xref: /linux/lib/idr.c (revision 8f8d5745bb520c76b81abef4a2cb3023d0313bfd)
1 #include <linux/bitmap.h>
2 #include <linux/bug.h>
3 #include <linux/export.h>
4 #include <linux/idr.h>
5 #include <linux/slab.h>
6 #include <linux/spinlock.h>
7 #include <linux/xarray.h>
8 
9 /**
10  * idr_alloc_u32() - Allocate an ID.
11  * @idr: IDR handle.
12  * @ptr: Pointer to be associated with the new ID.
13  * @nextid: Pointer to an ID.
14  * @max: The maximum ID to allocate (inclusive).
15  * @gfp: Memory allocation flags.
16  *
17  * Allocates an unused ID in the range specified by @nextid and @max.
18  * Note that @max is inclusive whereas the @end parameter to idr_alloc()
19  * is exclusive.  The new ID is assigned to @nextid before the pointer
20  * is inserted into the IDR, so if @nextid points into the object pointed
21  * to by @ptr, a concurrent lookup will not find an uninitialised ID.
22  *
23  * The caller should provide their own locking to ensure that two
24  * concurrent modifications to the IDR are not possible.  Read-only
25  * accesses to the IDR may be done under the RCU read lock or may
26  * exclude simultaneous writers.
27  *
28  * Return: 0 if an ID was allocated, -ENOMEM if memory allocation failed,
29  * or -ENOSPC if no free IDs could be found.  If an error occurred,
30  * @nextid is unchanged.
31  */
32 int idr_alloc_u32(struct idr *idr, void *ptr, u32 *nextid,
33 			unsigned long max, gfp_t gfp)
34 {
35 	struct radix_tree_iter iter;
36 	void __rcu **slot;
37 	unsigned int base = idr->idr_base;
38 	unsigned int id = *nextid;
39 
40 	if (WARN_ON_ONCE(!(idr->idr_rt.xa_flags & ROOT_IS_IDR)))
41 		idr->idr_rt.xa_flags |= IDR_RT_MARKER;
42 
43 	id = (id < base) ? 0 : id - base;
44 	radix_tree_iter_init(&iter, id);
45 	slot = idr_get_free(&idr->idr_rt, &iter, gfp, max - base);
46 	if (IS_ERR(slot))
47 		return PTR_ERR(slot);
48 
49 	*nextid = iter.index + base;
50 	/* there is a memory barrier inside radix_tree_iter_replace() */
51 	radix_tree_iter_replace(&idr->idr_rt, &iter, slot, ptr);
52 	radix_tree_iter_tag_clear(&idr->idr_rt, &iter, IDR_FREE);
53 
54 	return 0;
55 }
56 EXPORT_SYMBOL_GPL(idr_alloc_u32);
57 
58 /**
59  * idr_alloc() - Allocate an ID.
60  * @idr: IDR handle.
61  * @ptr: Pointer to be associated with the new ID.
62  * @start: The minimum ID (inclusive).
63  * @end: The maximum ID (exclusive).
64  * @gfp: Memory allocation flags.
65  *
66  * Allocates an unused ID in the range specified by @start and @end.  If
67  * @end is <= 0, it is treated as one larger than %INT_MAX.  This allows
68  * callers to use @start + N as @end as long as N is within integer range.
69  *
70  * The caller should provide their own locking to ensure that two
71  * concurrent modifications to the IDR are not possible.  Read-only
72  * accesses to the IDR may be done under the RCU read lock or may
73  * exclude simultaneous writers.
74  *
75  * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
76  * or -ENOSPC if no free IDs could be found.
77  */
78 int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
79 {
80 	u32 id = start;
81 	int ret;
82 
83 	if (WARN_ON_ONCE(start < 0))
84 		return -EINVAL;
85 
86 	ret = idr_alloc_u32(idr, ptr, &id, end > 0 ? end - 1 : INT_MAX, gfp);
87 	if (ret)
88 		return ret;
89 
90 	return id;
91 }
92 EXPORT_SYMBOL_GPL(idr_alloc);
93 
94 /**
95  * idr_alloc_cyclic() - Allocate an ID cyclically.
96  * @idr: IDR handle.
97  * @ptr: Pointer to be associated with the new ID.
98  * @start: The minimum ID (inclusive).
99  * @end: The maximum ID (exclusive).
100  * @gfp: Memory allocation flags.
101  *
102  * Allocates an unused ID in the range specified by @nextid and @end.  If
103  * @end is <= 0, it is treated as one larger than %INT_MAX.  This allows
104  * callers to use @start + N as @end as long as N is within integer range.
105  * The search for an unused ID will start at the last ID allocated and will
106  * wrap around to @start if no free IDs are found before reaching @end.
107  *
108  * The caller should provide their own locking to ensure that two
109  * concurrent modifications to the IDR are not possible.  Read-only
110  * accesses to the IDR may be done under the RCU read lock or may
111  * exclude simultaneous writers.
112  *
113  * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
114  * or -ENOSPC if no free IDs could be found.
115  */
116 int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
117 {
118 	u32 id = idr->idr_next;
119 	int err, max = end > 0 ? end - 1 : INT_MAX;
120 
121 	if ((int)id < start)
122 		id = start;
123 
124 	err = idr_alloc_u32(idr, ptr, &id, max, gfp);
125 	if ((err == -ENOSPC) && (id > start)) {
126 		id = start;
127 		err = idr_alloc_u32(idr, ptr, &id, max, gfp);
128 	}
129 	if (err)
130 		return err;
131 
132 	idr->idr_next = id + 1;
133 	return id;
134 }
135 EXPORT_SYMBOL(idr_alloc_cyclic);
136 
137 /**
138  * idr_remove() - Remove an ID from the IDR.
139  * @idr: IDR handle.
140  * @id: Pointer ID.
141  *
142  * Removes this ID from the IDR.  If the ID was not previously in the IDR,
143  * this function returns %NULL.
144  *
145  * Since this function modifies the IDR, the caller should provide their
146  * own locking to ensure that concurrent modification of the same IDR is
147  * not possible.
148  *
149  * Return: The pointer formerly associated with this ID.
150  */
151 void *idr_remove(struct idr *idr, unsigned long id)
152 {
153 	return radix_tree_delete_item(&idr->idr_rt, id - idr->idr_base, NULL);
154 }
155 EXPORT_SYMBOL_GPL(idr_remove);
156 
157 /**
158  * idr_find() - Return pointer for given ID.
159  * @idr: IDR handle.
160  * @id: Pointer ID.
161  *
162  * Looks up the pointer associated with this ID.  A %NULL pointer may
163  * indicate that @id is not allocated or that the %NULL pointer was
164  * associated with this ID.
165  *
166  * This function can be called under rcu_read_lock(), given that the leaf
167  * pointers lifetimes are correctly managed.
168  *
169  * Return: The pointer associated with this ID.
170  */
171 void *idr_find(const struct idr *idr, unsigned long id)
172 {
173 	return radix_tree_lookup(&idr->idr_rt, id - idr->idr_base);
174 }
175 EXPORT_SYMBOL_GPL(idr_find);
176 
177 /**
178  * idr_for_each() - Iterate through all stored pointers.
179  * @idr: IDR handle.
180  * @fn: Function to be called for each pointer.
181  * @data: Data passed to callback function.
182  *
183  * The callback function will be called for each entry in @idr, passing
184  * the ID, the entry and @data.
185  *
186  * If @fn returns anything other than %0, the iteration stops and that
187  * value is returned from this function.
188  *
189  * idr_for_each() can be called concurrently with idr_alloc() and
190  * idr_remove() if protected by RCU.  Newly added entries may not be
191  * seen and deleted entries may be seen, but adding and removing entries
192  * will not cause other entries to be skipped, nor spurious ones to be seen.
193  */
194 int idr_for_each(const struct idr *idr,
195 		int (*fn)(int id, void *p, void *data), void *data)
196 {
197 	struct radix_tree_iter iter;
198 	void __rcu **slot;
199 	int base = idr->idr_base;
200 
201 	radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, 0) {
202 		int ret;
203 		unsigned long id = iter.index + base;
204 
205 		if (WARN_ON_ONCE(id > INT_MAX))
206 			break;
207 		ret = fn(id, rcu_dereference_raw(*slot), data);
208 		if (ret)
209 			return ret;
210 	}
211 
212 	return 0;
213 }
214 EXPORT_SYMBOL(idr_for_each);
215 
216 /**
217  * idr_get_next() - Find next populated entry.
218  * @idr: IDR handle.
219  * @nextid: Pointer to an ID.
220  *
221  * Returns the next populated entry in the tree with an ID greater than
222  * or equal to the value pointed to by @nextid.  On exit, @nextid is updated
223  * to the ID of the found value.  To use in a loop, the value pointed to by
224  * nextid must be incremented by the user.
225  */
226 void *idr_get_next(struct idr *idr, int *nextid)
227 {
228 	struct radix_tree_iter iter;
229 	void __rcu **slot;
230 	unsigned long base = idr->idr_base;
231 	unsigned long id = *nextid;
232 
233 	id = (id < base) ? 0 : id - base;
234 	slot = radix_tree_iter_find(&idr->idr_rt, &iter, id);
235 	if (!slot)
236 		return NULL;
237 	id = iter.index + base;
238 
239 	if (WARN_ON_ONCE(id > INT_MAX))
240 		return NULL;
241 
242 	*nextid = id;
243 	return rcu_dereference_raw(*slot);
244 }
245 EXPORT_SYMBOL(idr_get_next);
246 
247 /**
248  * idr_get_next_ul() - Find next populated entry.
249  * @idr: IDR handle.
250  * @nextid: Pointer to an ID.
251  *
252  * Returns the next populated entry in the tree with an ID greater than
253  * or equal to the value pointed to by @nextid.  On exit, @nextid is updated
254  * to the ID of the found value.  To use in a loop, the value pointed to by
255  * nextid must be incremented by the user.
256  */
257 void *idr_get_next_ul(struct idr *idr, unsigned long *nextid)
258 {
259 	struct radix_tree_iter iter;
260 	void __rcu **slot;
261 	unsigned long base = idr->idr_base;
262 	unsigned long id = *nextid;
263 
264 	id = (id < base) ? 0 : id - base;
265 	slot = radix_tree_iter_find(&idr->idr_rt, &iter, id);
266 	if (!slot)
267 		return NULL;
268 
269 	*nextid = iter.index + base;
270 	return rcu_dereference_raw(*slot);
271 }
272 EXPORT_SYMBOL(idr_get_next_ul);
273 
274 /**
275  * idr_replace() - replace pointer for given ID.
276  * @idr: IDR handle.
277  * @ptr: New pointer to associate with the ID.
278  * @id: ID to change.
279  *
280  * Replace the pointer registered with an ID and return the old value.
281  * This function can be called under the RCU read lock concurrently with
282  * idr_alloc() and idr_remove() (as long as the ID being removed is not
283  * the one being replaced!).
284  *
285  * Returns: the old value on success.  %-ENOENT indicates that @id was not
286  * found.  %-EINVAL indicates that @ptr was not valid.
287  */
288 void *idr_replace(struct idr *idr, void *ptr, unsigned long id)
289 {
290 	struct radix_tree_node *node;
291 	void __rcu **slot = NULL;
292 	void *entry;
293 
294 	id -= idr->idr_base;
295 
296 	entry = __radix_tree_lookup(&idr->idr_rt, id, &node, &slot);
297 	if (!slot || radix_tree_tag_get(&idr->idr_rt, id, IDR_FREE))
298 		return ERR_PTR(-ENOENT);
299 
300 	__radix_tree_replace(&idr->idr_rt, node, slot, ptr);
301 
302 	return entry;
303 }
304 EXPORT_SYMBOL(idr_replace);
305 
306 /**
307  * DOC: IDA description
308  *
309  * The IDA is an ID allocator which does not provide the ability to
310  * associate an ID with a pointer.  As such, it only needs to store one
311  * bit per ID, and so is more space efficient than an IDR.  To use an IDA,
312  * define it using DEFINE_IDA() (or embed a &struct ida in a data structure,
313  * then initialise it using ida_init()).  To allocate a new ID, call
314  * ida_alloc(), ida_alloc_min(), ida_alloc_max() or ida_alloc_range().
315  * To free an ID, call ida_free().
316  *
317  * ida_destroy() can be used to dispose of an IDA without needing to
318  * free the individual IDs in it.  You can use ida_is_empty() to find
319  * out whether the IDA has any IDs currently allocated.
320  *
321  * The IDA handles its own locking.  It is safe to call any of the IDA
322  * functions without synchronisation in your code.
323  *
324  * IDs are currently limited to the range [0-INT_MAX].  If this is an awkward
325  * limitation, it should be quite straightforward to raise the maximum.
326  */
327 
328 /*
329  * Developer's notes:
330  *
331  * The IDA uses the functionality provided by the XArray to store bitmaps in
332  * each entry.  The XA_FREE_MARK is only cleared when all bits in the bitmap
333  * have been set.
334  *
335  * I considered telling the XArray that each slot is an order-10 node
336  * and indexing by bit number, but the XArray can't allow a single multi-index
337  * entry in the head, which would significantly increase memory consumption
338  * for the IDA.  So instead we divide the index by the number of bits in the
339  * leaf bitmap before doing a radix tree lookup.
340  *
341  * As an optimisation, if there are only a few low bits set in any given
342  * leaf, instead of allocating a 128-byte bitmap, we store the bits
343  * as a value entry.  Value entries never have the XA_FREE_MARK cleared
344  * because we can always convert them into a bitmap entry.
345  *
346  * It would be possible to optimise further; once we've run out of a
347  * single 128-byte bitmap, we currently switch to a 576-byte node, put
348  * the 128-byte bitmap in the first entry and then start allocating extra
349  * 128-byte entries.  We could instead use the 512 bytes of the node's
350  * data as a bitmap before moving to that scheme.  I do not believe this
351  * is a worthwhile optimisation; Rasmus Villemoes surveyed the current
352  * users of the IDA and almost none of them use more than 1024 entries.
353  * Those that do use more than the 8192 IDs that the 512 bytes would
354  * provide.
355  *
356  * The IDA always uses a lock to alloc/free.  If we add a 'test_bit'
357  * equivalent, it will still need locking.  Going to RCU lookup would require
358  * using RCU to free bitmaps, and that's not trivial without embedding an
359  * RCU head in the bitmap, which adds a 2-pointer overhead to each 128-byte
360  * bitmap, which is excessive.
361  */
362 
363 /**
364  * ida_alloc_range() - Allocate an unused ID.
365  * @ida: IDA handle.
366  * @min: Lowest ID to allocate.
367  * @max: Highest ID to allocate.
368  * @gfp: Memory allocation flags.
369  *
370  * Allocate an ID between @min and @max, inclusive.  The allocated ID will
371  * not exceed %INT_MAX, even if @max is larger.
372  *
373  * Context: Any context.
374  * Return: The allocated ID, or %-ENOMEM if memory could not be allocated,
375  * or %-ENOSPC if there are no free IDs.
376  */
377 int ida_alloc_range(struct ida *ida, unsigned int min, unsigned int max,
378 			gfp_t gfp)
379 {
380 	XA_STATE(xas, &ida->xa, min / IDA_BITMAP_BITS);
381 	unsigned bit = min % IDA_BITMAP_BITS;
382 	unsigned long flags;
383 	struct ida_bitmap *bitmap, *alloc = NULL;
384 
385 	if ((int)min < 0)
386 		return -ENOSPC;
387 
388 	if ((int)max < 0)
389 		max = INT_MAX;
390 
391 retry:
392 	xas_lock_irqsave(&xas, flags);
393 next:
394 	bitmap = xas_find_marked(&xas, max / IDA_BITMAP_BITS, XA_FREE_MARK);
395 	if (xas.xa_index > min / IDA_BITMAP_BITS)
396 		bit = 0;
397 	if (xas.xa_index * IDA_BITMAP_BITS + bit > max)
398 		goto nospc;
399 
400 	if (xa_is_value(bitmap)) {
401 		unsigned long tmp = xa_to_value(bitmap);
402 
403 		if (bit < BITS_PER_XA_VALUE) {
404 			bit = find_next_zero_bit(&tmp, BITS_PER_XA_VALUE, bit);
405 			if (xas.xa_index * IDA_BITMAP_BITS + bit > max)
406 				goto nospc;
407 			if (bit < BITS_PER_XA_VALUE) {
408 				tmp |= 1UL << bit;
409 				xas_store(&xas, xa_mk_value(tmp));
410 				goto out;
411 			}
412 		}
413 		bitmap = alloc;
414 		if (!bitmap)
415 			bitmap = kzalloc(sizeof(*bitmap), GFP_NOWAIT);
416 		if (!bitmap)
417 			goto alloc;
418 		bitmap->bitmap[0] = tmp;
419 		xas_store(&xas, bitmap);
420 		if (xas_error(&xas)) {
421 			bitmap->bitmap[0] = 0;
422 			goto out;
423 		}
424 	}
425 
426 	if (bitmap) {
427 		bit = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, bit);
428 		if (xas.xa_index * IDA_BITMAP_BITS + bit > max)
429 			goto nospc;
430 		if (bit == IDA_BITMAP_BITS)
431 			goto next;
432 
433 		__set_bit(bit, bitmap->bitmap);
434 		if (bitmap_full(bitmap->bitmap, IDA_BITMAP_BITS))
435 			xas_clear_mark(&xas, XA_FREE_MARK);
436 	} else {
437 		if (bit < BITS_PER_XA_VALUE) {
438 			bitmap = xa_mk_value(1UL << bit);
439 		} else {
440 			bitmap = alloc;
441 			if (!bitmap)
442 				bitmap = kzalloc(sizeof(*bitmap), GFP_NOWAIT);
443 			if (!bitmap)
444 				goto alloc;
445 			__set_bit(bit, bitmap->bitmap);
446 		}
447 		xas_store(&xas, bitmap);
448 	}
449 out:
450 	xas_unlock_irqrestore(&xas, flags);
451 	if (xas_nomem(&xas, gfp)) {
452 		xas.xa_index = min / IDA_BITMAP_BITS;
453 		bit = min % IDA_BITMAP_BITS;
454 		goto retry;
455 	}
456 	if (bitmap != alloc)
457 		kfree(alloc);
458 	if (xas_error(&xas))
459 		return xas_error(&xas);
460 	return xas.xa_index * IDA_BITMAP_BITS + bit;
461 alloc:
462 	xas_unlock_irqrestore(&xas, flags);
463 	alloc = kzalloc(sizeof(*bitmap), gfp);
464 	if (!alloc)
465 		return -ENOMEM;
466 	xas_set(&xas, min / IDA_BITMAP_BITS);
467 	bit = min % IDA_BITMAP_BITS;
468 	goto retry;
469 nospc:
470 	xas_unlock_irqrestore(&xas, flags);
471 	return -ENOSPC;
472 }
473 EXPORT_SYMBOL(ida_alloc_range);
474 
475 /**
476  * ida_free() - Release an allocated ID.
477  * @ida: IDA handle.
478  * @id: Previously allocated ID.
479  *
480  * Context: Any context.
481  */
482 void ida_free(struct ida *ida, unsigned int id)
483 {
484 	XA_STATE(xas, &ida->xa, id / IDA_BITMAP_BITS);
485 	unsigned bit = id % IDA_BITMAP_BITS;
486 	struct ida_bitmap *bitmap;
487 	unsigned long flags;
488 
489 	BUG_ON((int)id < 0);
490 
491 	xas_lock_irqsave(&xas, flags);
492 	bitmap = xas_load(&xas);
493 
494 	if (xa_is_value(bitmap)) {
495 		unsigned long v = xa_to_value(bitmap);
496 		if (bit >= BITS_PER_XA_VALUE)
497 			goto err;
498 		if (!(v & (1UL << bit)))
499 			goto err;
500 		v &= ~(1UL << bit);
501 		if (!v)
502 			goto delete;
503 		xas_store(&xas, xa_mk_value(v));
504 	} else {
505 		if (!test_bit(bit, bitmap->bitmap))
506 			goto err;
507 		__clear_bit(bit, bitmap->bitmap);
508 		xas_set_mark(&xas, XA_FREE_MARK);
509 		if (bitmap_empty(bitmap->bitmap, IDA_BITMAP_BITS)) {
510 			kfree(bitmap);
511 delete:
512 			xas_store(&xas, NULL);
513 		}
514 	}
515 	xas_unlock_irqrestore(&xas, flags);
516 	return;
517  err:
518 	xas_unlock_irqrestore(&xas, flags);
519 	WARN(1, "ida_free called for id=%d which is not allocated.\n", id);
520 }
521 EXPORT_SYMBOL(ida_free);
522 
523 /**
524  * ida_destroy() - Free all IDs.
525  * @ida: IDA handle.
526  *
527  * Calling this function frees all IDs and releases all resources used
528  * by an IDA.  When this call returns, the IDA is empty and can be reused
529  * or freed.  If the IDA is already empty, there is no need to call this
530  * function.
531  *
532  * Context: Any context.
533  */
534 void ida_destroy(struct ida *ida)
535 {
536 	XA_STATE(xas, &ida->xa, 0);
537 	struct ida_bitmap *bitmap;
538 	unsigned long flags;
539 
540 	xas_lock_irqsave(&xas, flags);
541 	xas_for_each(&xas, bitmap, ULONG_MAX) {
542 		if (!xa_is_value(bitmap))
543 			kfree(bitmap);
544 		xas_store(&xas, NULL);
545 	}
546 	xas_unlock_irqrestore(&xas, flags);
547 }
548 EXPORT_SYMBOL(ida_destroy);
549 
550 #ifndef __KERNEL__
551 extern void xa_dump_index(unsigned long index, unsigned int shift);
552 #define IDA_CHUNK_SHIFT		ilog2(IDA_BITMAP_BITS)
553 
554 static void ida_dump_entry(void *entry, unsigned long index)
555 {
556 	unsigned long i;
557 
558 	if (!entry)
559 		return;
560 
561 	if (xa_is_node(entry)) {
562 		struct xa_node *node = xa_to_node(entry);
563 		unsigned int shift = node->shift + IDA_CHUNK_SHIFT +
564 			XA_CHUNK_SHIFT;
565 
566 		xa_dump_index(index * IDA_BITMAP_BITS, shift);
567 		xa_dump_node(node);
568 		for (i = 0; i < XA_CHUNK_SIZE; i++)
569 			ida_dump_entry(node->slots[i],
570 					index | (i << node->shift));
571 	} else if (xa_is_value(entry)) {
572 		xa_dump_index(index * IDA_BITMAP_BITS, ilog2(BITS_PER_LONG));
573 		pr_cont("value: data %lx [%px]\n", xa_to_value(entry), entry);
574 	} else {
575 		struct ida_bitmap *bitmap = entry;
576 
577 		xa_dump_index(index * IDA_BITMAP_BITS, IDA_CHUNK_SHIFT);
578 		pr_cont("bitmap: %p data", bitmap);
579 		for (i = 0; i < IDA_BITMAP_LONGS; i++)
580 			pr_cont(" %lx", bitmap->bitmap[i]);
581 		pr_cont("\n");
582 	}
583 }
584 
585 static void ida_dump(struct ida *ida)
586 {
587 	struct xarray *xa = &ida->xa;
588 	pr_debug("ida: %p node %p free %d\n", ida, xa->xa_head,
589 				xa->xa_flags >> ROOT_TAG_SHIFT);
590 	ida_dump_entry(xa->xa_head, 0);
591 }
592 #endif
593