xref: /linux/lib/idr.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  * 2002-10-18  written by Jim Houston jim.houston@ccur.com
3  *	Copyright (C) 2002 by Concurrent Computer Corporation
4  *	Distributed under the GNU GPL license version 2.
5  *
6  * Modified by George Anzinger to reuse immediately and to use
7  * find bit instructions.  Also removed _irq on spinlocks.
8  *
9  * Modified by Nadia Derbey to make it RCU safe.
10  *
11  * Small id to pointer translation service.
12  *
13  * It uses a radix tree like structure as a sparse array indexed
14  * by the id to obtain the pointer.  The bitmap makes allocating
15  * a new id quick.
16  *
17  * You call it to allocate an id (an int) an associate with that id a
18  * pointer or what ever, we treat it as a (void *).  You can pass this
19  * id to a user for him to pass back at a later time.  You then pass
20  * that id to this code and it returns your pointer.
21 
22  * You can release ids at any time. When all ids are released, most of
23  * the memory is returned (we keep IDR_FREE_MAX) in a local pool so we
24  * don't need to go to the memory "store" during an id allocate, just
25  * so you don't need to be too concerned about locking and conflicts
26  * with the slab allocator.
27  */
28 
29 #ifndef TEST                        // to test in user space...
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/module.h>
33 #endif
34 #include <linux/err.h>
35 #include <linux/string.h>
36 #include <linux/idr.h>
37 
38 static struct kmem_cache *idr_layer_cache;
39 
40 static struct idr_layer *get_from_free_list(struct idr *idp)
41 {
42 	struct idr_layer *p;
43 	unsigned long flags;
44 
45 	spin_lock_irqsave(&idp->lock, flags);
46 	if ((p = idp->id_free)) {
47 		idp->id_free = p->ary[0];
48 		idp->id_free_cnt--;
49 		p->ary[0] = NULL;
50 	}
51 	spin_unlock_irqrestore(&idp->lock, flags);
52 	return(p);
53 }
54 
55 static void idr_layer_rcu_free(struct rcu_head *head)
56 {
57 	struct idr_layer *layer;
58 
59 	layer = container_of(head, struct idr_layer, rcu_head);
60 	kmem_cache_free(idr_layer_cache, layer);
61 }
62 
63 static inline void free_layer(struct idr_layer *p)
64 {
65 	call_rcu(&p->rcu_head, idr_layer_rcu_free);
66 }
67 
68 /* only called when idp->lock is held */
69 static void __move_to_free_list(struct idr *idp, struct idr_layer *p)
70 {
71 	p->ary[0] = idp->id_free;
72 	idp->id_free = p;
73 	idp->id_free_cnt++;
74 }
75 
76 static void move_to_free_list(struct idr *idp, struct idr_layer *p)
77 {
78 	unsigned long flags;
79 
80 	/*
81 	 * Depends on the return element being zeroed.
82 	 */
83 	spin_lock_irqsave(&idp->lock, flags);
84 	__move_to_free_list(idp, p);
85 	spin_unlock_irqrestore(&idp->lock, flags);
86 }
87 
88 static void idr_mark_full(struct idr_layer **pa, int id)
89 {
90 	struct idr_layer *p = pa[0];
91 	int l = 0;
92 
93 	__set_bit(id & IDR_MASK, &p->bitmap);
94 	/*
95 	 * If this layer is full mark the bit in the layer above to
96 	 * show that this part of the radix tree is full.  This may
97 	 * complete the layer above and require walking up the radix
98 	 * tree.
99 	 */
100 	while (p->bitmap == IDR_FULL) {
101 		if (!(p = pa[++l]))
102 			break;
103 		id = id >> IDR_BITS;
104 		__set_bit((id & IDR_MASK), &p->bitmap);
105 	}
106 }
107 
108 /**
109  * idr_pre_get - reserver resources for idr allocation
110  * @idp:	idr handle
111  * @gfp_mask:	memory allocation flags
112  *
113  * This function should be called prior to locking and calling the
114  * idr_get_new* functions. It preallocates enough memory to satisfy
115  * the worst possible allocation.
116  *
117  * If the system is REALLY out of memory this function returns 0,
118  * otherwise 1.
119  */
120 int idr_pre_get(struct idr *idp, gfp_t gfp_mask)
121 {
122 	while (idp->id_free_cnt < IDR_FREE_MAX) {
123 		struct idr_layer *new;
124 		new = kmem_cache_alloc(idr_layer_cache, gfp_mask);
125 		if (new == NULL)
126 			return (0);
127 		move_to_free_list(idp, new);
128 	}
129 	return 1;
130 }
131 EXPORT_SYMBOL(idr_pre_get);
132 
133 static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa)
134 {
135 	int n, m, sh;
136 	struct idr_layer *p, *new;
137 	int l, id, oid;
138 	unsigned long bm;
139 
140 	id = *starting_id;
141  restart:
142 	p = idp->top;
143 	l = idp->layers;
144 	pa[l--] = NULL;
145 	while (1) {
146 		/*
147 		 * We run around this while until we reach the leaf node...
148 		 */
149 		n = (id >> (IDR_BITS*l)) & IDR_MASK;
150 		bm = ~p->bitmap;
151 		m = find_next_bit(&bm, IDR_SIZE, n);
152 		if (m == IDR_SIZE) {
153 			/* no space available go back to previous layer. */
154 			l++;
155 			oid = id;
156 			id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1;
157 
158 			/* if already at the top layer, we need to grow */
159 			if (!(p = pa[l])) {
160 				*starting_id = id;
161 				return IDR_NEED_TO_GROW;
162 			}
163 
164 			/* If we need to go up one layer, continue the
165 			 * loop; otherwise, restart from the top.
166 			 */
167 			sh = IDR_BITS * (l + 1);
168 			if (oid >> sh == id >> sh)
169 				continue;
170 			else
171 				goto restart;
172 		}
173 		if (m != n) {
174 			sh = IDR_BITS*l;
175 			id = ((id >> sh) ^ n ^ m) << sh;
176 		}
177 		if ((id >= MAX_ID_BIT) || (id < 0))
178 			return IDR_NOMORE_SPACE;
179 		if (l == 0)
180 			break;
181 		/*
182 		 * Create the layer below if it is missing.
183 		 */
184 		if (!p->ary[m]) {
185 			new = get_from_free_list(idp);
186 			if (!new)
187 				return -1;
188 			rcu_assign_pointer(p->ary[m], new);
189 			p->count++;
190 		}
191 		pa[l--] = p;
192 		p = p->ary[m];
193 	}
194 
195 	pa[l] = p;
196 	return id;
197 }
198 
199 static int idr_get_empty_slot(struct idr *idp, int starting_id,
200 			      struct idr_layer **pa)
201 {
202 	struct idr_layer *p, *new;
203 	int layers, v, id;
204 	unsigned long flags;
205 
206 	id = starting_id;
207 build_up:
208 	p = idp->top;
209 	layers = idp->layers;
210 	if (unlikely(!p)) {
211 		if (!(p = get_from_free_list(idp)))
212 			return -1;
213 		layers = 1;
214 	}
215 	/*
216 	 * Add a new layer to the top of the tree if the requested
217 	 * id is larger than the currently allocated space.
218 	 */
219 	while ((layers < (MAX_LEVEL - 1)) && (id >= (1 << (layers*IDR_BITS)))) {
220 		layers++;
221 		if (!p->count)
222 			continue;
223 		if (!(new = get_from_free_list(idp))) {
224 			/*
225 			 * The allocation failed.  If we built part of
226 			 * the structure tear it down.
227 			 */
228 			spin_lock_irqsave(&idp->lock, flags);
229 			for (new = p; p && p != idp->top; new = p) {
230 				p = p->ary[0];
231 				new->ary[0] = NULL;
232 				new->bitmap = new->count = 0;
233 				__move_to_free_list(idp, new);
234 			}
235 			spin_unlock_irqrestore(&idp->lock, flags);
236 			return -1;
237 		}
238 		new->ary[0] = p;
239 		new->count = 1;
240 		if (p->bitmap == IDR_FULL)
241 			__set_bit(0, &new->bitmap);
242 		p = new;
243 	}
244 	rcu_assign_pointer(idp->top, p);
245 	idp->layers = layers;
246 	v = sub_alloc(idp, &id, pa);
247 	if (v == IDR_NEED_TO_GROW)
248 		goto build_up;
249 	return(v);
250 }
251 
252 static int idr_get_new_above_int(struct idr *idp, void *ptr, int starting_id)
253 {
254 	struct idr_layer *pa[MAX_LEVEL];
255 	int id;
256 
257 	id = idr_get_empty_slot(idp, starting_id, pa);
258 	if (id >= 0) {
259 		/*
260 		 * Successfully found an empty slot.  Install the user
261 		 * pointer and mark the slot full.
262 		 */
263 		rcu_assign_pointer(pa[0]->ary[id & IDR_MASK],
264 				(struct idr_layer *)ptr);
265 		pa[0]->count++;
266 		idr_mark_full(pa, id);
267 	}
268 
269 	return id;
270 }
271 
272 /**
273  * idr_get_new_above - allocate new idr entry above or equal to a start id
274  * @idp: idr handle
275  * @ptr: pointer you want associated with the ide
276  * @start_id: id to start search at
277  * @id: pointer to the allocated handle
278  *
279  * This is the allocate id function.  It should be called with any
280  * required locks.
281  *
282  * If memory is required, it will return -EAGAIN, you should unlock
283  * and go back to the idr_pre_get() call.  If the idr is full, it will
284  * return -ENOSPC.
285  *
286  * @id returns a value in the range 0 ... 0x7fffffff
287  */
288 int idr_get_new_above(struct idr *idp, void *ptr, int starting_id, int *id)
289 {
290 	int rv;
291 
292 	rv = idr_get_new_above_int(idp, ptr, starting_id);
293 	/*
294 	 * This is a cheap hack until the IDR code can be fixed to
295 	 * return proper error values.
296 	 */
297 	if (rv < 0)
298 		return _idr_rc_to_errno(rv);
299 	*id = rv;
300 	return 0;
301 }
302 EXPORT_SYMBOL(idr_get_new_above);
303 
304 /**
305  * idr_get_new - allocate new idr entry
306  * @idp: idr handle
307  * @ptr: pointer you want associated with the ide
308  * @id: pointer to the allocated handle
309  *
310  * This is the allocate id function.  It should be called with any
311  * required locks.
312  *
313  * If memory is required, it will return -EAGAIN, you should unlock
314  * and go back to the idr_pre_get() call.  If the idr is full, it will
315  * return -ENOSPC.
316  *
317  * @id returns a value in the range 0 ... 0x7fffffff
318  */
319 int idr_get_new(struct idr *idp, void *ptr, int *id)
320 {
321 	int rv;
322 
323 	rv = idr_get_new_above_int(idp, ptr, 0);
324 	/*
325 	 * This is a cheap hack until the IDR code can be fixed to
326 	 * return proper error values.
327 	 */
328 	if (rv < 0)
329 		return _idr_rc_to_errno(rv);
330 	*id = rv;
331 	return 0;
332 }
333 EXPORT_SYMBOL(idr_get_new);
334 
335 static void idr_remove_warning(int id)
336 {
337 	printk(KERN_WARNING
338 		"idr_remove called for id=%d which is not allocated.\n", id);
339 	dump_stack();
340 }
341 
342 static void sub_remove(struct idr *idp, int shift, int id)
343 {
344 	struct idr_layer *p = idp->top;
345 	struct idr_layer **pa[MAX_LEVEL];
346 	struct idr_layer ***paa = &pa[0];
347 	struct idr_layer *to_free;
348 	int n;
349 
350 	*paa = NULL;
351 	*++paa = &idp->top;
352 
353 	while ((shift > 0) && p) {
354 		n = (id >> shift) & IDR_MASK;
355 		__clear_bit(n, &p->bitmap);
356 		*++paa = &p->ary[n];
357 		p = p->ary[n];
358 		shift -= IDR_BITS;
359 	}
360 	n = id & IDR_MASK;
361 	if (likely(p != NULL && test_bit(n, &p->bitmap))){
362 		__clear_bit(n, &p->bitmap);
363 		rcu_assign_pointer(p->ary[n], NULL);
364 		to_free = NULL;
365 		while(*paa && ! --((**paa)->count)){
366 			if (to_free)
367 				free_layer(to_free);
368 			to_free = **paa;
369 			**paa-- = NULL;
370 		}
371 		if (!*paa)
372 			idp->layers = 0;
373 		if (to_free)
374 			free_layer(to_free);
375 	} else
376 		idr_remove_warning(id);
377 }
378 
379 /**
380  * idr_remove - remove the given id and free it's slot
381  * @idp: idr handle
382  * @id: unique key
383  */
384 void idr_remove(struct idr *idp, int id)
385 {
386 	struct idr_layer *p;
387 	struct idr_layer *to_free;
388 
389 	/* Mask off upper bits we don't use for the search. */
390 	id &= MAX_ID_MASK;
391 
392 	sub_remove(idp, (idp->layers - 1) * IDR_BITS, id);
393 	if (idp->top && idp->top->count == 1 && (idp->layers > 1) &&
394 	    idp->top->ary[0]) {
395 		/*
396 		 * Single child at leftmost slot: we can shrink the tree.
397 		 * This level is not needed anymore since when layers are
398 		 * inserted, they are inserted at the top of the existing
399 		 * tree.
400 		 */
401 		to_free = idp->top;
402 		p = idp->top->ary[0];
403 		rcu_assign_pointer(idp->top, p);
404 		--idp->layers;
405 		to_free->bitmap = to_free->count = 0;
406 		free_layer(to_free);
407 	}
408 	while (idp->id_free_cnt >= IDR_FREE_MAX) {
409 		p = get_from_free_list(idp);
410 		/*
411 		 * Note: we don't call the rcu callback here, since the only
412 		 * layers that fall into the freelist are those that have been
413 		 * preallocated.
414 		 */
415 		kmem_cache_free(idr_layer_cache, p);
416 	}
417 	return;
418 }
419 EXPORT_SYMBOL(idr_remove);
420 
421 /**
422  * idr_remove_all - remove all ids from the given idr tree
423  * @idp: idr handle
424  *
425  * idr_destroy() only frees up unused, cached idp_layers, but this
426  * function will remove all id mappings and leave all idp_layers
427  * unused.
428  *
429  * A typical clean-up sequence for objects stored in an idr tree, will
430  * use idr_for_each() to free all objects, if necessay, then
431  * idr_remove_all() to remove all ids, and idr_destroy() to free
432  * up the cached idr_layers.
433  */
434 void idr_remove_all(struct idr *idp)
435 {
436 	int n, id, max;
437 	struct idr_layer *p;
438 	struct idr_layer *pa[MAX_LEVEL];
439 	struct idr_layer **paa = &pa[0];
440 
441 	n = idp->layers * IDR_BITS;
442 	p = idp->top;
443 	max = 1 << n;
444 
445 	id = 0;
446 	while (id < max) {
447 		while (n > IDR_BITS && p) {
448 			n -= IDR_BITS;
449 			*paa++ = p;
450 			p = p->ary[(id >> n) & IDR_MASK];
451 		}
452 
453 		id += 1 << n;
454 		while (n < fls(id)) {
455 			if (p)
456 				free_layer(p);
457 			n += IDR_BITS;
458 			p = *--paa;
459 		}
460 	}
461 	rcu_assign_pointer(idp->top, NULL);
462 	idp->layers = 0;
463 }
464 EXPORT_SYMBOL(idr_remove_all);
465 
466 /**
467  * idr_destroy - release all cached layers within an idr tree
468  * idp: idr handle
469  */
470 void idr_destroy(struct idr *idp)
471 {
472 	while (idp->id_free_cnt) {
473 		struct idr_layer *p = get_from_free_list(idp);
474 		kmem_cache_free(idr_layer_cache, p);
475 	}
476 }
477 EXPORT_SYMBOL(idr_destroy);
478 
479 /**
480  * idr_find - return pointer for given id
481  * @idp: idr handle
482  * @id: lookup key
483  *
484  * Return the pointer given the id it has been registered with.  A %NULL
485  * return indicates that @id is not valid or you passed %NULL in
486  * idr_get_new().
487  *
488  * This function can be called under rcu_read_lock(), given that the leaf
489  * pointers lifetimes are correctly managed.
490  */
491 void *idr_find(struct idr *idp, int id)
492 {
493 	int n;
494 	struct idr_layer *p;
495 
496 	n = idp->layers * IDR_BITS;
497 	p = rcu_dereference(idp->top);
498 
499 	/* Mask off upper bits we don't use for the search. */
500 	id &= MAX_ID_MASK;
501 
502 	if (id >= (1 << n))
503 		return NULL;
504 
505 	while (n > 0 && p) {
506 		n -= IDR_BITS;
507 		p = rcu_dereference(p->ary[(id >> n) & IDR_MASK]);
508 	}
509 	return((void *)p);
510 }
511 EXPORT_SYMBOL(idr_find);
512 
513 /**
514  * idr_for_each - iterate through all stored pointers
515  * @idp: idr handle
516  * @fn: function to be called for each pointer
517  * @data: data passed back to callback function
518  *
519  * Iterate over the pointers registered with the given idr.  The
520  * callback function will be called for each pointer currently
521  * registered, passing the id, the pointer and the data pointer passed
522  * to this function.  It is not safe to modify the idr tree while in
523  * the callback, so functions such as idr_get_new and idr_remove are
524  * not allowed.
525  *
526  * We check the return of @fn each time. If it returns anything other
527  * than 0, we break out and return that value.
528  *
529  * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove().
530  */
531 int idr_for_each(struct idr *idp,
532 		 int (*fn)(int id, void *p, void *data), void *data)
533 {
534 	int n, id, max, error = 0;
535 	struct idr_layer *p;
536 	struct idr_layer *pa[MAX_LEVEL];
537 	struct idr_layer **paa = &pa[0];
538 
539 	n = idp->layers * IDR_BITS;
540 	p = rcu_dereference(idp->top);
541 	max = 1 << n;
542 
543 	id = 0;
544 	while (id < max) {
545 		while (n > 0 && p) {
546 			n -= IDR_BITS;
547 			*paa++ = p;
548 			p = rcu_dereference(p->ary[(id >> n) & IDR_MASK]);
549 		}
550 
551 		if (p) {
552 			error = fn(id, (void *)p, data);
553 			if (error)
554 				break;
555 		}
556 
557 		id += 1 << n;
558 		while (n < fls(id)) {
559 			n += IDR_BITS;
560 			p = *--paa;
561 		}
562 	}
563 
564 	return error;
565 }
566 EXPORT_SYMBOL(idr_for_each);
567 
568 /**
569  * idr_replace - replace pointer for given id
570  * @idp: idr handle
571  * @ptr: pointer you want associated with the id
572  * @id: lookup key
573  *
574  * Replace the pointer registered with an id and return the old value.
575  * A -ENOENT return indicates that @id was not found.
576  * A -EINVAL return indicates that @id was not within valid constraints.
577  *
578  * The caller must serialize with writers.
579  */
580 void *idr_replace(struct idr *idp, void *ptr, int id)
581 {
582 	int n;
583 	struct idr_layer *p, *old_p;
584 
585 	n = idp->layers * IDR_BITS;
586 	p = idp->top;
587 
588 	id &= MAX_ID_MASK;
589 
590 	if (id >= (1 << n))
591 		return ERR_PTR(-EINVAL);
592 
593 	n -= IDR_BITS;
594 	while ((n > 0) && p) {
595 		p = p->ary[(id >> n) & IDR_MASK];
596 		n -= IDR_BITS;
597 	}
598 
599 	n = id & IDR_MASK;
600 	if (unlikely(p == NULL || !test_bit(n, &p->bitmap)))
601 		return ERR_PTR(-ENOENT);
602 
603 	old_p = p->ary[n];
604 	rcu_assign_pointer(p->ary[n], ptr);
605 
606 	return old_p;
607 }
608 EXPORT_SYMBOL(idr_replace);
609 
610 static void idr_cache_ctor(void *idr_layer)
611 {
612 	memset(idr_layer, 0, sizeof(struct idr_layer));
613 }
614 
615 void __init idr_init_cache(void)
616 {
617 	idr_layer_cache = kmem_cache_create("idr_layer_cache",
618 				sizeof(struct idr_layer), 0, SLAB_PANIC,
619 				idr_cache_ctor);
620 }
621 
622 /**
623  * idr_init - initialize idr handle
624  * @idp:	idr handle
625  *
626  * This function is use to set up the handle (@idp) that you will pass
627  * to the rest of the functions.
628  */
629 void idr_init(struct idr *idp)
630 {
631 	memset(idp, 0, sizeof(struct idr));
632 	spin_lock_init(&idp->lock);
633 }
634 EXPORT_SYMBOL(idr_init);
635 
636 
637 /*
638  * IDA - IDR based ID allocator
639  *
640  * this is id allocator without id -> pointer translation.  Memory
641  * usage is much lower than full blown idr because each id only
642  * occupies a bit.  ida uses a custom leaf node which contains
643  * IDA_BITMAP_BITS slots.
644  *
645  * 2007-04-25  written by Tejun Heo <htejun@gmail.com>
646  */
647 
648 static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap)
649 {
650 	unsigned long flags;
651 
652 	if (!ida->free_bitmap) {
653 		spin_lock_irqsave(&ida->idr.lock, flags);
654 		if (!ida->free_bitmap) {
655 			ida->free_bitmap = bitmap;
656 			bitmap = NULL;
657 		}
658 		spin_unlock_irqrestore(&ida->idr.lock, flags);
659 	}
660 
661 	kfree(bitmap);
662 }
663 
664 /**
665  * ida_pre_get - reserve resources for ida allocation
666  * @ida:	ida handle
667  * @gfp_mask:	memory allocation flag
668  *
669  * This function should be called prior to locking and calling the
670  * following function.  It preallocates enough memory to satisfy the
671  * worst possible allocation.
672  *
673  * If the system is REALLY out of memory this function returns 0,
674  * otherwise 1.
675  */
676 int ida_pre_get(struct ida *ida, gfp_t gfp_mask)
677 {
678 	/* allocate idr_layers */
679 	if (!idr_pre_get(&ida->idr, gfp_mask))
680 		return 0;
681 
682 	/* allocate free_bitmap */
683 	if (!ida->free_bitmap) {
684 		struct ida_bitmap *bitmap;
685 
686 		bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask);
687 		if (!bitmap)
688 			return 0;
689 
690 		free_bitmap(ida, bitmap);
691 	}
692 
693 	return 1;
694 }
695 EXPORT_SYMBOL(ida_pre_get);
696 
697 /**
698  * ida_get_new_above - allocate new ID above or equal to a start id
699  * @ida:	ida handle
700  * @staring_id:	id to start search at
701  * @p_id:	pointer to the allocated handle
702  *
703  * Allocate new ID above or equal to @ida.  It should be called with
704  * any required locks.
705  *
706  * If memory is required, it will return -EAGAIN, you should unlock
707  * and go back to the ida_pre_get() call.  If the ida is full, it will
708  * return -ENOSPC.
709  *
710  * @p_id returns a value in the range 0 ... 0x7fffffff.
711  */
712 int ida_get_new_above(struct ida *ida, int starting_id, int *p_id)
713 {
714 	struct idr_layer *pa[MAX_LEVEL];
715 	struct ida_bitmap *bitmap;
716 	unsigned long flags;
717 	int idr_id = starting_id / IDA_BITMAP_BITS;
718 	int offset = starting_id % IDA_BITMAP_BITS;
719 	int t, id;
720 
721  restart:
722 	/* get vacant slot */
723 	t = idr_get_empty_slot(&ida->idr, idr_id, pa);
724 	if (t < 0)
725 		return _idr_rc_to_errno(t);
726 
727 	if (t * IDA_BITMAP_BITS >= MAX_ID_BIT)
728 		return -ENOSPC;
729 
730 	if (t != idr_id)
731 		offset = 0;
732 	idr_id = t;
733 
734 	/* if bitmap isn't there, create a new one */
735 	bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK];
736 	if (!bitmap) {
737 		spin_lock_irqsave(&ida->idr.lock, flags);
738 		bitmap = ida->free_bitmap;
739 		ida->free_bitmap = NULL;
740 		spin_unlock_irqrestore(&ida->idr.lock, flags);
741 
742 		if (!bitmap)
743 			return -EAGAIN;
744 
745 		memset(bitmap, 0, sizeof(struct ida_bitmap));
746 		rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK],
747 				(void *)bitmap);
748 		pa[0]->count++;
749 	}
750 
751 	/* lookup for empty slot */
752 	t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset);
753 	if (t == IDA_BITMAP_BITS) {
754 		/* no empty slot after offset, continue to the next chunk */
755 		idr_id++;
756 		offset = 0;
757 		goto restart;
758 	}
759 
760 	id = idr_id * IDA_BITMAP_BITS + t;
761 	if (id >= MAX_ID_BIT)
762 		return -ENOSPC;
763 
764 	__set_bit(t, bitmap->bitmap);
765 	if (++bitmap->nr_busy == IDA_BITMAP_BITS)
766 		idr_mark_full(pa, idr_id);
767 
768 	*p_id = id;
769 
770 	/* Each leaf node can handle nearly a thousand slots and the
771 	 * whole idea of ida is to have small memory foot print.
772 	 * Throw away extra resources one by one after each successful
773 	 * allocation.
774 	 */
775 	if (ida->idr.id_free_cnt || ida->free_bitmap) {
776 		struct idr_layer *p = get_from_free_list(&ida->idr);
777 		if (p)
778 			kmem_cache_free(idr_layer_cache, p);
779 	}
780 
781 	return 0;
782 }
783 EXPORT_SYMBOL(ida_get_new_above);
784 
785 /**
786  * ida_get_new - allocate new ID
787  * @ida:	idr handle
788  * @p_id:	pointer to the allocated handle
789  *
790  * Allocate new ID.  It should be called with any required locks.
791  *
792  * If memory is required, it will return -EAGAIN, you should unlock
793  * and go back to the idr_pre_get() call.  If the idr is full, it will
794  * return -ENOSPC.
795  *
796  * @id returns a value in the range 0 ... 0x7fffffff.
797  */
798 int ida_get_new(struct ida *ida, int *p_id)
799 {
800 	return ida_get_new_above(ida, 0, p_id);
801 }
802 EXPORT_SYMBOL(ida_get_new);
803 
804 /**
805  * ida_remove - remove the given ID
806  * @ida:	ida handle
807  * @id:		ID to free
808  */
809 void ida_remove(struct ida *ida, int id)
810 {
811 	struct idr_layer *p = ida->idr.top;
812 	int shift = (ida->idr.layers - 1) * IDR_BITS;
813 	int idr_id = id / IDA_BITMAP_BITS;
814 	int offset = id % IDA_BITMAP_BITS;
815 	int n;
816 	struct ida_bitmap *bitmap;
817 
818 	/* clear full bits while looking up the leaf idr_layer */
819 	while ((shift > 0) && p) {
820 		n = (idr_id >> shift) & IDR_MASK;
821 		__clear_bit(n, &p->bitmap);
822 		p = p->ary[n];
823 		shift -= IDR_BITS;
824 	}
825 
826 	if (p == NULL)
827 		goto err;
828 
829 	n = idr_id & IDR_MASK;
830 	__clear_bit(n, &p->bitmap);
831 
832 	bitmap = (void *)p->ary[n];
833 	if (!test_bit(offset, bitmap->bitmap))
834 		goto err;
835 
836 	/* update bitmap and remove it if empty */
837 	__clear_bit(offset, bitmap->bitmap);
838 	if (--bitmap->nr_busy == 0) {
839 		__set_bit(n, &p->bitmap);	/* to please idr_remove() */
840 		idr_remove(&ida->idr, idr_id);
841 		free_bitmap(ida, bitmap);
842 	}
843 
844 	return;
845 
846  err:
847 	printk(KERN_WARNING
848 	       "ida_remove called for id=%d which is not allocated.\n", id);
849 }
850 EXPORT_SYMBOL(ida_remove);
851 
852 /**
853  * ida_destroy - release all cached layers within an ida tree
854  * ida:		ida handle
855  */
856 void ida_destroy(struct ida *ida)
857 {
858 	idr_destroy(&ida->idr);
859 	kfree(ida->free_bitmap);
860 }
861 EXPORT_SYMBOL(ida_destroy);
862 
863 /**
864  * ida_init - initialize ida handle
865  * @ida:	ida handle
866  *
867  * This function is use to set up the handle (@ida) that you will pass
868  * to the rest of the functions.
869  */
870 void ida_init(struct ida *ida)
871 {
872 	memset(ida, 0, sizeof(struct ida));
873 	idr_init(&ida->idr);
874 
875 }
876 EXPORT_SYMBOL(ida_init);
877