xref: /linux/lib/decompress_unxz.c (revision a06c3fad49a50d5d5eb078f93e70f4d3eca5d5a5)
1 /*
2  * Wrapper for decompressing XZ-compressed kernel, initramfs, and initrd
3  *
4  * Author: Lasse Collin <lasse.collin@tukaani.org>
5  *
6  * This file has been put into the public domain.
7  * You can do whatever you want with this file.
8  */
9 
10 /*
11  * Important notes about in-place decompression
12  *
13  * At least on x86, the kernel is decompressed in place: the compressed data
14  * is placed to the end of the output buffer, and the decompressor overwrites
15  * most of the compressed data. There must be enough safety margin to
16  * guarantee that the write position is always behind the read position.
17  *
18  * The safety margin for XZ with LZMA2 or BCJ+LZMA2 is calculated below.
19  * Note that the margin with XZ is bigger than with Deflate (gzip)!
20  *
21  * The worst case for in-place decompression is that the beginning of
22  * the file is compressed extremely well, and the rest of the file is
23  * incompressible. Thus, we must look for worst-case expansion when the
24  * compressor is encoding incompressible data.
25  *
26  * The structure of the .xz file in case of a compressed kernel is as follows.
27  * Sizes (as bytes) of the fields are in parenthesis.
28  *
29  *    Stream Header (12)
30  *    Block Header:
31  *      Block Header (8-12)
32  *      Compressed Data (N)
33  *      Block Padding (0-3)
34  *      CRC32 (4)
35  *    Index (8-20)
36  *    Stream Footer (12)
37  *
38  * Normally there is exactly one Block, but let's assume that there are
39  * 2-4 Blocks just in case. Because Stream Header and also Block Header
40  * of the first Block don't make the decompressor produce any uncompressed
41  * data, we can ignore them from our calculations. Block Headers of possible
42  * additional Blocks have to be taken into account still. With these
43  * assumptions, it is safe to assume that the total header overhead is
44  * less than 128 bytes.
45  *
46  * Compressed Data contains LZMA2 or BCJ+LZMA2 encoded data. Since BCJ
47  * doesn't change the size of the data, it is enough to calculate the
48  * safety margin for LZMA2.
49  *
50  * LZMA2 stores the data in chunks. Each chunk has a header whose size is
51  * a maximum of 6 bytes, but to get round 2^n numbers, let's assume that
52  * the maximum chunk header size is 8 bytes. After the chunk header, there
53  * may be up to 64 KiB of actual payload in the chunk. Often the payload is
54  * quite a bit smaller though; to be safe, let's assume that an average
55  * chunk has only 32 KiB of payload.
56  *
57  * The maximum uncompressed size of the payload is 2 MiB. The minimum
58  * uncompressed size of the payload is in practice never less than the
59  * payload size itself. The LZMA2 format would allow uncompressed size
60  * to be less than the payload size, but no sane compressor creates such
61  * files. LZMA2 supports storing incompressible data in uncompressed form,
62  * so there's never a need to create payloads whose uncompressed size is
63  * smaller than the compressed size.
64  *
65  * The assumption, that the uncompressed size of the payload is never
66  * smaller than the payload itself, is valid only when talking about
67  * the payload as a whole. It is possible that the payload has parts where
68  * the decompressor consumes more input than it produces output. Calculating
69  * the worst case for this would be tricky. Instead of trying to do that,
70  * let's simply make sure that the decompressor never overwrites any bytes
71  * of the payload which it is currently reading.
72  *
73  * Now we have enough information to calculate the safety margin. We need
74  *   - 128 bytes for the .xz file format headers;
75  *   - 8 bytes per every 32 KiB of uncompressed size (one LZMA2 chunk header
76  *     per chunk, each chunk having average payload size of 32 KiB); and
77  *   - 64 KiB (biggest possible LZMA2 chunk payload size) to make sure that
78  *     the decompressor never overwrites anything from the LZMA2 chunk
79  *     payload it is currently reading.
80  *
81  * We get the following formula:
82  *
83  *    safety_margin = 128 + uncompressed_size * 8 / 32768 + 65536
84  *                  = 128 + (uncompressed_size >> 12) + 65536
85  *
86  * For comparison, according to arch/x86/boot/compressed/misc.c, the
87  * equivalent formula for Deflate is this:
88  *
89  *    safety_margin = 18 + (uncompressed_size >> 12) + 32768
90  *
91  * Thus, when updating Deflate-only in-place kernel decompressor to
92  * support XZ, the fixed overhead has to be increased from 18+32768 bytes
93  * to 128+65536 bytes.
94  */
95 
96 /*
97  * STATIC is defined to "static" if we are being built for kernel
98  * decompression (pre-boot code). <linux/decompress/mm.h> will define
99  * STATIC to empty if it wasn't already defined. Since we will need to
100  * know later if we are being used for kernel decompression, we define
101  * XZ_PREBOOT here.
102  */
103 #ifdef STATIC
104 #	define XZ_PREBOOT
105 #else
106 #include <linux/decompress/unxz.h>
107 #endif
108 #ifdef __KERNEL__
109 #	include <linux/decompress/mm.h>
110 #endif
111 #define XZ_EXTERN STATIC
112 
113 #ifndef XZ_PREBOOT
114 #	include <linux/slab.h>
115 #	include <linux/xz.h>
116 #else
117 /*
118  * Use the internal CRC32 code instead of kernel's CRC32 module, which
119  * is not available in early phase of booting.
120  */
121 #define XZ_INTERNAL_CRC32 1
122 
123 /*
124  * For boot time use, we enable only the BCJ filter of the current
125  * architecture or none if no BCJ filter is available for the architecture.
126  */
127 #ifdef CONFIG_X86
128 #	define XZ_DEC_X86
129 #endif
130 #ifdef CONFIG_PPC
131 #	define XZ_DEC_POWERPC
132 #endif
133 #ifdef CONFIG_ARM
134 #	define XZ_DEC_ARM
135 #endif
136 #ifdef CONFIG_SPARC
137 #	define XZ_DEC_SPARC
138 #endif
139 
140 /*
141  * This will get the basic headers so that memeq() and others
142  * can be defined.
143  */
144 #include "xz/xz_private.h"
145 
146 /*
147  * Replace the normal allocation functions with the versions from
148  * <linux/decompress/mm.h>. vfree() needs to support vfree(NULL)
149  * when XZ_DYNALLOC is used, but the pre-boot free() doesn't support it.
150  * Workaround it here because the other decompressors don't need it.
151  */
152 #undef kmalloc
153 #undef kfree
154 #undef vmalloc
155 #undef vfree
156 #define kmalloc(size, flags) malloc(size)
157 #define kfree(ptr) free(ptr)
158 #define vmalloc(size) malloc(size)
159 #define vfree(ptr) do { if (ptr != NULL) free(ptr); } while (0)
160 
161 /*
162  * FIXME: Not all basic memory functions are provided in architecture-specific
163  * files (yet). We define our own versions here for now, but this should be
164  * only a temporary solution.
165  *
166  * memeq and memzero are not used much and any remotely sane implementation
167  * is fast enough. memcpy/memmove speed matters in multi-call mode, but
168  * the kernel image is decompressed in single-call mode, in which only
169  * memmove speed can matter and only if there is a lot of incompressible data
170  * (LZMA2 stores incompressible chunks in uncompressed form). Thus, the
171  * functions below should just be kept small; it's probably not worth
172  * optimizing for speed.
173  */
174 
175 #ifndef memeq
176 static bool memeq(const void *a, const void *b, size_t size)
177 {
178 	const uint8_t *x = a;
179 	const uint8_t *y = b;
180 	size_t i;
181 
182 	for (i = 0; i < size; ++i)
183 		if (x[i] != y[i])
184 			return false;
185 
186 	return true;
187 }
188 #endif
189 
190 #ifndef memzero
191 static void memzero(void *buf, size_t size)
192 {
193 	uint8_t *b = buf;
194 	uint8_t *e = b + size;
195 
196 	while (b != e)
197 		*b++ = '\0';
198 }
199 #endif
200 
201 #ifndef memmove
202 /* Not static to avoid a conflict with the prototype in the Linux headers. */
203 void *memmove(void *dest, const void *src, size_t size)
204 {
205 	uint8_t *d = dest;
206 	const uint8_t *s = src;
207 	size_t i;
208 
209 	if (d < s) {
210 		for (i = 0; i < size; ++i)
211 			d[i] = s[i];
212 	} else if (d > s) {
213 		i = size;
214 		while (i-- > 0)
215 			d[i] = s[i];
216 	}
217 
218 	return dest;
219 }
220 #endif
221 
222 /*
223  * Since we need memmove anyway, would use it as memcpy too.
224  * Commented out for now to avoid breaking things.
225  */
226 /*
227 #ifndef memcpy
228 #	define memcpy memmove
229 #endif
230 */
231 
232 #include "xz/xz_crc32.c"
233 #include "xz/xz_dec_stream.c"
234 #include "xz/xz_dec_lzma2.c"
235 #include "xz/xz_dec_bcj.c"
236 
237 #endif /* XZ_PREBOOT */
238 
239 /* Size of the input and output buffers in multi-call mode */
240 #define XZ_IOBUF_SIZE 4096
241 
242 /*
243  * This function implements the API defined in <linux/decompress/generic.h>.
244  *
245  * This wrapper will automatically choose single-call or multi-call mode
246  * of the native XZ decoder API. The single-call mode can be used only when
247  * both input and output buffers are available as a single chunk, i.e. when
248  * fill() and flush() won't be used.
249  */
250 STATIC int INIT unxz(unsigned char *in, long in_size,
251 		     long (*fill)(void *dest, unsigned long size),
252 		     long (*flush)(void *src, unsigned long size),
253 		     unsigned char *out, long *in_used,
254 		     void (*error)(char *x))
255 {
256 	struct xz_buf b;
257 	struct xz_dec *s;
258 	enum xz_ret ret;
259 	bool must_free_in = false;
260 
261 #if XZ_INTERNAL_CRC32
262 	xz_crc32_init();
263 #endif
264 
265 	if (in_used != NULL)
266 		*in_used = 0;
267 
268 	if (fill == NULL && flush == NULL)
269 		s = xz_dec_init(XZ_SINGLE, 0);
270 	else
271 		s = xz_dec_init(XZ_DYNALLOC, (uint32_t)-1);
272 
273 	if (s == NULL)
274 		goto error_alloc_state;
275 
276 	if (flush == NULL) {
277 		b.out = out;
278 		b.out_size = (size_t)-1;
279 	} else {
280 		b.out_size = XZ_IOBUF_SIZE;
281 		b.out = malloc(XZ_IOBUF_SIZE);
282 		if (b.out == NULL)
283 			goto error_alloc_out;
284 	}
285 
286 	if (in == NULL) {
287 		must_free_in = true;
288 		in = malloc(XZ_IOBUF_SIZE);
289 		if (in == NULL)
290 			goto error_alloc_in;
291 	}
292 
293 	b.in = in;
294 	b.in_pos = 0;
295 	b.in_size = in_size;
296 	b.out_pos = 0;
297 
298 	if (fill == NULL && flush == NULL) {
299 		ret = xz_dec_run(s, &b);
300 	} else {
301 		do {
302 			if (b.in_pos == b.in_size && fill != NULL) {
303 				if (in_used != NULL)
304 					*in_used += b.in_pos;
305 
306 				b.in_pos = 0;
307 
308 				in_size = fill(in, XZ_IOBUF_SIZE);
309 				if (in_size < 0) {
310 					/*
311 					 * This isn't an optimal error code
312 					 * but it probably isn't worth making
313 					 * a new one either.
314 					 */
315 					ret = XZ_BUF_ERROR;
316 					break;
317 				}
318 
319 				b.in_size = in_size;
320 			}
321 
322 			ret = xz_dec_run(s, &b);
323 
324 			if (flush != NULL && (b.out_pos == b.out_size
325 					|| (ret != XZ_OK && b.out_pos > 0))) {
326 				/*
327 				 * Setting ret here may hide an error
328 				 * returned by xz_dec_run(), but probably
329 				 * it's not too bad.
330 				 */
331 				if (flush(b.out, b.out_pos) != (long)b.out_pos)
332 					ret = XZ_BUF_ERROR;
333 
334 				b.out_pos = 0;
335 			}
336 		} while (ret == XZ_OK);
337 
338 		if (must_free_in)
339 			free(in);
340 
341 		if (flush != NULL)
342 			free(b.out);
343 	}
344 
345 	if (in_used != NULL)
346 		*in_used += b.in_pos;
347 
348 	xz_dec_end(s);
349 
350 	switch (ret) {
351 	case XZ_STREAM_END:
352 		return 0;
353 
354 	case XZ_MEM_ERROR:
355 		/* This can occur only in multi-call mode. */
356 		error("XZ decompressor ran out of memory");
357 		break;
358 
359 	case XZ_FORMAT_ERROR:
360 		error("Input is not in the XZ format (wrong magic bytes)");
361 		break;
362 
363 	case XZ_OPTIONS_ERROR:
364 		error("Input was encoded with settings that are not "
365 				"supported by this XZ decoder");
366 		break;
367 
368 	case XZ_DATA_ERROR:
369 	case XZ_BUF_ERROR:
370 		error("XZ-compressed data is corrupt");
371 		break;
372 
373 	default:
374 		error("Bug in the XZ decompressor");
375 		break;
376 	}
377 
378 	return -1;
379 
380 error_alloc_in:
381 	if (flush != NULL)
382 		free(b.out);
383 
384 error_alloc_out:
385 	xz_dec_end(s);
386 
387 error_alloc_state:
388 	error("XZ decompressor ran out of memory");
389 	return -1;
390 }
391 
392 /*
393  * This macro is used by architecture-specific files to decompress
394  * the kernel image.
395  */
396 #ifdef XZ_PREBOOT
397 STATIC int INIT __decompress(unsigned char *buf, long len,
398 			   long (*fill)(void*, unsigned long),
399 			   long (*flush)(void*, unsigned long),
400 			   unsigned char *out_buf, long olen,
401 			   long *pos,
402 			   void (*error)(char *x))
403 {
404 	return unxz(buf, len, fill, flush, out_buf, pos, error);
405 }
406 #endif
407