1 #include <linux/bitmap.h> 2 #include <linux/bug.h> 3 #include <linux/export.h> 4 #include <linux/idr.h> 5 #include <linux/slab.h> 6 #include <linux/spinlock.h> 7 8 DEFINE_PER_CPU(struct ida_bitmap *, ida_bitmap); 9 static DEFINE_SPINLOCK(simple_ida_lock); 10 11 /** 12 * idr_alloc_u32() - Allocate an ID. 13 * @idr: IDR handle. 14 * @ptr: Pointer to be associated with the new ID. 15 * @nextid: Pointer to an ID. 16 * @max: The maximum ID to allocate (inclusive). 17 * @gfp: Memory allocation flags. 18 * 19 * Allocates an unused ID in the range specified by @nextid and @max. 20 * Note that @max is inclusive whereas the @end parameter to idr_alloc() 21 * is exclusive. The new ID is assigned to @nextid before the pointer 22 * is inserted into the IDR, so if @nextid points into the object pointed 23 * to by @ptr, a concurrent lookup will not find an uninitialised ID. 24 * 25 * The caller should provide their own locking to ensure that two 26 * concurrent modifications to the IDR are not possible. Read-only 27 * accesses to the IDR may be done under the RCU read lock or may 28 * exclude simultaneous writers. 29 * 30 * Return: 0 if an ID was allocated, -ENOMEM if memory allocation failed, 31 * or -ENOSPC if no free IDs could be found. If an error occurred, 32 * @nextid is unchanged. 33 */ 34 int idr_alloc_u32(struct idr *idr, void *ptr, u32 *nextid, 35 unsigned long max, gfp_t gfp) 36 { 37 struct radix_tree_iter iter; 38 void __rcu **slot; 39 int base = idr->idr_base; 40 int id = *nextid; 41 42 if (WARN_ON_ONCE(radix_tree_is_internal_node(ptr))) 43 return -EINVAL; 44 if (WARN_ON_ONCE(!(idr->idr_rt.gfp_mask & ROOT_IS_IDR))) 45 idr->idr_rt.gfp_mask |= IDR_RT_MARKER; 46 47 id = (id < base) ? 0 : id - base; 48 radix_tree_iter_init(&iter, id); 49 slot = idr_get_free(&idr->idr_rt, &iter, gfp, max - base); 50 if (IS_ERR(slot)) 51 return PTR_ERR(slot); 52 53 *nextid = iter.index + base; 54 /* there is a memory barrier inside radix_tree_iter_replace() */ 55 radix_tree_iter_replace(&idr->idr_rt, &iter, slot, ptr); 56 radix_tree_iter_tag_clear(&idr->idr_rt, &iter, IDR_FREE); 57 58 return 0; 59 } 60 EXPORT_SYMBOL_GPL(idr_alloc_u32); 61 62 /** 63 * idr_alloc() - Allocate an ID. 64 * @idr: IDR handle. 65 * @ptr: Pointer to be associated with the new ID. 66 * @start: The minimum ID (inclusive). 67 * @end: The maximum ID (exclusive). 68 * @gfp: Memory allocation flags. 69 * 70 * Allocates an unused ID in the range specified by @start and @end. If 71 * @end is <= 0, it is treated as one larger than %INT_MAX. This allows 72 * callers to use @start + N as @end as long as N is within integer range. 73 * 74 * The caller should provide their own locking to ensure that two 75 * concurrent modifications to the IDR are not possible. Read-only 76 * accesses to the IDR may be done under the RCU read lock or may 77 * exclude simultaneous writers. 78 * 79 * Return: The newly allocated ID, -ENOMEM if memory allocation failed, 80 * or -ENOSPC if no free IDs could be found. 81 */ 82 int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp) 83 { 84 u32 id = start; 85 int ret; 86 87 if (WARN_ON_ONCE(start < 0)) 88 return -EINVAL; 89 90 ret = idr_alloc_u32(idr, ptr, &id, end > 0 ? end - 1 : INT_MAX, gfp); 91 if (ret) 92 return ret; 93 94 return id; 95 } 96 EXPORT_SYMBOL_GPL(idr_alloc); 97 98 /** 99 * idr_alloc_cyclic() - Allocate an ID cyclically. 100 * @idr: IDR handle. 101 * @ptr: Pointer to be associated with the new ID. 102 * @start: The minimum ID (inclusive). 103 * @end: The maximum ID (exclusive). 104 * @gfp: Memory allocation flags. 105 * 106 * Allocates an unused ID in the range specified by @nextid and @end. If 107 * @end is <= 0, it is treated as one larger than %INT_MAX. This allows 108 * callers to use @start + N as @end as long as N is within integer range. 109 * The search for an unused ID will start at the last ID allocated and will 110 * wrap around to @start if no free IDs are found before reaching @end. 111 * 112 * The caller should provide their own locking to ensure that two 113 * concurrent modifications to the IDR are not possible. Read-only 114 * accesses to the IDR may be done under the RCU read lock or may 115 * exclude simultaneous writers. 116 * 117 * Return: The newly allocated ID, -ENOMEM if memory allocation failed, 118 * or -ENOSPC if no free IDs could be found. 119 */ 120 int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, gfp_t gfp) 121 { 122 u32 id = idr->idr_next; 123 int err, max = end > 0 ? end - 1 : INT_MAX; 124 125 if ((int)id < start) 126 id = start; 127 128 err = idr_alloc_u32(idr, ptr, &id, max, gfp); 129 if ((err == -ENOSPC) && (id > start)) { 130 id = start; 131 err = idr_alloc_u32(idr, ptr, &id, max, gfp); 132 } 133 if (err) 134 return err; 135 136 idr->idr_next = id + 1; 137 return id; 138 } 139 EXPORT_SYMBOL(idr_alloc_cyclic); 140 141 /** 142 * idr_remove() - Remove an ID from the IDR. 143 * @idr: IDR handle. 144 * @id: Pointer ID. 145 * 146 * Removes this ID from the IDR. If the ID was not previously in the IDR, 147 * this function returns %NULL. 148 * 149 * Since this function modifies the IDR, the caller should provide their 150 * own locking to ensure that concurrent modification of the same IDR is 151 * not possible. 152 * 153 * Return: The pointer formerly associated with this ID. 154 */ 155 void *idr_remove(struct idr *idr, unsigned long id) 156 { 157 return radix_tree_delete_item(&idr->idr_rt, id - idr->idr_base, NULL); 158 } 159 EXPORT_SYMBOL_GPL(idr_remove); 160 161 /** 162 * idr_find() - Return pointer for given ID. 163 * @idr: IDR handle. 164 * @id: Pointer ID. 165 * 166 * Looks up the pointer associated with this ID. A %NULL pointer may 167 * indicate that @id is not allocated or that the %NULL pointer was 168 * associated with this ID. 169 * 170 * This function can be called under rcu_read_lock(), given that the leaf 171 * pointers lifetimes are correctly managed. 172 * 173 * Return: The pointer associated with this ID. 174 */ 175 void *idr_find(const struct idr *idr, unsigned long id) 176 { 177 return radix_tree_lookup(&idr->idr_rt, id - idr->idr_base); 178 } 179 EXPORT_SYMBOL_GPL(idr_find); 180 181 /** 182 * idr_for_each() - Iterate through all stored pointers. 183 * @idr: IDR handle. 184 * @fn: Function to be called for each pointer. 185 * @data: Data passed to callback function. 186 * 187 * The callback function will be called for each entry in @idr, passing 188 * the ID, the entry and @data. 189 * 190 * If @fn returns anything other than %0, the iteration stops and that 191 * value is returned from this function. 192 * 193 * idr_for_each() can be called concurrently with idr_alloc() and 194 * idr_remove() if protected by RCU. Newly added entries may not be 195 * seen and deleted entries may be seen, but adding and removing entries 196 * will not cause other entries to be skipped, nor spurious ones to be seen. 197 */ 198 int idr_for_each(const struct idr *idr, 199 int (*fn)(int id, void *p, void *data), void *data) 200 { 201 struct radix_tree_iter iter; 202 void __rcu **slot; 203 int base = idr->idr_base; 204 205 radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, 0) { 206 int ret; 207 208 if (WARN_ON_ONCE(iter.index > INT_MAX)) 209 break; 210 ret = fn(iter.index + base, rcu_dereference_raw(*slot), data); 211 if (ret) 212 return ret; 213 } 214 215 return 0; 216 } 217 EXPORT_SYMBOL(idr_for_each); 218 219 /** 220 * idr_get_next() - Find next populated entry. 221 * @idr: IDR handle. 222 * @nextid: Pointer to an ID. 223 * 224 * Returns the next populated entry in the tree with an ID greater than 225 * or equal to the value pointed to by @nextid. On exit, @nextid is updated 226 * to the ID of the found value. To use in a loop, the value pointed to by 227 * nextid must be incremented by the user. 228 */ 229 void *idr_get_next(struct idr *idr, int *nextid) 230 { 231 struct radix_tree_iter iter; 232 void __rcu **slot; 233 int base = idr->idr_base; 234 int id = *nextid; 235 236 id = (id < base) ? 0 : id - base; 237 slot = radix_tree_iter_find(&idr->idr_rt, &iter, id); 238 if (!slot) 239 return NULL; 240 id = iter.index + base; 241 242 if (WARN_ON_ONCE(id > INT_MAX)) 243 return NULL; 244 245 *nextid = id; 246 return rcu_dereference_raw(*slot); 247 } 248 EXPORT_SYMBOL(idr_get_next); 249 250 /** 251 * idr_get_next_ul() - Find next populated entry. 252 * @idr: IDR handle. 253 * @nextid: Pointer to an ID. 254 * 255 * Returns the next populated entry in the tree with an ID greater than 256 * or equal to the value pointed to by @nextid. On exit, @nextid is updated 257 * to the ID of the found value. To use in a loop, the value pointed to by 258 * nextid must be incremented by the user. 259 */ 260 void *idr_get_next_ul(struct idr *idr, unsigned long *nextid) 261 { 262 struct radix_tree_iter iter; 263 void __rcu **slot; 264 unsigned long base = idr->idr_base; 265 unsigned long id = *nextid; 266 267 id = (id < base) ? 0 : id - base; 268 slot = radix_tree_iter_find(&idr->idr_rt, &iter, id); 269 if (!slot) 270 return NULL; 271 272 *nextid = iter.index + base; 273 return rcu_dereference_raw(*slot); 274 } 275 EXPORT_SYMBOL(idr_get_next_ul); 276 277 /** 278 * idr_replace() - replace pointer for given ID. 279 * @idr: IDR handle. 280 * @ptr: New pointer to associate with the ID. 281 * @id: ID to change. 282 * 283 * Replace the pointer registered with an ID and return the old value. 284 * This function can be called under the RCU read lock concurrently with 285 * idr_alloc() and idr_remove() (as long as the ID being removed is not 286 * the one being replaced!). 287 * 288 * Returns: the old value on success. %-ENOENT indicates that @id was not 289 * found. %-EINVAL indicates that @ptr was not valid. 290 */ 291 void *idr_replace(struct idr *idr, void *ptr, unsigned long id) 292 { 293 struct radix_tree_node *node; 294 void __rcu **slot = NULL; 295 void *entry; 296 297 if (WARN_ON_ONCE(radix_tree_is_internal_node(ptr))) 298 return ERR_PTR(-EINVAL); 299 id -= idr->idr_base; 300 301 entry = __radix_tree_lookup(&idr->idr_rt, id, &node, &slot); 302 if (!slot || radix_tree_tag_get(&idr->idr_rt, id, IDR_FREE)) 303 return ERR_PTR(-ENOENT); 304 305 __radix_tree_replace(&idr->idr_rt, node, slot, ptr, NULL); 306 307 return entry; 308 } 309 EXPORT_SYMBOL(idr_replace); 310 311 /** 312 * DOC: IDA description 313 * 314 * The IDA is an ID allocator which does not provide the ability to 315 * associate an ID with a pointer. As such, it only needs to store one 316 * bit per ID, and so is more space efficient than an IDR. To use an IDA, 317 * define it using DEFINE_IDA() (or embed a &struct ida in a data structure, 318 * then initialise it using ida_init()). To allocate a new ID, call 319 * ida_simple_get(). To free an ID, call ida_simple_remove(). 320 * 321 * If you have more complex locking requirements, use a loop around 322 * ida_pre_get() and ida_get_new() to allocate a new ID. Then use 323 * ida_remove() to free an ID. You must make sure that ida_get_new() and 324 * ida_remove() cannot be called at the same time as each other for the 325 * same IDA. 326 * 327 * You can also use ida_get_new_above() if you need an ID to be allocated 328 * above a particular number. ida_destroy() can be used to dispose of an 329 * IDA without needing to free the individual IDs in it. You can use 330 * ida_is_empty() to find out whether the IDA has any IDs currently allocated. 331 * 332 * IDs are currently limited to the range [0-INT_MAX]. If this is an awkward 333 * limitation, it should be quite straightforward to raise the maximum. 334 */ 335 336 /* 337 * Developer's notes: 338 * 339 * The IDA uses the functionality provided by the IDR & radix tree to store 340 * bitmaps in each entry. The IDR_FREE tag means there is at least one bit 341 * free, unlike the IDR where it means at least one entry is free. 342 * 343 * I considered telling the radix tree that each slot is an order-10 node 344 * and storing the bit numbers in the radix tree, but the radix tree can't 345 * allow a single multiorder entry at index 0, which would significantly 346 * increase memory consumption for the IDA. So instead we divide the index 347 * by the number of bits in the leaf bitmap before doing a radix tree lookup. 348 * 349 * As an optimisation, if there are only a few low bits set in any given 350 * leaf, instead of allocating a 128-byte bitmap, we use the 'exceptional 351 * entry' functionality of the radix tree to store BITS_PER_LONG - 2 bits 352 * directly in the entry. By being really tricksy, we could store 353 * BITS_PER_LONG - 1 bits, but there're diminishing returns after optimising 354 * for 0-3 allocated IDs. 355 * 356 * We allow the radix tree 'exceptional' count to get out of date. Nothing 357 * in the IDA nor the radix tree code checks it. If it becomes important 358 * to maintain an accurate exceptional count, switch the rcu_assign_pointer() 359 * calls to radix_tree_iter_replace() which will correct the exceptional 360 * count. 361 * 362 * The IDA always requires a lock to alloc/free. If we add a 'test_bit' 363 * equivalent, it will still need locking. Going to RCU lookup would require 364 * using RCU to free bitmaps, and that's not trivial without embedding an 365 * RCU head in the bitmap, which adds a 2-pointer overhead to each 128-byte 366 * bitmap, which is excessive. 367 */ 368 369 #define IDA_MAX (0x80000000U / IDA_BITMAP_BITS - 1) 370 371 /** 372 * ida_get_new_above - allocate new ID above or equal to a start id 373 * @ida: ida handle 374 * @start: id to start search at 375 * @id: pointer to the allocated handle 376 * 377 * Allocate new ID above or equal to @start. It should be called 378 * with any required locks to ensure that concurrent calls to 379 * ida_get_new_above() / ida_get_new() / ida_remove() are not allowed. 380 * Consider using ida_simple_get() if you do not have complex locking 381 * requirements. 382 * 383 * If memory is required, it will return %-EAGAIN, you should unlock 384 * and go back to the ida_pre_get() call. If the ida is full, it will 385 * return %-ENOSPC. On success, it will return 0. 386 * 387 * @id returns a value in the range @start ... %0x7fffffff. 388 */ 389 int ida_get_new_above(struct ida *ida, int start, int *id) 390 { 391 struct radix_tree_root *root = &ida->ida_rt; 392 void __rcu **slot; 393 struct radix_tree_iter iter; 394 struct ida_bitmap *bitmap; 395 unsigned long index; 396 unsigned bit, ebit; 397 int new; 398 399 index = start / IDA_BITMAP_BITS; 400 bit = start % IDA_BITMAP_BITS; 401 ebit = bit + RADIX_TREE_EXCEPTIONAL_SHIFT; 402 403 slot = radix_tree_iter_init(&iter, index); 404 for (;;) { 405 if (slot) 406 slot = radix_tree_next_slot(slot, &iter, 407 RADIX_TREE_ITER_TAGGED); 408 if (!slot) { 409 slot = idr_get_free(root, &iter, GFP_NOWAIT, IDA_MAX); 410 if (IS_ERR(slot)) { 411 if (slot == ERR_PTR(-ENOMEM)) 412 return -EAGAIN; 413 return PTR_ERR(slot); 414 } 415 } 416 if (iter.index > index) { 417 bit = 0; 418 ebit = RADIX_TREE_EXCEPTIONAL_SHIFT; 419 } 420 new = iter.index * IDA_BITMAP_BITS; 421 bitmap = rcu_dereference_raw(*slot); 422 if (radix_tree_exception(bitmap)) { 423 unsigned long tmp = (unsigned long)bitmap; 424 ebit = find_next_zero_bit(&tmp, BITS_PER_LONG, ebit); 425 if (ebit < BITS_PER_LONG) { 426 tmp |= 1UL << ebit; 427 rcu_assign_pointer(*slot, (void *)tmp); 428 *id = new + ebit - RADIX_TREE_EXCEPTIONAL_SHIFT; 429 return 0; 430 } 431 bitmap = this_cpu_xchg(ida_bitmap, NULL); 432 if (!bitmap) 433 return -EAGAIN; 434 memset(bitmap, 0, sizeof(*bitmap)); 435 bitmap->bitmap[0] = tmp >> RADIX_TREE_EXCEPTIONAL_SHIFT; 436 rcu_assign_pointer(*slot, bitmap); 437 } 438 439 if (bitmap) { 440 bit = find_next_zero_bit(bitmap->bitmap, 441 IDA_BITMAP_BITS, bit); 442 new += bit; 443 if (new < 0) 444 return -ENOSPC; 445 if (bit == IDA_BITMAP_BITS) 446 continue; 447 448 __set_bit(bit, bitmap->bitmap); 449 if (bitmap_full(bitmap->bitmap, IDA_BITMAP_BITS)) 450 radix_tree_iter_tag_clear(root, &iter, 451 IDR_FREE); 452 } else { 453 new += bit; 454 if (new < 0) 455 return -ENOSPC; 456 if (ebit < BITS_PER_LONG) { 457 bitmap = (void *)((1UL << ebit) | 458 RADIX_TREE_EXCEPTIONAL_ENTRY); 459 radix_tree_iter_replace(root, &iter, slot, 460 bitmap); 461 *id = new; 462 return 0; 463 } 464 bitmap = this_cpu_xchg(ida_bitmap, NULL); 465 if (!bitmap) 466 return -EAGAIN; 467 memset(bitmap, 0, sizeof(*bitmap)); 468 __set_bit(bit, bitmap->bitmap); 469 radix_tree_iter_replace(root, &iter, slot, bitmap); 470 } 471 472 *id = new; 473 return 0; 474 } 475 } 476 EXPORT_SYMBOL(ida_get_new_above); 477 478 /** 479 * ida_remove - Free the given ID 480 * @ida: ida handle 481 * @id: ID to free 482 * 483 * This function should not be called at the same time as ida_get_new_above(). 484 */ 485 void ida_remove(struct ida *ida, int id) 486 { 487 unsigned long index = id / IDA_BITMAP_BITS; 488 unsigned offset = id % IDA_BITMAP_BITS; 489 struct ida_bitmap *bitmap; 490 unsigned long *btmp; 491 struct radix_tree_iter iter; 492 void __rcu **slot; 493 494 slot = radix_tree_iter_lookup(&ida->ida_rt, &iter, index); 495 if (!slot) 496 goto err; 497 498 bitmap = rcu_dereference_raw(*slot); 499 if (radix_tree_exception(bitmap)) { 500 btmp = (unsigned long *)slot; 501 offset += RADIX_TREE_EXCEPTIONAL_SHIFT; 502 if (offset >= BITS_PER_LONG) 503 goto err; 504 } else { 505 btmp = bitmap->bitmap; 506 } 507 if (!test_bit(offset, btmp)) 508 goto err; 509 510 __clear_bit(offset, btmp); 511 radix_tree_iter_tag_set(&ida->ida_rt, &iter, IDR_FREE); 512 if (radix_tree_exception(bitmap)) { 513 if (rcu_dereference_raw(*slot) == 514 (void *)RADIX_TREE_EXCEPTIONAL_ENTRY) 515 radix_tree_iter_delete(&ida->ida_rt, &iter, slot); 516 } else if (bitmap_empty(btmp, IDA_BITMAP_BITS)) { 517 kfree(bitmap); 518 radix_tree_iter_delete(&ida->ida_rt, &iter, slot); 519 } 520 return; 521 err: 522 WARN(1, "ida_remove called for id=%d which is not allocated.\n", id); 523 } 524 EXPORT_SYMBOL(ida_remove); 525 526 /** 527 * ida_destroy - Free the contents of an ida 528 * @ida: ida handle 529 * 530 * Calling this function releases all resources associated with an IDA. When 531 * this call returns, the IDA is empty and can be reused or freed. The caller 532 * should not allow ida_remove() or ida_get_new_above() to be called at the 533 * same time. 534 */ 535 void ida_destroy(struct ida *ida) 536 { 537 struct radix_tree_iter iter; 538 void __rcu **slot; 539 540 radix_tree_for_each_slot(slot, &ida->ida_rt, &iter, 0) { 541 struct ida_bitmap *bitmap = rcu_dereference_raw(*slot); 542 if (!radix_tree_exception(bitmap)) 543 kfree(bitmap); 544 radix_tree_iter_delete(&ida->ida_rt, &iter, slot); 545 } 546 } 547 EXPORT_SYMBOL(ida_destroy); 548 549 /** 550 * ida_simple_get - get a new id. 551 * @ida: the (initialized) ida. 552 * @start: the minimum id (inclusive, < 0x8000000) 553 * @end: the maximum id (exclusive, < 0x8000000 or 0) 554 * @gfp_mask: memory allocation flags 555 * 556 * Allocates an id in the range start <= id < end, or returns -ENOSPC. 557 * On memory allocation failure, returns -ENOMEM. 558 * 559 * Compared to ida_get_new_above() this function does its own locking, and 560 * should be used unless there are special requirements. 561 * 562 * Use ida_simple_remove() to get rid of an id. 563 */ 564 int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end, 565 gfp_t gfp_mask) 566 { 567 int ret, id; 568 unsigned int max; 569 unsigned long flags; 570 571 BUG_ON((int)start < 0); 572 BUG_ON((int)end < 0); 573 574 if (end == 0) 575 max = 0x80000000; 576 else { 577 BUG_ON(end < start); 578 max = end - 1; 579 } 580 581 again: 582 if (!ida_pre_get(ida, gfp_mask)) 583 return -ENOMEM; 584 585 spin_lock_irqsave(&simple_ida_lock, flags); 586 ret = ida_get_new_above(ida, start, &id); 587 if (!ret) { 588 if (id > max) { 589 ida_remove(ida, id); 590 ret = -ENOSPC; 591 } else { 592 ret = id; 593 } 594 } 595 spin_unlock_irqrestore(&simple_ida_lock, flags); 596 597 if (unlikely(ret == -EAGAIN)) 598 goto again; 599 600 return ret; 601 } 602 EXPORT_SYMBOL(ida_simple_get); 603 604 /** 605 * ida_simple_remove - remove an allocated id. 606 * @ida: the (initialized) ida. 607 * @id: the id returned by ida_simple_get. 608 * 609 * Use to release an id allocated with ida_simple_get(). 610 * 611 * Compared to ida_remove() this function does its own locking, and should be 612 * used unless there are special requirements. 613 */ 614 void ida_simple_remove(struct ida *ida, unsigned int id) 615 { 616 unsigned long flags; 617 618 BUG_ON((int)id < 0); 619 spin_lock_irqsave(&simple_ida_lock, flags); 620 ida_remove(ida, id); 621 spin_unlock_irqrestore(&simple_ida_lock, flags); 622 } 623 EXPORT_SYMBOL(ida_simple_remove); 624