1 /* 2 * Basic general purpose allocator for managing special purpose 3 * memory, for example, memory that is not managed by the regular 4 * kmalloc/kfree interface. Uses for this includes on-device special 5 * memory, uncached memory etc. 6 * 7 * It is safe to use the allocator in NMI handlers and other special 8 * unblockable contexts that could otherwise deadlock on locks. This 9 * is implemented by using atomic operations and retries on any 10 * conflicts. The disadvantage is that there may be livelocks in 11 * extreme cases. For better scalability, one allocator can be used 12 * for each CPU. 13 * 14 * The lockless operation only works if there is enough memory 15 * available. If new memory is added to the pool a lock has to be 16 * still taken. So any user relying on locklessness has to ensure 17 * that sufficient memory is preallocated. 18 * 19 * The basic atomic operation of this allocator is cmpxchg on long. 20 * On architectures that don't have NMI-safe cmpxchg implementation, 21 * the allocator can NOT be used in NMI handler. So code uses the 22 * allocator in NMI handler should depend on 23 * CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG. 24 * 25 * Copyright 2005 (C) Jes Sorensen <jes@trained-monkey.org> 26 * 27 * This source code is licensed under the GNU General Public License, 28 * Version 2. See the file COPYING for more details. 29 */ 30 31 #include <linux/slab.h> 32 #include <linux/export.h> 33 #include <linux/bitmap.h> 34 #include <linux/rculist.h> 35 #include <linux/interrupt.h> 36 #include <linux/genalloc.h> 37 #include <linux/of_device.h> 38 #include <linux/vmalloc.h> 39 40 static inline size_t chunk_size(const struct gen_pool_chunk *chunk) 41 { 42 return chunk->end_addr - chunk->start_addr + 1; 43 } 44 45 static int set_bits_ll(unsigned long *addr, unsigned long mask_to_set) 46 { 47 unsigned long val, nval; 48 49 nval = *addr; 50 do { 51 val = nval; 52 if (val & mask_to_set) 53 return -EBUSY; 54 cpu_relax(); 55 } while ((nval = cmpxchg(addr, val, val | mask_to_set)) != val); 56 57 return 0; 58 } 59 60 static int clear_bits_ll(unsigned long *addr, unsigned long mask_to_clear) 61 { 62 unsigned long val, nval; 63 64 nval = *addr; 65 do { 66 val = nval; 67 if ((val & mask_to_clear) != mask_to_clear) 68 return -EBUSY; 69 cpu_relax(); 70 } while ((nval = cmpxchg(addr, val, val & ~mask_to_clear)) != val); 71 72 return 0; 73 } 74 75 /* 76 * bitmap_set_ll - set the specified number of bits at the specified position 77 * @map: pointer to a bitmap 78 * @start: a bit position in @map 79 * @nr: number of bits to set 80 * 81 * Set @nr bits start from @start in @map lock-lessly. Several users 82 * can set/clear the same bitmap simultaneously without lock. If two 83 * users set the same bit, one user will return remain bits, otherwise 84 * return 0. 85 */ 86 static int bitmap_set_ll(unsigned long *map, int start, int nr) 87 { 88 unsigned long *p = map + BIT_WORD(start); 89 const int size = start + nr; 90 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG); 91 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start); 92 93 while (nr - bits_to_set >= 0) { 94 if (set_bits_ll(p, mask_to_set)) 95 return nr; 96 nr -= bits_to_set; 97 bits_to_set = BITS_PER_LONG; 98 mask_to_set = ~0UL; 99 p++; 100 } 101 if (nr) { 102 mask_to_set &= BITMAP_LAST_WORD_MASK(size); 103 if (set_bits_ll(p, mask_to_set)) 104 return nr; 105 } 106 107 return 0; 108 } 109 110 /* 111 * bitmap_clear_ll - clear the specified number of bits at the specified position 112 * @map: pointer to a bitmap 113 * @start: a bit position in @map 114 * @nr: number of bits to set 115 * 116 * Clear @nr bits start from @start in @map lock-lessly. Several users 117 * can set/clear the same bitmap simultaneously without lock. If two 118 * users clear the same bit, one user will return remain bits, 119 * otherwise return 0. 120 */ 121 static int bitmap_clear_ll(unsigned long *map, int start, int nr) 122 { 123 unsigned long *p = map + BIT_WORD(start); 124 const int size = start + nr; 125 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG); 126 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start); 127 128 while (nr - bits_to_clear >= 0) { 129 if (clear_bits_ll(p, mask_to_clear)) 130 return nr; 131 nr -= bits_to_clear; 132 bits_to_clear = BITS_PER_LONG; 133 mask_to_clear = ~0UL; 134 p++; 135 } 136 if (nr) { 137 mask_to_clear &= BITMAP_LAST_WORD_MASK(size); 138 if (clear_bits_ll(p, mask_to_clear)) 139 return nr; 140 } 141 142 return 0; 143 } 144 145 /** 146 * gen_pool_create - create a new special memory pool 147 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents 148 * @nid: node id of the node the pool structure should be allocated on, or -1 149 * 150 * Create a new special memory pool that can be used to manage special purpose 151 * memory not managed by the regular kmalloc/kfree interface. 152 */ 153 struct gen_pool *gen_pool_create(int min_alloc_order, int nid) 154 { 155 struct gen_pool *pool; 156 157 pool = kmalloc_node(sizeof(struct gen_pool), GFP_KERNEL, nid); 158 if (pool != NULL) { 159 spin_lock_init(&pool->lock); 160 INIT_LIST_HEAD(&pool->chunks); 161 pool->min_alloc_order = min_alloc_order; 162 pool->algo = gen_pool_first_fit; 163 pool->data = NULL; 164 pool->name = NULL; 165 } 166 return pool; 167 } 168 EXPORT_SYMBOL(gen_pool_create); 169 170 /** 171 * gen_pool_add_virt - add a new chunk of special memory to the pool 172 * @pool: pool to add new memory chunk to 173 * @virt: virtual starting address of memory chunk to add to pool 174 * @phys: physical starting address of memory chunk to add to pool 175 * @size: size in bytes of the memory chunk to add to pool 176 * @nid: node id of the node the chunk structure and bitmap should be 177 * allocated on, or -1 178 * 179 * Add a new chunk of special memory to the specified pool. 180 * 181 * Returns 0 on success or a -ve errno on failure. 182 */ 183 int gen_pool_add_virt(struct gen_pool *pool, unsigned long virt, phys_addr_t phys, 184 size_t size, int nid) 185 { 186 struct gen_pool_chunk *chunk; 187 int nbits = size >> pool->min_alloc_order; 188 int nbytes = sizeof(struct gen_pool_chunk) + 189 BITS_TO_LONGS(nbits) * sizeof(long); 190 191 chunk = vzalloc_node(nbytes, nid); 192 if (unlikely(chunk == NULL)) 193 return -ENOMEM; 194 195 chunk->phys_addr = phys; 196 chunk->start_addr = virt; 197 chunk->end_addr = virt + size - 1; 198 atomic_long_set(&chunk->avail, size); 199 200 spin_lock(&pool->lock); 201 list_add_rcu(&chunk->next_chunk, &pool->chunks); 202 spin_unlock(&pool->lock); 203 204 return 0; 205 } 206 EXPORT_SYMBOL(gen_pool_add_virt); 207 208 /** 209 * gen_pool_virt_to_phys - return the physical address of memory 210 * @pool: pool to allocate from 211 * @addr: starting address of memory 212 * 213 * Returns the physical address on success, or -1 on error. 214 */ 215 phys_addr_t gen_pool_virt_to_phys(struct gen_pool *pool, unsigned long addr) 216 { 217 struct gen_pool_chunk *chunk; 218 phys_addr_t paddr = -1; 219 220 rcu_read_lock(); 221 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) { 222 if (addr >= chunk->start_addr && addr <= chunk->end_addr) { 223 paddr = chunk->phys_addr + (addr - chunk->start_addr); 224 break; 225 } 226 } 227 rcu_read_unlock(); 228 229 return paddr; 230 } 231 EXPORT_SYMBOL(gen_pool_virt_to_phys); 232 233 /** 234 * gen_pool_destroy - destroy a special memory pool 235 * @pool: pool to destroy 236 * 237 * Destroy the specified special memory pool. Verifies that there are no 238 * outstanding allocations. 239 */ 240 void gen_pool_destroy(struct gen_pool *pool) 241 { 242 struct list_head *_chunk, *_next_chunk; 243 struct gen_pool_chunk *chunk; 244 int order = pool->min_alloc_order; 245 int bit, end_bit; 246 247 list_for_each_safe(_chunk, _next_chunk, &pool->chunks) { 248 chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk); 249 list_del(&chunk->next_chunk); 250 251 end_bit = chunk_size(chunk) >> order; 252 bit = find_next_bit(chunk->bits, end_bit, 0); 253 BUG_ON(bit < end_bit); 254 255 vfree(chunk); 256 } 257 kfree_const(pool->name); 258 kfree(pool); 259 } 260 EXPORT_SYMBOL(gen_pool_destroy); 261 262 /** 263 * gen_pool_alloc - allocate special memory from the pool 264 * @pool: pool to allocate from 265 * @size: number of bytes to allocate from the pool 266 * 267 * Allocate the requested number of bytes from the specified pool. 268 * Uses the pool allocation function (with first-fit algorithm by default). 269 * Can not be used in NMI handler on architectures without 270 * NMI-safe cmpxchg implementation. 271 */ 272 unsigned long gen_pool_alloc(struct gen_pool *pool, size_t size) 273 { 274 return gen_pool_alloc_algo(pool, size, pool->algo, pool->data); 275 } 276 EXPORT_SYMBOL(gen_pool_alloc); 277 278 /** 279 * gen_pool_alloc_algo - allocate special memory from the pool 280 * @pool: pool to allocate from 281 * @size: number of bytes to allocate from the pool 282 * @algo: algorithm passed from caller 283 * @data: data passed to algorithm 284 * 285 * Allocate the requested number of bytes from the specified pool. 286 * Uses the pool allocation function (with first-fit algorithm by default). 287 * Can not be used in NMI handler on architectures without 288 * NMI-safe cmpxchg implementation. 289 */ 290 unsigned long gen_pool_alloc_algo(struct gen_pool *pool, size_t size, 291 genpool_algo_t algo, void *data) 292 { 293 struct gen_pool_chunk *chunk; 294 unsigned long addr = 0; 295 int order = pool->min_alloc_order; 296 int nbits, start_bit, end_bit, remain; 297 298 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG 299 BUG_ON(in_nmi()); 300 #endif 301 302 if (size == 0) 303 return 0; 304 305 nbits = (size + (1UL << order) - 1) >> order; 306 rcu_read_lock(); 307 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) { 308 if (size > atomic_long_read(&chunk->avail)) 309 continue; 310 311 start_bit = 0; 312 end_bit = chunk_size(chunk) >> order; 313 retry: 314 start_bit = algo(chunk->bits, end_bit, start_bit, 315 nbits, data, pool, chunk->start_addr); 316 if (start_bit >= end_bit) 317 continue; 318 remain = bitmap_set_ll(chunk->bits, start_bit, nbits); 319 if (remain) { 320 remain = bitmap_clear_ll(chunk->bits, start_bit, 321 nbits - remain); 322 BUG_ON(remain); 323 goto retry; 324 } 325 326 addr = chunk->start_addr + ((unsigned long)start_bit << order); 327 size = nbits << order; 328 atomic_long_sub(size, &chunk->avail); 329 break; 330 } 331 rcu_read_unlock(); 332 return addr; 333 } 334 EXPORT_SYMBOL(gen_pool_alloc_algo); 335 336 /** 337 * gen_pool_dma_alloc - allocate special memory from the pool for DMA usage 338 * @pool: pool to allocate from 339 * @size: number of bytes to allocate from the pool 340 * @dma: dma-view physical address return value. Use NULL if unneeded. 341 * 342 * Allocate the requested number of bytes from the specified pool. 343 * Uses the pool allocation function (with first-fit algorithm by default). 344 * Can not be used in NMI handler on architectures without 345 * NMI-safe cmpxchg implementation. 346 */ 347 void *gen_pool_dma_alloc(struct gen_pool *pool, size_t size, dma_addr_t *dma) 348 { 349 unsigned long vaddr; 350 351 if (!pool) 352 return NULL; 353 354 vaddr = gen_pool_alloc(pool, size); 355 if (!vaddr) 356 return NULL; 357 358 if (dma) 359 *dma = gen_pool_virt_to_phys(pool, vaddr); 360 361 return (void *)vaddr; 362 } 363 EXPORT_SYMBOL(gen_pool_dma_alloc); 364 365 /** 366 * gen_pool_free - free allocated special memory back to the pool 367 * @pool: pool to free to 368 * @addr: starting address of memory to free back to pool 369 * @size: size in bytes of memory to free 370 * 371 * Free previously allocated special memory back to the specified 372 * pool. Can not be used in NMI handler on architectures without 373 * NMI-safe cmpxchg implementation. 374 */ 375 void gen_pool_free(struct gen_pool *pool, unsigned long addr, size_t size) 376 { 377 struct gen_pool_chunk *chunk; 378 int order = pool->min_alloc_order; 379 int start_bit, nbits, remain; 380 381 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG 382 BUG_ON(in_nmi()); 383 #endif 384 385 nbits = (size + (1UL << order) - 1) >> order; 386 rcu_read_lock(); 387 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) { 388 if (addr >= chunk->start_addr && addr <= chunk->end_addr) { 389 BUG_ON(addr + size - 1 > chunk->end_addr); 390 start_bit = (addr - chunk->start_addr) >> order; 391 remain = bitmap_clear_ll(chunk->bits, start_bit, nbits); 392 BUG_ON(remain); 393 size = nbits << order; 394 atomic_long_add(size, &chunk->avail); 395 rcu_read_unlock(); 396 return; 397 } 398 } 399 rcu_read_unlock(); 400 BUG(); 401 } 402 EXPORT_SYMBOL(gen_pool_free); 403 404 /** 405 * gen_pool_for_each_chunk - call func for every chunk of generic memory pool 406 * @pool: the generic memory pool 407 * @func: func to call 408 * @data: additional data used by @func 409 * 410 * Call @func for every chunk of generic memory pool. The @func is 411 * called with rcu_read_lock held. 412 */ 413 void gen_pool_for_each_chunk(struct gen_pool *pool, 414 void (*func)(struct gen_pool *pool, struct gen_pool_chunk *chunk, void *data), 415 void *data) 416 { 417 struct gen_pool_chunk *chunk; 418 419 rcu_read_lock(); 420 list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk) 421 func(pool, chunk, data); 422 rcu_read_unlock(); 423 } 424 EXPORT_SYMBOL(gen_pool_for_each_chunk); 425 426 /** 427 * addr_in_gen_pool - checks if an address falls within the range of a pool 428 * @pool: the generic memory pool 429 * @start: start address 430 * @size: size of the region 431 * 432 * Check if the range of addresses falls within the specified pool. Returns 433 * true if the entire range is contained in the pool and false otherwise. 434 */ 435 bool addr_in_gen_pool(struct gen_pool *pool, unsigned long start, 436 size_t size) 437 { 438 bool found = false; 439 unsigned long end = start + size - 1; 440 struct gen_pool_chunk *chunk; 441 442 rcu_read_lock(); 443 list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk) { 444 if (start >= chunk->start_addr && start <= chunk->end_addr) { 445 if (end <= chunk->end_addr) { 446 found = true; 447 break; 448 } 449 } 450 } 451 rcu_read_unlock(); 452 return found; 453 } 454 455 /** 456 * gen_pool_avail - get available free space of the pool 457 * @pool: pool to get available free space 458 * 459 * Return available free space of the specified pool. 460 */ 461 size_t gen_pool_avail(struct gen_pool *pool) 462 { 463 struct gen_pool_chunk *chunk; 464 size_t avail = 0; 465 466 rcu_read_lock(); 467 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) 468 avail += atomic_long_read(&chunk->avail); 469 rcu_read_unlock(); 470 return avail; 471 } 472 EXPORT_SYMBOL_GPL(gen_pool_avail); 473 474 /** 475 * gen_pool_size - get size in bytes of memory managed by the pool 476 * @pool: pool to get size 477 * 478 * Return size in bytes of memory managed by the pool. 479 */ 480 size_t gen_pool_size(struct gen_pool *pool) 481 { 482 struct gen_pool_chunk *chunk; 483 size_t size = 0; 484 485 rcu_read_lock(); 486 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) 487 size += chunk_size(chunk); 488 rcu_read_unlock(); 489 return size; 490 } 491 EXPORT_SYMBOL_GPL(gen_pool_size); 492 493 /** 494 * gen_pool_set_algo - set the allocation algorithm 495 * @pool: pool to change allocation algorithm 496 * @algo: custom algorithm function 497 * @data: additional data used by @algo 498 * 499 * Call @algo for each memory allocation in the pool. 500 * If @algo is NULL use gen_pool_first_fit as default 501 * memory allocation function. 502 */ 503 void gen_pool_set_algo(struct gen_pool *pool, genpool_algo_t algo, void *data) 504 { 505 rcu_read_lock(); 506 507 pool->algo = algo; 508 if (!pool->algo) 509 pool->algo = gen_pool_first_fit; 510 511 pool->data = data; 512 513 rcu_read_unlock(); 514 } 515 EXPORT_SYMBOL(gen_pool_set_algo); 516 517 /** 518 * gen_pool_first_fit - find the first available region 519 * of memory matching the size requirement (no alignment constraint) 520 * @map: The address to base the search on 521 * @size: The bitmap size in bits 522 * @start: The bitnumber to start searching at 523 * @nr: The number of zeroed bits we're looking for 524 * @data: additional data - unused 525 * @pool: pool to find the fit region memory from 526 */ 527 unsigned long gen_pool_first_fit(unsigned long *map, unsigned long size, 528 unsigned long start, unsigned int nr, void *data, 529 struct gen_pool *pool, unsigned long start_addr) 530 { 531 return bitmap_find_next_zero_area(map, size, start, nr, 0); 532 } 533 EXPORT_SYMBOL(gen_pool_first_fit); 534 535 /** 536 * gen_pool_first_fit_align - find the first available region 537 * of memory matching the size requirement (alignment constraint) 538 * @map: The address to base the search on 539 * @size: The bitmap size in bits 540 * @start: The bitnumber to start searching at 541 * @nr: The number of zeroed bits we're looking for 542 * @data: data for alignment 543 * @pool: pool to get order from 544 */ 545 unsigned long gen_pool_first_fit_align(unsigned long *map, unsigned long size, 546 unsigned long start, unsigned int nr, void *data, 547 struct gen_pool *pool, unsigned long start_addr) 548 { 549 struct genpool_data_align *alignment; 550 unsigned long align_mask, align_off; 551 int order; 552 553 alignment = data; 554 order = pool->min_alloc_order; 555 align_mask = ((alignment->align + (1UL << order) - 1) >> order) - 1; 556 align_off = (start_addr & (alignment->align - 1)) >> order; 557 558 return bitmap_find_next_zero_area_off(map, size, start, nr, 559 align_mask, align_off); 560 } 561 EXPORT_SYMBOL(gen_pool_first_fit_align); 562 563 /** 564 * gen_pool_fixed_alloc - reserve a specific region 565 * @map: The address to base the search on 566 * @size: The bitmap size in bits 567 * @start: The bitnumber to start searching at 568 * @nr: The number of zeroed bits we're looking for 569 * @data: data for alignment 570 * @pool: pool to get order from 571 */ 572 unsigned long gen_pool_fixed_alloc(unsigned long *map, unsigned long size, 573 unsigned long start, unsigned int nr, void *data, 574 struct gen_pool *pool, unsigned long start_addr) 575 { 576 struct genpool_data_fixed *fixed_data; 577 int order; 578 unsigned long offset_bit; 579 unsigned long start_bit; 580 581 fixed_data = data; 582 order = pool->min_alloc_order; 583 offset_bit = fixed_data->offset >> order; 584 if (WARN_ON(fixed_data->offset & ((1UL << order) - 1))) 585 return size; 586 587 start_bit = bitmap_find_next_zero_area(map, size, 588 start + offset_bit, nr, 0); 589 if (start_bit != offset_bit) 590 start_bit = size; 591 return start_bit; 592 } 593 EXPORT_SYMBOL(gen_pool_fixed_alloc); 594 595 /** 596 * gen_pool_first_fit_order_align - find the first available region 597 * of memory matching the size requirement. The region will be aligned 598 * to the order of the size specified. 599 * @map: The address to base the search on 600 * @size: The bitmap size in bits 601 * @start: The bitnumber to start searching at 602 * @nr: The number of zeroed bits we're looking for 603 * @data: additional data - unused 604 * @pool: pool to find the fit region memory from 605 */ 606 unsigned long gen_pool_first_fit_order_align(unsigned long *map, 607 unsigned long size, unsigned long start, 608 unsigned int nr, void *data, struct gen_pool *pool, 609 unsigned long start_addr) 610 { 611 unsigned long align_mask = roundup_pow_of_two(nr) - 1; 612 613 return bitmap_find_next_zero_area(map, size, start, nr, align_mask); 614 } 615 EXPORT_SYMBOL(gen_pool_first_fit_order_align); 616 617 /** 618 * gen_pool_best_fit - find the best fitting region of memory 619 * macthing the size requirement (no alignment constraint) 620 * @map: The address to base the search on 621 * @size: The bitmap size in bits 622 * @start: The bitnumber to start searching at 623 * @nr: The number of zeroed bits we're looking for 624 * @data: additional data - unused 625 * @pool: pool to find the fit region memory from 626 * 627 * Iterate over the bitmap to find the smallest free region 628 * which we can allocate the memory. 629 */ 630 unsigned long gen_pool_best_fit(unsigned long *map, unsigned long size, 631 unsigned long start, unsigned int nr, void *data, 632 struct gen_pool *pool, unsigned long start_addr) 633 { 634 unsigned long start_bit = size; 635 unsigned long len = size + 1; 636 unsigned long index; 637 638 index = bitmap_find_next_zero_area(map, size, start, nr, 0); 639 640 while (index < size) { 641 int next_bit = find_next_bit(map, size, index + nr); 642 if ((next_bit - index) < len) { 643 len = next_bit - index; 644 start_bit = index; 645 if (len == nr) 646 return start_bit; 647 } 648 index = bitmap_find_next_zero_area(map, size, 649 next_bit + 1, nr, 0); 650 } 651 652 return start_bit; 653 } 654 EXPORT_SYMBOL(gen_pool_best_fit); 655 656 static void devm_gen_pool_release(struct device *dev, void *res) 657 { 658 gen_pool_destroy(*(struct gen_pool **)res); 659 } 660 661 static int devm_gen_pool_match(struct device *dev, void *res, void *data) 662 { 663 struct gen_pool **p = res; 664 665 /* NULL data matches only a pool without an assigned name */ 666 if (!data && !(*p)->name) 667 return 1; 668 669 if (!data || !(*p)->name) 670 return 0; 671 672 return !strcmp((*p)->name, data); 673 } 674 675 /** 676 * gen_pool_get - Obtain the gen_pool (if any) for a device 677 * @dev: device to retrieve the gen_pool from 678 * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device 679 * 680 * Returns the gen_pool for the device if one is present, or NULL. 681 */ 682 struct gen_pool *gen_pool_get(struct device *dev, const char *name) 683 { 684 struct gen_pool **p; 685 686 p = devres_find(dev, devm_gen_pool_release, devm_gen_pool_match, 687 (void *)name); 688 if (!p) 689 return NULL; 690 return *p; 691 } 692 EXPORT_SYMBOL_GPL(gen_pool_get); 693 694 /** 695 * devm_gen_pool_create - managed gen_pool_create 696 * @dev: device that provides the gen_pool 697 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents 698 * @nid: node selector for allocated gen_pool, %NUMA_NO_NODE for all nodes 699 * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device 700 * 701 * Create a new special memory pool that can be used to manage special purpose 702 * memory not managed by the regular kmalloc/kfree interface. The pool will be 703 * automatically destroyed by the device management code. 704 */ 705 struct gen_pool *devm_gen_pool_create(struct device *dev, int min_alloc_order, 706 int nid, const char *name) 707 { 708 struct gen_pool **ptr, *pool; 709 const char *pool_name = NULL; 710 711 /* Check that genpool to be created is uniquely addressed on device */ 712 if (gen_pool_get(dev, name)) 713 return ERR_PTR(-EINVAL); 714 715 if (name) { 716 pool_name = kstrdup_const(name, GFP_KERNEL); 717 if (!pool_name) 718 return ERR_PTR(-ENOMEM); 719 } 720 721 ptr = devres_alloc(devm_gen_pool_release, sizeof(*ptr), GFP_KERNEL); 722 if (!ptr) 723 goto free_pool_name; 724 725 pool = gen_pool_create(min_alloc_order, nid); 726 if (!pool) 727 goto free_devres; 728 729 *ptr = pool; 730 pool->name = pool_name; 731 devres_add(dev, ptr); 732 733 return pool; 734 735 free_devres: 736 devres_free(ptr); 737 free_pool_name: 738 kfree_const(pool_name); 739 740 return ERR_PTR(-ENOMEM); 741 } 742 EXPORT_SYMBOL(devm_gen_pool_create); 743 744 #ifdef CONFIG_OF 745 /** 746 * of_gen_pool_get - find a pool by phandle property 747 * @np: device node 748 * @propname: property name containing phandle(s) 749 * @index: index into the phandle array 750 * 751 * Returns the pool that contains the chunk starting at the physical 752 * address of the device tree node pointed at by the phandle property, 753 * or NULL if not found. 754 */ 755 struct gen_pool *of_gen_pool_get(struct device_node *np, 756 const char *propname, int index) 757 { 758 struct platform_device *pdev; 759 struct device_node *np_pool, *parent; 760 const char *name = NULL; 761 struct gen_pool *pool = NULL; 762 763 np_pool = of_parse_phandle(np, propname, index); 764 if (!np_pool) 765 return NULL; 766 767 pdev = of_find_device_by_node(np_pool); 768 if (!pdev) { 769 /* Check if named gen_pool is created by parent node device */ 770 parent = of_get_parent(np_pool); 771 pdev = of_find_device_by_node(parent); 772 of_node_put(parent); 773 774 of_property_read_string(np_pool, "label", &name); 775 if (!name) 776 name = np_pool->name; 777 } 778 if (pdev) 779 pool = gen_pool_get(&pdev->dev, name); 780 of_node_put(np_pool); 781 782 return pool; 783 } 784 EXPORT_SYMBOL_GPL(of_gen_pool_get); 785 #endif /* CONFIG_OF */ 786