xref: /linux/lib/genalloc.c (revision 9f7d35d9f7a184ffb591b090b2cbf63d2d599c02)
1 /*
2  * Basic general purpose allocator for managing special purpose
3  * memory, for example, memory that is not managed by the regular
4  * kmalloc/kfree interface.  Uses for this includes on-device special
5  * memory, uncached memory etc.
6  *
7  * It is safe to use the allocator in NMI handlers and other special
8  * unblockable contexts that could otherwise deadlock on locks.  This
9  * is implemented by using atomic operations and retries on any
10  * conflicts.  The disadvantage is that there may be livelocks in
11  * extreme cases.  For better scalability, one allocator can be used
12  * for each CPU.
13  *
14  * The lockless operation only works if there is enough memory
15  * available.  If new memory is added to the pool a lock has to be
16  * still taken.  So any user relying on locklessness has to ensure
17  * that sufficient memory is preallocated.
18  *
19  * The basic atomic operation of this allocator is cmpxchg on long.
20  * On architectures that don't have NMI-safe cmpxchg implementation,
21  * the allocator can NOT be used in NMI handler.  So code uses the
22  * allocator in NMI handler should depend on
23  * CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG.
24  *
25  * Copyright 2005 (C) Jes Sorensen <jes@trained-monkey.org>
26  *
27  * This source code is licensed under the GNU General Public License,
28  * Version 2.  See the file COPYING for more details.
29  */
30 
31 #include <linux/slab.h>
32 #include <linux/export.h>
33 #include <linux/bitmap.h>
34 #include <linux/rculist.h>
35 #include <linux/interrupt.h>
36 #include <linux/genalloc.h>
37 #include <linux/of_device.h>
38 #include <linux/vmalloc.h>
39 
40 static inline size_t chunk_size(const struct gen_pool_chunk *chunk)
41 {
42 	return chunk->end_addr - chunk->start_addr + 1;
43 }
44 
45 static int set_bits_ll(unsigned long *addr, unsigned long mask_to_set)
46 {
47 	unsigned long val, nval;
48 
49 	nval = *addr;
50 	do {
51 		val = nval;
52 		if (val & mask_to_set)
53 			return -EBUSY;
54 		cpu_relax();
55 	} while ((nval = cmpxchg(addr, val, val | mask_to_set)) != val);
56 
57 	return 0;
58 }
59 
60 static int clear_bits_ll(unsigned long *addr, unsigned long mask_to_clear)
61 {
62 	unsigned long val, nval;
63 
64 	nval = *addr;
65 	do {
66 		val = nval;
67 		if ((val & mask_to_clear) != mask_to_clear)
68 			return -EBUSY;
69 		cpu_relax();
70 	} while ((nval = cmpxchg(addr, val, val & ~mask_to_clear)) != val);
71 
72 	return 0;
73 }
74 
75 /*
76  * bitmap_set_ll - set the specified number of bits at the specified position
77  * @map: pointer to a bitmap
78  * @start: a bit position in @map
79  * @nr: number of bits to set
80  *
81  * Set @nr bits start from @start in @map lock-lessly. Several users
82  * can set/clear the same bitmap simultaneously without lock. If two
83  * users set the same bit, one user will return remain bits, otherwise
84  * return 0.
85  */
86 static int bitmap_set_ll(unsigned long *map, int start, int nr)
87 {
88 	unsigned long *p = map + BIT_WORD(start);
89 	const int size = start + nr;
90 	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
91 	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
92 
93 	while (nr - bits_to_set >= 0) {
94 		if (set_bits_ll(p, mask_to_set))
95 			return nr;
96 		nr -= bits_to_set;
97 		bits_to_set = BITS_PER_LONG;
98 		mask_to_set = ~0UL;
99 		p++;
100 	}
101 	if (nr) {
102 		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
103 		if (set_bits_ll(p, mask_to_set))
104 			return nr;
105 	}
106 
107 	return 0;
108 }
109 
110 /*
111  * bitmap_clear_ll - clear the specified number of bits at the specified position
112  * @map: pointer to a bitmap
113  * @start: a bit position in @map
114  * @nr: number of bits to set
115  *
116  * Clear @nr bits start from @start in @map lock-lessly. Several users
117  * can set/clear the same bitmap simultaneously without lock. If two
118  * users clear the same bit, one user will return remain bits,
119  * otherwise return 0.
120  */
121 static int bitmap_clear_ll(unsigned long *map, int start, int nr)
122 {
123 	unsigned long *p = map + BIT_WORD(start);
124 	const int size = start + nr;
125 	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
126 	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
127 
128 	while (nr - bits_to_clear >= 0) {
129 		if (clear_bits_ll(p, mask_to_clear))
130 			return nr;
131 		nr -= bits_to_clear;
132 		bits_to_clear = BITS_PER_LONG;
133 		mask_to_clear = ~0UL;
134 		p++;
135 	}
136 	if (nr) {
137 		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
138 		if (clear_bits_ll(p, mask_to_clear))
139 			return nr;
140 	}
141 
142 	return 0;
143 }
144 
145 /**
146  * gen_pool_create - create a new special memory pool
147  * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
148  * @nid: node id of the node the pool structure should be allocated on, or -1
149  *
150  * Create a new special memory pool that can be used to manage special purpose
151  * memory not managed by the regular kmalloc/kfree interface.
152  */
153 struct gen_pool *gen_pool_create(int min_alloc_order, int nid)
154 {
155 	struct gen_pool *pool;
156 
157 	pool = kmalloc_node(sizeof(struct gen_pool), GFP_KERNEL, nid);
158 	if (pool != NULL) {
159 		spin_lock_init(&pool->lock);
160 		INIT_LIST_HEAD(&pool->chunks);
161 		pool->min_alloc_order = min_alloc_order;
162 		pool->algo = gen_pool_first_fit;
163 		pool->data = NULL;
164 		pool->name = NULL;
165 	}
166 	return pool;
167 }
168 EXPORT_SYMBOL(gen_pool_create);
169 
170 /**
171  * gen_pool_add_virt - add a new chunk of special memory to the pool
172  * @pool: pool to add new memory chunk to
173  * @virt: virtual starting address of memory chunk to add to pool
174  * @phys: physical starting address of memory chunk to add to pool
175  * @size: size in bytes of the memory chunk to add to pool
176  * @nid: node id of the node the chunk structure and bitmap should be
177  *       allocated on, or -1
178  *
179  * Add a new chunk of special memory to the specified pool.
180  *
181  * Returns 0 on success or a -ve errno on failure.
182  */
183 int gen_pool_add_virt(struct gen_pool *pool, unsigned long virt, phys_addr_t phys,
184 		 size_t size, int nid)
185 {
186 	struct gen_pool_chunk *chunk;
187 	int nbits = size >> pool->min_alloc_order;
188 	int nbytes = sizeof(struct gen_pool_chunk) +
189 				BITS_TO_LONGS(nbits) * sizeof(long);
190 
191 	chunk = vzalloc_node(nbytes, nid);
192 	if (unlikely(chunk == NULL))
193 		return -ENOMEM;
194 
195 	chunk->phys_addr = phys;
196 	chunk->start_addr = virt;
197 	chunk->end_addr = virt + size - 1;
198 	atomic_long_set(&chunk->avail, size);
199 
200 	spin_lock(&pool->lock);
201 	list_add_rcu(&chunk->next_chunk, &pool->chunks);
202 	spin_unlock(&pool->lock);
203 
204 	return 0;
205 }
206 EXPORT_SYMBOL(gen_pool_add_virt);
207 
208 /**
209  * gen_pool_virt_to_phys - return the physical address of memory
210  * @pool: pool to allocate from
211  * @addr: starting address of memory
212  *
213  * Returns the physical address on success, or -1 on error.
214  */
215 phys_addr_t gen_pool_virt_to_phys(struct gen_pool *pool, unsigned long addr)
216 {
217 	struct gen_pool_chunk *chunk;
218 	phys_addr_t paddr = -1;
219 
220 	rcu_read_lock();
221 	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
222 		if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
223 			paddr = chunk->phys_addr + (addr - chunk->start_addr);
224 			break;
225 		}
226 	}
227 	rcu_read_unlock();
228 
229 	return paddr;
230 }
231 EXPORT_SYMBOL(gen_pool_virt_to_phys);
232 
233 /**
234  * gen_pool_destroy - destroy a special memory pool
235  * @pool: pool to destroy
236  *
237  * Destroy the specified special memory pool. Verifies that there are no
238  * outstanding allocations.
239  */
240 void gen_pool_destroy(struct gen_pool *pool)
241 {
242 	struct list_head *_chunk, *_next_chunk;
243 	struct gen_pool_chunk *chunk;
244 	int order = pool->min_alloc_order;
245 	int bit, end_bit;
246 
247 	list_for_each_safe(_chunk, _next_chunk, &pool->chunks) {
248 		chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk);
249 		list_del(&chunk->next_chunk);
250 
251 		end_bit = chunk_size(chunk) >> order;
252 		bit = find_next_bit(chunk->bits, end_bit, 0);
253 		BUG_ON(bit < end_bit);
254 
255 		vfree(chunk);
256 	}
257 	kfree_const(pool->name);
258 	kfree(pool);
259 }
260 EXPORT_SYMBOL(gen_pool_destroy);
261 
262 /**
263  * gen_pool_alloc - allocate special memory from the pool
264  * @pool: pool to allocate from
265  * @size: number of bytes to allocate from the pool
266  *
267  * Allocate the requested number of bytes from the specified pool.
268  * Uses the pool allocation function (with first-fit algorithm by default).
269  * Can not be used in NMI handler on architectures without
270  * NMI-safe cmpxchg implementation.
271  */
272 unsigned long gen_pool_alloc(struct gen_pool *pool, size_t size)
273 {
274 	return gen_pool_alloc_algo(pool, size, pool->algo, pool->data);
275 }
276 EXPORT_SYMBOL(gen_pool_alloc);
277 
278 /**
279  * gen_pool_alloc_algo - allocate special memory from the pool
280  * @pool: pool to allocate from
281  * @size: number of bytes to allocate from the pool
282  * @algo: algorithm passed from caller
283  * @data: data passed to algorithm
284  *
285  * Allocate the requested number of bytes from the specified pool.
286  * Uses the pool allocation function (with first-fit algorithm by default).
287  * Can not be used in NMI handler on architectures without
288  * NMI-safe cmpxchg implementation.
289  */
290 unsigned long gen_pool_alloc_algo(struct gen_pool *pool, size_t size,
291 		genpool_algo_t algo, void *data)
292 {
293 	struct gen_pool_chunk *chunk;
294 	unsigned long addr = 0;
295 	int order = pool->min_alloc_order;
296 	int nbits, start_bit, end_bit, remain;
297 
298 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
299 	BUG_ON(in_nmi());
300 #endif
301 
302 	if (size == 0)
303 		return 0;
304 
305 	nbits = (size + (1UL << order) - 1) >> order;
306 	rcu_read_lock();
307 	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
308 		if (size > atomic_long_read(&chunk->avail))
309 			continue;
310 
311 		start_bit = 0;
312 		end_bit = chunk_size(chunk) >> order;
313 retry:
314 		start_bit = algo(chunk->bits, end_bit, start_bit,
315 				 nbits, data, pool, chunk->start_addr);
316 		if (start_bit >= end_bit)
317 			continue;
318 		remain = bitmap_set_ll(chunk->bits, start_bit, nbits);
319 		if (remain) {
320 			remain = bitmap_clear_ll(chunk->bits, start_bit,
321 						 nbits - remain);
322 			BUG_ON(remain);
323 			goto retry;
324 		}
325 
326 		addr = chunk->start_addr + ((unsigned long)start_bit << order);
327 		size = nbits << order;
328 		atomic_long_sub(size, &chunk->avail);
329 		break;
330 	}
331 	rcu_read_unlock();
332 	return addr;
333 }
334 EXPORT_SYMBOL(gen_pool_alloc_algo);
335 
336 /**
337  * gen_pool_dma_alloc - allocate special memory from the pool for DMA usage
338  * @pool: pool to allocate from
339  * @size: number of bytes to allocate from the pool
340  * @dma: dma-view physical address return value.  Use NULL if unneeded.
341  *
342  * Allocate the requested number of bytes from the specified pool.
343  * Uses the pool allocation function (with first-fit algorithm by default).
344  * Can not be used in NMI handler on architectures without
345  * NMI-safe cmpxchg implementation.
346  */
347 void *gen_pool_dma_alloc(struct gen_pool *pool, size_t size, dma_addr_t *dma)
348 {
349 	unsigned long vaddr;
350 
351 	if (!pool)
352 		return NULL;
353 
354 	vaddr = gen_pool_alloc(pool, size);
355 	if (!vaddr)
356 		return NULL;
357 
358 	if (dma)
359 		*dma = gen_pool_virt_to_phys(pool, vaddr);
360 
361 	return (void *)vaddr;
362 }
363 EXPORT_SYMBOL(gen_pool_dma_alloc);
364 
365 /**
366  * gen_pool_free - free allocated special memory back to the pool
367  * @pool: pool to free to
368  * @addr: starting address of memory to free back to pool
369  * @size: size in bytes of memory to free
370  *
371  * Free previously allocated special memory back to the specified
372  * pool.  Can not be used in NMI handler on architectures without
373  * NMI-safe cmpxchg implementation.
374  */
375 void gen_pool_free(struct gen_pool *pool, unsigned long addr, size_t size)
376 {
377 	struct gen_pool_chunk *chunk;
378 	int order = pool->min_alloc_order;
379 	int start_bit, nbits, remain;
380 
381 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
382 	BUG_ON(in_nmi());
383 #endif
384 
385 	nbits = (size + (1UL << order) - 1) >> order;
386 	rcu_read_lock();
387 	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
388 		if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
389 			BUG_ON(addr + size - 1 > chunk->end_addr);
390 			start_bit = (addr - chunk->start_addr) >> order;
391 			remain = bitmap_clear_ll(chunk->bits, start_bit, nbits);
392 			BUG_ON(remain);
393 			size = nbits << order;
394 			atomic_long_add(size, &chunk->avail);
395 			rcu_read_unlock();
396 			return;
397 		}
398 	}
399 	rcu_read_unlock();
400 	BUG();
401 }
402 EXPORT_SYMBOL(gen_pool_free);
403 
404 /**
405  * gen_pool_for_each_chunk - call func for every chunk of generic memory pool
406  * @pool:	the generic memory pool
407  * @func:	func to call
408  * @data:	additional data used by @func
409  *
410  * Call @func for every chunk of generic memory pool.  The @func is
411  * called with rcu_read_lock held.
412  */
413 void gen_pool_for_each_chunk(struct gen_pool *pool,
414 	void (*func)(struct gen_pool *pool, struct gen_pool_chunk *chunk, void *data),
415 	void *data)
416 {
417 	struct gen_pool_chunk *chunk;
418 
419 	rcu_read_lock();
420 	list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk)
421 		func(pool, chunk, data);
422 	rcu_read_unlock();
423 }
424 EXPORT_SYMBOL(gen_pool_for_each_chunk);
425 
426 /**
427  * addr_in_gen_pool - checks if an address falls within the range of a pool
428  * @pool:	the generic memory pool
429  * @start:	start address
430  * @size:	size of the region
431  *
432  * Check if the range of addresses falls within the specified pool. Returns
433  * true if the entire range is contained in the pool and false otherwise.
434  */
435 bool addr_in_gen_pool(struct gen_pool *pool, unsigned long start,
436 			size_t size)
437 {
438 	bool found = false;
439 	unsigned long end = start + size - 1;
440 	struct gen_pool_chunk *chunk;
441 
442 	rcu_read_lock();
443 	list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk) {
444 		if (start >= chunk->start_addr && start <= chunk->end_addr) {
445 			if (end <= chunk->end_addr) {
446 				found = true;
447 				break;
448 			}
449 		}
450 	}
451 	rcu_read_unlock();
452 	return found;
453 }
454 
455 /**
456  * gen_pool_avail - get available free space of the pool
457  * @pool: pool to get available free space
458  *
459  * Return available free space of the specified pool.
460  */
461 size_t gen_pool_avail(struct gen_pool *pool)
462 {
463 	struct gen_pool_chunk *chunk;
464 	size_t avail = 0;
465 
466 	rcu_read_lock();
467 	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
468 		avail += atomic_long_read(&chunk->avail);
469 	rcu_read_unlock();
470 	return avail;
471 }
472 EXPORT_SYMBOL_GPL(gen_pool_avail);
473 
474 /**
475  * gen_pool_size - get size in bytes of memory managed by the pool
476  * @pool: pool to get size
477  *
478  * Return size in bytes of memory managed by the pool.
479  */
480 size_t gen_pool_size(struct gen_pool *pool)
481 {
482 	struct gen_pool_chunk *chunk;
483 	size_t size = 0;
484 
485 	rcu_read_lock();
486 	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
487 		size += chunk_size(chunk);
488 	rcu_read_unlock();
489 	return size;
490 }
491 EXPORT_SYMBOL_GPL(gen_pool_size);
492 
493 /**
494  * gen_pool_set_algo - set the allocation algorithm
495  * @pool: pool to change allocation algorithm
496  * @algo: custom algorithm function
497  * @data: additional data used by @algo
498  *
499  * Call @algo for each memory allocation in the pool.
500  * If @algo is NULL use gen_pool_first_fit as default
501  * memory allocation function.
502  */
503 void gen_pool_set_algo(struct gen_pool *pool, genpool_algo_t algo, void *data)
504 {
505 	rcu_read_lock();
506 
507 	pool->algo = algo;
508 	if (!pool->algo)
509 		pool->algo = gen_pool_first_fit;
510 
511 	pool->data = data;
512 
513 	rcu_read_unlock();
514 }
515 EXPORT_SYMBOL(gen_pool_set_algo);
516 
517 /**
518  * gen_pool_first_fit - find the first available region
519  * of memory matching the size requirement (no alignment constraint)
520  * @map: The address to base the search on
521  * @size: The bitmap size in bits
522  * @start: The bitnumber to start searching at
523  * @nr: The number of zeroed bits we're looking for
524  * @data: additional data - unused
525  * @pool: pool to find the fit region memory from
526  */
527 unsigned long gen_pool_first_fit(unsigned long *map, unsigned long size,
528 		unsigned long start, unsigned int nr, void *data,
529 		struct gen_pool *pool, unsigned long start_addr)
530 {
531 	return bitmap_find_next_zero_area(map, size, start, nr, 0);
532 }
533 EXPORT_SYMBOL(gen_pool_first_fit);
534 
535 /**
536  * gen_pool_first_fit_align - find the first available region
537  * of memory matching the size requirement (alignment constraint)
538  * @map: The address to base the search on
539  * @size: The bitmap size in bits
540  * @start: The bitnumber to start searching at
541  * @nr: The number of zeroed bits we're looking for
542  * @data: data for alignment
543  * @pool: pool to get order from
544  */
545 unsigned long gen_pool_first_fit_align(unsigned long *map, unsigned long size,
546 		unsigned long start, unsigned int nr, void *data,
547 		struct gen_pool *pool, unsigned long start_addr)
548 {
549 	struct genpool_data_align *alignment;
550 	unsigned long align_mask, align_off;
551 	int order;
552 
553 	alignment = data;
554 	order = pool->min_alloc_order;
555 	align_mask = ((alignment->align + (1UL << order) - 1) >> order) - 1;
556 	align_off = (start_addr & (alignment->align - 1)) >> order;
557 
558 	return bitmap_find_next_zero_area_off(map, size, start, nr,
559 					      align_mask, align_off);
560 }
561 EXPORT_SYMBOL(gen_pool_first_fit_align);
562 
563 /**
564  * gen_pool_fixed_alloc - reserve a specific region
565  * @map: The address to base the search on
566  * @size: The bitmap size in bits
567  * @start: The bitnumber to start searching at
568  * @nr: The number of zeroed bits we're looking for
569  * @data: data for alignment
570  * @pool: pool to get order from
571  */
572 unsigned long gen_pool_fixed_alloc(unsigned long *map, unsigned long size,
573 		unsigned long start, unsigned int nr, void *data,
574 		struct gen_pool *pool, unsigned long start_addr)
575 {
576 	struct genpool_data_fixed *fixed_data;
577 	int order;
578 	unsigned long offset_bit;
579 	unsigned long start_bit;
580 
581 	fixed_data = data;
582 	order = pool->min_alloc_order;
583 	offset_bit = fixed_data->offset >> order;
584 	if (WARN_ON(fixed_data->offset & ((1UL << order) - 1)))
585 		return size;
586 
587 	start_bit = bitmap_find_next_zero_area(map, size,
588 			start + offset_bit, nr, 0);
589 	if (start_bit != offset_bit)
590 		start_bit = size;
591 	return start_bit;
592 }
593 EXPORT_SYMBOL(gen_pool_fixed_alloc);
594 
595 /**
596  * gen_pool_first_fit_order_align - find the first available region
597  * of memory matching the size requirement. The region will be aligned
598  * to the order of the size specified.
599  * @map: The address to base the search on
600  * @size: The bitmap size in bits
601  * @start: The bitnumber to start searching at
602  * @nr: The number of zeroed bits we're looking for
603  * @data: additional data - unused
604  * @pool: pool to find the fit region memory from
605  */
606 unsigned long gen_pool_first_fit_order_align(unsigned long *map,
607 		unsigned long size, unsigned long start,
608 		unsigned int nr, void *data, struct gen_pool *pool,
609 		unsigned long start_addr)
610 {
611 	unsigned long align_mask = roundup_pow_of_two(nr) - 1;
612 
613 	return bitmap_find_next_zero_area(map, size, start, nr, align_mask);
614 }
615 EXPORT_SYMBOL(gen_pool_first_fit_order_align);
616 
617 /**
618  * gen_pool_best_fit - find the best fitting region of memory
619  * macthing the size requirement (no alignment constraint)
620  * @map: The address to base the search on
621  * @size: The bitmap size in bits
622  * @start: The bitnumber to start searching at
623  * @nr: The number of zeroed bits we're looking for
624  * @data: additional data - unused
625  * @pool: pool to find the fit region memory from
626  *
627  * Iterate over the bitmap to find the smallest free region
628  * which we can allocate the memory.
629  */
630 unsigned long gen_pool_best_fit(unsigned long *map, unsigned long size,
631 		unsigned long start, unsigned int nr, void *data,
632 		struct gen_pool *pool, unsigned long start_addr)
633 {
634 	unsigned long start_bit = size;
635 	unsigned long len = size + 1;
636 	unsigned long index;
637 
638 	index = bitmap_find_next_zero_area(map, size, start, nr, 0);
639 
640 	while (index < size) {
641 		int next_bit = find_next_bit(map, size, index + nr);
642 		if ((next_bit - index) < len) {
643 			len = next_bit - index;
644 			start_bit = index;
645 			if (len == nr)
646 				return start_bit;
647 		}
648 		index = bitmap_find_next_zero_area(map, size,
649 						   next_bit + 1, nr, 0);
650 	}
651 
652 	return start_bit;
653 }
654 EXPORT_SYMBOL(gen_pool_best_fit);
655 
656 static void devm_gen_pool_release(struct device *dev, void *res)
657 {
658 	gen_pool_destroy(*(struct gen_pool **)res);
659 }
660 
661 static int devm_gen_pool_match(struct device *dev, void *res, void *data)
662 {
663 	struct gen_pool **p = res;
664 
665 	/* NULL data matches only a pool without an assigned name */
666 	if (!data && !(*p)->name)
667 		return 1;
668 
669 	if (!data || !(*p)->name)
670 		return 0;
671 
672 	return !strcmp((*p)->name, data);
673 }
674 
675 /**
676  * gen_pool_get - Obtain the gen_pool (if any) for a device
677  * @dev: device to retrieve the gen_pool from
678  * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device
679  *
680  * Returns the gen_pool for the device if one is present, or NULL.
681  */
682 struct gen_pool *gen_pool_get(struct device *dev, const char *name)
683 {
684 	struct gen_pool **p;
685 
686 	p = devres_find(dev, devm_gen_pool_release, devm_gen_pool_match,
687 			(void *)name);
688 	if (!p)
689 		return NULL;
690 	return *p;
691 }
692 EXPORT_SYMBOL_GPL(gen_pool_get);
693 
694 /**
695  * devm_gen_pool_create - managed gen_pool_create
696  * @dev: device that provides the gen_pool
697  * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
698  * @nid: node selector for allocated gen_pool, %NUMA_NO_NODE for all nodes
699  * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device
700  *
701  * Create a new special memory pool that can be used to manage special purpose
702  * memory not managed by the regular kmalloc/kfree interface. The pool will be
703  * automatically destroyed by the device management code.
704  */
705 struct gen_pool *devm_gen_pool_create(struct device *dev, int min_alloc_order,
706 				      int nid, const char *name)
707 {
708 	struct gen_pool **ptr, *pool;
709 	const char *pool_name = NULL;
710 
711 	/* Check that genpool to be created is uniquely addressed on device */
712 	if (gen_pool_get(dev, name))
713 		return ERR_PTR(-EINVAL);
714 
715 	if (name) {
716 		pool_name = kstrdup_const(name, GFP_KERNEL);
717 		if (!pool_name)
718 			return ERR_PTR(-ENOMEM);
719 	}
720 
721 	ptr = devres_alloc(devm_gen_pool_release, sizeof(*ptr), GFP_KERNEL);
722 	if (!ptr)
723 		goto free_pool_name;
724 
725 	pool = gen_pool_create(min_alloc_order, nid);
726 	if (!pool)
727 		goto free_devres;
728 
729 	*ptr = pool;
730 	pool->name = pool_name;
731 	devres_add(dev, ptr);
732 
733 	return pool;
734 
735 free_devres:
736 	devres_free(ptr);
737 free_pool_name:
738 	kfree_const(pool_name);
739 
740 	return ERR_PTR(-ENOMEM);
741 }
742 EXPORT_SYMBOL(devm_gen_pool_create);
743 
744 #ifdef CONFIG_OF
745 /**
746  * of_gen_pool_get - find a pool by phandle property
747  * @np: device node
748  * @propname: property name containing phandle(s)
749  * @index: index into the phandle array
750  *
751  * Returns the pool that contains the chunk starting at the physical
752  * address of the device tree node pointed at by the phandle property,
753  * or NULL if not found.
754  */
755 struct gen_pool *of_gen_pool_get(struct device_node *np,
756 	const char *propname, int index)
757 {
758 	struct platform_device *pdev;
759 	struct device_node *np_pool, *parent;
760 	const char *name = NULL;
761 	struct gen_pool *pool = NULL;
762 
763 	np_pool = of_parse_phandle(np, propname, index);
764 	if (!np_pool)
765 		return NULL;
766 
767 	pdev = of_find_device_by_node(np_pool);
768 	if (!pdev) {
769 		/* Check if named gen_pool is created by parent node device */
770 		parent = of_get_parent(np_pool);
771 		pdev = of_find_device_by_node(parent);
772 		of_node_put(parent);
773 
774 		of_property_read_string(np_pool, "label", &name);
775 		if (!name)
776 			name = np_pool->name;
777 	}
778 	if (pdev)
779 		pool = gen_pool_get(&pdev->dev, name);
780 	of_node_put(np_pool);
781 
782 	return pool;
783 }
784 EXPORT_SYMBOL_GPL(of_gen_pool_get);
785 #endif /* CONFIG_OF */
786