1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/bitmap.h> 3 #include <linux/bug.h> 4 #include <linux/export.h> 5 #include <linux/idr.h> 6 #include <linux/slab.h> 7 #include <linux/spinlock.h> 8 #include <linux/xarray.h> 9 10 /** 11 * idr_alloc_u32() - Allocate an ID. 12 * @idr: IDR handle. 13 * @ptr: Pointer to be associated with the new ID. 14 * @nextid: Pointer to an ID. 15 * @max: The maximum ID to allocate (inclusive). 16 * @gfp: Memory allocation flags. 17 * 18 * Allocates an unused ID in the range specified by @nextid and @max. 19 * Note that @max is inclusive whereas the @end parameter to idr_alloc() 20 * is exclusive. The new ID is assigned to @nextid before the pointer 21 * is inserted into the IDR, so if @nextid points into the object pointed 22 * to by @ptr, a concurrent lookup will not find an uninitialised ID. 23 * 24 * The caller should provide their own locking to ensure that two 25 * concurrent modifications to the IDR are not possible. Read-only 26 * accesses to the IDR may be done under the RCU read lock or may 27 * exclude simultaneous writers. 28 * 29 * Return: 0 if an ID was allocated, -ENOMEM if memory allocation failed, 30 * or -ENOSPC if no free IDs could be found. If an error occurred, 31 * @nextid is unchanged. 32 */ 33 int idr_alloc_u32(struct idr *idr, void *ptr, u32 *nextid, 34 unsigned long max, gfp_t gfp) 35 { 36 struct radix_tree_iter iter; 37 void __rcu **slot; 38 unsigned int base = idr->idr_base; 39 unsigned int id = *nextid; 40 41 if (WARN_ON_ONCE(!(idr->idr_rt.xa_flags & ROOT_IS_IDR))) 42 idr->idr_rt.xa_flags |= IDR_RT_MARKER; 43 44 id = (id < base) ? 0 : id - base; 45 radix_tree_iter_init(&iter, id); 46 slot = idr_get_free(&idr->idr_rt, &iter, gfp, max - base); 47 if (IS_ERR(slot)) 48 return PTR_ERR(slot); 49 50 *nextid = iter.index + base; 51 /* there is a memory barrier inside radix_tree_iter_replace() */ 52 radix_tree_iter_replace(&idr->idr_rt, &iter, slot, ptr); 53 radix_tree_iter_tag_clear(&idr->idr_rt, &iter, IDR_FREE); 54 55 return 0; 56 } 57 EXPORT_SYMBOL_GPL(idr_alloc_u32); 58 59 /** 60 * idr_alloc() - Allocate an ID. 61 * @idr: IDR handle. 62 * @ptr: Pointer to be associated with the new ID. 63 * @start: The minimum ID (inclusive). 64 * @end: The maximum ID (exclusive). 65 * @gfp: Memory allocation flags. 66 * 67 * Allocates an unused ID in the range specified by @start and @end. If 68 * @end is <= 0, it is treated as one larger than %INT_MAX. This allows 69 * callers to use @start + N as @end as long as N is within integer range. 70 * 71 * The caller should provide their own locking to ensure that two 72 * concurrent modifications to the IDR are not possible. Read-only 73 * accesses to the IDR may be done under the RCU read lock or may 74 * exclude simultaneous writers. 75 * 76 * Return: The newly allocated ID, -ENOMEM if memory allocation failed, 77 * or -ENOSPC if no free IDs could be found. 78 */ 79 int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp) 80 { 81 u32 id = start; 82 int ret; 83 84 if (WARN_ON_ONCE(start < 0)) 85 return -EINVAL; 86 87 ret = idr_alloc_u32(idr, ptr, &id, end > 0 ? end - 1 : INT_MAX, gfp); 88 if (ret) 89 return ret; 90 91 return id; 92 } 93 EXPORT_SYMBOL_GPL(idr_alloc); 94 95 /** 96 * idr_alloc_cyclic() - Allocate an ID cyclically. 97 * @idr: IDR handle. 98 * @ptr: Pointer to be associated with the new ID. 99 * @start: The minimum ID (inclusive). 100 * @end: The maximum ID (exclusive). 101 * @gfp: Memory allocation flags. 102 * 103 * Allocates an unused ID in the range specified by @nextid and @end. If 104 * @end is <= 0, it is treated as one larger than %INT_MAX. This allows 105 * callers to use @start + N as @end as long as N is within integer range. 106 * The search for an unused ID will start at the last ID allocated and will 107 * wrap around to @start if no free IDs are found before reaching @end. 108 * 109 * The caller should provide their own locking to ensure that two 110 * concurrent modifications to the IDR are not possible. Read-only 111 * accesses to the IDR may be done under the RCU read lock or may 112 * exclude simultaneous writers. 113 * 114 * Return: The newly allocated ID, -ENOMEM if memory allocation failed, 115 * or -ENOSPC if no free IDs could be found. 116 */ 117 int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, gfp_t gfp) 118 { 119 u32 id = idr->idr_next; 120 int err, max = end > 0 ? end - 1 : INT_MAX; 121 122 if ((int)id < start) 123 id = start; 124 125 err = idr_alloc_u32(idr, ptr, &id, max, gfp); 126 if ((err == -ENOSPC) && (id > start)) { 127 id = start; 128 err = idr_alloc_u32(idr, ptr, &id, max, gfp); 129 } 130 if (err) 131 return err; 132 133 idr->idr_next = id + 1; 134 return id; 135 } 136 EXPORT_SYMBOL(idr_alloc_cyclic); 137 138 /** 139 * idr_remove() - Remove an ID from the IDR. 140 * @idr: IDR handle. 141 * @id: Pointer ID. 142 * 143 * Removes this ID from the IDR. If the ID was not previously in the IDR, 144 * this function returns %NULL. 145 * 146 * Since this function modifies the IDR, the caller should provide their 147 * own locking to ensure that concurrent modification of the same IDR is 148 * not possible. 149 * 150 * Return: The pointer formerly associated with this ID. 151 */ 152 void *idr_remove(struct idr *idr, unsigned long id) 153 { 154 return radix_tree_delete_item(&idr->idr_rt, id - idr->idr_base, NULL); 155 } 156 EXPORT_SYMBOL_GPL(idr_remove); 157 158 /** 159 * idr_find() - Return pointer for given ID. 160 * @idr: IDR handle. 161 * @id: Pointer ID. 162 * 163 * Looks up the pointer associated with this ID. A %NULL pointer may 164 * indicate that @id is not allocated or that the %NULL pointer was 165 * associated with this ID. 166 * 167 * This function can be called under rcu_read_lock(), given that the leaf 168 * pointers lifetimes are correctly managed. 169 * 170 * Return: The pointer associated with this ID. 171 */ 172 void *idr_find(const struct idr *idr, unsigned long id) 173 { 174 return radix_tree_lookup(&idr->idr_rt, id - idr->idr_base); 175 } 176 EXPORT_SYMBOL_GPL(idr_find); 177 178 /** 179 * idr_for_each() - Iterate through all stored pointers. 180 * @idr: IDR handle. 181 * @fn: Function to be called for each pointer. 182 * @data: Data passed to callback function. 183 * 184 * The callback function will be called for each entry in @idr, passing 185 * the ID, the entry and @data. 186 * 187 * If @fn returns anything other than %0, the iteration stops and that 188 * value is returned from this function. 189 * 190 * idr_for_each() can be called concurrently with idr_alloc() and 191 * idr_remove() if protected by RCU. Newly added entries may not be 192 * seen and deleted entries may be seen, but adding and removing entries 193 * will not cause other entries to be skipped, nor spurious ones to be seen. 194 */ 195 int idr_for_each(const struct idr *idr, 196 int (*fn)(int id, void *p, void *data), void *data) 197 { 198 struct radix_tree_iter iter; 199 void __rcu **slot; 200 int base = idr->idr_base; 201 202 radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, 0) { 203 int ret; 204 unsigned long id = iter.index + base; 205 206 if (WARN_ON_ONCE(id > INT_MAX)) 207 break; 208 ret = fn(id, rcu_dereference_raw(*slot), data); 209 if (ret) 210 return ret; 211 } 212 213 return 0; 214 } 215 EXPORT_SYMBOL(idr_for_each); 216 217 /** 218 * idr_get_next() - Find next populated entry. 219 * @idr: IDR handle. 220 * @nextid: Pointer to an ID. 221 * 222 * Returns the next populated entry in the tree with an ID greater than 223 * or equal to the value pointed to by @nextid. On exit, @nextid is updated 224 * to the ID of the found value. To use in a loop, the value pointed to by 225 * nextid must be incremented by the user. 226 */ 227 void *idr_get_next(struct idr *idr, int *nextid) 228 { 229 struct radix_tree_iter iter; 230 void __rcu **slot; 231 void *entry = NULL; 232 unsigned long base = idr->idr_base; 233 unsigned long id = *nextid; 234 235 id = (id < base) ? 0 : id - base; 236 radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, id) { 237 entry = rcu_dereference_raw(*slot); 238 if (!entry) 239 continue; 240 if (!xa_is_internal(entry)) 241 break; 242 if (slot != &idr->idr_rt.xa_head && !xa_is_retry(entry)) 243 break; 244 slot = radix_tree_iter_retry(&iter); 245 } 246 if (!slot) 247 return NULL; 248 id = iter.index + base; 249 250 if (WARN_ON_ONCE(id > INT_MAX)) 251 return NULL; 252 253 *nextid = id; 254 return entry; 255 } 256 EXPORT_SYMBOL(idr_get_next); 257 258 /** 259 * idr_get_next_ul() - Find next populated entry. 260 * @idr: IDR handle. 261 * @nextid: Pointer to an ID. 262 * 263 * Returns the next populated entry in the tree with an ID greater than 264 * or equal to the value pointed to by @nextid. On exit, @nextid is updated 265 * to the ID of the found value. To use in a loop, the value pointed to by 266 * nextid must be incremented by the user. 267 */ 268 void *idr_get_next_ul(struct idr *idr, unsigned long *nextid) 269 { 270 struct radix_tree_iter iter; 271 void __rcu **slot; 272 unsigned long base = idr->idr_base; 273 unsigned long id = *nextid; 274 275 id = (id < base) ? 0 : id - base; 276 slot = radix_tree_iter_find(&idr->idr_rt, &iter, id); 277 if (!slot) 278 return NULL; 279 280 *nextid = iter.index + base; 281 return rcu_dereference_raw(*slot); 282 } 283 EXPORT_SYMBOL(idr_get_next_ul); 284 285 /** 286 * idr_replace() - replace pointer for given ID. 287 * @idr: IDR handle. 288 * @ptr: New pointer to associate with the ID. 289 * @id: ID to change. 290 * 291 * Replace the pointer registered with an ID and return the old value. 292 * This function can be called under the RCU read lock concurrently with 293 * idr_alloc() and idr_remove() (as long as the ID being removed is not 294 * the one being replaced!). 295 * 296 * Returns: the old value on success. %-ENOENT indicates that @id was not 297 * found. %-EINVAL indicates that @ptr was not valid. 298 */ 299 void *idr_replace(struct idr *idr, void *ptr, unsigned long id) 300 { 301 struct radix_tree_node *node; 302 void __rcu **slot = NULL; 303 void *entry; 304 305 id -= idr->idr_base; 306 307 entry = __radix_tree_lookup(&idr->idr_rt, id, &node, &slot); 308 if (!slot || radix_tree_tag_get(&idr->idr_rt, id, IDR_FREE)) 309 return ERR_PTR(-ENOENT); 310 311 __radix_tree_replace(&idr->idr_rt, node, slot, ptr); 312 313 return entry; 314 } 315 EXPORT_SYMBOL(idr_replace); 316 317 /** 318 * DOC: IDA description 319 * 320 * The IDA is an ID allocator which does not provide the ability to 321 * associate an ID with a pointer. As such, it only needs to store one 322 * bit per ID, and so is more space efficient than an IDR. To use an IDA, 323 * define it using DEFINE_IDA() (or embed a &struct ida in a data structure, 324 * then initialise it using ida_init()). To allocate a new ID, call 325 * ida_alloc(), ida_alloc_min(), ida_alloc_max() or ida_alloc_range(). 326 * To free an ID, call ida_free(). 327 * 328 * ida_destroy() can be used to dispose of an IDA without needing to 329 * free the individual IDs in it. You can use ida_is_empty() to find 330 * out whether the IDA has any IDs currently allocated. 331 * 332 * The IDA handles its own locking. It is safe to call any of the IDA 333 * functions without synchronisation in your code. 334 * 335 * IDs are currently limited to the range [0-INT_MAX]. If this is an awkward 336 * limitation, it should be quite straightforward to raise the maximum. 337 */ 338 339 /* 340 * Developer's notes: 341 * 342 * The IDA uses the functionality provided by the XArray to store bitmaps in 343 * each entry. The XA_FREE_MARK is only cleared when all bits in the bitmap 344 * have been set. 345 * 346 * I considered telling the XArray that each slot is an order-10 node 347 * and indexing by bit number, but the XArray can't allow a single multi-index 348 * entry in the head, which would significantly increase memory consumption 349 * for the IDA. So instead we divide the index by the number of bits in the 350 * leaf bitmap before doing a radix tree lookup. 351 * 352 * As an optimisation, if there are only a few low bits set in any given 353 * leaf, instead of allocating a 128-byte bitmap, we store the bits 354 * as a value entry. Value entries never have the XA_FREE_MARK cleared 355 * because we can always convert them into a bitmap entry. 356 * 357 * It would be possible to optimise further; once we've run out of a 358 * single 128-byte bitmap, we currently switch to a 576-byte node, put 359 * the 128-byte bitmap in the first entry and then start allocating extra 360 * 128-byte entries. We could instead use the 512 bytes of the node's 361 * data as a bitmap before moving to that scheme. I do not believe this 362 * is a worthwhile optimisation; Rasmus Villemoes surveyed the current 363 * users of the IDA and almost none of them use more than 1024 entries. 364 * Those that do use more than the 8192 IDs that the 512 bytes would 365 * provide. 366 * 367 * The IDA always uses a lock to alloc/free. If we add a 'test_bit' 368 * equivalent, it will still need locking. Going to RCU lookup would require 369 * using RCU to free bitmaps, and that's not trivial without embedding an 370 * RCU head in the bitmap, which adds a 2-pointer overhead to each 128-byte 371 * bitmap, which is excessive. 372 */ 373 374 /** 375 * ida_alloc_range() - Allocate an unused ID. 376 * @ida: IDA handle. 377 * @min: Lowest ID to allocate. 378 * @max: Highest ID to allocate. 379 * @gfp: Memory allocation flags. 380 * 381 * Allocate an ID between @min and @max, inclusive. The allocated ID will 382 * not exceed %INT_MAX, even if @max is larger. 383 * 384 * Context: Any context. 385 * Return: The allocated ID, or %-ENOMEM if memory could not be allocated, 386 * or %-ENOSPC if there are no free IDs. 387 */ 388 int ida_alloc_range(struct ida *ida, unsigned int min, unsigned int max, 389 gfp_t gfp) 390 { 391 XA_STATE(xas, &ida->xa, min / IDA_BITMAP_BITS); 392 unsigned bit = min % IDA_BITMAP_BITS; 393 unsigned long flags; 394 struct ida_bitmap *bitmap, *alloc = NULL; 395 396 if ((int)min < 0) 397 return -ENOSPC; 398 399 if ((int)max < 0) 400 max = INT_MAX; 401 402 retry: 403 xas_lock_irqsave(&xas, flags); 404 next: 405 bitmap = xas_find_marked(&xas, max / IDA_BITMAP_BITS, XA_FREE_MARK); 406 if (xas.xa_index > min / IDA_BITMAP_BITS) 407 bit = 0; 408 if (xas.xa_index * IDA_BITMAP_BITS + bit > max) 409 goto nospc; 410 411 if (xa_is_value(bitmap)) { 412 unsigned long tmp = xa_to_value(bitmap); 413 414 if (bit < BITS_PER_XA_VALUE) { 415 bit = find_next_zero_bit(&tmp, BITS_PER_XA_VALUE, bit); 416 if (xas.xa_index * IDA_BITMAP_BITS + bit > max) 417 goto nospc; 418 if (bit < BITS_PER_XA_VALUE) { 419 tmp |= 1UL << bit; 420 xas_store(&xas, xa_mk_value(tmp)); 421 goto out; 422 } 423 } 424 bitmap = alloc; 425 if (!bitmap) 426 bitmap = kzalloc(sizeof(*bitmap), GFP_NOWAIT); 427 if (!bitmap) 428 goto alloc; 429 bitmap->bitmap[0] = tmp; 430 xas_store(&xas, bitmap); 431 if (xas_error(&xas)) { 432 bitmap->bitmap[0] = 0; 433 goto out; 434 } 435 } 436 437 if (bitmap) { 438 bit = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, bit); 439 if (xas.xa_index * IDA_BITMAP_BITS + bit > max) 440 goto nospc; 441 if (bit == IDA_BITMAP_BITS) 442 goto next; 443 444 __set_bit(bit, bitmap->bitmap); 445 if (bitmap_full(bitmap->bitmap, IDA_BITMAP_BITS)) 446 xas_clear_mark(&xas, XA_FREE_MARK); 447 } else { 448 if (bit < BITS_PER_XA_VALUE) { 449 bitmap = xa_mk_value(1UL << bit); 450 } else { 451 bitmap = alloc; 452 if (!bitmap) 453 bitmap = kzalloc(sizeof(*bitmap), GFP_NOWAIT); 454 if (!bitmap) 455 goto alloc; 456 __set_bit(bit, bitmap->bitmap); 457 } 458 xas_store(&xas, bitmap); 459 } 460 out: 461 xas_unlock_irqrestore(&xas, flags); 462 if (xas_nomem(&xas, gfp)) { 463 xas.xa_index = min / IDA_BITMAP_BITS; 464 bit = min % IDA_BITMAP_BITS; 465 goto retry; 466 } 467 if (bitmap != alloc) 468 kfree(alloc); 469 if (xas_error(&xas)) 470 return xas_error(&xas); 471 return xas.xa_index * IDA_BITMAP_BITS + bit; 472 alloc: 473 xas_unlock_irqrestore(&xas, flags); 474 alloc = kzalloc(sizeof(*bitmap), gfp); 475 if (!alloc) 476 return -ENOMEM; 477 xas_set(&xas, min / IDA_BITMAP_BITS); 478 bit = min % IDA_BITMAP_BITS; 479 goto retry; 480 nospc: 481 xas_unlock_irqrestore(&xas, flags); 482 return -ENOSPC; 483 } 484 EXPORT_SYMBOL(ida_alloc_range); 485 486 /** 487 * ida_free() - Release an allocated ID. 488 * @ida: IDA handle. 489 * @id: Previously allocated ID. 490 * 491 * Context: Any context. 492 */ 493 void ida_free(struct ida *ida, unsigned int id) 494 { 495 XA_STATE(xas, &ida->xa, id / IDA_BITMAP_BITS); 496 unsigned bit = id % IDA_BITMAP_BITS; 497 struct ida_bitmap *bitmap; 498 unsigned long flags; 499 500 BUG_ON((int)id < 0); 501 502 xas_lock_irqsave(&xas, flags); 503 bitmap = xas_load(&xas); 504 505 if (xa_is_value(bitmap)) { 506 unsigned long v = xa_to_value(bitmap); 507 if (bit >= BITS_PER_XA_VALUE) 508 goto err; 509 if (!(v & (1UL << bit))) 510 goto err; 511 v &= ~(1UL << bit); 512 if (!v) 513 goto delete; 514 xas_store(&xas, xa_mk_value(v)); 515 } else { 516 if (!test_bit(bit, bitmap->bitmap)) 517 goto err; 518 __clear_bit(bit, bitmap->bitmap); 519 xas_set_mark(&xas, XA_FREE_MARK); 520 if (bitmap_empty(bitmap->bitmap, IDA_BITMAP_BITS)) { 521 kfree(bitmap); 522 delete: 523 xas_store(&xas, NULL); 524 } 525 } 526 xas_unlock_irqrestore(&xas, flags); 527 return; 528 err: 529 xas_unlock_irqrestore(&xas, flags); 530 WARN(1, "ida_free called for id=%d which is not allocated.\n", id); 531 } 532 EXPORT_SYMBOL(ida_free); 533 534 /** 535 * ida_destroy() - Free all IDs. 536 * @ida: IDA handle. 537 * 538 * Calling this function frees all IDs and releases all resources used 539 * by an IDA. When this call returns, the IDA is empty and can be reused 540 * or freed. If the IDA is already empty, there is no need to call this 541 * function. 542 * 543 * Context: Any context. 544 */ 545 void ida_destroy(struct ida *ida) 546 { 547 XA_STATE(xas, &ida->xa, 0); 548 struct ida_bitmap *bitmap; 549 unsigned long flags; 550 551 xas_lock_irqsave(&xas, flags); 552 xas_for_each(&xas, bitmap, ULONG_MAX) { 553 if (!xa_is_value(bitmap)) 554 kfree(bitmap); 555 xas_store(&xas, NULL); 556 } 557 xas_unlock_irqrestore(&xas, flags); 558 } 559 EXPORT_SYMBOL(ida_destroy); 560 561 #ifndef __KERNEL__ 562 extern void xa_dump_index(unsigned long index, unsigned int shift); 563 #define IDA_CHUNK_SHIFT ilog2(IDA_BITMAP_BITS) 564 565 static void ida_dump_entry(void *entry, unsigned long index) 566 { 567 unsigned long i; 568 569 if (!entry) 570 return; 571 572 if (xa_is_node(entry)) { 573 struct xa_node *node = xa_to_node(entry); 574 unsigned int shift = node->shift + IDA_CHUNK_SHIFT + 575 XA_CHUNK_SHIFT; 576 577 xa_dump_index(index * IDA_BITMAP_BITS, shift); 578 xa_dump_node(node); 579 for (i = 0; i < XA_CHUNK_SIZE; i++) 580 ida_dump_entry(node->slots[i], 581 index | (i << node->shift)); 582 } else if (xa_is_value(entry)) { 583 xa_dump_index(index * IDA_BITMAP_BITS, ilog2(BITS_PER_LONG)); 584 pr_cont("value: data %lx [%px]\n", xa_to_value(entry), entry); 585 } else { 586 struct ida_bitmap *bitmap = entry; 587 588 xa_dump_index(index * IDA_BITMAP_BITS, IDA_CHUNK_SHIFT); 589 pr_cont("bitmap: %p data", bitmap); 590 for (i = 0; i < IDA_BITMAP_LONGS; i++) 591 pr_cont(" %lx", bitmap->bitmap[i]); 592 pr_cont("\n"); 593 } 594 } 595 596 static void ida_dump(struct ida *ida) 597 { 598 struct xarray *xa = &ida->xa; 599 pr_debug("ida: %p node %p free %d\n", ida, xa->xa_head, 600 xa->xa_flags >> ROOT_TAG_SHIFT); 601 ida_dump_entry(xa->xa_head, 0); 602 } 603 #endif 604