xref: /linux/lib/idr.c (revision 160b8e75932fd51a49607d32dbfa1d417977b79c)
1 #include <linux/bitmap.h>
2 #include <linux/bug.h>
3 #include <linux/export.h>
4 #include <linux/idr.h>
5 #include <linux/slab.h>
6 #include <linux/spinlock.h>
7 
8 DEFINE_PER_CPU(struct ida_bitmap *, ida_bitmap);
9 static DEFINE_SPINLOCK(simple_ida_lock);
10 
11 /**
12  * idr_alloc_u32() - Allocate an ID.
13  * @idr: IDR handle.
14  * @ptr: Pointer to be associated with the new ID.
15  * @nextid: Pointer to an ID.
16  * @max: The maximum ID to allocate (inclusive).
17  * @gfp: Memory allocation flags.
18  *
19  * Allocates an unused ID in the range specified by @nextid and @max.
20  * Note that @max is inclusive whereas the @end parameter to idr_alloc()
21  * is exclusive.  The new ID is assigned to @nextid before the pointer
22  * is inserted into the IDR, so if @nextid points into the object pointed
23  * to by @ptr, a concurrent lookup will not find an uninitialised ID.
24  *
25  * The caller should provide their own locking to ensure that two
26  * concurrent modifications to the IDR are not possible.  Read-only
27  * accesses to the IDR may be done under the RCU read lock or may
28  * exclude simultaneous writers.
29  *
30  * Return: 0 if an ID was allocated, -ENOMEM if memory allocation failed,
31  * or -ENOSPC if no free IDs could be found.  If an error occurred,
32  * @nextid is unchanged.
33  */
34 int idr_alloc_u32(struct idr *idr, void *ptr, u32 *nextid,
35 			unsigned long max, gfp_t gfp)
36 {
37 	struct radix_tree_iter iter;
38 	void __rcu **slot;
39 	int base = idr->idr_base;
40 	int id = *nextid;
41 
42 	if (WARN_ON_ONCE(radix_tree_is_internal_node(ptr)))
43 		return -EINVAL;
44 	if (WARN_ON_ONCE(!(idr->idr_rt.gfp_mask & ROOT_IS_IDR)))
45 		idr->idr_rt.gfp_mask |= IDR_RT_MARKER;
46 
47 	id = (id < base) ? 0 : id - base;
48 	radix_tree_iter_init(&iter, id);
49 	slot = idr_get_free(&idr->idr_rt, &iter, gfp, max - base);
50 	if (IS_ERR(slot))
51 		return PTR_ERR(slot);
52 
53 	*nextid = iter.index + base;
54 	/* there is a memory barrier inside radix_tree_iter_replace() */
55 	radix_tree_iter_replace(&idr->idr_rt, &iter, slot, ptr);
56 	radix_tree_iter_tag_clear(&idr->idr_rt, &iter, IDR_FREE);
57 
58 	return 0;
59 }
60 EXPORT_SYMBOL_GPL(idr_alloc_u32);
61 
62 /**
63  * idr_alloc() - Allocate an ID.
64  * @idr: IDR handle.
65  * @ptr: Pointer to be associated with the new ID.
66  * @start: The minimum ID (inclusive).
67  * @end: The maximum ID (exclusive).
68  * @gfp: Memory allocation flags.
69  *
70  * Allocates an unused ID in the range specified by @start and @end.  If
71  * @end is <= 0, it is treated as one larger than %INT_MAX.  This allows
72  * callers to use @start + N as @end as long as N is within integer range.
73  *
74  * The caller should provide their own locking to ensure that two
75  * concurrent modifications to the IDR are not possible.  Read-only
76  * accesses to the IDR may be done under the RCU read lock or may
77  * exclude simultaneous writers.
78  *
79  * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
80  * or -ENOSPC if no free IDs could be found.
81  */
82 int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
83 {
84 	u32 id = start;
85 	int ret;
86 
87 	if (WARN_ON_ONCE(start < 0))
88 		return -EINVAL;
89 
90 	ret = idr_alloc_u32(idr, ptr, &id, end > 0 ? end - 1 : INT_MAX, gfp);
91 	if (ret)
92 		return ret;
93 
94 	return id;
95 }
96 EXPORT_SYMBOL_GPL(idr_alloc);
97 
98 /**
99  * idr_alloc_cyclic() - Allocate an ID cyclically.
100  * @idr: IDR handle.
101  * @ptr: Pointer to be associated with the new ID.
102  * @start: The minimum ID (inclusive).
103  * @end: The maximum ID (exclusive).
104  * @gfp: Memory allocation flags.
105  *
106  * Allocates an unused ID in the range specified by @nextid and @end.  If
107  * @end is <= 0, it is treated as one larger than %INT_MAX.  This allows
108  * callers to use @start + N as @end as long as N is within integer range.
109  * The search for an unused ID will start at the last ID allocated and will
110  * wrap around to @start if no free IDs are found before reaching @end.
111  *
112  * The caller should provide their own locking to ensure that two
113  * concurrent modifications to the IDR are not possible.  Read-only
114  * accesses to the IDR may be done under the RCU read lock or may
115  * exclude simultaneous writers.
116  *
117  * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
118  * or -ENOSPC if no free IDs could be found.
119  */
120 int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
121 {
122 	u32 id = idr->idr_next;
123 	int err, max = end > 0 ? end - 1 : INT_MAX;
124 
125 	if ((int)id < start)
126 		id = start;
127 
128 	err = idr_alloc_u32(idr, ptr, &id, max, gfp);
129 	if ((err == -ENOSPC) && (id > start)) {
130 		id = start;
131 		err = idr_alloc_u32(idr, ptr, &id, max, gfp);
132 	}
133 	if (err)
134 		return err;
135 
136 	idr->idr_next = id + 1;
137 	return id;
138 }
139 EXPORT_SYMBOL(idr_alloc_cyclic);
140 
141 /**
142  * idr_remove() - Remove an ID from the IDR.
143  * @idr: IDR handle.
144  * @id: Pointer ID.
145  *
146  * Removes this ID from the IDR.  If the ID was not previously in the IDR,
147  * this function returns %NULL.
148  *
149  * Since this function modifies the IDR, the caller should provide their
150  * own locking to ensure that concurrent modification of the same IDR is
151  * not possible.
152  *
153  * Return: The pointer formerly associated with this ID.
154  */
155 void *idr_remove(struct idr *idr, unsigned long id)
156 {
157 	return radix_tree_delete_item(&idr->idr_rt, id - idr->idr_base, NULL);
158 }
159 EXPORT_SYMBOL_GPL(idr_remove);
160 
161 /**
162  * idr_find() - Return pointer for given ID.
163  * @idr: IDR handle.
164  * @id: Pointer ID.
165  *
166  * Looks up the pointer associated with this ID.  A %NULL pointer may
167  * indicate that @id is not allocated or that the %NULL pointer was
168  * associated with this ID.
169  *
170  * This function can be called under rcu_read_lock(), given that the leaf
171  * pointers lifetimes are correctly managed.
172  *
173  * Return: The pointer associated with this ID.
174  */
175 void *idr_find(const struct idr *idr, unsigned long id)
176 {
177 	return radix_tree_lookup(&idr->idr_rt, id - idr->idr_base);
178 }
179 EXPORT_SYMBOL_GPL(idr_find);
180 
181 /**
182  * idr_for_each() - Iterate through all stored pointers.
183  * @idr: IDR handle.
184  * @fn: Function to be called for each pointer.
185  * @data: Data passed to callback function.
186  *
187  * The callback function will be called for each entry in @idr, passing
188  * the ID, the entry and @data.
189  *
190  * If @fn returns anything other than %0, the iteration stops and that
191  * value is returned from this function.
192  *
193  * idr_for_each() can be called concurrently with idr_alloc() and
194  * idr_remove() if protected by RCU.  Newly added entries may not be
195  * seen and deleted entries may be seen, but adding and removing entries
196  * will not cause other entries to be skipped, nor spurious ones to be seen.
197  */
198 int idr_for_each(const struct idr *idr,
199 		int (*fn)(int id, void *p, void *data), void *data)
200 {
201 	struct radix_tree_iter iter;
202 	void __rcu **slot;
203 	int base = idr->idr_base;
204 
205 	radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, 0) {
206 		int ret;
207 
208 		if (WARN_ON_ONCE(iter.index > INT_MAX))
209 			break;
210 		ret = fn(iter.index + base, rcu_dereference_raw(*slot), data);
211 		if (ret)
212 			return ret;
213 	}
214 
215 	return 0;
216 }
217 EXPORT_SYMBOL(idr_for_each);
218 
219 /**
220  * idr_get_next() - Find next populated entry.
221  * @idr: IDR handle.
222  * @nextid: Pointer to an ID.
223  *
224  * Returns the next populated entry in the tree with an ID greater than
225  * or equal to the value pointed to by @nextid.  On exit, @nextid is updated
226  * to the ID of the found value.  To use in a loop, the value pointed to by
227  * nextid must be incremented by the user.
228  */
229 void *idr_get_next(struct idr *idr, int *nextid)
230 {
231 	struct radix_tree_iter iter;
232 	void __rcu **slot;
233 	int base = idr->idr_base;
234 	int id = *nextid;
235 
236 	id = (id < base) ? 0 : id - base;
237 	slot = radix_tree_iter_find(&idr->idr_rt, &iter, id);
238 	if (!slot)
239 		return NULL;
240 	id = iter.index + base;
241 
242 	if (WARN_ON_ONCE(id > INT_MAX))
243 		return NULL;
244 
245 	*nextid = id;
246 	return rcu_dereference_raw(*slot);
247 }
248 EXPORT_SYMBOL(idr_get_next);
249 
250 /**
251  * idr_get_next_ul() - Find next populated entry.
252  * @idr: IDR handle.
253  * @nextid: Pointer to an ID.
254  *
255  * Returns the next populated entry in the tree with an ID greater than
256  * or equal to the value pointed to by @nextid.  On exit, @nextid is updated
257  * to the ID of the found value.  To use in a loop, the value pointed to by
258  * nextid must be incremented by the user.
259  */
260 void *idr_get_next_ul(struct idr *idr, unsigned long *nextid)
261 {
262 	struct radix_tree_iter iter;
263 	void __rcu **slot;
264 	unsigned long base = idr->idr_base;
265 	unsigned long id = *nextid;
266 
267 	id = (id < base) ? 0 : id - base;
268 	slot = radix_tree_iter_find(&idr->idr_rt, &iter, id);
269 	if (!slot)
270 		return NULL;
271 
272 	*nextid = iter.index + base;
273 	return rcu_dereference_raw(*slot);
274 }
275 EXPORT_SYMBOL(idr_get_next_ul);
276 
277 /**
278  * idr_replace() - replace pointer for given ID.
279  * @idr: IDR handle.
280  * @ptr: New pointer to associate with the ID.
281  * @id: ID to change.
282  *
283  * Replace the pointer registered with an ID and return the old value.
284  * This function can be called under the RCU read lock concurrently with
285  * idr_alloc() and idr_remove() (as long as the ID being removed is not
286  * the one being replaced!).
287  *
288  * Returns: the old value on success.  %-ENOENT indicates that @id was not
289  * found.  %-EINVAL indicates that @ptr was not valid.
290  */
291 void *idr_replace(struct idr *idr, void *ptr, unsigned long id)
292 {
293 	struct radix_tree_node *node;
294 	void __rcu **slot = NULL;
295 	void *entry;
296 
297 	if (WARN_ON_ONCE(radix_tree_is_internal_node(ptr)))
298 		return ERR_PTR(-EINVAL);
299 	id -= idr->idr_base;
300 
301 	entry = __radix_tree_lookup(&idr->idr_rt, id, &node, &slot);
302 	if (!slot || radix_tree_tag_get(&idr->idr_rt, id, IDR_FREE))
303 		return ERR_PTR(-ENOENT);
304 
305 	__radix_tree_replace(&idr->idr_rt, node, slot, ptr, NULL);
306 
307 	return entry;
308 }
309 EXPORT_SYMBOL(idr_replace);
310 
311 /**
312  * DOC: IDA description
313  *
314  * The IDA is an ID allocator which does not provide the ability to
315  * associate an ID with a pointer.  As such, it only needs to store one
316  * bit per ID, and so is more space efficient than an IDR.  To use an IDA,
317  * define it using DEFINE_IDA() (or embed a &struct ida in a data structure,
318  * then initialise it using ida_init()).  To allocate a new ID, call
319  * ida_simple_get().  To free an ID, call ida_simple_remove().
320  *
321  * If you have more complex locking requirements, use a loop around
322  * ida_pre_get() and ida_get_new() to allocate a new ID.  Then use
323  * ida_remove() to free an ID.  You must make sure that ida_get_new() and
324  * ida_remove() cannot be called at the same time as each other for the
325  * same IDA.
326  *
327  * You can also use ida_get_new_above() if you need an ID to be allocated
328  * above a particular number.  ida_destroy() can be used to dispose of an
329  * IDA without needing to free the individual IDs in it.  You can use
330  * ida_is_empty() to find out whether the IDA has any IDs currently allocated.
331  *
332  * IDs are currently limited to the range [0-INT_MAX].  If this is an awkward
333  * limitation, it should be quite straightforward to raise the maximum.
334  */
335 
336 /*
337  * Developer's notes:
338  *
339  * The IDA uses the functionality provided by the IDR & radix tree to store
340  * bitmaps in each entry.  The IDR_FREE tag means there is at least one bit
341  * free, unlike the IDR where it means at least one entry is free.
342  *
343  * I considered telling the radix tree that each slot is an order-10 node
344  * and storing the bit numbers in the radix tree, but the radix tree can't
345  * allow a single multiorder entry at index 0, which would significantly
346  * increase memory consumption for the IDA.  So instead we divide the index
347  * by the number of bits in the leaf bitmap before doing a radix tree lookup.
348  *
349  * As an optimisation, if there are only a few low bits set in any given
350  * leaf, instead of allocating a 128-byte bitmap, we use the 'exceptional
351  * entry' functionality of the radix tree to store BITS_PER_LONG - 2 bits
352  * directly in the entry.  By being really tricksy, we could store
353  * BITS_PER_LONG - 1 bits, but there're diminishing returns after optimising
354  * for 0-3 allocated IDs.
355  *
356  * We allow the radix tree 'exceptional' count to get out of date.  Nothing
357  * in the IDA nor the radix tree code checks it.  If it becomes important
358  * to maintain an accurate exceptional count, switch the rcu_assign_pointer()
359  * calls to radix_tree_iter_replace() which will correct the exceptional
360  * count.
361  *
362  * The IDA always requires a lock to alloc/free.  If we add a 'test_bit'
363  * equivalent, it will still need locking.  Going to RCU lookup would require
364  * using RCU to free bitmaps, and that's not trivial without embedding an
365  * RCU head in the bitmap, which adds a 2-pointer overhead to each 128-byte
366  * bitmap, which is excessive.
367  */
368 
369 #define IDA_MAX (0x80000000U / IDA_BITMAP_BITS - 1)
370 
371 /**
372  * ida_get_new_above - allocate new ID above or equal to a start id
373  * @ida: ida handle
374  * @start: id to start search at
375  * @id: pointer to the allocated handle
376  *
377  * Allocate new ID above or equal to @start.  It should be called
378  * with any required locks to ensure that concurrent calls to
379  * ida_get_new_above() / ida_get_new() / ida_remove() are not allowed.
380  * Consider using ida_simple_get() if you do not have complex locking
381  * requirements.
382  *
383  * If memory is required, it will return %-EAGAIN, you should unlock
384  * and go back to the ida_pre_get() call.  If the ida is full, it will
385  * return %-ENOSPC.  On success, it will return 0.
386  *
387  * @id returns a value in the range @start ... %0x7fffffff.
388  */
389 int ida_get_new_above(struct ida *ida, int start, int *id)
390 {
391 	struct radix_tree_root *root = &ida->ida_rt;
392 	void __rcu **slot;
393 	struct radix_tree_iter iter;
394 	struct ida_bitmap *bitmap;
395 	unsigned long index;
396 	unsigned bit, ebit;
397 	int new;
398 
399 	index = start / IDA_BITMAP_BITS;
400 	bit = start % IDA_BITMAP_BITS;
401 	ebit = bit + RADIX_TREE_EXCEPTIONAL_SHIFT;
402 
403 	slot = radix_tree_iter_init(&iter, index);
404 	for (;;) {
405 		if (slot)
406 			slot = radix_tree_next_slot(slot, &iter,
407 						RADIX_TREE_ITER_TAGGED);
408 		if (!slot) {
409 			slot = idr_get_free(root, &iter, GFP_NOWAIT, IDA_MAX);
410 			if (IS_ERR(slot)) {
411 				if (slot == ERR_PTR(-ENOMEM))
412 					return -EAGAIN;
413 				return PTR_ERR(slot);
414 			}
415 		}
416 		if (iter.index > index) {
417 			bit = 0;
418 			ebit = RADIX_TREE_EXCEPTIONAL_SHIFT;
419 		}
420 		new = iter.index * IDA_BITMAP_BITS;
421 		bitmap = rcu_dereference_raw(*slot);
422 		if (radix_tree_exception(bitmap)) {
423 			unsigned long tmp = (unsigned long)bitmap;
424 			ebit = find_next_zero_bit(&tmp, BITS_PER_LONG, ebit);
425 			if (ebit < BITS_PER_LONG) {
426 				tmp |= 1UL << ebit;
427 				rcu_assign_pointer(*slot, (void *)tmp);
428 				*id = new + ebit - RADIX_TREE_EXCEPTIONAL_SHIFT;
429 				return 0;
430 			}
431 			bitmap = this_cpu_xchg(ida_bitmap, NULL);
432 			if (!bitmap)
433 				return -EAGAIN;
434 			memset(bitmap, 0, sizeof(*bitmap));
435 			bitmap->bitmap[0] = tmp >> RADIX_TREE_EXCEPTIONAL_SHIFT;
436 			rcu_assign_pointer(*slot, bitmap);
437 		}
438 
439 		if (bitmap) {
440 			bit = find_next_zero_bit(bitmap->bitmap,
441 							IDA_BITMAP_BITS, bit);
442 			new += bit;
443 			if (new < 0)
444 				return -ENOSPC;
445 			if (bit == IDA_BITMAP_BITS)
446 				continue;
447 
448 			__set_bit(bit, bitmap->bitmap);
449 			if (bitmap_full(bitmap->bitmap, IDA_BITMAP_BITS))
450 				radix_tree_iter_tag_clear(root, &iter,
451 								IDR_FREE);
452 		} else {
453 			new += bit;
454 			if (new < 0)
455 				return -ENOSPC;
456 			if (ebit < BITS_PER_LONG) {
457 				bitmap = (void *)((1UL << ebit) |
458 						RADIX_TREE_EXCEPTIONAL_ENTRY);
459 				radix_tree_iter_replace(root, &iter, slot,
460 						bitmap);
461 				*id = new;
462 				return 0;
463 			}
464 			bitmap = this_cpu_xchg(ida_bitmap, NULL);
465 			if (!bitmap)
466 				return -EAGAIN;
467 			memset(bitmap, 0, sizeof(*bitmap));
468 			__set_bit(bit, bitmap->bitmap);
469 			radix_tree_iter_replace(root, &iter, slot, bitmap);
470 		}
471 
472 		*id = new;
473 		return 0;
474 	}
475 }
476 EXPORT_SYMBOL(ida_get_new_above);
477 
478 /**
479  * ida_remove - Free the given ID
480  * @ida: ida handle
481  * @id: ID to free
482  *
483  * This function should not be called at the same time as ida_get_new_above().
484  */
485 void ida_remove(struct ida *ida, int id)
486 {
487 	unsigned long index = id / IDA_BITMAP_BITS;
488 	unsigned offset = id % IDA_BITMAP_BITS;
489 	struct ida_bitmap *bitmap;
490 	unsigned long *btmp;
491 	struct radix_tree_iter iter;
492 	void __rcu **slot;
493 
494 	slot = radix_tree_iter_lookup(&ida->ida_rt, &iter, index);
495 	if (!slot)
496 		goto err;
497 
498 	bitmap = rcu_dereference_raw(*slot);
499 	if (radix_tree_exception(bitmap)) {
500 		btmp = (unsigned long *)slot;
501 		offset += RADIX_TREE_EXCEPTIONAL_SHIFT;
502 		if (offset >= BITS_PER_LONG)
503 			goto err;
504 	} else {
505 		btmp = bitmap->bitmap;
506 	}
507 	if (!test_bit(offset, btmp))
508 		goto err;
509 
510 	__clear_bit(offset, btmp);
511 	radix_tree_iter_tag_set(&ida->ida_rt, &iter, IDR_FREE);
512 	if (radix_tree_exception(bitmap)) {
513 		if (rcu_dereference_raw(*slot) ==
514 					(void *)RADIX_TREE_EXCEPTIONAL_ENTRY)
515 			radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
516 	} else if (bitmap_empty(btmp, IDA_BITMAP_BITS)) {
517 		kfree(bitmap);
518 		radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
519 	}
520 	return;
521  err:
522 	WARN(1, "ida_remove called for id=%d which is not allocated.\n", id);
523 }
524 EXPORT_SYMBOL(ida_remove);
525 
526 /**
527  * ida_destroy - Free the contents of an ida
528  * @ida: ida handle
529  *
530  * Calling this function releases all resources associated with an IDA.  When
531  * this call returns, the IDA is empty and can be reused or freed.  The caller
532  * should not allow ida_remove() or ida_get_new_above() to be called at the
533  * same time.
534  */
535 void ida_destroy(struct ida *ida)
536 {
537 	struct radix_tree_iter iter;
538 	void __rcu **slot;
539 
540 	radix_tree_for_each_slot(slot, &ida->ida_rt, &iter, 0) {
541 		struct ida_bitmap *bitmap = rcu_dereference_raw(*slot);
542 		if (!radix_tree_exception(bitmap))
543 			kfree(bitmap);
544 		radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
545 	}
546 }
547 EXPORT_SYMBOL(ida_destroy);
548 
549 /**
550  * ida_simple_get - get a new id.
551  * @ida: the (initialized) ida.
552  * @start: the minimum id (inclusive, < 0x8000000)
553  * @end: the maximum id (exclusive, < 0x8000000 or 0)
554  * @gfp_mask: memory allocation flags
555  *
556  * Allocates an id in the range start <= id < end, or returns -ENOSPC.
557  * On memory allocation failure, returns -ENOMEM.
558  *
559  * Compared to ida_get_new_above() this function does its own locking, and
560  * should be used unless there are special requirements.
561  *
562  * Use ida_simple_remove() to get rid of an id.
563  */
564 int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end,
565 		   gfp_t gfp_mask)
566 {
567 	int ret, id;
568 	unsigned int max;
569 	unsigned long flags;
570 
571 	BUG_ON((int)start < 0);
572 	BUG_ON((int)end < 0);
573 
574 	if (end == 0)
575 		max = 0x80000000;
576 	else {
577 		BUG_ON(end < start);
578 		max = end - 1;
579 	}
580 
581 again:
582 	if (!ida_pre_get(ida, gfp_mask))
583 		return -ENOMEM;
584 
585 	spin_lock_irqsave(&simple_ida_lock, flags);
586 	ret = ida_get_new_above(ida, start, &id);
587 	if (!ret) {
588 		if (id > max) {
589 			ida_remove(ida, id);
590 			ret = -ENOSPC;
591 		} else {
592 			ret = id;
593 		}
594 	}
595 	spin_unlock_irqrestore(&simple_ida_lock, flags);
596 
597 	if (unlikely(ret == -EAGAIN))
598 		goto again;
599 
600 	return ret;
601 }
602 EXPORT_SYMBOL(ida_simple_get);
603 
604 /**
605  * ida_simple_remove - remove an allocated id.
606  * @ida: the (initialized) ida.
607  * @id: the id returned by ida_simple_get.
608  *
609  * Use to release an id allocated with ida_simple_get().
610  *
611  * Compared to ida_remove() this function does its own locking, and should be
612  * used unless there are special requirements.
613  */
614 void ida_simple_remove(struct ida *ida, unsigned int id)
615 {
616 	unsigned long flags;
617 
618 	BUG_ON((int)id < 0);
619 	spin_lock_irqsave(&simple_ida_lock, flags);
620 	ida_remove(ida, id);
621 	spin_unlock_irqrestore(&simple_ida_lock, flags);
622 }
623 EXPORT_SYMBOL(ida_simple_remove);
624