1 /* 2 * 2002-10-18 written by Jim Houston jim.houston@ccur.com 3 * Copyright (C) 2002 by Concurrent Computer Corporation 4 * Distributed under the GNU GPL license version 2. 5 * 6 * Modified by George Anzinger to reuse immediately and to use 7 * find bit instructions. Also removed _irq on spinlocks. 8 * 9 * Modified by Nadia Derbey to make it RCU safe. 10 * 11 * Small id to pointer translation service. 12 * 13 * It uses a radix tree like structure as a sparse array indexed 14 * by the id to obtain the pointer. The bitmap makes allocating 15 * a new id quick. 16 * 17 * You call it to allocate an id (an int) an associate with that id a 18 * pointer or what ever, we treat it as a (void *). You can pass this 19 * id to a user for him to pass back at a later time. You then pass 20 * that id to this code and it returns your pointer. 21 */ 22 23 #ifndef TEST // to test in user space... 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/export.h> 27 #endif 28 #include <linux/err.h> 29 #include <linux/string.h> 30 #include <linux/idr.h> 31 #include <linux/spinlock.h> 32 #include <linux/percpu.h> 33 #include <linux/hardirq.h> 34 35 #define MAX_IDR_SHIFT (sizeof(int) * 8 - 1) 36 #define MAX_IDR_BIT (1U << MAX_IDR_SHIFT) 37 38 /* Leave the possibility of an incomplete final layer */ 39 #define MAX_IDR_LEVEL ((MAX_IDR_SHIFT + IDR_BITS - 1) / IDR_BITS) 40 41 /* Number of id_layer structs to leave in free list */ 42 #define MAX_IDR_FREE (MAX_IDR_LEVEL * 2) 43 44 static struct kmem_cache *idr_layer_cache; 45 static DEFINE_PER_CPU(struct idr_layer *, idr_preload_head); 46 static DEFINE_PER_CPU(int, idr_preload_cnt); 47 static DEFINE_SPINLOCK(simple_ida_lock); 48 49 /* the maximum ID which can be allocated given idr->layers */ 50 static int idr_max(int layers) 51 { 52 int bits = min_t(int, layers * IDR_BITS, MAX_IDR_SHIFT); 53 54 return (1 << bits) - 1; 55 } 56 57 /* 58 * Prefix mask for an idr_layer at @layer. For layer 0, the prefix mask is 59 * all bits except for the lower IDR_BITS. For layer 1, 2 * IDR_BITS, and 60 * so on. 61 */ 62 static int idr_layer_prefix_mask(int layer) 63 { 64 return ~idr_max(layer + 1); 65 } 66 67 static struct idr_layer *get_from_free_list(struct idr *idp) 68 { 69 struct idr_layer *p; 70 unsigned long flags; 71 72 spin_lock_irqsave(&idp->lock, flags); 73 if ((p = idp->id_free)) { 74 idp->id_free = p->ary[0]; 75 idp->id_free_cnt--; 76 p->ary[0] = NULL; 77 } 78 spin_unlock_irqrestore(&idp->lock, flags); 79 return(p); 80 } 81 82 /** 83 * idr_layer_alloc - allocate a new idr_layer 84 * @gfp_mask: allocation mask 85 * @layer_idr: optional idr to allocate from 86 * 87 * If @layer_idr is %NULL, directly allocate one using @gfp_mask or fetch 88 * one from the per-cpu preload buffer. If @layer_idr is not %NULL, fetch 89 * an idr_layer from @idr->id_free. 90 * 91 * @layer_idr is to maintain backward compatibility with the old alloc 92 * interface - idr_pre_get() and idr_get_new*() - and will be removed 93 * together with per-pool preload buffer. 94 */ 95 static struct idr_layer *idr_layer_alloc(gfp_t gfp_mask, struct idr *layer_idr) 96 { 97 struct idr_layer *new; 98 99 /* this is the old path, bypass to get_from_free_list() */ 100 if (layer_idr) 101 return get_from_free_list(layer_idr); 102 103 /* 104 * Try to allocate directly from kmem_cache. We want to try this 105 * before preload buffer; otherwise, non-preloading idr_alloc() 106 * users will end up taking advantage of preloading ones. As the 107 * following is allowed to fail for preloaded cases, suppress 108 * warning this time. 109 */ 110 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask | __GFP_NOWARN); 111 if (new) 112 return new; 113 114 /* 115 * Try to fetch one from the per-cpu preload buffer if in process 116 * context. See idr_preload() for details. 117 */ 118 if (!in_interrupt()) { 119 preempt_disable(); 120 new = __this_cpu_read(idr_preload_head); 121 if (new) { 122 __this_cpu_write(idr_preload_head, new->ary[0]); 123 __this_cpu_dec(idr_preload_cnt); 124 new->ary[0] = NULL; 125 } 126 preempt_enable(); 127 if (new) 128 return new; 129 } 130 131 /* 132 * Both failed. Try kmem_cache again w/o adding __GFP_NOWARN so 133 * that memory allocation failure warning is printed as intended. 134 */ 135 return kmem_cache_zalloc(idr_layer_cache, gfp_mask); 136 } 137 138 static void idr_layer_rcu_free(struct rcu_head *head) 139 { 140 struct idr_layer *layer; 141 142 layer = container_of(head, struct idr_layer, rcu_head); 143 kmem_cache_free(idr_layer_cache, layer); 144 } 145 146 static inline void free_layer(struct idr *idr, struct idr_layer *p) 147 { 148 if (idr->hint == p) 149 RCU_INIT_POINTER(idr->hint, NULL); 150 call_rcu(&p->rcu_head, idr_layer_rcu_free); 151 } 152 153 /* only called when idp->lock is held */ 154 static void __move_to_free_list(struct idr *idp, struct idr_layer *p) 155 { 156 p->ary[0] = idp->id_free; 157 idp->id_free = p; 158 idp->id_free_cnt++; 159 } 160 161 static void move_to_free_list(struct idr *idp, struct idr_layer *p) 162 { 163 unsigned long flags; 164 165 /* 166 * Depends on the return element being zeroed. 167 */ 168 spin_lock_irqsave(&idp->lock, flags); 169 __move_to_free_list(idp, p); 170 spin_unlock_irqrestore(&idp->lock, flags); 171 } 172 173 static void idr_mark_full(struct idr_layer **pa, int id) 174 { 175 struct idr_layer *p = pa[0]; 176 int l = 0; 177 178 __set_bit(id & IDR_MASK, p->bitmap); 179 /* 180 * If this layer is full mark the bit in the layer above to 181 * show that this part of the radix tree is full. This may 182 * complete the layer above and require walking up the radix 183 * tree. 184 */ 185 while (bitmap_full(p->bitmap, IDR_SIZE)) { 186 if (!(p = pa[++l])) 187 break; 188 id = id >> IDR_BITS; 189 __set_bit((id & IDR_MASK), p->bitmap); 190 } 191 } 192 193 static int __idr_pre_get(struct idr *idp, gfp_t gfp_mask) 194 { 195 while (idp->id_free_cnt < MAX_IDR_FREE) { 196 struct idr_layer *new; 197 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask); 198 if (new == NULL) 199 return (0); 200 move_to_free_list(idp, new); 201 } 202 return 1; 203 } 204 205 /** 206 * sub_alloc - try to allocate an id without growing the tree depth 207 * @idp: idr handle 208 * @starting_id: id to start search at 209 * @pa: idr_layer[MAX_IDR_LEVEL] used as backtrack buffer 210 * @gfp_mask: allocation mask for idr_layer_alloc() 211 * @layer_idr: optional idr passed to idr_layer_alloc() 212 * 213 * Allocate an id in range [@starting_id, INT_MAX] from @idp without 214 * growing its depth. Returns 215 * 216 * the allocated id >= 0 if successful, 217 * -EAGAIN if the tree needs to grow for allocation to succeed, 218 * -ENOSPC if the id space is exhausted, 219 * -ENOMEM if more idr_layers need to be allocated. 220 */ 221 static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa, 222 gfp_t gfp_mask, struct idr *layer_idr) 223 { 224 int n, m, sh; 225 struct idr_layer *p, *new; 226 int l, id, oid; 227 228 id = *starting_id; 229 restart: 230 p = idp->top; 231 l = idp->layers; 232 pa[l--] = NULL; 233 while (1) { 234 /* 235 * We run around this while until we reach the leaf node... 236 */ 237 n = (id >> (IDR_BITS*l)) & IDR_MASK; 238 m = find_next_zero_bit(p->bitmap, IDR_SIZE, n); 239 if (m == IDR_SIZE) { 240 /* no space available go back to previous layer. */ 241 l++; 242 oid = id; 243 id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1; 244 245 /* if already at the top layer, we need to grow */ 246 if (id > idr_max(idp->layers)) { 247 *starting_id = id; 248 return -EAGAIN; 249 } 250 p = pa[l]; 251 BUG_ON(!p); 252 253 /* If we need to go up one layer, continue the 254 * loop; otherwise, restart from the top. 255 */ 256 sh = IDR_BITS * (l + 1); 257 if (oid >> sh == id >> sh) 258 continue; 259 else 260 goto restart; 261 } 262 if (m != n) { 263 sh = IDR_BITS*l; 264 id = ((id >> sh) ^ n ^ m) << sh; 265 } 266 if ((id >= MAX_IDR_BIT) || (id < 0)) 267 return -ENOSPC; 268 if (l == 0) 269 break; 270 /* 271 * Create the layer below if it is missing. 272 */ 273 if (!p->ary[m]) { 274 new = idr_layer_alloc(gfp_mask, layer_idr); 275 if (!new) 276 return -ENOMEM; 277 new->layer = l-1; 278 new->prefix = id & idr_layer_prefix_mask(new->layer); 279 rcu_assign_pointer(p->ary[m], new); 280 p->count++; 281 } 282 pa[l--] = p; 283 p = p->ary[m]; 284 } 285 286 pa[l] = p; 287 return id; 288 } 289 290 static int idr_get_empty_slot(struct idr *idp, int starting_id, 291 struct idr_layer **pa, gfp_t gfp_mask, 292 struct idr *layer_idr) 293 { 294 struct idr_layer *p, *new; 295 int layers, v, id; 296 unsigned long flags; 297 298 id = starting_id; 299 build_up: 300 p = idp->top; 301 layers = idp->layers; 302 if (unlikely(!p)) { 303 if (!(p = idr_layer_alloc(gfp_mask, layer_idr))) 304 return -ENOMEM; 305 p->layer = 0; 306 layers = 1; 307 } 308 /* 309 * Add a new layer to the top of the tree if the requested 310 * id is larger than the currently allocated space. 311 */ 312 while (id > idr_max(layers)) { 313 layers++; 314 if (!p->count) { 315 /* special case: if the tree is currently empty, 316 * then we grow the tree by moving the top node 317 * upwards. 318 */ 319 p->layer++; 320 WARN_ON_ONCE(p->prefix); 321 continue; 322 } 323 if (!(new = idr_layer_alloc(gfp_mask, layer_idr))) { 324 /* 325 * The allocation failed. If we built part of 326 * the structure tear it down. 327 */ 328 spin_lock_irqsave(&idp->lock, flags); 329 for (new = p; p && p != idp->top; new = p) { 330 p = p->ary[0]; 331 new->ary[0] = NULL; 332 new->count = 0; 333 bitmap_clear(new->bitmap, 0, IDR_SIZE); 334 __move_to_free_list(idp, new); 335 } 336 spin_unlock_irqrestore(&idp->lock, flags); 337 return -ENOMEM; 338 } 339 new->ary[0] = p; 340 new->count = 1; 341 new->layer = layers-1; 342 new->prefix = id & idr_layer_prefix_mask(new->layer); 343 if (bitmap_full(p->bitmap, IDR_SIZE)) 344 __set_bit(0, new->bitmap); 345 p = new; 346 } 347 rcu_assign_pointer(idp->top, p); 348 idp->layers = layers; 349 v = sub_alloc(idp, &id, pa, gfp_mask, layer_idr); 350 if (v == -EAGAIN) 351 goto build_up; 352 return(v); 353 } 354 355 /* 356 * @id and @pa are from a successful allocation from idr_get_empty_slot(). 357 * Install the user pointer @ptr and mark the slot full. 358 */ 359 static void idr_fill_slot(struct idr *idr, void *ptr, int id, 360 struct idr_layer **pa) 361 { 362 /* update hint used for lookup, cleared from free_layer() */ 363 rcu_assign_pointer(idr->hint, pa[0]); 364 365 rcu_assign_pointer(pa[0]->ary[id & IDR_MASK], (struct idr_layer *)ptr); 366 pa[0]->count++; 367 idr_mark_full(pa, id); 368 } 369 370 371 /** 372 * idr_preload - preload for idr_alloc() 373 * @gfp_mask: allocation mask to use for preloading 374 * 375 * Preload per-cpu layer buffer for idr_alloc(). Can only be used from 376 * process context and each idr_preload() invocation should be matched with 377 * idr_preload_end(). Note that preemption is disabled while preloaded. 378 * 379 * The first idr_alloc() in the preloaded section can be treated as if it 380 * were invoked with @gfp_mask used for preloading. This allows using more 381 * permissive allocation masks for idrs protected by spinlocks. 382 * 383 * For example, if idr_alloc() below fails, the failure can be treated as 384 * if idr_alloc() were called with GFP_KERNEL rather than GFP_NOWAIT. 385 * 386 * idr_preload(GFP_KERNEL); 387 * spin_lock(lock); 388 * 389 * id = idr_alloc(idr, ptr, start, end, GFP_NOWAIT); 390 * 391 * spin_unlock(lock); 392 * idr_preload_end(); 393 * if (id < 0) 394 * error; 395 */ 396 void idr_preload(gfp_t gfp_mask) 397 { 398 /* 399 * Consuming preload buffer from non-process context breaks preload 400 * allocation guarantee. Disallow usage from those contexts. 401 */ 402 WARN_ON_ONCE(in_interrupt()); 403 might_sleep_if(gfp_mask & __GFP_WAIT); 404 405 preempt_disable(); 406 407 /* 408 * idr_alloc() is likely to succeed w/o full idr_layer buffer and 409 * return value from idr_alloc() needs to be checked for failure 410 * anyway. Silently give up if allocation fails. The caller can 411 * treat failures from idr_alloc() as if idr_alloc() were called 412 * with @gfp_mask which should be enough. 413 */ 414 while (__this_cpu_read(idr_preload_cnt) < MAX_IDR_FREE) { 415 struct idr_layer *new; 416 417 preempt_enable(); 418 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask); 419 preempt_disable(); 420 if (!new) 421 break; 422 423 /* link the new one to per-cpu preload list */ 424 new->ary[0] = __this_cpu_read(idr_preload_head); 425 __this_cpu_write(idr_preload_head, new); 426 __this_cpu_inc(idr_preload_cnt); 427 } 428 } 429 EXPORT_SYMBOL(idr_preload); 430 431 /** 432 * idr_alloc - allocate new idr entry 433 * @idr: the (initialized) idr 434 * @ptr: pointer to be associated with the new id 435 * @start: the minimum id (inclusive) 436 * @end: the maximum id (exclusive, <= 0 for max) 437 * @gfp_mask: memory allocation flags 438 * 439 * Allocate an id in [start, end) and associate it with @ptr. If no ID is 440 * available in the specified range, returns -ENOSPC. On memory allocation 441 * failure, returns -ENOMEM. 442 * 443 * Note that @end is treated as max when <= 0. This is to always allow 444 * using @start + N as @end as long as N is inside integer range. 445 * 446 * The user is responsible for exclusively synchronizing all operations 447 * which may modify @idr. However, read-only accesses such as idr_find() 448 * or iteration can be performed under RCU read lock provided the user 449 * destroys @ptr in RCU-safe way after removal from idr. 450 */ 451 int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp_mask) 452 { 453 int max = end > 0 ? end - 1 : INT_MAX; /* inclusive upper limit */ 454 struct idr_layer *pa[MAX_IDR_LEVEL + 1]; 455 int id; 456 457 might_sleep_if(gfp_mask & __GFP_WAIT); 458 459 /* sanity checks */ 460 if (WARN_ON_ONCE(start < 0)) 461 return -EINVAL; 462 if (unlikely(max < start)) 463 return -ENOSPC; 464 465 /* allocate id */ 466 id = idr_get_empty_slot(idr, start, pa, gfp_mask, NULL); 467 if (unlikely(id < 0)) 468 return id; 469 if (unlikely(id > max)) 470 return -ENOSPC; 471 472 idr_fill_slot(idr, ptr, id, pa); 473 return id; 474 } 475 EXPORT_SYMBOL_GPL(idr_alloc); 476 477 /** 478 * idr_alloc_cyclic - allocate new idr entry in a cyclical fashion 479 * @idr: the (initialized) idr 480 * @ptr: pointer to be associated with the new id 481 * @start: the minimum id (inclusive) 482 * @end: the maximum id (exclusive, <= 0 for max) 483 * @gfp_mask: memory allocation flags 484 * 485 * Essentially the same as idr_alloc, but prefers to allocate progressively 486 * higher ids if it can. If the "cur" counter wraps, then it will start again 487 * at the "start" end of the range and allocate one that has already been used. 488 */ 489 int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, 490 gfp_t gfp_mask) 491 { 492 int id; 493 494 id = idr_alloc(idr, ptr, max(start, idr->cur), end, gfp_mask); 495 if (id == -ENOSPC) 496 id = idr_alloc(idr, ptr, start, end, gfp_mask); 497 498 if (likely(id >= 0)) 499 idr->cur = id + 1; 500 return id; 501 } 502 EXPORT_SYMBOL(idr_alloc_cyclic); 503 504 static void idr_remove_warning(int id) 505 { 506 WARN(1, "idr_remove called for id=%d which is not allocated.\n", id); 507 } 508 509 static void sub_remove(struct idr *idp, int shift, int id) 510 { 511 struct idr_layer *p = idp->top; 512 struct idr_layer **pa[MAX_IDR_LEVEL + 1]; 513 struct idr_layer ***paa = &pa[0]; 514 struct idr_layer *to_free; 515 int n; 516 517 *paa = NULL; 518 *++paa = &idp->top; 519 520 while ((shift > 0) && p) { 521 n = (id >> shift) & IDR_MASK; 522 __clear_bit(n, p->bitmap); 523 *++paa = &p->ary[n]; 524 p = p->ary[n]; 525 shift -= IDR_BITS; 526 } 527 n = id & IDR_MASK; 528 if (likely(p != NULL && test_bit(n, p->bitmap))) { 529 __clear_bit(n, p->bitmap); 530 RCU_INIT_POINTER(p->ary[n], NULL); 531 to_free = NULL; 532 while(*paa && ! --((**paa)->count)){ 533 if (to_free) 534 free_layer(idp, to_free); 535 to_free = **paa; 536 **paa-- = NULL; 537 } 538 if (!*paa) 539 idp->layers = 0; 540 if (to_free) 541 free_layer(idp, to_free); 542 } else 543 idr_remove_warning(id); 544 } 545 546 /** 547 * idr_remove - remove the given id and free its slot 548 * @idp: idr handle 549 * @id: unique key 550 */ 551 void idr_remove(struct idr *idp, int id) 552 { 553 struct idr_layer *p; 554 struct idr_layer *to_free; 555 556 if (id < 0) 557 return; 558 559 if (id > idr_max(idp->layers)) { 560 idr_remove_warning(id); 561 return; 562 } 563 564 sub_remove(idp, (idp->layers - 1) * IDR_BITS, id); 565 if (idp->top && idp->top->count == 1 && (idp->layers > 1) && 566 idp->top->ary[0]) { 567 /* 568 * Single child at leftmost slot: we can shrink the tree. 569 * This level is not needed anymore since when layers are 570 * inserted, they are inserted at the top of the existing 571 * tree. 572 */ 573 to_free = idp->top; 574 p = idp->top->ary[0]; 575 rcu_assign_pointer(idp->top, p); 576 --idp->layers; 577 to_free->count = 0; 578 bitmap_clear(to_free->bitmap, 0, IDR_SIZE); 579 free_layer(idp, to_free); 580 } 581 } 582 EXPORT_SYMBOL(idr_remove); 583 584 static void __idr_remove_all(struct idr *idp) 585 { 586 int n, id, max; 587 int bt_mask; 588 struct idr_layer *p; 589 struct idr_layer *pa[MAX_IDR_LEVEL + 1]; 590 struct idr_layer **paa = &pa[0]; 591 592 n = idp->layers * IDR_BITS; 593 p = idp->top; 594 RCU_INIT_POINTER(idp->top, NULL); 595 max = idr_max(idp->layers); 596 597 id = 0; 598 while (id >= 0 && id <= max) { 599 while (n > IDR_BITS && p) { 600 n -= IDR_BITS; 601 *paa++ = p; 602 p = p->ary[(id >> n) & IDR_MASK]; 603 } 604 605 bt_mask = id; 606 id += 1 << n; 607 /* Get the highest bit that the above add changed from 0->1. */ 608 while (n < fls(id ^ bt_mask)) { 609 if (p) 610 free_layer(idp, p); 611 n += IDR_BITS; 612 p = *--paa; 613 } 614 } 615 idp->layers = 0; 616 } 617 618 /** 619 * idr_destroy - release all cached layers within an idr tree 620 * @idp: idr handle 621 * 622 * Free all id mappings and all idp_layers. After this function, @idp is 623 * completely unused and can be freed / recycled. The caller is 624 * responsible for ensuring that no one else accesses @idp during or after 625 * idr_destroy(). 626 * 627 * A typical clean-up sequence for objects stored in an idr tree will use 628 * idr_for_each() to free all objects, if necessay, then idr_destroy() to 629 * free up the id mappings and cached idr_layers. 630 */ 631 void idr_destroy(struct idr *idp) 632 { 633 __idr_remove_all(idp); 634 635 while (idp->id_free_cnt) { 636 struct idr_layer *p = get_from_free_list(idp); 637 kmem_cache_free(idr_layer_cache, p); 638 } 639 } 640 EXPORT_SYMBOL(idr_destroy); 641 642 void *idr_find_slowpath(struct idr *idp, int id) 643 { 644 int n; 645 struct idr_layer *p; 646 647 if (id < 0) 648 return NULL; 649 650 p = rcu_dereference_raw(idp->top); 651 if (!p) 652 return NULL; 653 n = (p->layer+1) * IDR_BITS; 654 655 if (id > idr_max(p->layer + 1)) 656 return NULL; 657 BUG_ON(n == 0); 658 659 while (n > 0 && p) { 660 n -= IDR_BITS; 661 BUG_ON(n != p->layer*IDR_BITS); 662 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]); 663 } 664 return((void *)p); 665 } 666 EXPORT_SYMBOL(idr_find_slowpath); 667 668 /** 669 * idr_for_each - iterate through all stored pointers 670 * @idp: idr handle 671 * @fn: function to be called for each pointer 672 * @data: data passed back to callback function 673 * 674 * Iterate over the pointers registered with the given idr. The 675 * callback function will be called for each pointer currently 676 * registered, passing the id, the pointer and the data pointer passed 677 * to this function. It is not safe to modify the idr tree while in 678 * the callback, so functions such as idr_get_new and idr_remove are 679 * not allowed. 680 * 681 * We check the return of @fn each time. If it returns anything other 682 * than %0, we break out and return that value. 683 * 684 * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove(). 685 */ 686 int idr_for_each(struct idr *idp, 687 int (*fn)(int id, void *p, void *data), void *data) 688 { 689 int n, id, max, error = 0; 690 struct idr_layer *p; 691 struct idr_layer *pa[MAX_IDR_LEVEL + 1]; 692 struct idr_layer **paa = &pa[0]; 693 694 n = idp->layers * IDR_BITS; 695 p = rcu_dereference_raw(idp->top); 696 max = idr_max(idp->layers); 697 698 id = 0; 699 while (id >= 0 && id <= max) { 700 while (n > 0 && p) { 701 n -= IDR_BITS; 702 *paa++ = p; 703 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]); 704 } 705 706 if (p) { 707 error = fn(id, (void *)p, data); 708 if (error) 709 break; 710 } 711 712 id += 1 << n; 713 while (n < fls(id)) { 714 n += IDR_BITS; 715 p = *--paa; 716 } 717 } 718 719 return error; 720 } 721 EXPORT_SYMBOL(idr_for_each); 722 723 /** 724 * idr_get_next - lookup next object of id to given id. 725 * @idp: idr handle 726 * @nextidp: pointer to lookup key 727 * 728 * Returns pointer to registered object with id, which is next number to 729 * given id. After being looked up, *@nextidp will be updated for the next 730 * iteration. 731 * 732 * This function can be called under rcu_read_lock(), given that the leaf 733 * pointers lifetimes are correctly managed. 734 */ 735 void *idr_get_next(struct idr *idp, int *nextidp) 736 { 737 struct idr_layer *p, *pa[MAX_IDR_LEVEL + 1]; 738 struct idr_layer **paa = &pa[0]; 739 int id = *nextidp; 740 int n, max; 741 742 /* find first ent */ 743 p = rcu_dereference_raw(idp->top); 744 if (!p) 745 return NULL; 746 n = (p->layer + 1) * IDR_BITS; 747 max = idr_max(p->layer + 1); 748 749 while (id >= 0 && id <= max) { 750 while (n > 0 && p) { 751 n -= IDR_BITS; 752 *paa++ = p; 753 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]); 754 } 755 756 if (p) { 757 *nextidp = id; 758 return p; 759 } 760 761 /* 762 * Proceed to the next layer at the current level. Unlike 763 * idr_for_each(), @id isn't guaranteed to be aligned to 764 * layer boundary at this point and adding 1 << n may 765 * incorrectly skip IDs. Make sure we jump to the 766 * beginning of the next layer using round_up(). 767 */ 768 id = round_up(id + 1, 1 << n); 769 while (n < fls(id)) { 770 n += IDR_BITS; 771 p = *--paa; 772 } 773 } 774 return NULL; 775 } 776 EXPORT_SYMBOL(idr_get_next); 777 778 779 /** 780 * idr_replace - replace pointer for given id 781 * @idp: idr handle 782 * @ptr: pointer you want associated with the id 783 * @id: lookup key 784 * 785 * Replace the pointer registered with an id and return the old value. 786 * A %-ENOENT return indicates that @id was not found. 787 * A %-EINVAL return indicates that @id was not within valid constraints. 788 * 789 * The caller must serialize with writers. 790 */ 791 void *idr_replace(struct idr *idp, void *ptr, int id) 792 { 793 int n; 794 struct idr_layer *p, *old_p; 795 796 if (id < 0) 797 return ERR_PTR(-EINVAL); 798 799 p = idp->top; 800 if (!p) 801 return ERR_PTR(-ENOENT); 802 803 if (id > idr_max(p->layer + 1)) 804 return ERR_PTR(-ENOENT); 805 806 n = p->layer * IDR_BITS; 807 while ((n > 0) && p) { 808 p = p->ary[(id >> n) & IDR_MASK]; 809 n -= IDR_BITS; 810 } 811 812 n = id & IDR_MASK; 813 if (unlikely(p == NULL || !test_bit(n, p->bitmap))) 814 return ERR_PTR(-ENOENT); 815 816 old_p = p->ary[n]; 817 rcu_assign_pointer(p->ary[n], ptr); 818 819 return old_p; 820 } 821 EXPORT_SYMBOL(idr_replace); 822 823 void __init idr_init_cache(void) 824 { 825 idr_layer_cache = kmem_cache_create("idr_layer_cache", 826 sizeof(struct idr_layer), 0, SLAB_PANIC, NULL); 827 } 828 829 /** 830 * idr_init - initialize idr handle 831 * @idp: idr handle 832 * 833 * This function is use to set up the handle (@idp) that you will pass 834 * to the rest of the functions. 835 */ 836 void idr_init(struct idr *idp) 837 { 838 memset(idp, 0, sizeof(struct idr)); 839 spin_lock_init(&idp->lock); 840 } 841 EXPORT_SYMBOL(idr_init); 842 843 static int idr_has_entry(int id, void *p, void *data) 844 { 845 return 1; 846 } 847 848 bool idr_is_empty(struct idr *idp) 849 { 850 return !idr_for_each(idp, idr_has_entry, NULL); 851 } 852 EXPORT_SYMBOL(idr_is_empty); 853 854 /** 855 * DOC: IDA description 856 * IDA - IDR based ID allocator 857 * 858 * This is id allocator without id -> pointer translation. Memory 859 * usage is much lower than full blown idr because each id only 860 * occupies a bit. ida uses a custom leaf node which contains 861 * IDA_BITMAP_BITS slots. 862 * 863 * 2007-04-25 written by Tejun Heo <htejun@gmail.com> 864 */ 865 866 static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap) 867 { 868 unsigned long flags; 869 870 if (!ida->free_bitmap) { 871 spin_lock_irqsave(&ida->idr.lock, flags); 872 if (!ida->free_bitmap) { 873 ida->free_bitmap = bitmap; 874 bitmap = NULL; 875 } 876 spin_unlock_irqrestore(&ida->idr.lock, flags); 877 } 878 879 kfree(bitmap); 880 } 881 882 /** 883 * ida_pre_get - reserve resources for ida allocation 884 * @ida: ida handle 885 * @gfp_mask: memory allocation flag 886 * 887 * This function should be called prior to locking and calling the 888 * following function. It preallocates enough memory to satisfy the 889 * worst possible allocation. 890 * 891 * If the system is REALLY out of memory this function returns %0, 892 * otherwise %1. 893 */ 894 int ida_pre_get(struct ida *ida, gfp_t gfp_mask) 895 { 896 /* allocate idr_layers */ 897 if (!__idr_pre_get(&ida->idr, gfp_mask)) 898 return 0; 899 900 /* allocate free_bitmap */ 901 if (!ida->free_bitmap) { 902 struct ida_bitmap *bitmap; 903 904 bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask); 905 if (!bitmap) 906 return 0; 907 908 free_bitmap(ida, bitmap); 909 } 910 911 return 1; 912 } 913 EXPORT_SYMBOL(ida_pre_get); 914 915 /** 916 * ida_get_new_above - allocate new ID above or equal to a start id 917 * @ida: ida handle 918 * @starting_id: id to start search at 919 * @p_id: pointer to the allocated handle 920 * 921 * Allocate new ID above or equal to @starting_id. It should be called 922 * with any required locks. 923 * 924 * If memory is required, it will return %-EAGAIN, you should unlock 925 * and go back to the ida_pre_get() call. If the ida is full, it will 926 * return %-ENOSPC. 927 * 928 * @p_id returns a value in the range @starting_id ... %0x7fffffff. 929 */ 930 int ida_get_new_above(struct ida *ida, int starting_id, int *p_id) 931 { 932 struct idr_layer *pa[MAX_IDR_LEVEL + 1]; 933 struct ida_bitmap *bitmap; 934 unsigned long flags; 935 int idr_id = starting_id / IDA_BITMAP_BITS; 936 int offset = starting_id % IDA_BITMAP_BITS; 937 int t, id; 938 939 restart: 940 /* get vacant slot */ 941 t = idr_get_empty_slot(&ida->idr, idr_id, pa, 0, &ida->idr); 942 if (t < 0) 943 return t == -ENOMEM ? -EAGAIN : t; 944 945 if (t * IDA_BITMAP_BITS >= MAX_IDR_BIT) 946 return -ENOSPC; 947 948 if (t != idr_id) 949 offset = 0; 950 idr_id = t; 951 952 /* if bitmap isn't there, create a new one */ 953 bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK]; 954 if (!bitmap) { 955 spin_lock_irqsave(&ida->idr.lock, flags); 956 bitmap = ida->free_bitmap; 957 ida->free_bitmap = NULL; 958 spin_unlock_irqrestore(&ida->idr.lock, flags); 959 960 if (!bitmap) 961 return -EAGAIN; 962 963 memset(bitmap, 0, sizeof(struct ida_bitmap)); 964 rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK], 965 (void *)bitmap); 966 pa[0]->count++; 967 } 968 969 /* lookup for empty slot */ 970 t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset); 971 if (t == IDA_BITMAP_BITS) { 972 /* no empty slot after offset, continue to the next chunk */ 973 idr_id++; 974 offset = 0; 975 goto restart; 976 } 977 978 id = idr_id * IDA_BITMAP_BITS + t; 979 if (id >= MAX_IDR_BIT) 980 return -ENOSPC; 981 982 __set_bit(t, bitmap->bitmap); 983 if (++bitmap->nr_busy == IDA_BITMAP_BITS) 984 idr_mark_full(pa, idr_id); 985 986 *p_id = id; 987 988 /* Each leaf node can handle nearly a thousand slots and the 989 * whole idea of ida is to have small memory foot print. 990 * Throw away extra resources one by one after each successful 991 * allocation. 992 */ 993 if (ida->idr.id_free_cnt || ida->free_bitmap) { 994 struct idr_layer *p = get_from_free_list(&ida->idr); 995 if (p) 996 kmem_cache_free(idr_layer_cache, p); 997 } 998 999 return 0; 1000 } 1001 EXPORT_SYMBOL(ida_get_new_above); 1002 1003 /** 1004 * ida_remove - remove the given ID 1005 * @ida: ida handle 1006 * @id: ID to free 1007 */ 1008 void ida_remove(struct ida *ida, int id) 1009 { 1010 struct idr_layer *p = ida->idr.top; 1011 int shift = (ida->idr.layers - 1) * IDR_BITS; 1012 int idr_id = id / IDA_BITMAP_BITS; 1013 int offset = id % IDA_BITMAP_BITS; 1014 int n; 1015 struct ida_bitmap *bitmap; 1016 1017 if (idr_id > idr_max(ida->idr.layers)) 1018 goto err; 1019 1020 /* clear full bits while looking up the leaf idr_layer */ 1021 while ((shift > 0) && p) { 1022 n = (idr_id >> shift) & IDR_MASK; 1023 __clear_bit(n, p->bitmap); 1024 p = p->ary[n]; 1025 shift -= IDR_BITS; 1026 } 1027 1028 if (p == NULL) 1029 goto err; 1030 1031 n = idr_id & IDR_MASK; 1032 __clear_bit(n, p->bitmap); 1033 1034 bitmap = (void *)p->ary[n]; 1035 if (!bitmap || !test_bit(offset, bitmap->bitmap)) 1036 goto err; 1037 1038 /* update bitmap and remove it if empty */ 1039 __clear_bit(offset, bitmap->bitmap); 1040 if (--bitmap->nr_busy == 0) { 1041 __set_bit(n, p->bitmap); /* to please idr_remove() */ 1042 idr_remove(&ida->idr, idr_id); 1043 free_bitmap(ida, bitmap); 1044 } 1045 1046 return; 1047 1048 err: 1049 WARN(1, "ida_remove called for id=%d which is not allocated.\n", id); 1050 } 1051 EXPORT_SYMBOL(ida_remove); 1052 1053 /** 1054 * ida_destroy - release all cached layers within an ida tree 1055 * @ida: ida handle 1056 */ 1057 void ida_destroy(struct ida *ida) 1058 { 1059 idr_destroy(&ida->idr); 1060 kfree(ida->free_bitmap); 1061 } 1062 EXPORT_SYMBOL(ida_destroy); 1063 1064 /** 1065 * ida_simple_get - get a new id. 1066 * @ida: the (initialized) ida. 1067 * @start: the minimum id (inclusive, < 0x8000000) 1068 * @end: the maximum id (exclusive, < 0x8000000 or 0) 1069 * @gfp_mask: memory allocation flags 1070 * 1071 * Allocates an id in the range start <= id < end, or returns -ENOSPC. 1072 * On memory allocation failure, returns -ENOMEM. 1073 * 1074 * Use ida_simple_remove() to get rid of an id. 1075 */ 1076 int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end, 1077 gfp_t gfp_mask) 1078 { 1079 int ret, id; 1080 unsigned int max; 1081 unsigned long flags; 1082 1083 BUG_ON((int)start < 0); 1084 BUG_ON((int)end < 0); 1085 1086 if (end == 0) 1087 max = 0x80000000; 1088 else { 1089 BUG_ON(end < start); 1090 max = end - 1; 1091 } 1092 1093 again: 1094 if (!ida_pre_get(ida, gfp_mask)) 1095 return -ENOMEM; 1096 1097 spin_lock_irqsave(&simple_ida_lock, flags); 1098 ret = ida_get_new_above(ida, start, &id); 1099 if (!ret) { 1100 if (id > max) { 1101 ida_remove(ida, id); 1102 ret = -ENOSPC; 1103 } else { 1104 ret = id; 1105 } 1106 } 1107 spin_unlock_irqrestore(&simple_ida_lock, flags); 1108 1109 if (unlikely(ret == -EAGAIN)) 1110 goto again; 1111 1112 return ret; 1113 } 1114 EXPORT_SYMBOL(ida_simple_get); 1115 1116 /** 1117 * ida_simple_remove - remove an allocated id. 1118 * @ida: the (initialized) ida. 1119 * @id: the id returned by ida_simple_get. 1120 */ 1121 void ida_simple_remove(struct ida *ida, unsigned int id) 1122 { 1123 unsigned long flags; 1124 1125 BUG_ON((int)id < 0); 1126 spin_lock_irqsave(&simple_ida_lock, flags); 1127 ida_remove(ida, id); 1128 spin_unlock_irqrestore(&simple_ida_lock, flags); 1129 } 1130 EXPORT_SYMBOL(ida_simple_remove); 1131 1132 /** 1133 * ida_init - initialize ida handle 1134 * @ida: ida handle 1135 * 1136 * This function is use to set up the handle (@ida) that you will pass 1137 * to the rest of the functions. 1138 */ 1139 void ida_init(struct ida *ida) 1140 { 1141 memset(ida, 0, sizeof(struct ida)); 1142 idr_init(&ida->idr); 1143 1144 } 1145 EXPORT_SYMBOL(ida_init); 1146