xref: /linux/lib/idr.c (revision 3932b9ca55b0be314a36d3e84faff3e823c081f5)
1 /*
2  * 2002-10-18  written by Jim Houston jim.houston@ccur.com
3  *	Copyright (C) 2002 by Concurrent Computer Corporation
4  *	Distributed under the GNU GPL license version 2.
5  *
6  * Modified by George Anzinger to reuse immediately and to use
7  * find bit instructions.  Also removed _irq on spinlocks.
8  *
9  * Modified by Nadia Derbey to make it RCU safe.
10  *
11  * Small id to pointer translation service.
12  *
13  * It uses a radix tree like structure as a sparse array indexed
14  * by the id to obtain the pointer.  The bitmap makes allocating
15  * a new id quick.
16  *
17  * You call it to allocate an id (an int) an associate with that id a
18  * pointer or what ever, we treat it as a (void *).  You can pass this
19  * id to a user for him to pass back at a later time.  You then pass
20  * that id to this code and it returns your pointer.
21  */
22 
23 #ifndef TEST                        // to test in user space...
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/export.h>
27 #endif
28 #include <linux/err.h>
29 #include <linux/string.h>
30 #include <linux/idr.h>
31 #include <linux/spinlock.h>
32 #include <linux/percpu.h>
33 #include <linux/hardirq.h>
34 
35 #define MAX_IDR_SHIFT		(sizeof(int) * 8 - 1)
36 #define MAX_IDR_BIT		(1U << MAX_IDR_SHIFT)
37 
38 /* Leave the possibility of an incomplete final layer */
39 #define MAX_IDR_LEVEL ((MAX_IDR_SHIFT + IDR_BITS - 1) / IDR_BITS)
40 
41 /* Number of id_layer structs to leave in free list */
42 #define MAX_IDR_FREE (MAX_IDR_LEVEL * 2)
43 
44 static struct kmem_cache *idr_layer_cache;
45 static DEFINE_PER_CPU(struct idr_layer *, idr_preload_head);
46 static DEFINE_PER_CPU(int, idr_preload_cnt);
47 static DEFINE_SPINLOCK(simple_ida_lock);
48 
49 /* the maximum ID which can be allocated given idr->layers */
50 static int idr_max(int layers)
51 {
52 	int bits = min_t(int, layers * IDR_BITS, MAX_IDR_SHIFT);
53 
54 	return (1 << bits) - 1;
55 }
56 
57 /*
58  * Prefix mask for an idr_layer at @layer.  For layer 0, the prefix mask is
59  * all bits except for the lower IDR_BITS.  For layer 1, 2 * IDR_BITS, and
60  * so on.
61  */
62 static int idr_layer_prefix_mask(int layer)
63 {
64 	return ~idr_max(layer + 1);
65 }
66 
67 static struct idr_layer *get_from_free_list(struct idr *idp)
68 {
69 	struct idr_layer *p;
70 	unsigned long flags;
71 
72 	spin_lock_irqsave(&idp->lock, flags);
73 	if ((p = idp->id_free)) {
74 		idp->id_free = p->ary[0];
75 		idp->id_free_cnt--;
76 		p->ary[0] = NULL;
77 	}
78 	spin_unlock_irqrestore(&idp->lock, flags);
79 	return(p);
80 }
81 
82 /**
83  * idr_layer_alloc - allocate a new idr_layer
84  * @gfp_mask: allocation mask
85  * @layer_idr: optional idr to allocate from
86  *
87  * If @layer_idr is %NULL, directly allocate one using @gfp_mask or fetch
88  * one from the per-cpu preload buffer.  If @layer_idr is not %NULL, fetch
89  * an idr_layer from @idr->id_free.
90  *
91  * @layer_idr is to maintain backward compatibility with the old alloc
92  * interface - idr_pre_get() and idr_get_new*() - and will be removed
93  * together with per-pool preload buffer.
94  */
95 static struct idr_layer *idr_layer_alloc(gfp_t gfp_mask, struct idr *layer_idr)
96 {
97 	struct idr_layer *new;
98 
99 	/* this is the old path, bypass to get_from_free_list() */
100 	if (layer_idr)
101 		return get_from_free_list(layer_idr);
102 
103 	/*
104 	 * Try to allocate directly from kmem_cache.  We want to try this
105 	 * before preload buffer; otherwise, non-preloading idr_alloc()
106 	 * users will end up taking advantage of preloading ones.  As the
107 	 * following is allowed to fail for preloaded cases, suppress
108 	 * warning this time.
109 	 */
110 	new = kmem_cache_zalloc(idr_layer_cache, gfp_mask | __GFP_NOWARN);
111 	if (new)
112 		return new;
113 
114 	/*
115 	 * Try to fetch one from the per-cpu preload buffer if in process
116 	 * context.  See idr_preload() for details.
117 	 */
118 	if (!in_interrupt()) {
119 		preempt_disable();
120 		new = __this_cpu_read(idr_preload_head);
121 		if (new) {
122 			__this_cpu_write(idr_preload_head, new->ary[0]);
123 			__this_cpu_dec(idr_preload_cnt);
124 			new->ary[0] = NULL;
125 		}
126 		preempt_enable();
127 		if (new)
128 			return new;
129 	}
130 
131 	/*
132 	 * Both failed.  Try kmem_cache again w/o adding __GFP_NOWARN so
133 	 * that memory allocation failure warning is printed as intended.
134 	 */
135 	return kmem_cache_zalloc(idr_layer_cache, gfp_mask);
136 }
137 
138 static void idr_layer_rcu_free(struct rcu_head *head)
139 {
140 	struct idr_layer *layer;
141 
142 	layer = container_of(head, struct idr_layer, rcu_head);
143 	kmem_cache_free(idr_layer_cache, layer);
144 }
145 
146 static inline void free_layer(struct idr *idr, struct idr_layer *p)
147 {
148 	if (idr->hint == p)
149 		RCU_INIT_POINTER(idr->hint, NULL);
150 	call_rcu(&p->rcu_head, idr_layer_rcu_free);
151 }
152 
153 /* only called when idp->lock is held */
154 static void __move_to_free_list(struct idr *idp, struct idr_layer *p)
155 {
156 	p->ary[0] = idp->id_free;
157 	idp->id_free = p;
158 	idp->id_free_cnt++;
159 }
160 
161 static void move_to_free_list(struct idr *idp, struct idr_layer *p)
162 {
163 	unsigned long flags;
164 
165 	/*
166 	 * Depends on the return element being zeroed.
167 	 */
168 	spin_lock_irqsave(&idp->lock, flags);
169 	__move_to_free_list(idp, p);
170 	spin_unlock_irqrestore(&idp->lock, flags);
171 }
172 
173 static void idr_mark_full(struct idr_layer **pa, int id)
174 {
175 	struct idr_layer *p = pa[0];
176 	int l = 0;
177 
178 	__set_bit(id & IDR_MASK, p->bitmap);
179 	/*
180 	 * If this layer is full mark the bit in the layer above to
181 	 * show that this part of the radix tree is full.  This may
182 	 * complete the layer above and require walking up the radix
183 	 * tree.
184 	 */
185 	while (bitmap_full(p->bitmap, IDR_SIZE)) {
186 		if (!(p = pa[++l]))
187 			break;
188 		id = id >> IDR_BITS;
189 		__set_bit((id & IDR_MASK), p->bitmap);
190 	}
191 }
192 
193 static int __idr_pre_get(struct idr *idp, gfp_t gfp_mask)
194 {
195 	while (idp->id_free_cnt < MAX_IDR_FREE) {
196 		struct idr_layer *new;
197 		new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
198 		if (new == NULL)
199 			return (0);
200 		move_to_free_list(idp, new);
201 	}
202 	return 1;
203 }
204 
205 /**
206  * sub_alloc - try to allocate an id without growing the tree depth
207  * @idp: idr handle
208  * @starting_id: id to start search at
209  * @pa: idr_layer[MAX_IDR_LEVEL] used as backtrack buffer
210  * @gfp_mask: allocation mask for idr_layer_alloc()
211  * @layer_idr: optional idr passed to idr_layer_alloc()
212  *
213  * Allocate an id in range [@starting_id, INT_MAX] from @idp without
214  * growing its depth.  Returns
215  *
216  *  the allocated id >= 0 if successful,
217  *  -EAGAIN if the tree needs to grow for allocation to succeed,
218  *  -ENOSPC if the id space is exhausted,
219  *  -ENOMEM if more idr_layers need to be allocated.
220  */
221 static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa,
222 		     gfp_t gfp_mask, struct idr *layer_idr)
223 {
224 	int n, m, sh;
225 	struct idr_layer *p, *new;
226 	int l, id, oid;
227 
228 	id = *starting_id;
229  restart:
230 	p = idp->top;
231 	l = idp->layers;
232 	pa[l--] = NULL;
233 	while (1) {
234 		/*
235 		 * We run around this while until we reach the leaf node...
236 		 */
237 		n = (id >> (IDR_BITS*l)) & IDR_MASK;
238 		m = find_next_zero_bit(p->bitmap, IDR_SIZE, n);
239 		if (m == IDR_SIZE) {
240 			/* no space available go back to previous layer. */
241 			l++;
242 			oid = id;
243 			id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1;
244 
245 			/* if already at the top layer, we need to grow */
246 			if (id > idr_max(idp->layers)) {
247 				*starting_id = id;
248 				return -EAGAIN;
249 			}
250 			p = pa[l];
251 			BUG_ON(!p);
252 
253 			/* If we need to go up one layer, continue the
254 			 * loop; otherwise, restart from the top.
255 			 */
256 			sh = IDR_BITS * (l + 1);
257 			if (oid >> sh == id >> sh)
258 				continue;
259 			else
260 				goto restart;
261 		}
262 		if (m != n) {
263 			sh = IDR_BITS*l;
264 			id = ((id >> sh) ^ n ^ m) << sh;
265 		}
266 		if ((id >= MAX_IDR_BIT) || (id < 0))
267 			return -ENOSPC;
268 		if (l == 0)
269 			break;
270 		/*
271 		 * Create the layer below if it is missing.
272 		 */
273 		if (!p->ary[m]) {
274 			new = idr_layer_alloc(gfp_mask, layer_idr);
275 			if (!new)
276 				return -ENOMEM;
277 			new->layer = l-1;
278 			new->prefix = id & idr_layer_prefix_mask(new->layer);
279 			rcu_assign_pointer(p->ary[m], new);
280 			p->count++;
281 		}
282 		pa[l--] = p;
283 		p = p->ary[m];
284 	}
285 
286 	pa[l] = p;
287 	return id;
288 }
289 
290 static int idr_get_empty_slot(struct idr *idp, int starting_id,
291 			      struct idr_layer **pa, gfp_t gfp_mask,
292 			      struct idr *layer_idr)
293 {
294 	struct idr_layer *p, *new;
295 	int layers, v, id;
296 	unsigned long flags;
297 
298 	id = starting_id;
299 build_up:
300 	p = idp->top;
301 	layers = idp->layers;
302 	if (unlikely(!p)) {
303 		if (!(p = idr_layer_alloc(gfp_mask, layer_idr)))
304 			return -ENOMEM;
305 		p->layer = 0;
306 		layers = 1;
307 	}
308 	/*
309 	 * Add a new layer to the top of the tree if the requested
310 	 * id is larger than the currently allocated space.
311 	 */
312 	while (id > idr_max(layers)) {
313 		layers++;
314 		if (!p->count) {
315 			/* special case: if the tree is currently empty,
316 			 * then we grow the tree by moving the top node
317 			 * upwards.
318 			 */
319 			p->layer++;
320 			WARN_ON_ONCE(p->prefix);
321 			continue;
322 		}
323 		if (!(new = idr_layer_alloc(gfp_mask, layer_idr))) {
324 			/*
325 			 * The allocation failed.  If we built part of
326 			 * the structure tear it down.
327 			 */
328 			spin_lock_irqsave(&idp->lock, flags);
329 			for (new = p; p && p != idp->top; new = p) {
330 				p = p->ary[0];
331 				new->ary[0] = NULL;
332 				new->count = 0;
333 				bitmap_clear(new->bitmap, 0, IDR_SIZE);
334 				__move_to_free_list(idp, new);
335 			}
336 			spin_unlock_irqrestore(&idp->lock, flags);
337 			return -ENOMEM;
338 		}
339 		new->ary[0] = p;
340 		new->count = 1;
341 		new->layer = layers-1;
342 		new->prefix = id & idr_layer_prefix_mask(new->layer);
343 		if (bitmap_full(p->bitmap, IDR_SIZE))
344 			__set_bit(0, new->bitmap);
345 		p = new;
346 	}
347 	rcu_assign_pointer(idp->top, p);
348 	idp->layers = layers;
349 	v = sub_alloc(idp, &id, pa, gfp_mask, layer_idr);
350 	if (v == -EAGAIN)
351 		goto build_up;
352 	return(v);
353 }
354 
355 /*
356  * @id and @pa are from a successful allocation from idr_get_empty_slot().
357  * Install the user pointer @ptr and mark the slot full.
358  */
359 static void idr_fill_slot(struct idr *idr, void *ptr, int id,
360 			  struct idr_layer **pa)
361 {
362 	/* update hint used for lookup, cleared from free_layer() */
363 	rcu_assign_pointer(idr->hint, pa[0]);
364 
365 	rcu_assign_pointer(pa[0]->ary[id & IDR_MASK], (struct idr_layer *)ptr);
366 	pa[0]->count++;
367 	idr_mark_full(pa, id);
368 }
369 
370 
371 /**
372  * idr_preload - preload for idr_alloc()
373  * @gfp_mask: allocation mask to use for preloading
374  *
375  * Preload per-cpu layer buffer for idr_alloc().  Can only be used from
376  * process context and each idr_preload() invocation should be matched with
377  * idr_preload_end().  Note that preemption is disabled while preloaded.
378  *
379  * The first idr_alloc() in the preloaded section can be treated as if it
380  * were invoked with @gfp_mask used for preloading.  This allows using more
381  * permissive allocation masks for idrs protected by spinlocks.
382  *
383  * For example, if idr_alloc() below fails, the failure can be treated as
384  * if idr_alloc() were called with GFP_KERNEL rather than GFP_NOWAIT.
385  *
386  *	idr_preload(GFP_KERNEL);
387  *	spin_lock(lock);
388  *
389  *	id = idr_alloc(idr, ptr, start, end, GFP_NOWAIT);
390  *
391  *	spin_unlock(lock);
392  *	idr_preload_end();
393  *	if (id < 0)
394  *		error;
395  */
396 void idr_preload(gfp_t gfp_mask)
397 {
398 	/*
399 	 * Consuming preload buffer from non-process context breaks preload
400 	 * allocation guarantee.  Disallow usage from those contexts.
401 	 */
402 	WARN_ON_ONCE(in_interrupt());
403 	might_sleep_if(gfp_mask & __GFP_WAIT);
404 
405 	preempt_disable();
406 
407 	/*
408 	 * idr_alloc() is likely to succeed w/o full idr_layer buffer and
409 	 * return value from idr_alloc() needs to be checked for failure
410 	 * anyway.  Silently give up if allocation fails.  The caller can
411 	 * treat failures from idr_alloc() as if idr_alloc() were called
412 	 * with @gfp_mask which should be enough.
413 	 */
414 	while (__this_cpu_read(idr_preload_cnt) < MAX_IDR_FREE) {
415 		struct idr_layer *new;
416 
417 		preempt_enable();
418 		new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
419 		preempt_disable();
420 		if (!new)
421 			break;
422 
423 		/* link the new one to per-cpu preload list */
424 		new->ary[0] = __this_cpu_read(idr_preload_head);
425 		__this_cpu_write(idr_preload_head, new);
426 		__this_cpu_inc(idr_preload_cnt);
427 	}
428 }
429 EXPORT_SYMBOL(idr_preload);
430 
431 /**
432  * idr_alloc - allocate new idr entry
433  * @idr: the (initialized) idr
434  * @ptr: pointer to be associated with the new id
435  * @start: the minimum id (inclusive)
436  * @end: the maximum id (exclusive, <= 0 for max)
437  * @gfp_mask: memory allocation flags
438  *
439  * Allocate an id in [start, end) and associate it with @ptr.  If no ID is
440  * available in the specified range, returns -ENOSPC.  On memory allocation
441  * failure, returns -ENOMEM.
442  *
443  * Note that @end is treated as max when <= 0.  This is to always allow
444  * using @start + N as @end as long as N is inside integer range.
445  *
446  * The user is responsible for exclusively synchronizing all operations
447  * which may modify @idr.  However, read-only accesses such as idr_find()
448  * or iteration can be performed under RCU read lock provided the user
449  * destroys @ptr in RCU-safe way after removal from idr.
450  */
451 int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp_mask)
452 {
453 	int max = end > 0 ? end - 1 : INT_MAX;	/* inclusive upper limit */
454 	struct idr_layer *pa[MAX_IDR_LEVEL + 1];
455 	int id;
456 
457 	might_sleep_if(gfp_mask & __GFP_WAIT);
458 
459 	/* sanity checks */
460 	if (WARN_ON_ONCE(start < 0))
461 		return -EINVAL;
462 	if (unlikely(max < start))
463 		return -ENOSPC;
464 
465 	/* allocate id */
466 	id = idr_get_empty_slot(idr, start, pa, gfp_mask, NULL);
467 	if (unlikely(id < 0))
468 		return id;
469 	if (unlikely(id > max))
470 		return -ENOSPC;
471 
472 	idr_fill_slot(idr, ptr, id, pa);
473 	return id;
474 }
475 EXPORT_SYMBOL_GPL(idr_alloc);
476 
477 /**
478  * idr_alloc_cyclic - allocate new idr entry in a cyclical fashion
479  * @idr: the (initialized) idr
480  * @ptr: pointer to be associated with the new id
481  * @start: the minimum id (inclusive)
482  * @end: the maximum id (exclusive, <= 0 for max)
483  * @gfp_mask: memory allocation flags
484  *
485  * Essentially the same as idr_alloc, but prefers to allocate progressively
486  * higher ids if it can. If the "cur" counter wraps, then it will start again
487  * at the "start" end of the range and allocate one that has already been used.
488  */
489 int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end,
490 			gfp_t gfp_mask)
491 {
492 	int id;
493 
494 	id = idr_alloc(idr, ptr, max(start, idr->cur), end, gfp_mask);
495 	if (id == -ENOSPC)
496 		id = idr_alloc(idr, ptr, start, end, gfp_mask);
497 
498 	if (likely(id >= 0))
499 		idr->cur = id + 1;
500 	return id;
501 }
502 EXPORT_SYMBOL(idr_alloc_cyclic);
503 
504 static void idr_remove_warning(int id)
505 {
506 	WARN(1, "idr_remove called for id=%d which is not allocated.\n", id);
507 }
508 
509 static void sub_remove(struct idr *idp, int shift, int id)
510 {
511 	struct idr_layer *p = idp->top;
512 	struct idr_layer **pa[MAX_IDR_LEVEL + 1];
513 	struct idr_layer ***paa = &pa[0];
514 	struct idr_layer *to_free;
515 	int n;
516 
517 	*paa = NULL;
518 	*++paa = &idp->top;
519 
520 	while ((shift > 0) && p) {
521 		n = (id >> shift) & IDR_MASK;
522 		__clear_bit(n, p->bitmap);
523 		*++paa = &p->ary[n];
524 		p = p->ary[n];
525 		shift -= IDR_BITS;
526 	}
527 	n = id & IDR_MASK;
528 	if (likely(p != NULL && test_bit(n, p->bitmap))) {
529 		__clear_bit(n, p->bitmap);
530 		RCU_INIT_POINTER(p->ary[n], NULL);
531 		to_free = NULL;
532 		while(*paa && ! --((**paa)->count)){
533 			if (to_free)
534 				free_layer(idp, to_free);
535 			to_free = **paa;
536 			**paa-- = NULL;
537 		}
538 		if (!*paa)
539 			idp->layers = 0;
540 		if (to_free)
541 			free_layer(idp, to_free);
542 	} else
543 		idr_remove_warning(id);
544 }
545 
546 /**
547  * idr_remove - remove the given id and free its slot
548  * @idp: idr handle
549  * @id: unique key
550  */
551 void idr_remove(struct idr *idp, int id)
552 {
553 	struct idr_layer *p;
554 	struct idr_layer *to_free;
555 
556 	if (id < 0)
557 		return;
558 
559 	if (id > idr_max(idp->layers)) {
560 		idr_remove_warning(id);
561 		return;
562 	}
563 
564 	sub_remove(idp, (idp->layers - 1) * IDR_BITS, id);
565 	if (idp->top && idp->top->count == 1 && (idp->layers > 1) &&
566 	    idp->top->ary[0]) {
567 		/*
568 		 * Single child at leftmost slot: we can shrink the tree.
569 		 * This level is not needed anymore since when layers are
570 		 * inserted, they are inserted at the top of the existing
571 		 * tree.
572 		 */
573 		to_free = idp->top;
574 		p = idp->top->ary[0];
575 		rcu_assign_pointer(idp->top, p);
576 		--idp->layers;
577 		to_free->count = 0;
578 		bitmap_clear(to_free->bitmap, 0, IDR_SIZE);
579 		free_layer(idp, to_free);
580 	}
581 }
582 EXPORT_SYMBOL(idr_remove);
583 
584 static void __idr_remove_all(struct idr *idp)
585 {
586 	int n, id, max;
587 	int bt_mask;
588 	struct idr_layer *p;
589 	struct idr_layer *pa[MAX_IDR_LEVEL + 1];
590 	struct idr_layer **paa = &pa[0];
591 
592 	n = idp->layers * IDR_BITS;
593 	*paa = idp->top;
594 	RCU_INIT_POINTER(idp->top, NULL);
595 	max = idr_max(idp->layers);
596 
597 	id = 0;
598 	while (id >= 0 && id <= max) {
599 		p = *paa;
600 		while (n > IDR_BITS && p) {
601 			n -= IDR_BITS;
602 			p = p->ary[(id >> n) & IDR_MASK];
603 			*++paa = p;
604 		}
605 
606 		bt_mask = id;
607 		id += 1 << n;
608 		/* Get the highest bit that the above add changed from 0->1. */
609 		while (n < fls(id ^ bt_mask)) {
610 			if (*paa)
611 				free_layer(idp, *paa);
612 			n += IDR_BITS;
613 			--paa;
614 		}
615 	}
616 	idp->layers = 0;
617 }
618 
619 /**
620  * idr_destroy - release all cached layers within an idr tree
621  * @idp: idr handle
622  *
623  * Free all id mappings and all idp_layers.  After this function, @idp is
624  * completely unused and can be freed / recycled.  The caller is
625  * responsible for ensuring that no one else accesses @idp during or after
626  * idr_destroy().
627  *
628  * A typical clean-up sequence for objects stored in an idr tree will use
629  * idr_for_each() to free all objects, if necessay, then idr_destroy() to
630  * free up the id mappings and cached idr_layers.
631  */
632 void idr_destroy(struct idr *idp)
633 {
634 	__idr_remove_all(idp);
635 
636 	while (idp->id_free_cnt) {
637 		struct idr_layer *p = get_from_free_list(idp);
638 		kmem_cache_free(idr_layer_cache, p);
639 	}
640 }
641 EXPORT_SYMBOL(idr_destroy);
642 
643 void *idr_find_slowpath(struct idr *idp, int id)
644 {
645 	int n;
646 	struct idr_layer *p;
647 
648 	if (id < 0)
649 		return NULL;
650 
651 	p = rcu_dereference_raw(idp->top);
652 	if (!p)
653 		return NULL;
654 	n = (p->layer+1) * IDR_BITS;
655 
656 	if (id > idr_max(p->layer + 1))
657 		return NULL;
658 	BUG_ON(n == 0);
659 
660 	while (n > 0 && p) {
661 		n -= IDR_BITS;
662 		BUG_ON(n != p->layer*IDR_BITS);
663 		p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
664 	}
665 	return((void *)p);
666 }
667 EXPORT_SYMBOL(idr_find_slowpath);
668 
669 /**
670  * idr_for_each - iterate through all stored pointers
671  * @idp: idr handle
672  * @fn: function to be called for each pointer
673  * @data: data passed back to callback function
674  *
675  * Iterate over the pointers registered with the given idr.  The
676  * callback function will be called for each pointer currently
677  * registered, passing the id, the pointer and the data pointer passed
678  * to this function.  It is not safe to modify the idr tree while in
679  * the callback, so functions such as idr_get_new and idr_remove are
680  * not allowed.
681  *
682  * We check the return of @fn each time. If it returns anything other
683  * than %0, we break out and return that value.
684  *
685  * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove().
686  */
687 int idr_for_each(struct idr *idp,
688 		 int (*fn)(int id, void *p, void *data), void *data)
689 {
690 	int n, id, max, error = 0;
691 	struct idr_layer *p;
692 	struct idr_layer *pa[MAX_IDR_LEVEL + 1];
693 	struct idr_layer **paa = &pa[0];
694 
695 	n = idp->layers * IDR_BITS;
696 	*paa = rcu_dereference_raw(idp->top);
697 	max = idr_max(idp->layers);
698 
699 	id = 0;
700 	while (id >= 0 && id <= max) {
701 		p = *paa;
702 		while (n > 0 && p) {
703 			n -= IDR_BITS;
704 			p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
705 			*++paa = p;
706 		}
707 
708 		if (p) {
709 			error = fn(id, (void *)p, data);
710 			if (error)
711 				break;
712 		}
713 
714 		id += 1 << n;
715 		while (n < fls(id)) {
716 			n += IDR_BITS;
717 			--paa;
718 		}
719 	}
720 
721 	return error;
722 }
723 EXPORT_SYMBOL(idr_for_each);
724 
725 /**
726  * idr_get_next - lookup next object of id to given id.
727  * @idp: idr handle
728  * @nextidp:  pointer to lookup key
729  *
730  * Returns pointer to registered object with id, which is next number to
731  * given id. After being looked up, *@nextidp will be updated for the next
732  * iteration.
733  *
734  * This function can be called under rcu_read_lock(), given that the leaf
735  * pointers lifetimes are correctly managed.
736  */
737 void *idr_get_next(struct idr *idp, int *nextidp)
738 {
739 	struct idr_layer *p, *pa[MAX_IDR_LEVEL + 1];
740 	struct idr_layer **paa = &pa[0];
741 	int id = *nextidp;
742 	int n, max;
743 
744 	/* find first ent */
745 	p = *paa = rcu_dereference_raw(idp->top);
746 	if (!p)
747 		return NULL;
748 	n = (p->layer + 1) * IDR_BITS;
749 	max = idr_max(p->layer + 1);
750 
751 	while (id >= 0 && id <= max) {
752 		p = *paa;
753 		while (n > 0 && p) {
754 			n -= IDR_BITS;
755 			p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
756 			*++paa = p;
757 		}
758 
759 		if (p) {
760 			*nextidp = id;
761 			return p;
762 		}
763 
764 		/*
765 		 * Proceed to the next layer at the current level.  Unlike
766 		 * idr_for_each(), @id isn't guaranteed to be aligned to
767 		 * layer boundary at this point and adding 1 << n may
768 		 * incorrectly skip IDs.  Make sure we jump to the
769 		 * beginning of the next layer using round_up().
770 		 */
771 		id = round_up(id + 1, 1 << n);
772 		while (n < fls(id)) {
773 			n += IDR_BITS;
774 			--paa;
775 		}
776 	}
777 	return NULL;
778 }
779 EXPORT_SYMBOL(idr_get_next);
780 
781 
782 /**
783  * idr_replace - replace pointer for given id
784  * @idp: idr handle
785  * @ptr: pointer you want associated with the id
786  * @id: lookup key
787  *
788  * Replace the pointer registered with an id and return the old value.
789  * A %-ENOENT return indicates that @id was not found.
790  * A %-EINVAL return indicates that @id was not within valid constraints.
791  *
792  * The caller must serialize with writers.
793  */
794 void *idr_replace(struct idr *idp, void *ptr, int id)
795 {
796 	int n;
797 	struct idr_layer *p, *old_p;
798 
799 	if (id < 0)
800 		return ERR_PTR(-EINVAL);
801 
802 	p = idp->top;
803 	if (!p)
804 		return ERR_PTR(-ENOENT);
805 
806 	if (id > idr_max(p->layer + 1))
807 		return ERR_PTR(-ENOENT);
808 
809 	n = p->layer * IDR_BITS;
810 	while ((n > 0) && p) {
811 		p = p->ary[(id >> n) & IDR_MASK];
812 		n -= IDR_BITS;
813 	}
814 
815 	n = id & IDR_MASK;
816 	if (unlikely(p == NULL || !test_bit(n, p->bitmap)))
817 		return ERR_PTR(-ENOENT);
818 
819 	old_p = p->ary[n];
820 	rcu_assign_pointer(p->ary[n], ptr);
821 
822 	return old_p;
823 }
824 EXPORT_SYMBOL(idr_replace);
825 
826 void __init idr_init_cache(void)
827 {
828 	idr_layer_cache = kmem_cache_create("idr_layer_cache",
829 				sizeof(struct idr_layer), 0, SLAB_PANIC, NULL);
830 }
831 
832 /**
833  * idr_init - initialize idr handle
834  * @idp:	idr handle
835  *
836  * This function is use to set up the handle (@idp) that you will pass
837  * to the rest of the functions.
838  */
839 void idr_init(struct idr *idp)
840 {
841 	memset(idp, 0, sizeof(struct idr));
842 	spin_lock_init(&idp->lock);
843 }
844 EXPORT_SYMBOL(idr_init);
845 
846 static int idr_has_entry(int id, void *p, void *data)
847 {
848 	return 1;
849 }
850 
851 bool idr_is_empty(struct idr *idp)
852 {
853 	return !idr_for_each(idp, idr_has_entry, NULL);
854 }
855 EXPORT_SYMBOL(idr_is_empty);
856 
857 /**
858  * DOC: IDA description
859  * IDA - IDR based ID allocator
860  *
861  * This is id allocator without id -> pointer translation.  Memory
862  * usage is much lower than full blown idr because each id only
863  * occupies a bit.  ida uses a custom leaf node which contains
864  * IDA_BITMAP_BITS slots.
865  *
866  * 2007-04-25  written by Tejun Heo <htejun@gmail.com>
867  */
868 
869 static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap)
870 {
871 	unsigned long flags;
872 
873 	if (!ida->free_bitmap) {
874 		spin_lock_irqsave(&ida->idr.lock, flags);
875 		if (!ida->free_bitmap) {
876 			ida->free_bitmap = bitmap;
877 			bitmap = NULL;
878 		}
879 		spin_unlock_irqrestore(&ida->idr.lock, flags);
880 	}
881 
882 	kfree(bitmap);
883 }
884 
885 /**
886  * ida_pre_get - reserve resources for ida allocation
887  * @ida:	ida handle
888  * @gfp_mask:	memory allocation flag
889  *
890  * This function should be called prior to locking and calling the
891  * following function.  It preallocates enough memory to satisfy the
892  * worst possible allocation.
893  *
894  * If the system is REALLY out of memory this function returns %0,
895  * otherwise %1.
896  */
897 int ida_pre_get(struct ida *ida, gfp_t gfp_mask)
898 {
899 	/* allocate idr_layers */
900 	if (!__idr_pre_get(&ida->idr, gfp_mask))
901 		return 0;
902 
903 	/* allocate free_bitmap */
904 	if (!ida->free_bitmap) {
905 		struct ida_bitmap *bitmap;
906 
907 		bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask);
908 		if (!bitmap)
909 			return 0;
910 
911 		free_bitmap(ida, bitmap);
912 	}
913 
914 	return 1;
915 }
916 EXPORT_SYMBOL(ida_pre_get);
917 
918 /**
919  * ida_get_new_above - allocate new ID above or equal to a start id
920  * @ida:	ida handle
921  * @starting_id: id to start search at
922  * @p_id:	pointer to the allocated handle
923  *
924  * Allocate new ID above or equal to @starting_id.  It should be called
925  * with any required locks.
926  *
927  * If memory is required, it will return %-EAGAIN, you should unlock
928  * and go back to the ida_pre_get() call.  If the ida is full, it will
929  * return %-ENOSPC.
930  *
931  * @p_id returns a value in the range @starting_id ... %0x7fffffff.
932  */
933 int ida_get_new_above(struct ida *ida, int starting_id, int *p_id)
934 {
935 	struct idr_layer *pa[MAX_IDR_LEVEL + 1];
936 	struct ida_bitmap *bitmap;
937 	unsigned long flags;
938 	int idr_id = starting_id / IDA_BITMAP_BITS;
939 	int offset = starting_id % IDA_BITMAP_BITS;
940 	int t, id;
941 
942  restart:
943 	/* get vacant slot */
944 	t = idr_get_empty_slot(&ida->idr, idr_id, pa, 0, &ida->idr);
945 	if (t < 0)
946 		return t == -ENOMEM ? -EAGAIN : t;
947 
948 	if (t * IDA_BITMAP_BITS >= MAX_IDR_BIT)
949 		return -ENOSPC;
950 
951 	if (t != idr_id)
952 		offset = 0;
953 	idr_id = t;
954 
955 	/* if bitmap isn't there, create a new one */
956 	bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK];
957 	if (!bitmap) {
958 		spin_lock_irqsave(&ida->idr.lock, flags);
959 		bitmap = ida->free_bitmap;
960 		ida->free_bitmap = NULL;
961 		spin_unlock_irqrestore(&ida->idr.lock, flags);
962 
963 		if (!bitmap)
964 			return -EAGAIN;
965 
966 		memset(bitmap, 0, sizeof(struct ida_bitmap));
967 		rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK],
968 				(void *)bitmap);
969 		pa[0]->count++;
970 	}
971 
972 	/* lookup for empty slot */
973 	t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset);
974 	if (t == IDA_BITMAP_BITS) {
975 		/* no empty slot after offset, continue to the next chunk */
976 		idr_id++;
977 		offset = 0;
978 		goto restart;
979 	}
980 
981 	id = idr_id * IDA_BITMAP_BITS + t;
982 	if (id >= MAX_IDR_BIT)
983 		return -ENOSPC;
984 
985 	__set_bit(t, bitmap->bitmap);
986 	if (++bitmap->nr_busy == IDA_BITMAP_BITS)
987 		idr_mark_full(pa, idr_id);
988 
989 	*p_id = id;
990 
991 	/* Each leaf node can handle nearly a thousand slots and the
992 	 * whole idea of ida is to have small memory foot print.
993 	 * Throw away extra resources one by one after each successful
994 	 * allocation.
995 	 */
996 	if (ida->idr.id_free_cnt || ida->free_bitmap) {
997 		struct idr_layer *p = get_from_free_list(&ida->idr);
998 		if (p)
999 			kmem_cache_free(idr_layer_cache, p);
1000 	}
1001 
1002 	return 0;
1003 }
1004 EXPORT_SYMBOL(ida_get_new_above);
1005 
1006 /**
1007  * ida_remove - remove the given ID
1008  * @ida:	ida handle
1009  * @id:		ID to free
1010  */
1011 void ida_remove(struct ida *ida, int id)
1012 {
1013 	struct idr_layer *p = ida->idr.top;
1014 	int shift = (ida->idr.layers - 1) * IDR_BITS;
1015 	int idr_id = id / IDA_BITMAP_BITS;
1016 	int offset = id % IDA_BITMAP_BITS;
1017 	int n;
1018 	struct ida_bitmap *bitmap;
1019 
1020 	if (idr_id > idr_max(ida->idr.layers))
1021 		goto err;
1022 
1023 	/* clear full bits while looking up the leaf idr_layer */
1024 	while ((shift > 0) && p) {
1025 		n = (idr_id >> shift) & IDR_MASK;
1026 		__clear_bit(n, p->bitmap);
1027 		p = p->ary[n];
1028 		shift -= IDR_BITS;
1029 	}
1030 
1031 	if (p == NULL)
1032 		goto err;
1033 
1034 	n = idr_id & IDR_MASK;
1035 	__clear_bit(n, p->bitmap);
1036 
1037 	bitmap = (void *)p->ary[n];
1038 	if (!bitmap || !test_bit(offset, bitmap->bitmap))
1039 		goto err;
1040 
1041 	/* update bitmap and remove it if empty */
1042 	__clear_bit(offset, bitmap->bitmap);
1043 	if (--bitmap->nr_busy == 0) {
1044 		__set_bit(n, p->bitmap);	/* to please idr_remove() */
1045 		idr_remove(&ida->idr, idr_id);
1046 		free_bitmap(ida, bitmap);
1047 	}
1048 
1049 	return;
1050 
1051  err:
1052 	WARN(1, "ida_remove called for id=%d which is not allocated.\n", id);
1053 }
1054 EXPORT_SYMBOL(ida_remove);
1055 
1056 /**
1057  * ida_destroy - release all cached layers within an ida tree
1058  * @ida:		ida handle
1059  */
1060 void ida_destroy(struct ida *ida)
1061 {
1062 	idr_destroy(&ida->idr);
1063 	kfree(ida->free_bitmap);
1064 }
1065 EXPORT_SYMBOL(ida_destroy);
1066 
1067 /**
1068  * ida_simple_get - get a new id.
1069  * @ida: the (initialized) ida.
1070  * @start: the minimum id (inclusive, < 0x8000000)
1071  * @end: the maximum id (exclusive, < 0x8000000 or 0)
1072  * @gfp_mask: memory allocation flags
1073  *
1074  * Allocates an id in the range start <= id < end, or returns -ENOSPC.
1075  * On memory allocation failure, returns -ENOMEM.
1076  *
1077  * Use ida_simple_remove() to get rid of an id.
1078  */
1079 int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end,
1080 		   gfp_t gfp_mask)
1081 {
1082 	int ret, id;
1083 	unsigned int max;
1084 	unsigned long flags;
1085 
1086 	BUG_ON((int)start < 0);
1087 	BUG_ON((int)end < 0);
1088 
1089 	if (end == 0)
1090 		max = 0x80000000;
1091 	else {
1092 		BUG_ON(end < start);
1093 		max = end - 1;
1094 	}
1095 
1096 again:
1097 	if (!ida_pre_get(ida, gfp_mask))
1098 		return -ENOMEM;
1099 
1100 	spin_lock_irqsave(&simple_ida_lock, flags);
1101 	ret = ida_get_new_above(ida, start, &id);
1102 	if (!ret) {
1103 		if (id > max) {
1104 			ida_remove(ida, id);
1105 			ret = -ENOSPC;
1106 		} else {
1107 			ret = id;
1108 		}
1109 	}
1110 	spin_unlock_irqrestore(&simple_ida_lock, flags);
1111 
1112 	if (unlikely(ret == -EAGAIN))
1113 		goto again;
1114 
1115 	return ret;
1116 }
1117 EXPORT_SYMBOL(ida_simple_get);
1118 
1119 /**
1120  * ida_simple_remove - remove an allocated id.
1121  * @ida: the (initialized) ida.
1122  * @id: the id returned by ida_simple_get.
1123  */
1124 void ida_simple_remove(struct ida *ida, unsigned int id)
1125 {
1126 	unsigned long flags;
1127 
1128 	BUG_ON((int)id < 0);
1129 	spin_lock_irqsave(&simple_ida_lock, flags);
1130 	ida_remove(ida, id);
1131 	spin_unlock_irqrestore(&simple_ida_lock, flags);
1132 }
1133 EXPORT_SYMBOL(ida_simple_remove);
1134 
1135 /**
1136  * ida_init - initialize ida handle
1137  * @ida:	ida handle
1138  *
1139  * This function is use to set up the handle (@ida) that you will pass
1140  * to the rest of the functions.
1141  */
1142 void ida_init(struct ida *ida)
1143 {
1144 	memset(ida, 0, sizeof(struct ida));
1145 	idr_init(&ida->idr);
1146 
1147 }
1148 EXPORT_SYMBOL(ida_init);
1149