xref: /linux/lib/genalloc.c (revision a2cce7a9f1b8cc3d4edce106fb971529f1d4d9ce)
1 /*
2  * Basic general purpose allocator for managing special purpose
3  * memory, for example, memory that is not managed by the regular
4  * kmalloc/kfree interface.  Uses for this includes on-device special
5  * memory, uncached memory etc.
6  *
7  * It is safe to use the allocator in NMI handlers and other special
8  * unblockable contexts that could otherwise deadlock on locks.  This
9  * is implemented by using atomic operations and retries on any
10  * conflicts.  The disadvantage is that there may be livelocks in
11  * extreme cases.  For better scalability, one allocator can be used
12  * for each CPU.
13  *
14  * The lockless operation only works if there is enough memory
15  * available.  If new memory is added to the pool a lock has to be
16  * still taken.  So any user relying on locklessness has to ensure
17  * that sufficient memory is preallocated.
18  *
19  * The basic atomic operation of this allocator is cmpxchg on long.
20  * On architectures that don't have NMI-safe cmpxchg implementation,
21  * the allocator can NOT be used in NMI handler.  So code uses the
22  * allocator in NMI handler should depend on
23  * CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG.
24  *
25  * Copyright 2005 (C) Jes Sorensen <jes@trained-monkey.org>
26  *
27  * This source code is licensed under the GNU General Public License,
28  * Version 2.  See the file COPYING for more details.
29  */
30 
31 #include <linux/slab.h>
32 #include <linux/export.h>
33 #include <linux/bitmap.h>
34 #include <linux/rculist.h>
35 #include <linux/interrupt.h>
36 #include <linux/genalloc.h>
37 #include <linux/of_device.h>
38 
39 static inline size_t chunk_size(const struct gen_pool_chunk *chunk)
40 {
41 	return chunk->end_addr - chunk->start_addr + 1;
42 }
43 
44 static int set_bits_ll(unsigned long *addr, unsigned long mask_to_set)
45 {
46 	unsigned long val, nval;
47 
48 	nval = *addr;
49 	do {
50 		val = nval;
51 		if (val & mask_to_set)
52 			return -EBUSY;
53 		cpu_relax();
54 	} while ((nval = cmpxchg(addr, val, val | mask_to_set)) != val);
55 
56 	return 0;
57 }
58 
59 static int clear_bits_ll(unsigned long *addr, unsigned long mask_to_clear)
60 {
61 	unsigned long val, nval;
62 
63 	nval = *addr;
64 	do {
65 		val = nval;
66 		if ((val & mask_to_clear) != mask_to_clear)
67 			return -EBUSY;
68 		cpu_relax();
69 	} while ((nval = cmpxchg(addr, val, val & ~mask_to_clear)) != val);
70 
71 	return 0;
72 }
73 
74 /*
75  * bitmap_set_ll - set the specified number of bits at the specified position
76  * @map: pointer to a bitmap
77  * @start: a bit position in @map
78  * @nr: number of bits to set
79  *
80  * Set @nr bits start from @start in @map lock-lessly. Several users
81  * can set/clear the same bitmap simultaneously without lock. If two
82  * users set the same bit, one user will return remain bits, otherwise
83  * return 0.
84  */
85 static int bitmap_set_ll(unsigned long *map, int start, int nr)
86 {
87 	unsigned long *p = map + BIT_WORD(start);
88 	const int size = start + nr;
89 	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
90 	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
91 
92 	while (nr - bits_to_set >= 0) {
93 		if (set_bits_ll(p, mask_to_set))
94 			return nr;
95 		nr -= bits_to_set;
96 		bits_to_set = BITS_PER_LONG;
97 		mask_to_set = ~0UL;
98 		p++;
99 	}
100 	if (nr) {
101 		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
102 		if (set_bits_ll(p, mask_to_set))
103 			return nr;
104 	}
105 
106 	return 0;
107 }
108 
109 /*
110  * bitmap_clear_ll - clear the specified number of bits at the specified position
111  * @map: pointer to a bitmap
112  * @start: a bit position in @map
113  * @nr: number of bits to set
114  *
115  * Clear @nr bits start from @start in @map lock-lessly. Several users
116  * can set/clear the same bitmap simultaneously without lock. If two
117  * users clear the same bit, one user will return remain bits,
118  * otherwise return 0.
119  */
120 static int bitmap_clear_ll(unsigned long *map, int start, int nr)
121 {
122 	unsigned long *p = map + BIT_WORD(start);
123 	const int size = start + nr;
124 	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
125 	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
126 
127 	while (nr - bits_to_clear >= 0) {
128 		if (clear_bits_ll(p, mask_to_clear))
129 			return nr;
130 		nr -= bits_to_clear;
131 		bits_to_clear = BITS_PER_LONG;
132 		mask_to_clear = ~0UL;
133 		p++;
134 	}
135 	if (nr) {
136 		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
137 		if (clear_bits_ll(p, mask_to_clear))
138 			return nr;
139 	}
140 
141 	return 0;
142 }
143 
144 /**
145  * gen_pool_create - create a new special memory pool
146  * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
147  * @nid: node id of the node the pool structure should be allocated on, or -1
148  *
149  * Create a new special memory pool that can be used to manage special purpose
150  * memory not managed by the regular kmalloc/kfree interface.
151  */
152 struct gen_pool *gen_pool_create(int min_alloc_order, int nid)
153 {
154 	struct gen_pool *pool;
155 
156 	pool = kmalloc_node(sizeof(struct gen_pool), GFP_KERNEL, nid);
157 	if (pool != NULL) {
158 		spin_lock_init(&pool->lock);
159 		INIT_LIST_HEAD(&pool->chunks);
160 		pool->min_alloc_order = min_alloc_order;
161 		pool->algo = gen_pool_first_fit;
162 		pool->data = NULL;
163 		pool->name = NULL;
164 	}
165 	return pool;
166 }
167 EXPORT_SYMBOL(gen_pool_create);
168 
169 /**
170  * gen_pool_add_virt - add a new chunk of special memory to the pool
171  * @pool: pool to add new memory chunk to
172  * @virt: virtual starting address of memory chunk to add to pool
173  * @phys: physical starting address of memory chunk to add to pool
174  * @size: size in bytes of the memory chunk to add to pool
175  * @nid: node id of the node the chunk structure and bitmap should be
176  *       allocated on, or -1
177  *
178  * Add a new chunk of special memory to the specified pool.
179  *
180  * Returns 0 on success or a -ve errno on failure.
181  */
182 int gen_pool_add_virt(struct gen_pool *pool, unsigned long virt, phys_addr_t phys,
183 		 size_t size, int nid)
184 {
185 	struct gen_pool_chunk *chunk;
186 	int nbits = size >> pool->min_alloc_order;
187 	int nbytes = sizeof(struct gen_pool_chunk) +
188 				BITS_TO_LONGS(nbits) * sizeof(long);
189 
190 	chunk = kzalloc_node(nbytes, GFP_KERNEL, nid);
191 	if (unlikely(chunk == NULL))
192 		return -ENOMEM;
193 
194 	chunk->phys_addr = phys;
195 	chunk->start_addr = virt;
196 	chunk->end_addr = virt + size - 1;
197 	atomic_set(&chunk->avail, size);
198 
199 	spin_lock(&pool->lock);
200 	list_add_rcu(&chunk->next_chunk, &pool->chunks);
201 	spin_unlock(&pool->lock);
202 
203 	return 0;
204 }
205 EXPORT_SYMBOL(gen_pool_add_virt);
206 
207 /**
208  * gen_pool_virt_to_phys - return the physical address of memory
209  * @pool: pool to allocate from
210  * @addr: starting address of memory
211  *
212  * Returns the physical address on success, or -1 on error.
213  */
214 phys_addr_t gen_pool_virt_to_phys(struct gen_pool *pool, unsigned long addr)
215 {
216 	struct gen_pool_chunk *chunk;
217 	phys_addr_t paddr = -1;
218 
219 	rcu_read_lock();
220 	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
221 		if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
222 			paddr = chunk->phys_addr + (addr - chunk->start_addr);
223 			break;
224 		}
225 	}
226 	rcu_read_unlock();
227 
228 	return paddr;
229 }
230 EXPORT_SYMBOL(gen_pool_virt_to_phys);
231 
232 /**
233  * gen_pool_destroy - destroy a special memory pool
234  * @pool: pool to destroy
235  *
236  * Destroy the specified special memory pool. Verifies that there are no
237  * outstanding allocations.
238  */
239 void gen_pool_destroy(struct gen_pool *pool)
240 {
241 	struct list_head *_chunk, *_next_chunk;
242 	struct gen_pool_chunk *chunk;
243 	int order = pool->min_alloc_order;
244 	int bit, end_bit;
245 
246 	list_for_each_safe(_chunk, _next_chunk, &pool->chunks) {
247 		chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk);
248 		list_del(&chunk->next_chunk);
249 
250 		end_bit = chunk_size(chunk) >> order;
251 		bit = find_next_bit(chunk->bits, end_bit, 0);
252 		BUG_ON(bit < end_bit);
253 
254 		kfree(chunk);
255 	}
256 	kfree_const(pool->name);
257 	kfree(pool);
258 }
259 EXPORT_SYMBOL(gen_pool_destroy);
260 
261 /**
262  * gen_pool_alloc - allocate special memory from the pool
263  * @pool: pool to allocate from
264  * @size: number of bytes to allocate from the pool
265  *
266  * Allocate the requested number of bytes from the specified pool.
267  * Uses the pool allocation function (with first-fit algorithm by default).
268  * Can not be used in NMI handler on architectures without
269  * NMI-safe cmpxchg implementation.
270  */
271 unsigned long gen_pool_alloc(struct gen_pool *pool, size_t size)
272 {
273 	struct gen_pool_chunk *chunk;
274 	unsigned long addr = 0;
275 	int order = pool->min_alloc_order;
276 	int nbits, start_bit = 0, end_bit, remain;
277 
278 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
279 	BUG_ON(in_nmi());
280 #endif
281 
282 	if (size == 0)
283 		return 0;
284 
285 	nbits = (size + (1UL << order) - 1) >> order;
286 	rcu_read_lock();
287 	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
288 		if (size > atomic_read(&chunk->avail))
289 			continue;
290 
291 		end_bit = chunk_size(chunk) >> order;
292 retry:
293 		start_bit = pool->algo(chunk->bits, end_bit, start_bit, nbits,
294 				pool->data);
295 		if (start_bit >= end_bit)
296 			continue;
297 		remain = bitmap_set_ll(chunk->bits, start_bit, nbits);
298 		if (remain) {
299 			remain = bitmap_clear_ll(chunk->bits, start_bit,
300 						 nbits - remain);
301 			BUG_ON(remain);
302 			goto retry;
303 		}
304 
305 		addr = chunk->start_addr + ((unsigned long)start_bit << order);
306 		size = nbits << order;
307 		atomic_sub(size, &chunk->avail);
308 		break;
309 	}
310 	rcu_read_unlock();
311 	return addr;
312 }
313 EXPORT_SYMBOL(gen_pool_alloc);
314 
315 /**
316  * gen_pool_dma_alloc - allocate special memory from the pool for DMA usage
317  * @pool: pool to allocate from
318  * @size: number of bytes to allocate from the pool
319  * @dma: dma-view physical address return value.  Use NULL if unneeded.
320  *
321  * Allocate the requested number of bytes from the specified pool.
322  * Uses the pool allocation function (with first-fit algorithm by default).
323  * Can not be used in NMI handler on architectures without
324  * NMI-safe cmpxchg implementation.
325  */
326 void *gen_pool_dma_alloc(struct gen_pool *pool, size_t size, dma_addr_t *dma)
327 {
328 	unsigned long vaddr;
329 
330 	if (!pool)
331 		return NULL;
332 
333 	vaddr = gen_pool_alloc(pool, size);
334 	if (!vaddr)
335 		return NULL;
336 
337 	if (dma)
338 		*dma = gen_pool_virt_to_phys(pool, vaddr);
339 
340 	return (void *)vaddr;
341 }
342 EXPORT_SYMBOL(gen_pool_dma_alloc);
343 
344 /**
345  * gen_pool_free - free allocated special memory back to the pool
346  * @pool: pool to free to
347  * @addr: starting address of memory to free back to pool
348  * @size: size in bytes of memory to free
349  *
350  * Free previously allocated special memory back to the specified
351  * pool.  Can not be used in NMI handler on architectures without
352  * NMI-safe cmpxchg implementation.
353  */
354 void gen_pool_free(struct gen_pool *pool, unsigned long addr, size_t size)
355 {
356 	struct gen_pool_chunk *chunk;
357 	int order = pool->min_alloc_order;
358 	int start_bit, nbits, remain;
359 
360 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
361 	BUG_ON(in_nmi());
362 #endif
363 
364 	nbits = (size + (1UL << order) - 1) >> order;
365 	rcu_read_lock();
366 	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
367 		if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
368 			BUG_ON(addr + size - 1 > chunk->end_addr);
369 			start_bit = (addr - chunk->start_addr) >> order;
370 			remain = bitmap_clear_ll(chunk->bits, start_bit, nbits);
371 			BUG_ON(remain);
372 			size = nbits << order;
373 			atomic_add(size, &chunk->avail);
374 			rcu_read_unlock();
375 			return;
376 		}
377 	}
378 	rcu_read_unlock();
379 	BUG();
380 }
381 EXPORT_SYMBOL(gen_pool_free);
382 
383 /**
384  * gen_pool_for_each_chunk - call func for every chunk of generic memory pool
385  * @pool:	the generic memory pool
386  * @func:	func to call
387  * @data:	additional data used by @func
388  *
389  * Call @func for every chunk of generic memory pool.  The @func is
390  * called with rcu_read_lock held.
391  */
392 void gen_pool_for_each_chunk(struct gen_pool *pool,
393 	void (*func)(struct gen_pool *pool, struct gen_pool_chunk *chunk, void *data),
394 	void *data)
395 {
396 	struct gen_pool_chunk *chunk;
397 
398 	rcu_read_lock();
399 	list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk)
400 		func(pool, chunk, data);
401 	rcu_read_unlock();
402 }
403 EXPORT_SYMBOL(gen_pool_for_each_chunk);
404 
405 /**
406  * addr_in_gen_pool - checks if an address falls within the range of a pool
407  * @pool:	the generic memory pool
408  * @start:	start address
409  * @size:	size of the region
410  *
411  * Check if the range of addresses falls within the specified pool. Returns
412  * true if the entire range is contained in the pool and false otherwise.
413  */
414 bool addr_in_gen_pool(struct gen_pool *pool, unsigned long start,
415 			size_t size)
416 {
417 	bool found = false;
418 	unsigned long end = start + size - 1;
419 	struct gen_pool_chunk *chunk;
420 
421 	rcu_read_lock();
422 	list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk) {
423 		if (start >= chunk->start_addr && start <= chunk->end_addr) {
424 			if (end <= chunk->end_addr) {
425 				found = true;
426 				break;
427 			}
428 		}
429 	}
430 	rcu_read_unlock();
431 	return found;
432 }
433 
434 /**
435  * gen_pool_avail - get available free space of the pool
436  * @pool: pool to get available free space
437  *
438  * Return available free space of the specified pool.
439  */
440 size_t gen_pool_avail(struct gen_pool *pool)
441 {
442 	struct gen_pool_chunk *chunk;
443 	size_t avail = 0;
444 
445 	rcu_read_lock();
446 	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
447 		avail += atomic_read(&chunk->avail);
448 	rcu_read_unlock();
449 	return avail;
450 }
451 EXPORT_SYMBOL_GPL(gen_pool_avail);
452 
453 /**
454  * gen_pool_size - get size in bytes of memory managed by the pool
455  * @pool: pool to get size
456  *
457  * Return size in bytes of memory managed by the pool.
458  */
459 size_t gen_pool_size(struct gen_pool *pool)
460 {
461 	struct gen_pool_chunk *chunk;
462 	size_t size = 0;
463 
464 	rcu_read_lock();
465 	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
466 		size += chunk_size(chunk);
467 	rcu_read_unlock();
468 	return size;
469 }
470 EXPORT_SYMBOL_GPL(gen_pool_size);
471 
472 /**
473  * gen_pool_set_algo - set the allocation algorithm
474  * @pool: pool to change allocation algorithm
475  * @algo: custom algorithm function
476  * @data: additional data used by @algo
477  *
478  * Call @algo for each memory allocation in the pool.
479  * If @algo is NULL use gen_pool_first_fit as default
480  * memory allocation function.
481  */
482 void gen_pool_set_algo(struct gen_pool *pool, genpool_algo_t algo, void *data)
483 {
484 	rcu_read_lock();
485 
486 	pool->algo = algo;
487 	if (!pool->algo)
488 		pool->algo = gen_pool_first_fit;
489 
490 	pool->data = data;
491 
492 	rcu_read_unlock();
493 }
494 EXPORT_SYMBOL(gen_pool_set_algo);
495 
496 /**
497  * gen_pool_first_fit - find the first available region
498  * of memory matching the size requirement (no alignment constraint)
499  * @map: The address to base the search on
500  * @size: The bitmap size in bits
501  * @start: The bitnumber to start searching at
502  * @nr: The number of zeroed bits we're looking for
503  * @data: additional data - unused
504  */
505 unsigned long gen_pool_first_fit(unsigned long *map, unsigned long size,
506 		unsigned long start, unsigned int nr, void *data)
507 {
508 	return bitmap_find_next_zero_area(map, size, start, nr, 0);
509 }
510 EXPORT_SYMBOL(gen_pool_first_fit);
511 
512 /**
513  * gen_pool_first_fit_order_align - find the first available region
514  * of memory matching the size requirement. The region will be aligned
515  * to the order of the size specified.
516  * @map: The address to base the search on
517  * @size: The bitmap size in bits
518  * @start: The bitnumber to start searching at
519  * @nr: The number of zeroed bits we're looking for
520  * @data: additional data - unused
521  */
522 unsigned long gen_pool_first_fit_order_align(unsigned long *map,
523 		unsigned long size, unsigned long start,
524 		unsigned int nr, void *data)
525 {
526 	unsigned long align_mask = roundup_pow_of_two(nr) - 1;
527 
528 	return bitmap_find_next_zero_area(map, size, start, nr, align_mask);
529 }
530 EXPORT_SYMBOL(gen_pool_first_fit_order_align);
531 
532 /**
533  * gen_pool_best_fit - find the best fitting region of memory
534  * macthing the size requirement (no alignment constraint)
535  * @map: The address to base the search on
536  * @size: The bitmap size in bits
537  * @start: The bitnumber to start searching at
538  * @nr: The number of zeroed bits we're looking for
539  * @data: additional data - unused
540  *
541  * Iterate over the bitmap to find the smallest free region
542  * which we can allocate the memory.
543  */
544 unsigned long gen_pool_best_fit(unsigned long *map, unsigned long size,
545 		unsigned long start, unsigned int nr, void *data)
546 {
547 	unsigned long start_bit = size;
548 	unsigned long len = size + 1;
549 	unsigned long index;
550 
551 	index = bitmap_find_next_zero_area(map, size, start, nr, 0);
552 
553 	while (index < size) {
554 		int next_bit = find_next_bit(map, size, index + nr);
555 		if ((next_bit - index) < len) {
556 			len = next_bit - index;
557 			start_bit = index;
558 			if (len == nr)
559 				return start_bit;
560 		}
561 		index = bitmap_find_next_zero_area(map, size,
562 						   next_bit + 1, nr, 0);
563 	}
564 
565 	return start_bit;
566 }
567 EXPORT_SYMBOL(gen_pool_best_fit);
568 
569 static void devm_gen_pool_release(struct device *dev, void *res)
570 {
571 	gen_pool_destroy(*(struct gen_pool **)res);
572 }
573 
574 static int devm_gen_pool_match(struct device *dev, void *res, void *data)
575 {
576 	struct gen_pool **p = res;
577 
578 	/* NULL data matches only a pool without an assigned name */
579 	if (!data && !(*p)->name)
580 		return 1;
581 
582 	if (!data || !(*p)->name)
583 		return 0;
584 
585 	return !strcmp((*p)->name, data);
586 }
587 
588 /**
589  * gen_pool_get - Obtain the gen_pool (if any) for a device
590  * @dev: device to retrieve the gen_pool from
591  * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device
592  *
593  * Returns the gen_pool for the device if one is present, or NULL.
594  */
595 struct gen_pool *gen_pool_get(struct device *dev, const char *name)
596 {
597 	struct gen_pool **p;
598 
599 	p = devres_find(dev, devm_gen_pool_release, devm_gen_pool_match,
600 			(void *)name);
601 	if (!p)
602 		return NULL;
603 	return *p;
604 }
605 EXPORT_SYMBOL_GPL(gen_pool_get);
606 
607 /**
608  * devm_gen_pool_create - managed gen_pool_create
609  * @dev: device that provides the gen_pool
610  * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
611  * @nid: node selector for allocated gen_pool, %NUMA_NO_NODE for all nodes
612  * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device
613  *
614  * Create a new special memory pool that can be used to manage special purpose
615  * memory not managed by the regular kmalloc/kfree interface. The pool will be
616  * automatically destroyed by the device management code.
617  */
618 struct gen_pool *devm_gen_pool_create(struct device *dev, int min_alloc_order,
619 				      int nid, const char *name)
620 {
621 	struct gen_pool **ptr, *pool;
622 	const char *pool_name = NULL;
623 
624 	/* Check that genpool to be created is uniquely addressed on device */
625 	if (gen_pool_get(dev, name))
626 		return ERR_PTR(-EINVAL);
627 
628 	if (name) {
629 		pool_name = kstrdup_const(name, GFP_KERNEL);
630 		if (!pool_name)
631 			return ERR_PTR(-ENOMEM);
632 	}
633 
634 	ptr = devres_alloc(devm_gen_pool_release, sizeof(*ptr), GFP_KERNEL);
635 	if (!ptr)
636 		goto free_pool_name;
637 
638 	pool = gen_pool_create(min_alloc_order, nid);
639 	if (!pool)
640 		goto free_devres;
641 
642 	*ptr = pool;
643 	pool->name = pool_name;
644 	devres_add(dev, ptr);
645 
646 	return pool;
647 
648 free_devres:
649 	devres_free(ptr);
650 free_pool_name:
651 	kfree_const(pool_name);
652 
653 	return ERR_PTR(-ENOMEM);
654 }
655 EXPORT_SYMBOL(devm_gen_pool_create);
656 
657 #ifdef CONFIG_OF
658 /**
659  * of_gen_pool_get - find a pool by phandle property
660  * @np: device node
661  * @propname: property name containing phandle(s)
662  * @index: index into the phandle array
663  *
664  * Returns the pool that contains the chunk starting at the physical
665  * address of the device tree node pointed at by the phandle property,
666  * or NULL if not found.
667  */
668 struct gen_pool *of_gen_pool_get(struct device_node *np,
669 	const char *propname, int index)
670 {
671 	struct platform_device *pdev;
672 	struct device_node *np_pool, *parent;
673 	const char *name = NULL;
674 	struct gen_pool *pool = NULL;
675 
676 	np_pool = of_parse_phandle(np, propname, index);
677 	if (!np_pool)
678 		return NULL;
679 
680 	pdev = of_find_device_by_node(np_pool);
681 	if (!pdev) {
682 		/* Check if named gen_pool is created by parent node device */
683 		parent = of_get_parent(np_pool);
684 		pdev = of_find_device_by_node(parent);
685 		of_node_put(parent);
686 
687 		of_property_read_string(np_pool, "label", &name);
688 		if (!name)
689 			name = np_pool->name;
690 	}
691 	if (pdev)
692 		pool = gen_pool_get(&pdev->dev, name);
693 	of_node_put(np_pool);
694 
695 	return pool;
696 }
697 EXPORT_SYMBOL_GPL(of_gen_pool_get);
698 #endif /* CONFIG_OF */
699