1 /* Lzma decompressor for Linux kernel. Shamelessly snarfed 2 *from busybox 1.1.1 3 * 4 *Linux kernel adaptation 5 *Copyright (C) 2006 Alain < alain@knaff.lu > 6 * 7 *Based on small lzma deflate implementation/Small range coder 8 *implementation for lzma. 9 *Copyright (C) 2006 Aurelien Jacobs < aurel@gnuage.org > 10 * 11 *Based on LzmaDecode.c from the LZMA SDK 4.22 (https://www.7-zip.org/) 12 *Copyright (C) 1999-2005 Igor Pavlov 13 * 14 *Copyrights of the parts, see headers below. 15 * 16 * 17 *This program is free software; you can redistribute it and/or 18 *modify it under the terms of the GNU Lesser General Public 19 *License as published by the Free Software Foundation; either 20 *version 2.1 of the License, or (at your option) any later version. 21 * 22 *This program is distributed in the hope that it will be useful, 23 *but WITHOUT ANY WARRANTY; without even the implied warranty of 24 *MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 25 *Lesser General Public License for more details. 26 * 27 *You should have received a copy of the GNU Lesser General Public 28 *License along with this library; if not, write to the Free Software 29 *Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 30 */ 31 32 #ifdef STATIC 33 #define PREBOOT 34 #else 35 #include <linux/decompress/unlzma.h> 36 #endif /* STATIC */ 37 38 #include <linux/decompress/mm.h> 39 40 #ifndef MIN 41 #define MIN(a, b) (((a) < (b)) ? (a) : (b)) 42 #endif 43 44 static long long INIT read_int(unsigned char *ptr, int size) 45 { 46 int i; 47 long long ret = 0; 48 49 for (i = 0; i < size; i++) 50 ret = (ret << 8) | ptr[size-i-1]; 51 return ret; 52 } 53 54 #define ENDIAN_CONVERT(x) \ 55 x = (typeof(x))read_int((unsigned char *)&x, sizeof(x)) 56 57 58 /* Small range coder implementation for lzma. 59 *Copyright (C) 2006 Aurelien Jacobs < aurel@gnuage.org > 60 * 61 *Based on LzmaDecode.c from the LZMA SDK 4.22 (https://www.7-zip.org/) 62 *Copyright (c) 1999-2005 Igor Pavlov 63 */ 64 65 #include <linux/compiler.h> 66 67 #define LZMA_IOBUF_SIZE 0x10000 68 69 struct rc { 70 long (*fill)(void*, unsigned long); 71 uint8_t *ptr; 72 uint8_t *buffer; 73 uint8_t *buffer_end; 74 long buffer_size; 75 uint32_t code; 76 uint32_t range; 77 uint32_t bound; 78 void (*error)(char *); 79 }; 80 81 82 #define RC_TOP_BITS 24 83 #define RC_MOVE_BITS 5 84 #define RC_MODEL_TOTAL_BITS 11 85 86 87 static long INIT nofill(void *buffer, unsigned long len) 88 { 89 return -1; 90 } 91 92 /* Called twice: once at startup and once in rc_normalize() */ 93 static void INIT rc_read(struct rc *rc) 94 { 95 rc->buffer_size = rc->fill((char *)rc->buffer, LZMA_IOBUF_SIZE); 96 if (rc->buffer_size <= 0) 97 rc->error("unexpected EOF"); 98 rc->ptr = rc->buffer; 99 rc->buffer_end = rc->buffer + rc->buffer_size; 100 } 101 102 /* Called once */ 103 static inline void INIT rc_init(struct rc *rc, 104 long (*fill)(void*, unsigned long), 105 char *buffer, long buffer_size) 106 { 107 if (fill) 108 rc->fill = fill; 109 else 110 rc->fill = nofill; 111 rc->buffer = (uint8_t *)buffer; 112 rc->buffer_size = buffer_size; 113 rc->buffer_end = rc->buffer + rc->buffer_size; 114 rc->ptr = rc->buffer; 115 116 rc->code = 0; 117 rc->range = 0xFFFFFFFF; 118 } 119 120 static inline void INIT rc_init_code(struct rc *rc) 121 { 122 int i; 123 124 for (i = 0; i < 5; i++) { 125 if (rc->ptr >= rc->buffer_end) 126 rc_read(rc); 127 rc->code = (rc->code << 8) | *rc->ptr++; 128 } 129 } 130 131 132 /* Called twice, but one callsite is in inline'd rc_is_bit_0_helper() */ 133 static void INIT rc_do_normalize(struct rc *rc) 134 { 135 if (rc->ptr >= rc->buffer_end) 136 rc_read(rc); 137 rc->range <<= 8; 138 rc->code = (rc->code << 8) | *rc->ptr++; 139 } 140 static inline void INIT rc_normalize(struct rc *rc) 141 { 142 if (rc->range < (1 << RC_TOP_BITS)) 143 rc_do_normalize(rc); 144 } 145 146 /* Called 9 times */ 147 /* Why rc_is_bit_0_helper exists? 148 *Because we want to always expose (rc->code < rc->bound) to optimizer 149 */ 150 static inline uint32_t INIT rc_is_bit_0_helper(struct rc *rc, uint16_t *p) 151 { 152 rc_normalize(rc); 153 rc->bound = *p * (rc->range >> RC_MODEL_TOTAL_BITS); 154 return rc->bound; 155 } 156 static inline int INIT rc_is_bit_0(struct rc *rc, uint16_t *p) 157 { 158 uint32_t t = rc_is_bit_0_helper(rc, p); 159 return rc->code < t; 160 } 161 162 /* Called ~10 times, but very small, thus inlined */ 163 static inline void INIT rc_update_bit_0(struct rc *rc, uint16_t *p) 164 { 165 rc->range = rc->bound; 166 *p += ((1 << RC_MODEL_TOTAL_BITS) - *p) >> RC_MOVE_BITS; 167 } 168 static inline void INIT rc_update_bit_1(struct rc *rc, uint16_t *p) 169 { 170 rc->range -= rc->bound; 171 rc->code -= rc->bound; 172 *p -= *p >> RC_MOVE_BITS; 173 } 174 175 /* Called 4 times in unlzma loop */ 176 static int INIT rc_get_bit(struct rc *rc, uint16_t *p, int *symbol) 177 { 178 if (rc_is_bit_0(rc, p)) { 179 rc_update_bit_0(rc, p); 180 *symbol *= 2; 181 return 0; 182 } else { 183 rc_update_bit_1(rc, p); 184 *symbol = *symbol * 2 + 1; 185 return 1; 186 } 187 } 188 189 /* Called once */ 190 static inline int INIT rc_direct_bit(struct rc *rc) 191 { 192 rc_normalize(rc); 193 rc->range >>= 1; 194 if (rc->code >= rc->range) { 195 rc->code -= rc->range; 196 return 1; 197 } 198 return 0; 199 } 200 201 /* Called twice */ 202 static inline void INIT 203 rc_bit_tree_decode(struct rc *rc, uint16_t *p, int num_levels, int *symbol) 204 { 205 int i = num_levels; 206 207 *symbol = 1; 208 while (i--) 209 rc_get_bit(rc, p + *symbol, symbol); 210 *symbol -= 1 << num_levels; 211 } 212 213 214 /* 215 * Small lzma deflate implementation. 216 * Copyright (C) 2006 Aurelien Jacobs < aurel@gnuage.org > 217 * 218 * Based on LzmaDecode.c from the LZMA SDK 4.22 (https://www.7-zip.org/) 219 * Copyright (C) 1999-2005 Igor Pavlov 220 */ 221 222 223 struct lzma_header { 224 uint8_t pos; 225 uint32_t dict_size; 226 uint64_t dst_size; 227 } __attribute__ ((packed)) ; 228 229 230 #define LZMA_BASE_SIZE 1846 231 #define LZMA_LIT_SIZE 768 232 233 #define LZMA_NUM_POS_BITS_MAX 4 234 235 #define LZMA_LEN_NUM_LOW_BITS 3 236 #define LZMA_LEN_NUM_MID_BITS 3 237 #define LZMA_LEN_NUM_HIGH_BITS 8 238 239 #define LZMA_LEN_CHOICE 0 240 #define LZMA_LEN_CHOICE_2 (LZMA_LEN_CHOICE + 1) 241 #define LZMA_LEN_LOW (LZMA_LEN_CHOICE_2 + 1) 242 #define LZMA_LEN_MID (LZMA_LEN_LOW \ 243 + (1 << (LZMA_NUM_POS_BITS_MAX + LZMA_LEN_NUM_LOW_BITS))) 244 #define LZMA_LEN_HIGH (LZMA_LEN_MID \ 245 +(1 << (LZMA_NUM_POS_BITS_MAX + LZMA_LEN_NUM_MID_BITS))) 246 #define LZMA_NUM_LEN_PROBS (LZMA_LEN_HIGH + (1 << LZMA_LEN_NUM_HIGH_BITS)) 247 248 #define LZMA_NUM_STATES 12 249 #define LZMA_NUM_LIT_STATES 7 250 251 #define LZMA_START_POS_MODEL_INDEX 4 252 #define LZMA_END_POS_MODEL_INDEX 14 253 #define LZMA_NUM_FULL_DISTANCES (1 << (LZMA_END_POS_MODEL_INDEX >> 1)) 254 255 #define LZMA_NUM_POS_SLOT_BITS 6 256 #define LZMA_NUM_LEN_TO_POS_STATES 4 257 258 #define LZMA_NUM_ALIGN_BITS 4 259 260 #define LZMA_MATCH_MIN_LEN 2 261 262 #define LZMA_IS_MATCH 0 263 #define LZMA_IS_REP (LZMA_IS_MATCH + (LZMA_NUM_STATES << LZMA_NUM_POS_BITS_MAX)) 264 #define LZMA_IS_REP_G0 (LZMA_IS_REP + LZMA_NUM_STATES) 265 #define LZMA_IS_REP_G1 (LZMA_IS_REP_G0 + LZMA_NUM_STATES) 266 #define LZMA_IS_REP_G2 (LZMA_IS_REP_G1 + LZMA_NUM_STATES) 267 #define LZMA_IS_REP_0_LONG (LZMA_IS_REP_G2 + LZMA_NUM_STATES) 268 #define LZMA_POS_SLOT (LZMA_IS_REP_0_LONG \ 269 + (LZMA_NUM_STATES << LZMA_NUM_POS_BITS_MAX)) 270 #define LZMA_SPEC_POS (LZMA_POS_SLOT \ 271 +(LZMA_NUM_LEN_TO_POS_STATES << LZMA_NUM_POS_SLOT_BITS)) 272 #define LZMA_ALIGN (LZMA_SPEC_POS \ 273 + LZMA_NUM_FULL_DISTANCES - LZMA_END_POS_MODEL_INDEX) 274 #define LZMA_LEN_CODER (LZMA_ALIGN + (1 << LZMA_NUM_ALIGN_BITS)) 275 #define LZMA_REP_LEN_CODER (LZMA_LEN_CODER + LZMA_NUM_LEN_PROBS) 276 #define LZMA_LITERAL (LZMA_REP_LEN_CODER + LZMA_NUM_LEN_PROBS) 277 278 279 struct writer { 280 uint8_t *buffer; 281 uint8_t previous_byte; 282 size_t buffer_pos; 283 int bufsize; 284 size_t global_pos; 285 long (*flush)(void*, unsigned long); 286 struct lzma_header *header; 287 }; 288 289 struct cstate { 290 int state; 291 uint32_t rep0, rep1, rep2, rep3; 292 }; 293 294 static inline size_t INIT get_pos(struct writer *wr) 295 { 296 return 297 wr->global_pos + wr->buffer_pos; 298 } 299 300 static inline uint8_t INIT peek_old_byte(struct writer *wr, 301 uint32_t offs) 302 { 303 if (!wr->flush) { 304 int32_t pos; 305 while (offs > wr->header->dict_size) 306 offs -= wr->header->dict_size; 307 pos = wr->buffer_pos - offs; 308 return wr->buffer[pos]; 309 } else { 310 uint32_t pos = wr->buffer_pos - offs; 311 while (pos >= wr->header->dict_size) 312 pos += wr->header->dict_size; 313 return wr->buffer[pos]; 314 } 315 316 } 317 318 static inline int INIT write_byte(struct writer *wr, uint8_t byte) 319 { 320 wr->buffer[wr->buffer_pos++] = wr->previous_byte = byte; 321 if (wr->flush && wr->buffer_pos == wr->header->dict_size) { 322 wr->buffer_pos = 0; 323 wr->global_pos += wr->header->dict_size; 324 if (wr->flush((char *)wr->buffer, wr->header->dict_size) 325 != wr->header->dict_size) 326 return -1; 327 } 328 return 0; 329 } 330 331 332 static inline int INIT copy_byte(struct writer *wr, uint32_t offs) 333 { 334 return write_byte(wr, peek_old_byte(wr, offs)); 335 } 336 337 static inline int INIT copy_bytes(struct writer *wr, 338 uint32_t rep0, int len) 339 { 340 do { 341 if (copy_byte(wr, rep0)) 342 return -1; 343 len--; 344 } while (len != 0 && wr->buffer_pos < wr->header->dst_size); 345 346 return len; 347 } 348 349 static inline int INIT process_bit0(struct writer *wr, struct rc *rc, 350 struct cstate *cst, uint16_t *p, 351 int pos_state, uint16_t *prob, 352 int lc, uint32_t literal_pos_mask) { 353 int mi = 1; 354 rc_update_bit_0(rc, prob); 355 prob = (p + LZMA_LITERAL + 356 (LZMA_LIT_SIZE 357 * (((get_pos(wr) & literal_pos_mask) << lc) 358 + (wr->previous_byte >> (8 - lc)))) 359 ); 360 361 if (cst->state >= LZMA_NUM_LIT_STATES) { 362 int match_byte = peek_old_byte(wr, cst->rep0); 363 do { 364 int bit; 365 uint16_t *prob_lit; 366 367 match_byte <<= 1; 368 bit = match_byte & 0x100; 369 prob_lit = prob + 0x100 + bit + mi; 370 if (rc_get_bit(rc, prob_lit, &mi)) { 371 if (!bit) 372 break; 373 } else { 374 if (bit) 375 break; 376 } 377 } while (mi < 0x100); 378 } 379 while (mi < 0x100) { 380 uint16_t *prob_lit = prob + mi; 381 rc_get_bit(rc, prob_lit, &mi); 382 } 383 if (cst->state < 4) 384 cst->state = 0; 385 else if (cst->state < 10) 386 cst->state -= 3; 387 else 388 cst->state -= 6; 389 390 return write_byte(wr, mi); 391 } 392 393 static inline int INIT process_bit1(struct writer *wr, struct rc *rc, 394 struct cstate *cst, uint16_t *p, 395 int pos_state, uint16_t *prob) { 396 int offset; 397 uint16_t *prob_len; 398 int num_bits; 399 int len; 400 401 rc_update_bit_1(rc, prob); 402 prob = p + LZMA_IS_REP + cst->state; 403 if (rc_is_bit_0(rc, prob)) { 404 rc_update_bit_0(rc, prob); 405 cst->rep3 = cst->rep2; 406 cst->rep2 = cst->rep1; 407 cst->rep1 = cst->rep0; 408 cst->state = cst->state < LZMA_NUM_LIT_STATES ? 0 : 3; 409 prob = p + LZMA_LEN_CODER; 410 } else { 411 rc_update_bit_1(rc, prob); 412 prob = p + LZMA_IS_REP_G0 + cst->state; 413 if (rc_is_bit_0(rc, prob)) { 414 rc_update_bit_0(rc, prob); 415 prob = (p + LZMA_IS_REP_0_LONG 416 + (cst->state << 417 LZMA_NUM_POS_BITS_MAX) + 418 pos_state); 419 if (rc_is_bit_0(rc, prob)) { 420 rc_update_bit_0(rc, prob); 421 422 cst->state = cst->state < LZMA_NUM_LIT_STATES ? 423 9 : 11; 424 return copy_byte(wr, cst->rep0); 425 } else { 426 rc_update_bit_1(rc, prob); 427 } 428 } else { 429 uint32_t distance; 430 431 rc_update_bit_1(rc, prob); 432 prob = p + LZMA_IS_REP_G1 + cst->state; 433 if (rc_is_bit_0(rc, prob)) { 434 rc_update_bit_0(rc, prob); 435 distance = cst->rep1; 436 } else { 437 rc_update_bit_1(rc, prob); 438 prob = p + LZMA_IS_REP_G2 + cst->state; 439 if (rc_is_bit_0(rc, prob)) { 440 rc_update_bit_0(rc, prob); 441 distance = cst->rep2; 442 } else { 443 rc_update_bit_1(rc, prob); 444 distance = cst->rep3; 445 cst->rep3 = cst->rep2; 446 } 447 cst->rep2 = cst->rep1; 448 } 449 cst->rep1 = cst->rep0; 450 cst->rep0 = distance; 451 } 452 cst->state = cst->state < LZMA_NUM_LIT_STATES ? 8 : 11; 453 prob = p + LZMA_REP_LEN_CODER; 454 } 455 456 prob_len = prob + LZMA_LEN_CHOICE; 457 if (rc_is_bit_0(rc, prob_len)) { 458 rc_update_bit_0(rc, prob_len); 459 prob_len = (prob + LZMA_LEN_LOW 460 + (pos_state << 461 LZMA_LEN_NUM_LOW_BITS)); 462 offset = 0; 463 num_bits = LZMA_LEN_NUM_LOW_BITS; 464 } else { 465 rc_update_bit_1(rc, prob_len); 466 prob_len = prob + LZMA_LEN_CHOICE_2; 467 if (rc_is_bit_0(rc, prob_len)) { 468 rc_update_bit_0(rc, prob_len); 469 prob_len = (prob + LZMA_LEN_MID 470 + (pos_state << 471 LZMA_LEN_NUM_MID_BITS)); 472 offset = 1 << LZMA_LEN_NUM_LOW_BITS; 473 num_bits = LZMA_LEN_NUM_MID_BITS; 474 } else { 475 rc_update_bit_1(rc, prob_len); 476 prob_len = prob + LZMA_LEN_HIGH; 477 offset = ((1 << LZMA_LEN_NUM_LOW_BITS) 478 + (1 << LZMA_LEN_NUM_MID_BITS)); 479 num_bits = LZMA_LEN_NUM_HIGH_BITS; 480 } 481 } 482 483 rc_bit_tree_decode(rc, prob_len, num_bits, &len); 484 len += offset; 485 486 if (cst->state < 4) { 487 int pos_slot; 488 489 cst->state += LZMA_NUM_LIT_STATES; 490 prob = 491 p + LZMA_POS_SLOT + 492 ((len < 493 LZMA_NUM_LEN_TO_POS_STATES ? len : 494 LZMA_NUM_LEN_TO_POS_STATES - 1) 495 << LZMA_NUM_POS_SLOT_BITS); 496 rc_bit_tree_decode(rc, prob, 497 LZMA_NUM_POS_SLOT_BITS, 498 &pos_slot); 499 if (pos_slot >= LZMA_START_POS_MODEL_INDEX) { 500 int i, mi; 501 num_bits = (pos_slot >> 1) - 1; 502 cst->rep0 = 2 | (pos_slot & 1); 503 if (pos_slot < LZMA_END_POS_MODEL_INDEX) { 504 cst->rep0 <<= num_bits; 505 prob = p + LZMA_SPEC_POS + 506 cst->rep0 - pos_slot - 1; 507 } else { 508 num_bits -= LZMA_NUM_ALIGN_BITS; 509 while (num_bits--) 510 cst->rep0 = (cst->rep0 << 1) | 511 rc_direct_bit(rc); 512 prob = p + LZMA_ALIGN; 513 cst->rep0 <<= LZMA_NUM_ALIGN_BITS; 514 num_bits = LZMA_NUM_ALIGN_BITS; 515 } 516 i = 1; 517 mi = 1; 518 while (num_bits--) { 519 if (rc_get_bit(rc, prob + mi, &mi)) 520 cst->rep0 |= i; 521 i <<= 1; 522 } 523 } else 524 cst->rep0 = pos_slot; 525 if (++(cst->rep0) == 0) 526 return 0; 527 if (cst->rep0 > wr->header->dict_size 528 || cst->rep0 > get_pos(wr)) 529 return -1; 530 } 531 532 len += LZMA_MATCH_MIN_LEN; 533 534 return copy_bytes(wr, cst->rep0, len); 535 } 536 537 538 539 STATIC inline int INIT unlzma(unsigned char *buf, long in_len, 540 long (*fill)(void*, unsigned long), 541 long (*flush)(void*, unsigned long), 542 unsigned char *output, 543 long *posp, 544 void(*error)(char *x) 545 ) 546 { 547 struct lzma_header header; 548 int lc, pb, lp; 549 uint32_t pos_state_mask; 550 uint32_t literal_pos_mask; 551 uint16_t *p; 552 int num_probs; 553 struct rc rc; 554 int i, mi; 555 struct writer wr; 556 struct cstate cst; 557 unsigned char *inbuf; 558 int ret = -1; 559 560 rc.error = error; 561 562 if (buf) 563 inbuf = buf; 564 else 565 inbuf = malloc(LZMA_IOBUF_SIZE); 566 if (!inbuf) { 567 error("Could not allocate input buffer"); 568 goto exit_0; 569 } 570 571 cst.state = 0; 572 cst.rep0 = cst.rep1 = cst.rep2 = cst.rep3 = 1; 573 574 wr.header = &header; 575 wr.flush = flush; 576 wr.global_pos = 0; 577 wr.previous_byte = 0; 578 wr.buffer_pos = 0; 579 580 rc_init(&rc, fill, inbuf, in_len); 581 582 for (i = 0; i < sizeof(header); i++) { 583 if (rc.ptr >= rc.buffer_end) 584 rc_read(&rc); 585 ((unsigned char *)&header)[i] = *rc.ptr++; 586 } 587 588 if (header.pos >= (9 * 5 * 5)) { 589 error("bad header"); 590 goto exit_1; 591 } 592 593 mi = 0; 594 lc = header.pos; 595 while (lc >= 9) { 596 mi++; 597 lc -= 9; 598 } 599 pb = 0; 600 lp = mi; 601 while (lp >= 5) { 602 pb++; 603 lp -= 5; 604 } 605 pos_state_mask = (1 << pb) - 1; 606 literal_pos_mask = (1 << lp) - 1; 607 608 ENDIAN_CONVERT(header.dict_size); 609 ENDIAN_CONVERT(header.dst_size); 610 611 if (header.dict_size == 0) 612 header.dict_size = 1; 613 614 if (output) 615 wr.buffer = output; 616 else { 617 wr.bufsize = MIN(header.dst_size, header.dict_size); 618 wr.buffer = large_malloc(wr.bufsize); 619 } 620 if (wr.buffer == NULL) 621 goto exit_1; 622 623 num_probs = LZMA_BASE_SIZE + (LZMA_LIT_SIZE << (lc + lp)); 624 p = (uint16_t *) large_malloc(num_probs * sizeof(*p)); 625 if (p == NULL) 626 goto exit_2; 627 num_probs = LZMA_LITERAL + (LZMA_LIT_SIZE << (lc + lp)); 628 for (i = 0; i < num_probs; i++) 629 p[i] = (1 << RC_MODEL_TOTAL_BITS) >> 1; 630 631 rc_init_code(&rc); 632 633 while (get_pos(&wr) < header.dst_size) { 634 int pos_state = get_pos(&wr) & pos_state_mask; 635 uint16_t *prob = p + LZMA_IS_MATCH + 636 (cst.state << LZMA_NUM_POS_BITS_MAX) + pos_state; 637 if (rc_is_bit_0(&rc, prob)) { 638 if (process_bit0(&wr, &rc, &cst, p, pos_state, prob, 639 lc, literal_pos_mask)) { 640 error("LZMA data is corrupt"); 641 goto exit_3; 642 } 643 } else { 644 if (process_bit1(&wr, &rc, &cst, p, pos_state, prob)) { 645 error("LZMA data is corrupt"); 646 goto exit_3; 647 } 648 if (cst.rep0 == 0) 649 break; 650 } 651 if (rc.buffer_size <= 0) 652 goto exit_3; 653 } 654 655 if (posp) 656 *posp = rc.ptr-rc.buffer; 657 if (!wr.flush || wr.flush(wr.buffer, wr.buffer_pos) == wr.buffer_pos) 658 ret = 0; 659 exit_3: 660 large_free(p); 661 exit_2: 662 if (!output) 663 large_free(wr.buffer); 664 exit_1: 665 if (!buf) 666 free(inbuf); 667 exit_0: 668 return ret; 669 } 670 671 #ifdef PREBOOT 672 STATIC int INIT __decompress(unsigned char *buf, long in_len, 673 long (*fill)(void*, unsigned long), 674 long (*flush)(void*, unsigned long), 675 unsigned char *output, long out_len, 676 long *posp, 677 void (*error)(char *x)) 678 { 679 return unlzma(buf, in_len - 4, fill, flush, output, posp, error); 680 } 681 #endif 682