idr_remove are
701  * not allowed.
702  *
703  * We check the return of @fn each time. If it returns anything other
704  * than %0, we break out and return that value.
705  *
706  * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove().
707  */
708 int idr_for_each(struct idr *idp,
709 		 int (*fn)(int id, void *p, void *data), void *data)
710 {
711 	int n, id, max, error = 0;
712 	struct idr_layer *p;
713 	struct idr_layer *pa[MAX_IDR_LEVEL + 1];
714 	struct idr_layer **paa = &pa[0];
715 
716 	n = idp->layers * IDR_BITS;
717 	p = rcu_dereference_raw(idp->top);
718 	max = idr_max(idp->layers);
719 
720 	id = 0;
721 	while (id >= 0 && id <= max) {
722 		while (n > 0 && p) {
723 			n -= IDR_BITS;
724 			*paa++ = p;
725 			p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
726 		}
727 
728 		if (p) {
729 			error = fn(id, (void *)p, data);
730 			if (error)
731 				break;
732 		}
733 
734 		id += 1 << n;
735 		while (n < fls(id)) {
736 			n += IDR_BITS;
737 			p = *--paa;
738 		}
739 	}
740 
741 	return error;
742 }
743 EXPORT_SYMBOL(idr_for_each);
744 
745 /**
746  * idr_get_next - lookup next object of id to given id.
747  * @idp: idr handle
748  * @nextidp:  pointer to lookup key
749  *
750  * Returns pointer to registered object with id, which is next number to
751  * given id. After being looked up, *@nextidp will be updated for the next
752  * iteration.
753  *
754  * This function can be called under rcu_read_lock(), given that the leaf
755  * pointers lifetimes are correctly managed.
756  */
757 void *idr_get_next(struct idr *idp, int *nextidp)
758 {
759 	struct idr_layer *p, *pa[MAX_IDR_LEVEL + 1];
760 	struct idr_layer **paa = &pa[0];
761 	int id = *nextidp;
762 	int n, max;
763 
764 	/* find first ent */
765 	p = rcu_dereference_raw(idp->top);
766 	if (!p)
767 		return NULL;
768 	n = (p->layer + 1) * IDR_BITS;
769 	max = idr_max(p->layer + 1);
770 
771 	while (id >= 0 && id <= max) {
772 		while (n > 0 && p) {
773 			n -= IDR_BITS;
774 			*paa++ = p;
775 			p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
776 		}
777 
778 		if (p) {
779 			*nextidp = id;
780 			return p;
781 		}
782 
783 		/*
784 		 * Proceed to the next layer at the current level.  Unlike
785 		 * idr_for_each(), @id isn't guaranteed to be aligned to
786 		 * layer boundary at this point and adding 1 << n may
787 		 * incorrectly skip IDs.  Make sure we jump to the
788 		 * beginning of the next layer using round_up().
789 		 */
790 		id = round_up(id + 1, 1 << n);
791 		while (n < fls(id)) {
792 			n += IDR_BITS;
793 			p = *--paa;
794 		}
795 	}
796 	return NULL;
797 }
798 EXPORT_SYMBOL(idr_get_next);
799 
800 
801 /**
802  * idr_replace - replace pointer for given id
803  * @idp: idr handle
804  * @ptr: pointer you want associated with the id
805  * @id: lookup key
806  *
807  * Replace the pointer registered with an id and return the old value.
808  * A %-ENOENT return indicates that @id was not found.
809  * A %-EINVAL return indicates that @id was not within valid constraints.
810  *
811  * The caller must serialize with writers.
812  */
813 void *idr_replace(struct idr *idp, void *ptr, int id)
814 {
815 	int n;
816 	struct idr_layer *p, *old_p;
817 
818 	if (id < 0)
819 		return ERR_PTR(-EINVAL);
820 
821 	p = idp->top;
822 	if (!p)
823 		return ERR_PTR(-EINVAL);
824 
825 	n = (p->layer+1) * IDR_BITS;
826 
827 	if (id >= (1 << n))
828 		return ERR_PTR(-EINVAL);
829 
830 	n -= IDR_BITS;
831 	while ((n > 0) && p) {
832 		p = p->ary[(id >> n) & IDR_MASK];
833 		n -= IDR_BITS;
834 	}
835 
836 	n = id & IDR_MASK;
837 	if (unlikely(p == NULL || !test_bit(n, p->bitmap)))
838 		return ERR_PTR(-ENOENT);
839 
840 	old_p = p->ary[n];
841 	rcu_assign_pointer(p->ary[n], ptr);
842 
843 	return old_p;
844 }
845 EXPORT_SYMBOL(idr_replace);
846 
847 void __init idr_init_cache(void)
848 {
849 	idr_layer_cache = kmem_cache_create("idr_layer_cache",
850 				sizeof(struct idr_layer), 0, SLAB_PANIC, NULL);
851 }
852 
853 /**
854  * idr_init - initialize idr handle
855  * @idp:	idr handle
856  *
857  * This function is use to set up the handle (@idp) that you will pass
858  * to the rest of the functions.
859  */
860 void idr_init(struct idr *idp)
861 {
862 	memset(idp, 0, sizeof(struct idr));
863 	spin_lock_init(&idp->lock);
864 }
865 EXPORT_SYMBOL(idr_init);
866 
867 
868 /**
869  * DOC: IDA description
870  * IDA - IDR based ID allocator
871  *
872  * This is id allocator without id -> pointer translation.  Memory
873  * usage is much lower than full blown idr because each id only
874  * occupies a bit.  ida uses a custom leaf node which contains
875  * IDA_BITMAP_BITS slots.
876  *
877  * 2007-04-25  written by Tejun Heo <htejun@gmail.com>
878  */
879 
880 static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap)
881 {
882 	unsigned long flags;
883 
884 	if (!ida->free_bitmap) {
885 		spin_lock_irqsave(&ida->idr.lock, flags);
886 		if (!ida->free_bitmap) {
887 			ida->free_bitmap = bitmap;
888 			bitmap = NULL;
889 		}
890 		spin_unlock_irqrestore(&ida->idr.lock, flags);
891 	}
892 
893 	kfree(bitmap);
894 }
895 
896 /**
897  * ida_pre_get - reserve resources for ida allocation
898  * @ida:	ida handle
899  * @gfp_mask:	memory allocation flag
900  *
901  * This function should be called prior to locking and calling the
902  * following function.  It preallocates enough memory to satisfy the
903  * worst possible allocation.
904  *
905  * If the system is REALLY out of memory this function returns %0,
906  * otherwise %1.
907  */
908 int ida_pre_get(struct ida *ida, gfp_t gfp_mask)
909 {
910 	/* allocate idr_layers */
911 	if (!idr_pre_get(&ida->idr, gfp_mask))
912 		return 0;
913 
914 	/* allocate free_bitmap */
915 	if (!ida->free_bitmap) {
916 		struct ida_bitmap *bitmap;
917 
918 		bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask);
919 		if (!bitmap)
920 			return 0;
921 
922 		free_bitmap(ida, bitmap);
923 	}
924 
925 	return 1;
926 }
927 EXPORT_SYMBOL(ida_pre_get);
928 
929 /**
930  * ida_get_new_above - allocate new ID above or equal to a start id
931  * @ida:	ida handle
932  * @starting_id: id to start search at
933  * @p_id:	pointer to the allocated handle
934  *
935  * Allocate new ID above or equal to @starting_id.  It should be called
936  * with any required locks.
937  *
938  * If memory is required, it will return %-EAGAIN, you should unlock
939  * and go back to the ida_pre_get() call.  If the ida is full, it will
940  * return %-ENOSPC.
941  *
942  * @p_id returns a value in the range @starting_id ... %0x7fffffff.
943  */
944 int ida_get_new_above(struct ida *ida, int starting_id, int *p_id)
945 {
946 	struct idr_layer *pa[MAX_IDR_LEVEL + 1];
947 	struct ida_bitmap *bitmap;
948 	unsigned long flags;
949 	int idr_id = starting_id / IDA_BITMAP_BITS;
950 	int offset = starting_id % IDA_BITMAP_BITS;
951 	int t, id;
952 
953  restart:
954 	/* get vacant slot */
955 	t = idr_get_empty_slot(&ida->idr, idr_id, pa, 0, &ida->idr);
956 	if (t < 0)
957 		return t == -ENOMEM ? -EAGAIN : t;
958 
959 	if (t * IDA_BITMAP_BITS >= MAX_IDR_BIT)
960 		return -ENOSPC;
961 
962 	if (t != idr_id)
963 		offset = 0;
964 	idr_id = t;
965 
966 	/* if bitmap isn't there, create a new one */
967 	bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK];
968 	if (!bitmap) {
969 		spin_lock_irqsave(&ida->idr.lock, flags);
970 		bitmap = ida->free_bitmap;
971 		ida->free_bitmap = NULL;
972 		spin_unlock_irqrestore(&ida->idr.lock, flags);
973 
974 		if (!bitmap)
975 			return -EAGAIN;
976 
977 		memset(bitmap, 0, sizeof(struct ida_bitmap));
978 		rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK],
979 				(void *)bitmap);
980 		pa[0]->count++;
981 	}
982 
983 	/* lookup for empty slot */
984 	t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset);
985 	if (t == IDA_BITMAP_BITS) {
986 		/* no empty slot after offset, continue to the next chunk */
987 		idr_id++;
988 		offset = 0;
989 		goto restart;
990 	}
991 
992 	id = idr_id * IDA_BITMAP_BITS + t;
993 	if (id >= MAX_IDR_BIT)
994 		return -ENOSPC;
995 
996 	__set_bit(t, bitmap->bitmap);
997 	if (++bitmap->nr_busy == IDA_BITMAP_BITS)
998 		idr_mark_full(pa, idr_id);
999 
1000 	*p_id = id;
1001 
1002 	/* Each leaf node can handle nearly a thousand slots and the
1003 	 * whole idea of ida is to have small memory foot print.
1004 	 * Throw away extra resources one by one after each successful
1005 	 * allocation.
1006 	 */
1007 	if (ida->idr.id_free_cnt || ida->free_bitmap) {
1008 		struct idr_layer *p = get_from_free_list(&ida->idr);
1009 		if (p)
1010 			kmem_cache_free(idr_layer_cache, p);
1011 	}
1012 
1013 	return 0;
1014 }
1015 EXPORT_SYMBOL(ida_get_new_above);
1016 
1017 /**
1018  * ida_remove - remove the given ID
1019  * @ida:	ida handle
1020  * @id:		ID to free
1021  */
1022 void ida_remove(struct ida *ida, int id)
1023 {
1024 	struct idr_layer *p = ida->idr.top;
1025 	int shift = (ida->idr.layers - 1) * IDR_BITS;
1026 	int idr_id = id / IDA_BITMAP_BITS;
1027 	int offset = id % IDA_BITMAP_BITS;
1028 	int n;
1029 	struct ida_bitmap *bitmap;
1030 
1031 	/* clear full bits while looking up the leaf idr_layer */
1032 	while ((shift > 0) && p) {
1033 		n = (idr_id >> shift) & IDR_MASK;
1034 		__clear_bit(n, p->bitmap);
1035 		p = p->ary[n];
1036 		shift -= IDR_BITS;
1037 	}
1038 
1039 	if (p == NULL)
1040 		goto err;
1041 
1042 	n = idr_id & IDR_MASK;
1043 	__clear_bit(n, p->bitmap);
1044 
1045 	bitmap = (void *)p->ary[n];
1046 	if (!test_bit(offset, bitmap->bitmap))
1047 		goto err;
1048 
1049 	/* update bitmap and remove it if empty */
1050 	__clear_bit(offset, bitmap->bitmap);
1051 	if (--bitmap->nr_busy == 0) {
1052 		__set_bit(n, p->bitmap);	/* to please idr_remove() */
1053 		idr_remove(&ida->idr, idr_id);
1054 		free_bitmap(ida, bitmap);
1055 	}
1056 
1057 	return;
1058 
1059  err:
1060 	printk(KERN_WARNING
1061 	       "ida_remove called for id=%d which is not allocated.\n", id);
1062 }
1063 EXPORT_SYMBOL(ida_remove);
1064 
1065 /**
1066  * ida_destroy - release all cached layers within an ida tree
1067  * @ida:		ida handle
1068  */
1069 void ida_destroy(struct ida *ida)
1070 {
1071 	idr_destroy(&ida->idr);
1072 	kfree(ida->free_bitmap);
1073 }
1074 EXPORT_SYMBOL(ida_destroy);
1075 
1076 /**
1077  * ida_simple_get - get a new id.
1078  * @ida: the (initialized) ida.
1079  * @start: the minimum id (inclusive, < 0x8000000)
1080  * @end: the maximum id (exclusive, < 0x8000000 or 0)
1081  * @gfp_mask: memory allocation flags
1082  *
1083  * Allocates an id in the range start <= id < end, or returns -ENOSPC.
1084  * On memory allocation failure, returns -ENOMEM.
1085  *
1086  * Use ida_simple_remove() to get rid of an id.
1087  */
1088 int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end,
1089 		   gfp_t gfp_mask)
1090 {
1091 	int ret, id;
1092 	unsigned int max;
1093 	unsigned long flags;
1094 
1095 	BUG_ON((int)start < 0);
1096 	BUG_ON((int)end < 0);
1097 
1098 	if (end == 0)
1099 		max = 0x80000000;
1100 	else {
1101 		BUG_ON(end < start);
1102 		max = end - 1;
1103 	}
1104 
1105 again:
1106 	if (!ida_pre_get(ida, gfp_mask))
1107 		return -ENOMEM;
1108 
1109 	spin_lock_irqsave(&simple_ida_lock, flags);
1110 	ret = ida_get_new_above(ida, start, &id);
1111 	if (!ret) {
1112 		if (id > max) {
1113 			ida_remove(ida, id);
1114 			ret = -ENOSPC;
1115 		} else {
1116 			ret = id;
1117 		}
1118 	}
1119 	spin_unlock_irqrestore(&simple_ida_lock, flags);
1120 
1121 	if (unlikely(ret == -EAGAIN))
1122 		goto again;
1123 
1124 	return ret;
1125 }
1126 EXPORT_SYMBOL(ida_simple_get);
1127 
1128 /**
1129  * ida_simple_remove - remove an allocated id.
1130  * @ida: the (initialized) ida.
1131  * @id: the id returned by ida_simple_get.
1132  */
1133 void ida_simple_remove(struct ida *ida, unsigned int id)
1134 {
1135 	unsigned long flags;
1136 
1137 	BUG_ON((int)id < 0);
1138 	spin_lock_irqsave(&simple_ida_lock, flags);
1139 	ida_remove(ida, id);
1140 	spin_unlock_irqrestore(&simple_ida_lock, flags);
1141 }
1142 EXPORT_SYMBOL(ida_simple_remove);
1143 
1144 /**
1145  * ida_init - initialize ida handle
1146  * @ida:	ida handle
1147  *
1148  * This function is use to set up the handle (@ida) that you will pass
1149  * to the rest of the functions.
1150  */
1151 void ida_init(struct ida *ida)
1152 {
1153 	memset(ida, 0, sizeof(struct ida));
1154 	idr_init(&ida->idr);
1155 
1156 }
1157 EXPORT_SYMBOL(ida_init);
1158