1 /* 2 * 2002-10-18 written by Jim Houston jim.houston@ccur.com 3 * Copyright (C) 2002 by Concurrent Computer Corporation 4 * Distributed under the GNU GPL license version 2. 5 * 6 * Modified by George Anzinger to reuse immediately and to use 7 * find bit instructions. Also removed _irq on spinlocks. 8 * 9 * Modified by Nadia Derbey to make it RCU safe. 10 * 11 * Small id to pointer translation service. 12 * 13 * It uses a radix tree like structure as a sparse array indexed 14 * by the id to obtain the pointer. The bitmap makes allocating 15 * a new id quick. 16 * 17 * You call it to allocate an id (an int) an associate with that id a 18 * pointer or what ever, we treat it as a (void *). You can pass this 19 * id to a user for him to pass back at a later time. You then pass 20 * that id to this code and it returns your pointer. 21 22 * You can release ids at any time. When all ids are released, most of 23 * the memory is returned (we keep IDR_FREE_MAX) in a local pool so we 24 * don't need to go to the memory "store" during an id allocate, just 25 * so you don't need to be too concerned about locking and conflicts 26 * with the slab allocator. 27 */ 28 29 #ifndef TEST // to test in user space... 30 #include <linux/slab.h> 31 #include <linux/init.h> 32 #include <linux/module.h> 33 #endif 34 #include <linux/err.h> 35 #include <linux/string.h> 36 #include <linux/idr.h> 37 #include <linux/spinlock.h> 38 39 static struct kmem_cache *idr_layer_cache; 40 static DEFINE_SPINLOCK(simple_ida_lock); 41 42 static struct idr_layer *get_from_free_list(struct idr *idp) 43 { 44 struct idr_layer *p; 45 unsigned long flags; 46 47 spin_lock_irqsave(&idp->lock, flags); 48 if ((p = idp->id_free)) { 49 idp->id_free = p->ary[0]; 50 idp->id_free_cnt--; 51 p->ary[0] = NULL; 52 } 53 spin_unlock_irqrestore(&idp->lock, flags); 54 return(p); 55 } 56 57 static void idr_layer_rcu_free(struct rcu_head *head) 58 { 59 struct idr_layer *layer; 60 61 layer = container_of(head, struct idr_layer, rcu_head); 62 kmem_cache_free(idr_layer_cache, layer); 63 } 64 65 static inline void free_layer(struct idr_layer *p) 66 { 67 call_rcu(&p->rcu_head, idr_layer_rcu_free); 68 } 69 70 /* only called when idp->lock is held */ 71 static void __move_to_free_list(struct idr *idp, struct idr_layer *p) 72 { 73 p->ary[0] = idp->id_free; 74 idp->id_free = p; 75 idp->id_free_cnt++; 76 } 77 78 static void move_to_free_list(struct idr *idp, struct idr_layer *p) 79 { 80 unsigned long flags; 81 82 /* 83 * Depends on the return element being zeroed. 84 */ 85 spin_lock_irqsave(&idp->lock, flags); 86 __move_to_free_list(idp, p); 87 spin_unlock_irqrestore(&idp->lock, flags); 88 } 89 90 static void idr_mark_full(struct idr_layer **pa, int id) 91 { 92 struct idr_layer *p = pa[0]; 93 int l = 0; 94 95 __set_bit(id & IDR_MASK, &p->bitmap); 96 /* 97 * If this layer is full mark the bit in the layer above to 98 * show that this part of the radix tree is full. This may 99 * complete the layer above and require walking up the radix 100 * tree. 101 */ 102 while (p->bitmap == IDR_FULL) { 103 if (!(p = pa[++l])) 104 break; 105 id = id >> IDR_BITS; 106 __set_bit((id & IDR_MASK), &p->bitmap); 107 } 108 } 109 110 /** 111 * idr_pre_get - reserve resources for idr allocation 112 * @idp: idr handle 113 * @gfp_mask: memory allocation flags 114 * 115 * This function should be called prior to calling the idr_get_new* functions. 116 * It preallocates enough memory to satisfy the worst possible allocation. The 117 * caller should pass in GFP_KERNEL if possible. This of course requires that 118 * no spinning locks be held. 119 * 120 * If the system is REALLY out of memory this function returns %0, 121 * otherwise %1. 122 */ 123 int idr_pre_get(struct idr *idp, gfp_t gfp_mask) 124 { 125 while (idp->id_free_cnt < IDR_FREE_MAX) { 126 struct idr_layer *new; 127 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask); 128 if (new == NULL) 129 return (0); 130 move_to_free_list(idp, new); 131 } 132 return 1; 133 } 134 EXPORT_SYMBOL(idr_pre_get); 135 136 static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa) 137 { 138 int n, m, sh; 139 struct idr_layer *p, *new; 140 int l, id, oid; 141 unsigned long bm; 142 143 id = *starting_id; 144 restart: 145 p = idp->top; 146 l = idp->layers; 147 pa[l--] = NULL; 148 while (1) { 149 /* 150 * We run around this while until we reach the leaf node... 151 */ 152 n = (id >> (IDR_BITS*l)) & IDR_MASK; 153 bm = ~p->bitmap; 154 m = find_next_bit(&bm, IDR_SIZE, n); 155 if (m == IDR_SIZE) { 156 /* no space available go back to previous layer. */ 157 l++; 158 oid = id; 159 id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1; 160 161 /* if already at the top layer, we need to grow */ 162 if (id >= 1 << (idp->layers * IDR_BITS)) { 163 *starting_id = id; 164 return IDR_NEED_TO_GROW; 165 } 166 p = pa[l]; 167 BUG_ON(!p); 168 169 /* If we need to go up one layer, continue the 170 * loop; otherwise, restart from the top. 171 */ 172 sh = IDR_BITS * (l + 1); 173 if (oid >> sh == id >> sh) 174 continue; 175 else 176 goto restart; 177 } 178 if (m != n) { 179 sh = IDR_BITS*l; 180 id = ((id >> sh) ^ n ^ m) << sh; 181 } 182 if ((id >= MAX_ID_BIT) || (id < 0)) 183 return IDR_NOMORE_SPACE; 184 if (l == 0) 185 break; 186 /* 187 * Create the layer below if it is missing. 188 */ 189 if (!p->ary[m]) { 190 new = get_from_free_list(idp); 191 if (!new) 192 return -1; 193 new->layer = l-1; 194 rcu_assign_pointer(p->ary[m], new); 195 p->count++; 196 } 197 pa[l--] = p; 198 p = p->ary[m]; 199 } 200 201 pa[l] = p; 202 return id; 203 } 204 205 static int idr_get_empty_slot(struct idr *idp, int starting_id, 206 struct idr_layer **pa) 207 { 208 struct idr_layer *p, *new; 209 int layers, v, id; 210 unsigned long flags; 211 212 id = starting_id; 213 build_up: 214 p = idp->top; 215 layers = idp->layers; 216 if (unlikely(!p)) { 217 if (!(p = get_from_free_list(idp))) 218 return -1; 219 p->layer = 0; 220 layers = 1; 221 } 222 /* 223 * Add a new layer to the top of the tree if the requested 224 * id is larger than the currently allocated space. 225 */ 226 while ((layers < (MAX_LEVEL - 1)) && (id >= (1 << (layers*IDR_BITS)))) { 227 layers++; 228 if (!p->count) { 229 /* special case: if the tree is currently empty, 230 * then we grow the tree by moving the top node 231 * upwards. 232 */ 233 p->layer++; 234 continue; 235 } 236 if (!(new = get_from_free_list(idp))) { 237 /* 238 * The allocation failed. If we built part of 239 * the structure tear it down. 240 */ 241 spin_lock_irqsave(&idp->lock, flags); 242 for (new = p; p && p != idp->top; new = p) { 243 p = p->ary[0]; 244 new->ary[0] = NULL; 245 new->bitmap = new->count = 0; 246 __move_to_free_list(idp, new); 247 } 248 spin_unlock_irqrestore(&idp->lock, flags); 249 return -1; 250 } 251 new->ary[0] = p; 252 new->count = 1; 253 new->layer = layers-1; 254 if (p->bitmap == IDR_FULL) 255 __set_bit(0, &new->bitmap); 256 p = new; 257 } 258 rcu_assign_pointer(idp->top, p); 259 idp->layers = layers; 260 v = sub_alloc(idp, &id, pa); 261 if (v == IDR_NEED_TO_GROW) 262 goto build_up; 263 return(v); 264 } 265 266 static int idr_get_new_above_int(struct idr *idp, void *ptr, int starting_id) 267 { 268 struct idr_layer *pa[MAX_LEVEL]; 269 int id; 270 271 id = idr_get_empty_slot(idp, starting_id, pa); 272 if (id >= 0) { 273 /* 274 * Successfully found an empty slot. Install the user 275 * pointer and mark the slot full. 276 */ 277 rcu_assign_pointer(pa[0]->ary[id & IDR_MASK], 278 (struct idr_layer *)ptr); 279 pa[0]->count++; 280 idr_mark_full(pa, id); 281 } 282 283 return id; 284 } 285 286 /** 287 * idr_get_new_above - allocate new idr entry above or equal to a start id 288 * @idp: idr handle 289 * @ptr: pointer you want associated with the id 290 * @starting_id: id to start search at 291 * @id: pointer to the allocated handle 292 * 293 * This is the allocate id function. It should be called with any 294 * required locks. 295 * 296 * If allocation from IDR's private freelist fails, idr_get_new_above() will 297 * return %-EAGAIN. The caller should retry the idr_pre_get() call to refill 298 * IDR's preallocation and then retry the idr_get_new_above() call. 299 * 300 * If the idr is full idr_get_new_above() will return %-ENOSPC. 301 * 302 * @id returns a value in the range @starting_id ... %0x7fffffff 303 */ 304 int idr_get_new_above(struct idr *idp, void *ptr, int starting_id, int *id) 305 { 306 int rv; 307 308 rv = idr_get_new_above_int(idp, ptr, starting_id); 309 /* 310 * This is a cheap hack until the IDR code can be fixed to 311 * return proper error values. 312 */ 313 if (rv < 0) 314 return _idr_rc_to_errno(rv); 315 *id = rv; 316 return 0; 317 } 318 EXPORT_SYMBOL(idr_get_new_above); 319 320 /** 321 * idr_get_new - allocate new idr entry 322 * @idp: idr handle 323 * @ptr: pointer you want associated with the id 324 * @id: pointer to the allocated handle 325 * 326 * If allocation from IDR's private freelist fails, idr_get_new_above() will 327 * return %-EAGAIN. The caller should retry the idr_pre_get() call to refill 328 * IDR's preallocation and then retry the idr_get_new_above() call. 329 * 330 * If the idr is full idr_get_new_above() will return %-ENOSPC. 331 * 332 * @id returns a value in the range %0 ... %0x7fffffff 333 */ 334 int idr_get_new(struct idr *idp, void *ptr, int *id) 335 { 336 int rv; 337 338 rv = idr_get_new_above_int(idp, ptr, 0); 339 /* 340 * This is a cheap hack until the IDR code can be fixed to 341 * return proper error values. 342 */ 343 if (rv < 0) 344 return _idr_rc_to_errno(rv); 345 *id = rv; 346 return 0; 347 } 348 EXPORT_SYMBOL(idr_get_new); 349 350 static void idr_remove_warning(int id) 351 { 352 printk(KERN_WARNING 353 "idr_remove called for id=%d which is not allocated.\n", id); 354 dump_stack(); 355 } 356 357 static void sub_remove(struct idr *idp, int shift, int id) 358 { 359 struct idr_layer *p = idp->top; 360 struct idr_layer **pa[MAX_LEVEL]; 361 struct idr_layer ***paa = &pa[0]; 362 struct idr_layer *to_free; 363 int n; 364 365 *paa = NULL; 366 *++paa = &idp->top; 367 368 while ((shift > 0) && p) { 369 n = (id >> shift) & IDR_MASK; 370 __clear_bit(n, &p->bitmap); 371 *++paa = &p->ary[n]; 372 p = p->ary[n]; 373 shift -= IDR_BITS; 374 } 375 n = id & IDR_MASK; 376 if (likely(p != NULL && test_bit(n, &p->bitmap))){ 377 __clear_bit(n, &p->bitmap); 378 rcu_assign_pointer(p->ary[n], NULL); 379 to_free = NULL; 380 while(*paa && ! --((**paa)->count)){ 381 if (to_free) 382 free_layer(to_free); 383 to_free = **paa; 384 **paa-- = NULL; 385 } 386 if (!*paa) 387 idp->layers = 0; 388 if (to_free) 389 free_layer(to_free); 390 } else 391 idr_remove_warning(id); 392 } 393 394 /** 395 * idr_remove - remove the given id and free its slot 396 * @idp: idr handle 397 * @id: unique key 398 */ 399 void idr_remove(struct idr *idp, int id) 400 { 401 struct idr_layer *p; 402 struct idr_layer *to_free; 403 404 /* Mask off upper bits we don't use for the search. */ 405 id &= MAX_ID_MASK; 406 407 sub_remove(idp, (idp->layers - 1) * IDR_BITS, id); 408 if (idp->top && idp->top->count == 1 && (idp->layers > 1) && 409 idp->top->ary[0]) { 410 /* 411 * Single child at leftmost slot: we can shrink the tree. 412 * This level is not needed anymore since when layers are 413 * inserted, they are inserted at the top of the existing 414 * tree. 415 */ 416 to_free = idp->top; 417 p = idp->top->ary[0]; 418 rcu_assign_pointer(idp->top, p); 419 --idp->layers; 420 to_free->bitmap = to_free->count = 0; 421 free_layer(to_free); 422 } 423 while (idp->id_free_cnt >= IDR_FREE_MAX) { 424 p = get_from_free_list(idp); 425 /* 426 * Note: we don't call the rcu callback here, since the only 427 * layers that fall into the freelist are those that have been 428 * preallocated. 429 */ 430 kmem_cache_free(idr_layer_cache, p); 431 } 432 return; 433 } 434 EXPORT_SYMBOL(idr_remove); 435 436 /** 437 * idr_remove_all - remove all ids from the given idr tree 438 * @idp: idr handle 439 * 440 * idr_destroy() only frees up unused, cached idp_layers, but this 441 * function will remove all id mappings and leave all idp_layers 442 * unused. 443 * 444 * A typical clean-up sequence for objects stored in an idr tree will 445 * use idr_for_each() to free all objects, if necessay, then 446 * idr_remove_all() to remove all ids, and idr_destroy() to free 447 * up the cached idr_layers. 448 */ 449 void idr_remove_all(struct idr *idp) 450 { 451 int n, id, max; 452 int bt_mask; 453 struct idr_layer *p; 454 struct idr_layer *pa[MAX_LEVEL]; 455 struct idr_layer **paa = &pa[0]; 456 457 n = idp->layers * IDR_BITS; 458 p = idp->top; 459 rcu_assign_pointer(idp->top, NULL); 460 max = 1 << n; 461 462 id = 0; 463 while (id < max) { 464 while (n > IDR_BITS && p) { 465 n -= IDR_BITS; 466 *paa++ = p; 467 p = p->ary[(id >> n) & IDR_MASK]; 468 } 469 470 bt_mask = id; 471 id += 1 << n; 472 /* Get the highest bit that the above add changed from 0->1. */ 473 while (n < fls(id ^ bt_mask)) { 474 if (p) 475 free_layer(p); 476 n += IDR_BITS; 477 p = *--paa; 478 } 479 } 480 idp->layers = 0; 481 } 482 EXPORT_SYMBOL(idr_remove_all); 483 484 /** 485 * idr_destroy - release all cached layers within an idr tree 486 * @idp: idr handle 487 */ 488 void idr_destroy(struct idr *idp) 489 { 490 while (idp->id_free_cnt) { 491 struct idr_layer *p = get_from_free_list(idp); 492 kmem_cache_free(idr_layer_cache, p); 493 } 494 } 495 EXPORT_SYMBOL(idr_destroy); 496 497 /** 498 * idr_find - return pointer for given id 499 * @idp: idr handle 500 * @id: lookup key 501 * 502 * Return the pointer given the id it has been registered with. A %NULL 503 * return indicates that @id is not valid or you passed %NULL in 504 * idr_get_new(). 505 * 506 * This function can be called under rcu_read_lock(), given that the leaf 507 * pointers lifetimes are correctly managed. 508 */ 509 void *idr_find(struct idr *idp, int id) 510 { 511 int n; 512 struct idr_layer *p; 513 514 p = rcu_dereference_raw(idp->top); 515 if (!p) 516 return NULL; 517 n = (p->layer+1) * IDR_BITS; 518 519 /* Mask off upper bits we don't use for the search. */ 520 id &= MAX_ID_MASK; 521 522 if (id >= (1 << n)) 523 return NULL; 524 BUG_ON(n == 0); 525 526 while (n > 0 && p) { 527 n -= IDR_BITS; 528 BUG_ON(n != p->layer*IDR_BITS); 529 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]); 530 } 531 return((void *)p); 532 } 533 EXPORT_SYMBOL(idr_find); 534 535 /** 536 * idr_for_each - iterate through all stored pointers 537 * @idp: idr handle 538 * @fn: function to be called for each pointer 539 * @data: data passed back to callback function 540 * 541 * Iterate over the pointers registered with the given idr. The 542 * callback function will be called for each pointer currently 543 * registered, passing the id, the pointer and the data pointer passed 544 * to this function. It is not safe to modify the idr tree while in 545 * the callback, so functions such as idr_get_new and idr_remove are 546 * not allowed. 547 * 548 * We check the return of @fn each time. If it returns anything other 549 * than %0, we break out and return that value. 550 * 551 * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove(). 552 */ 553 int idr_for_each(struct idr *idp, 554 int (*fn)(int id, void *p, void *data), void *data) 555 { 556 int n, id, max, error = 0; 557 struct idr_layer *p; 558 struct idr_layer *pa[MAX_LEVEL]; 559 struct idr_layer **paa = &pa[0]; 560 561 n = idp->layers * IDR_BITS; 562 p = rcu_dereference_raw(idp->top); 563 max = 1 << n; 564 565 id = 0; 566 while (id < max) { 567 while (n > 0 && p) { 568 n -= IDR_BITS; 569 *paa++ = p; 570 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]); 571 } 572 573 if (p) { 574 error = fn(id, (void *)p, data); 575 if (error) 576 break; 577 } 578 579 id += 1 << n; 580 while (n < fls(id)) { 581 n += IDR_BITS; 582 p = *--paa; 583 } 584 } 585 586 return error; 587 } 588 EXPORT_SYMBOL(idr_for_each); 589 590 /** 591 * idr_get_next - lookup next object of id to given id. 592 * @idp: idr handle 593 * @nextidp: pointer to lookup key 594 * 595 * Returns pointer to registered object with id, which is next number to 596 * given id. After being looked up, *@nextidp will be updated for the next 597 * iteration. 598 */ 599 600 void *idr_get_next(struct idr *idp, int *nextidp) 601 { 602 struct idr_layer *p, *pa[MAX_LEVEL]; 603 struct idr_layer **paa = &pa[0]; 604 int id = *nextidp; 605 int n, max; 606 607 /* find first ent */ 608 n = idp->layers * IDR_BITS; 609 max = 1 << n; 610 p = rcu_dereference_raw(idp->top); 611 if (!p) 612 return NULL; 613 614 while (id < max) { 615 while (n > 0 && p) { 616 n -= IDR_BITS; 617 *paa++ = p; 618 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]); 619 } 620 621 if (p) { 622 *nextidp = id; 623 return p; 624 } 625 626 id += 1 << n; 627 while (n < fls(id)) { 628 n += IDR_BITS; 629 p = *--paa; 630 } 631 } 632 return NULL; 633 } 634 EXPORT_SYMBOL(idr_get_next); 635 636 637 /** 638 * idr_replace - replace pointer for given id 639 * @idp: idr handle 640 * @ptr: pointer you want associated with the id 641 * @id: lookup key 642 * 643 * Replace the pointer registered with an id and return the old value. 644 * A %-ENOENT return indicates that @id was not found. 645 * A %-EINVAL return indicates that @id was not within valid constraints. 646 * 647 * The caller must serialize with writers. 648 */ 649 void *idr_replace(struct idr *idp, void *ptr, int id) 650 { 651 int n; 652 struct idr_layer *p, *old_p; 653 654 p = idp->top; 655 if (!p) 656 return ERR_PTR(-EINVAL); 657 658 n = (p->layer+1) * IDR_BITS; 659 660 id &= MAX_ID_MASK; 661 662 if (id >= (1 << n)) 663 return ERR_PTR(-EINVAL); 664 665 n -= IDR_BITS; 666 while ((n > 0) && p) { 667 p = p->ary[(id >> n) & IDR_MASK]; 668 n -= IDR_BITS; 669 } 670 671 n = id & IDR_MASK; 672 if (unlikely(p == NULL || !test_bit(n, &p->bitmap))) 673 return ERR_PTR(-ENOENT); 674 675 old_p = p->ary[n]; 676 rcu_assign_pointer(p->ary[n], ptr); 677 678 return old_p; 679 } 680 EXPORT_SYMBOL(idr_replace); 681 682 void __init idr_init_cache(void) 683 { 684 idr_layer_cache = kmem_cache_create("idr_layer_cache", 685 sizeof(struct idr_layer), 0, SLAB_PANIC, NULL); 686 } 687 688 /** 689 * idr_init - initialize idr handle 690 * @idp: idr handle 691 * 692 * This function is use to set up the handle (@idp) that you will pass 693 * to the rest of the functions. 694 */ 695 void idr_init(struct idr *idp) 696 { 697 memset(idp, 0, sizeof(struct idr)); 698 spin_lock_init(&idp->lock); 699 } 700 EXPORT_SYMBOL(idr_init); 701 702 703 /** 704 * DOC: IDA description 705 * IDA - IDR based ID allocator 706 * 707 * This is id allocator without id -> pointer translation. Memory 708 * usage is much lower than full blown idr because each id only 709 * occupies a bit. ida uses a custom leaf node which contains 710 * IDA_BITMAP_BITS slots. 711 * 712 * 2007-04-25 written by Tejun Heo <htejun@gmail.com> 713 */ 714 715 static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap) 716 { 717 unsigned long flags; 718 719 if (!ida->free_bitmap) { 720 spin_lock_irqsave(&ida->idr.lock, flags); 721 if (!ida->free_bitmap) { 722 ida->free_bitmap = bitmap; 723 bitmap = NULL; 724 } 725 spin_unlock_irqrestore(&ida->idr.lock, flags); 726 } 727 728 kfree(bitmap); 729 } 730 731 /** 732 * ida_pre_get - reserve resources for ida allocation 733 * @ida: ida handle 734 * @gfp_mask: memory allocation flag 735 * 736 * This function should be called prior to locking and calling the 737 * following function. It preallocates enough memory to satisfy the 738 * worst possible allocation. 739 * 740 * If the system is REALLY out of memory this function returns %0, 741 * otherwise %1. 742 */ 743 int ida_pre_get(struct ida *ida, gfp_t gfp_mask) 744 { 745 /* allocate idr_layers */ 746 if (!idr_pre_get(&ida->idr, gfp_mask)) 747 return 0; 748 749 /* allocate free_bitmap */ 750 if (!ida->free_bitmap) { 751 struct ida_bitmap *bitmap; 752 753 bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask); 754 if (!bitmap) 755 return 0; 756 757 free_bitmap(ida, bitmap); 758 } 759 760 return 1; 761 } 762 EXPORT_SYMBOL(ida_pre_get); 763 764 /** 765 * ida_get_new_above - allocate new ID above or equal to a start id 766 * @ida: ida handle 767 * @starting_id: id to start search at 768 * @p_id: pointer to the allocated handle 769 * 770 * Allocate new ID above or equal to @ida. It should be called with 771 * any required locks. 772 * 773 * If memory is required, it will return %-EAGAIN, you should unlock 774 * and go back to the ida_pre_get() call. If the ida is full, it will 775 * return %-ENOSPC. 776 * 777 * @p_id returns a value in the range @starting_id ... %0x7fffffff. 778 */ 779 int ida_get_new_above(struct ida *ida, int starting_id, int *p_id) 780 { 781 struct idr_layer *pa[MAX_LEVEL]; 782 struct ida_bitmap *bitmap; 783 unsigned long flags; 784 int idr_id = starting_id / IDA_BITMAP_BITS; 785 int offset = starting_id % IDA_BITMAP_BITS; 786 int t, id; 787 788 restart: 789 /* get vacant slot */ 790 t = idr_get_empty_slot(&ida->idr, idr_id, pa); 791 if (t < 0) 792 return _idr_rc_to_errno(t); 793 794 if (t * IDA_BITMAP_BITS >= MAX_ID_BIT) 795 return -ENOSPC; 796 797 if (t != idr_id) 798 offset = 0; 799 idr_id = t; 800 801 /* if bitmap isn't there, create a new one */ 802 bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK]; 803 if (!bitmap) { 804 spin_lock_irqsave(&ida->idr.lock, flags); 805 bitmap = ida->free_bitmap; 806 ida->free_bitmap = NULL; 807 spin_unlock_irqrestore(&ida->idr.lock, flags); 808 809 if (!bitmap) 810 return -EAGAIN; 811 812 memset(bitmap, 0, sizeof(struct ida_bitmap)); 813 rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK], 814 (void *)bitmap); 815 pa[0]->count++; 816 } 817 818 /* lookup for empty slot */ 819 t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset); 820 if (t == IDA_BITMAP_BITS) { 821 /* no empty slot after offset, continue to the next chunk */ 822 idr_id++; 823 offset = 0; 824 goto restart; 825 } 826 827 id = idr_id * IDA_BITMAP_BITS + t; 828 if (id >= MAX_ID_BIT) 829 return -ENOSPC; 830 831 __set_bit(t, bitmap->bitmap); 832 if (++bitmap->nr_busy == IDA_BITMAP_BITS) 833 idr_mark_full(pa, idr_id); 834 835 *p_id = id; 836 837 /* Each leaf node can handle nearly a thousand slots and the 838 * whole idea of ida is to have small memory foot print. 839 * Throw away extra resources one by one after each successful 840 * allocation. 841 */ 842 if (ida->idr.id_free_cnt || ida->free_bitmap) { 843 struct idr_layer *p = get_from_free_list(&ida->idr); 844 if (p) 845 kmem_cache_free(idr_layer_cache, p); 846 } 847 848 return 0; 849 } 850 EXPORT_SYMBOL(ida_get_new_above); 851 852 /** 853 * ida_get_new - allocate new ID 854 * @ida: idr handle 855 * @p_id: pointer to the allocated handle 856 * 857 * Allocate new ID. It should be called with any required locks. 858 * 859 * If memory is required, it will return %-EAGAIN, you should unlock 860 * and go back to the idr_pre_get() call. If the idr is full, it will 861 * return %-ENOSPC. 862 * 863 * @id returns a value in the range %0 ... %0x7fffffff. 864 */ 865 int ida_get_new(struct ida *ida, int *p_id) 866 { 867 return ida_get_new_above(ida, 0, p_id); 868 } 869 EXPORT_SYMBOL(ida_get_new); 870 871 /** 872 * ida_remove - remove the given ID 873 * @ida: ida handle 874 * @id: ID to free 875 */ 876 void ida_remove(struct ida *ida, int id) 877 { 878 struct idr_layer *p = ida->idr.top; 879 int shift = (ida->idr.layers - 1) * IDR_BITS; 880 int idr_id = id / IDA_BITMAP_BITS; 881 int offset = id % IDA_BITMAP_BITS; 882 int n; 883 struct ida_bitmap *bitmap; 884 885 /* clear full bits while looking up the leaf idr_layer */ 886 while ((shift > 0) && p) { 887 n = (idr_id >> shift) & IDR_MASK; 888 __clear_bit(n, &p->bitmap); 889 p = p->ary[n]; 890 shift -= IDR_BITS; 891 } 892 893 if (p == NULL) 894 goto err; 895 896 n = idr_id & IDR_MASK; 897 __clear_bit(n, &p->bitmap); 898 899 bitmap = (void *)p->ary[n]; 900 if (!test_bit(offset, bitmap->bitmap)) 901 goto err; 902 903 /* update bitmap and remove it if empty */ 904 __clear_bit(offset, bitmap->bitmap); 905 if (--bitmap->nr_busy == 0) { 906 __set_bit(n, &p->bitmap); /* to please idr_remove() */ 907 idr_remove(&ida->idr, idr_id); 908 free_bitmap(ida, bitmap); 909 } 910 911 return; 912 913 err: 914 printk(KERN_WARNING 915 "ida_remove called for id=%d which is not allocated.\n", id); 916 } 917 EXPORT_SYMBOL(ida_remove); 918 919 /** 920 * ida_destroy - release all cached layers within an ida tree 921 * @ida: ida handle 922 */ 923 void ida_destroy(struct ida *ida) 924 { 925 idr_destroy(&ida->idr); 926 kfree(ida->free_bitmap); 927 } 928 EXPORT_SYMBOL(ida_destroy); 929 930 /** 931 * ida_simple_get - get a new id. 932 * @ida: the (initialized) ida. 933 * @start: the minimum id (inclusive, < 0x8000000) 934 * @end: the maximum id (exclusive, < 0x8000000 or 0) 935 * @gfp_mask: memory allocation flags 936 * 937 * Allocates an id in the range start <= id < end, or returns -ENOSPC. 938 * On memory allocation failure, returns -ENOMEM. 939 * 940 * Use ida_simple_remove() to get rid of an id. 941 */ 942 int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end, 943 gfp_t gfp_mask) 944 { 945 int ret, id; 946 unsigned int max; 947 948 BUG_ON((int)start < 0); 949 BUG_ON((int)end < 0); 950 951 if (end == 0) 952 max = 0x80000000; 953 else { 954 BUG_ON(end < start); 955 max = end - 1; 956 } 957 958 again: 959 if (!ida_pre_get(ida, gfp_mask)) 960 return -ENOMEM; 961 962 spin_lock(&simple_ida_lock); 963 ret = ida_get_new_above(ida, start, &id); 964 if (!ret) { 965 if (id > max) { 966 ida_remove(ida, id); 967 ret = -ENOSPC; 968 } else { 969 ret = id; 970 } 971 } 972 spin_unlock(&simple_ida_lock); 973 974 if (unlikely(ret == -EAGAIN)) 975 goto again; 976 977 return ret; 978 } 979 EXPORT_SYMBOL(ida_simple_get); 980 981 /** 982 * ida_simple_remove - remove an allocated id. 983 * @ida: the (initialized) ida. 984 * @id: the id returned by ida_simple_get. 985 */ 986 void ida_simple_remove(struct ida *ida, unsigned int id) 987 { 988 BUG_ON((int)id < 0); 989 spin_lock(&simple_ida_lock); 990 ida_remove(ida, id); 991 spin_unlock(&simple_ida_lock); 992 } 993 EXPORT_SYMBOL(ida_simple_remove); 994 995 /** 996 * ida_init - initialize ida handle 997 * @ida: ida handle 998 * 999 * This function is use to set up the handle (@ida) that you will pass 1000 * to the rest of the functions. 1001 */ 1002 void ida_init(struct ida *ida) 1003 { 1004 memset(ida, 0, sizeof(struct ida)); 1005 idr_init(&ida->idr); 1006 1007 } 1008 EXPORT_SYMBOL(ida_init); 1009