1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/bitmap.h> 3 #include <linux/bug.h> 4 #include <linux/export.h> 5 #include <linux/idr.h> 6 #include <linux/slab.h> 7 #include <linux/spinlock.h> 8 #include <linux/xarray.h> 9 10 /** 11 * idr_alloc_u32() - Allocate an ID. 12 * @idr: IDR handle. 13 * @ptr: Pointer to be associated with the new ID. 14 * @nextid: Pointer to an ID. 15 * @max: The maximum ID to allocate (inclusive). 16 * @gfp: Memory allocation flags. 17 * 18 * Allocates an unused ID in the range specified by @nextid and @max. 19 * Note that @max is inclusive whereas the @end parameter to idr_alloc() 20 * is exclusive. The new ID is assigned to @nextid before the pointer 21 * is inserted into the IDR, so if @nextid points into the object pointed 22 * to by @ptr, a concurrent lookup will not find an uninitialised ID. 23 * 24 * The caller should provide their own locking to ensure that two 25 * concurrent modifications to the IDR are not possible. Read-only 26 * accesses to the IDR may be done under the RCU read lock or may 27 * exclude simultaneous writers. 28 * 29 * Return: 0 if an ID was allocated, -ENOMEM if memory allocation failed, 30 * or -ENOSPC if no free IDs could be found. If an error occurred, 31 * @nextid is unchanged. 32 */ 33 int idr_alloc_u32(struct idr *idr, void *ptr, u32 *nextid, 34 unsigned long max, gfp_t gfp) 35 { 36 struct radix_tree_iter iter; 37 void __rcu **slot; 38 unsigned int base = idr->idr_base; 39 unsigned int id = *nextid; 40 41 if (WARN_ON_ONCE(!(idr->idr_rt.xa_flags & ROOT_IS_IDR))) 42 idr->idr_rt.xa_flags |= IDR_RT_MARKER; 43 44 id = (id < base) ? 0 : id - base; 45 radix_tree_iter_init(&iter, id); 46 slot = idr_get_free(&idr->idr_rt, &iter, gfp, max - base); 47 if (IS_ERR(slot)) 48 return PTR_ERR(slot); 49 50 *nextid = iter.index + base; 51 /* there is a memory barrier inside radix_tree_iter_replace() */ 52 radix_tree_iter_replace(&idr->idr_rt, &iter, slot, ptr); 53 radix_tree_iter_tag_clear(&idr->idr_rt, &iter, IDR_FREE); 54 55 return 0; 56 } 57 EXPORT_SYMBOL_GPL(idr_alloc_u32); 58 59 /** 60 * idr_alloc() - Allocate an ID. 61 * @idr: IDR handle. 62 * @ptr: Pointer to be associated with the new ID. 63 * @start: The minimum ID (inclusive). 64 * @end: The maximum ID (exclusive). 65 * @gfp: Memory allocation flags. 66 * 67 * Allocates an unused ID in the range specified by @start and @end. If 68 * @end is <= 0, it is treated as one larger than %INT_MAX. This allows 69 * callers to use @start + N as @end as long as N is within integer range. 70 * 71 * The caller should provide their own locking to ensure that two 72 * concurrent modifications to the IDR are not possible. Read-only 73 * accesses to the IDR may be done under the RCU read lock or may 74 * exclude simultaneous writers. 75 * 76 * Return: The newly allocated ID, -ENOMEM if memory allocation failed, 77 * or -ENOSPC if no free IDs could be found. 78 */ 79 int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp) 80 { 81 u32 id = start; 82 int ret; 83 84 if (WARN_ON_ONCE(start < 0)) 85 return -EINVAL; 86 87 ret = idr_alloc_u32(idr, ptr, &id, end > 0 ? end - 1 : INT_MAX, gfp); 88 if (ret) 89 return ret; 90 91 return id; 92 } 93 EXPORT_SYMBOL_GPL(idr_alloc); 94 95 /** 96 * idr_alloc_cyclic() - Allocate an ID cyclically. 97 * @idr: IDR handle. 98 * @ptr: Pointer to be associated with the new ID. 99 * @start: The minimum ID (inclusive). 100 * @end: The maximum ID (exclusive). 101 * @gfp: Memory allocation flags. 102 * 103 * Allocates an unused ID in the range specified by @nextid and @end. If 104 * @end is <= 0, it is treated as one larger than %INT_MAX. This allows 105 * callers to use @start + N as @end as long as N is within integer range. 106 * The search for an unused ID will start at the last ID allocated and will 107 * wrap around to @start if no free IDs are found before reaching @end. 108 * 109 * The caller should provide their own locking to ensure that two 110 * concurrent modifications to the IDR are not possible. Read-only 111 * accesses to the IDR may be done under the RCU read lock or may 112 * exclude simultaneous writers. 113 * 114 * Return: The newly allocated ID, -ENOMEM if memory allocation failed, 115 * or -ENOSPC if no free IDs could be found. 116 */ 117 int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, gfp_t gfp) 118 { 119 u32 id = idr->idr_next; 120 int err, max = end > 0 ? end - 1 : INT_MAX; 121 122 if ((int)id < start) 123 id = start; 124 125 err = idr_alloc_u32(idr, ptr, &id, max, gfp); 126 if ((err == -ENOSPC) && (id > start)) { 127 id = start; 128 err = idr_alloc_u32(idr, ptr, &id, max, gfp); 129 } 130 if (err) 131 return err; 132 133 idr->idr_next = id + 1; 134 return id; 135 } 136 EXPORT_SYMBOL(idr_alloc_cyclic); 137 138 /** 139 * idr_remove() - Remove an ID from the IDR. 140 * @idr: IDR handle. 141 * @id: Pointer ID. 142 * 143 * Removes this ID from the IDR. If the ID was not previously in the IDR, 144 * this function returns %NULL. 145 * 146 * Since this function modifies the IDR, the caller should provide their 147 * own locking to ensure that concurrent modification of the same IDR is 148 * not possible. 149 * 150 * Return: The pointer formerly associated with this ID. 151 */ 152 void *idr_remove(struct idr *idr, unsigned long id) 153 { 154 return radix_tree_delete_item(&idr->idr_rt, id - idr->idr_base, NULL); 155 } 156 EXPORT_SYMBOL_GPL(idr_remove); 157 158 /** 159 * idr_find() - Return pointer for given ID. 160 * @idr: IDR handle. 161 * @id: Pointer ID. 162 * 163 * Looks up the pointer associated with this ID. A %NULL pointer may 164 * indicate that @id is not allocated or that the %NULL pointer was 165 * associated with this ID. 166 * 167 * This function can be called under rcu_read_lock(), given that the leaf 168 * pointers lifetimes are correctly managed. 169 * 170 * Return: The pointer associated with this ID. 171 */ 172 void *idr_find(const struct idr *idr, unsigned long id) 173 { 174 return radix_tree_lookup(&idr->idr_rt, id - idr->idr_base); 175 } 176 EXPORT_SYMBOL_GPL(idr_find); 177 178 /** 179 * idr_for_each() - Iterate through all stored pointers. 180 * @idr: IDR handle. 181 * @fn: Function to be called for each pointer. 182 * @data: Data passed to callback function. 183 * 184 * The callback function will be called for each entry in @idr, passing 185 * the ID, the entry and @data. 186 * 187 * If @fn returns anything other than %0, the iteration stops and that 188 * value is returned from this function. 189 * 190 * idr_for_each() can be called concurrently with idr_alloc() and 191 * idr_remove() if protected by RCU. Newly added entries may not be 192 * seen and deleted entries may be seen, but adding and removing entries 193 * will not cause other entries to be skipped, nor spurious ones to be seen. 194 */ 195 int idr_for_each(const struct idr *idr, 196 int (*fn)(int id, void *p, void *data), void *data) 197 { 198 struct radix_tree_iter iter; 199 void __rcu **slot; 200 int base = idr->idr_base; 201 202 radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, 0) { 203 int ret; 204 unsigned long id = iter.index + base; 205 206 if (WARN_ON_ONCE(id > INT_MAX)) 207 break; 208 ret = fn(id, rcu_dereference_raw(*slot), data); 209 if (ret) 210 return ret; 211 } 212 213 return 0; 214 } 215 EXPORT_SYMBOL(idr_for_each); 216 217 /** 218 * idr_get_next() - Find next populated entry. 219 * @idr: IDR handle. 220 * @nextid: Pointer to an ID. 221 * 222 * Returns the next populated entry in the tree with an ID greater than 223 * or equal to the value pointed to by @nextid. On exit, @nextid is updated 224 * to the ID of the found value. To use in a loop, the value pointed to by 225 * nextid must be incremented by the user. 226 */ 227 void *idr_get_next(struct idr *idr, int *nextid) 228 { 229 struct radix_tree_iter iter; 230 void __rcu **slot; 231 unsigned long base = idr->idr_base; 232 unsigned long id = *nextid; 233 234 id = (id < base) ? 0 : id - base; 235 slot = radix_tree_iter_find(&idr->idr_rt, &iter, id); 236 if (!slot) 237 return NULL; 238 id = iter.index + base; 239 240 if (WARN_ON_ONCE(id > INT_MAX)) 241 return NULL; 242 243 *nextid = id; 244 return rcu_dereference_raw(*slot); 245 } 246 EXPORT_SYMBOL(idr_get_next); 247 248 /** 249 * idr_get_next_ul() - Find next populated entry. 250 * @idr: IDR handle. 251 * @nextid: Pointer to an ID. 252 * 253 * Returns the next populated entry in the tree with an ID greater than 254 * or equal to the value pointed to by @nextid. On exit, @nextid is updated 255 * to the ID of the found value. To use in a loop, the value pointed to by 256 * nextid must be incremented by the user. 257 */ 258 void *idr_get_next_ul(struct idr *idr, unsigned long *nextid) 259 { 260 struct radix_tree_iter iter; 261 void __rcu **slot; 262 unsigned long base = idr->idr_base; 263 unsigned long id = *nextid; 264 265 id = (id < base) ? 0 : id - base; 266 slot = radix_tree_iter_find(&idr->idr_rt, &iter, id); 267 if (!slot) 268 return NULL; 269 270 *nextid = iter.index + base; 271 return rcu_dereference_raw(*slot); 272 } 273 EXPORT_SYMBOL(idr_get_next_ul); 274 275 /** 276 * idr_replace() - replace pointer for given ID. 277 * @idr: IDR handle. 278 * @ptr: New pointer to associate with the ID. 279 * @id: ID to change. 280 * 281 * Replace the pointer registered with an ID and return the old value. 282 * This function can be called under the RCU read lock concurrently with 283 * idr_alloc() and idr_remove() (as long as the ID being removed is not 284 * the one being replaced!). 285 * 286 * Returns: the old value on success. %-ENOENT indicates that @id was not 287 * found. %-EINVAL indicates that @ptr was not valid. 288 */ 289 void *idr_replace(struct idr *idr, void *ptr, unsigned long id) 290 { 291 struct radix_tree_node *node; 292 void __rcu **slot = NULL; 293 void *entry; 294 295 id -= idr->idr_base; 296 297 entry = __radix_tree_lookup(&idr->idr_rt, id, &node, &slot); 298 if (!slot || radix_tree_tag_get(&idr->idr_rt, id, IDR_FREE)) 299 return ERR_PTR(-ENOENT); 300 301 __radix_tree_replace(&idr->idr_rt, node, slot, ptr); 302 303 return entry; 304 } 305 EXPORT_SYMBOL(idr_replace); 306 307 /** 308 * DOC: IDA description 309 * 310 * The IDA is an ID allocator which does not provide the ability to 311 * associate an ID with a pointer. As such, it only needs to store one 312 * bit per ID, and so is more space efficient than an IDR. To use an IDA, 313 * define it using DEFINE_IDA() (or embed a &struct ida in a data structure, 314 * then initialise it using ida_init()). To allocate a new ID, call 315 * ida_alloc(), ida_alloc_min(), ida_alloc_max() or ida_alloc_range(). 316 * To free an ID, call ida_free(). 317 * 318 * ida_destroy() can be used to dispose of an IDA without needing to 319 * free the individual IDs in it. You can use ida_is_empty() to find 320 * out whether the IDA has any IDs currently allocated. 321 * 322 * The IDA handles its own locking. It is safe to call any of the IDA 323 * functions without synchronisation in your code. 324 * 325 * IDs are currently limited to the range [0-INT_MAX]. If this is an awkward 326 * limitation, it should be quite straightforward to raise the maximum. 327 */ 328 329 /* 330 * Developer's notes: 331 * 332 * The IDA uses the functionality provided by the XArray to store bitmaps in 333 * each entry. The XA_FREE_MARK is only cleared when all bits in the bitmap 334 * have been set. 335 * 336 * I considered telling the XArray that each slot is an order-10 node 337 * and indexing by bit number, but the XArray can't allow a single multi-index 338 * entry in the head, which would significantly increase memory consumption 339 * for the IDA. So instead we divide the index by the number of bits in the 340 * leaf bitmap before doing a radix tree lookup. 341 * 342 * As an optimisation, if there are only a few low bits set in any given 343 * leaf, instead of allocating a 128-byte bitmap, we store the bits 344 * as a value entry. Value entries never have the XA_FREE_MARK cleared 345 * because we can always convert them into a bitmap entry. 346 * 347 * It would be possible to optimise further; once we've run out of a 348 * single 128-byte bitmap, we currently switch to a 576-byte node, put 349 * the 128-byte bitmap in the first entry and then start allocating extra 350 * 128-byte entries. We could instead use the 512 bytes of the node's 351 * data as a bitmap before moving to that scheme. I do not believe this 352 * is a worthwhile optimisation; Rasmus Villemoes surveyed the current 353 * users of the IDA and almost none of them use more than 1024 entries. 354 * Those that do use more than the 8192 IDs that the 512 bytes would 355 * provide. 356 * 357 * The IDA always uses a lock to alloc/free. If we add a 'test_bit' 358 * equivalent, it will still need locking. Going to RCU lookup would require 359 * using RCU to free bitmaps, and that's not trivial without embedding an 360 * RCU head in the bitmap, which adds a 2-pointer overhead to each 128-byte 361 * bitmap, which is excessive. 362 */ 363 364 /** 365 * ida_alloc_range() - Allocate an unused ID. 366 * @ida: IDA handle. 367 * @min: Lowest ID to allocate. 368 * @max: Highest ID to allocate. 369 * @gfp: Memory allocation flags. 370 * 371 * Allocate an ID between @min and @max, inclusive. The allocated ID will 372 * not exceed %INT_MAX, even if @max is larger. 373 * 374 * Context: Any context. 375 * Return: The allocated ID, or %-ENOMEM if memory could not be allocated, 376 * or %-ENOSPC if there are no free IDs. 377 */ 378 int ida_alloc_range(struct ida *ida, unsigned int min, unsigned int max, 379 gfp_t gfp) 380 { 381 XA_STATE(xas, &ida->xa, min / IDA_BITMAP_BITS); 382 unsigned bit = min % IDA_BITMAP_BITS; 383 unsigned long flags; 384 struct ida_bitmap *bitmap, *alloc = NULL; 385 386 if ((int)min < 0) 387 return -ENOSPC; 388 389 if ((int)max < 0) 390 max = INT_MAX; 391 392 retry: 393 xas_lock_irqsave(&xas, flags); 394 next: 395 bitmap = xas_find_marked(&xas, max / IDA_BITMAP_BITS, XA_FREE_MARK); 396 if (xas.xa_index > min / IDA_BITMAP_BITS) 397 bit = 0; 398 if (xas.xa_index * IDA_BITMAP_BITS + bit > max) 399 goto nospc; 400 401 if (xa_is_value(bitmap)) { 402 unsigned long tmp = xa_to_value(bitmap); 403 404 if (bit < BITS_PER_XA_VALUE) { 405 bit = find_next_zero_bit(&tmp, BITS_PER_XA_VALUE, bit); 406 if (xas.xa_index * IDA_BITMAP_BITS + bit > max) 407 goto nospc; 408 if (bit < BITS_PER_XA_VALUE) { 409 tmp |= 1UL << bit; 410 xas_store(&xas, xa_mk_value(tmp)); 411 goto out; 412 } 413 } 414 bitmap = alloc; 415 if (!bitmap) 416 bitmap = kzalloc(sizeof(*bitmap), GFP_NOWAIT); 417 if (!bitmap) 418 goto alloc; 419 bitmap->bitmap[0] = tmp; 420 xas_store(&xas, bitmap); 421 if (xas_error(&xas)) { 422 bitmap->bitmap[0] = 0; 423 goto out; 424 } 425 } 426 427 if (bitmap) { 428 bit = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, bit); 429 if (xas.xa_index * IDA_BITMAP_BITS + bit > max) 430 goto nospc; 431 if (bit == IDA_BITMAP_BITS) 432 goto next; 433 434 __set_bit(bit, bitmap->bitmap); 435 if (bitmap_full(bitmap->bitmap, IDA_BITMAP_BITS)) 436 xas_clear_mark(&xas, XA_FREE_MARK); 437 } else { 438 if (bit < BITS_PER_XA_VALUE) { 439 bitmap = xa_mk_value(1UL << bit); 440 } else { 441 bitmap = alloc; 442 if (!bitmap) 443 bitmap = kzalloc(sizeof(*bitmap), GFP_NOWAIT); 444 if (!bitmap) 445 goto alloc; 446 __set_bit(bit, bitmap->bitmap); 447 } 448 xas_store(&xas, bitmap); 449 } 450 out: 451 xas_unlock_irqrestore(&xas, flags); 452 if (xas_nomem(&xas, gfp)) { 453 xas.xa_index = min / IDA_BITMAP_BITS; 454 bit = min % IDA_BITMAP_BITS; 455 goto retry; 456 } 457 if (bitmap != alloc) 458 kfree(alloc); 459 if (xas_error(&xas)) 460 return xas_error(&xas); 461 return xas.xa_index * IDA_BITMAP_BITS + bit; 462 alloc: 463 xas_unlock_irqrestore(&xas, flags); 464 alloc = kzalloc(sizeof(*bitmap), gfp); 465 if (!alloc) 466 return -ENOMEM; 467 xas_set(&xas, min / IDA_BITMAP_BITS); 468 bit = min % IDA_BITMAP_BITS; 469 goto retry; 470 nospc: 471 xas_unlock_irqrestore(&xas, flags); 472 return -ENOSPC; 473 } 474 EXPORT_SYMBOL(ida_alloc_range); 475 476 /** 477 * ida_free() - Release an allocated ID. 478 * @ida: IDA handle. 479 * @id: Previously allocated ID. 480 * 481 * Context: Any context. 482 */ 483 void ida_free(struct ida *ida, unsigned int id) 484 { 485 XA_STATE(xas, &ida->xa, id / IDA_BITMAP_BITS); 486 unsigned bit = id % IDA_BITMAP_BITS; 487 struct ida_bitmap *bitmap; 488 unsigned long flags; 489 490 BUG_ON((int)id < 0); 491 492 xas_lock_irqsave(&xas, flags); 493 bitmap = xas_load(&xas); 494 495 if (xa_is_value(bitmap)) { 496 unsigned long v = xa_to_value(bitmap); 497 if (bit >= BITS_PER_XA_VALUE) 498 goto err; 499 if (!(v & (1UL << bit))) 500 goto err; 501 v &= ~(1UL << bit); 502 if (!v) 503 goto delete; 504 xas_store(&xas, xa_mk_value(v)); 505 } else { 506 if (!test_bit(bit, bitmap->bitmap)) 507 goto err; 508 __clear_bit(bit, bitmap->bitmap); 509 xas_set_mark(&xas, XA_FREE_MARK); 510 if (bitmap_empty(bitmap->bitmap, IDA_BITMAP_BITS)) { 511 kfree(bitmap); 512 delete: 513 xas_store(&xas, NULL); 514 } 515 } 516 xas_unlock_irqrestore(&xas, flags); 517 return; 518 err: 519 xas_unlock_irqrestore(&xas, flags); 520 WARN(1, "ida_free called for id=%d which is not allocated.\n", id); 521 } 522 EXPORT_SYMBOL(ida_free); 523 524 /** 525 * ida_destroy() - Free all IDs. 526 * @ida: IDA handle. 527 * 528 * Calling this function frees all IDs and releases all resources used 529 * by an IDA. When this call returns, the IDA is empty and can be reused 530 * or freed. If the IDA is already empty, there is no need to call this 531 * function. 532 * 533 * Context: Any context. 534 */ 535 void ida_destroy(struct ida *ida) 536 { 537 XA_STATE(xas, &ida->xa, 0); 538 struct ida_bitmap *bitmap; 539 unsigned long flags; 540 541 xas_lock_irqsave(&xas, flags); 542 xas_for_each(&xas, bitmap, ULONG_MAX) { 543 if (!xa_is_value(bitmap)) 544 kfree(bitmap); 545 xas_store(&xas, NULL); 546 } 547 xas_unlock_irqrestore(&xas, flags); 548 } 549 EXPORT_SYMBOL(ida_destroy); 550 551 #ifndef __KERNEL__ 552 extern void xa_dump_index(unsigned long index, unsigned int shift); 553 #define IDA_CHUNK_SHIFT ilog2(IDA_BITMAP_BITS) 554 555 static void ida_dump_entry(void *entry, unsigned long index) 556 { 557 unsigned long i; 558 559 if (!entry) 560 return; 561 562 if (xa_is_node(entry)) { 563 struct xa_node *node = xa_to_node(entry); 564 unsigned int shift = node->shift + IDA_CHUNK_SHIFT + 565 XA_CHUNK_SHIFT; 566 567 xa_dump_index(index * IDA_BITMAP_BITS, shift); 568 xa_dump_node(node); 569 for (i = 0; i < XA_CHUNK_SIZE; i++) 570 ida_dump_entry(node->slots[i], 571 index | (i << node->shift)); 572 } else if (xa_is_value(entry)) { 573 xa_dump_index(index * IDA_BITMAP_BITS, ilog2(BITS_PER_LONG)); 574 pr_cont("value: data %lx [%px]\n", xa_to_value(entry), entry); 575 } else { 576 struct ida_bitmap *bitmap = entry; 577 578 xa_dump_index(index * IDA_BITMAP_BITS, IDA_CHUNK_SHIFT); 579 pr_cont("bitmap: %p data", bitmap); 580 for (i = 0; i < IDA_BITMAP_LONGS; i++) 581 pr_cont(" %lx", bitmap->bitmap[i]); 582 pr_cont("\n"); 583 } 584 } 585 586 static void ida_dump(struct ida *ida) 587 { 588 struct xarray *xa = &ida->xa; 589 pr_debug("ida: %p node %p free %d\n", ida, xa->xa_head, 590 xa->xa_flags >> ROOT_TAG_SHIFT); 591 ida_dump_entry(xa->xa_head, 0); 592 } 593 #endif 594