xref: /linux/lib/decompress_unlzma.c (revision 27258e448eb301cf89e351df87aa8cb916653bf2)
1 /* Lzma decompressor for Linux kernel. Shamelessly snarfed
2  *from busybox 1.1.1
3  *
4  *Linux kernel adaptation
5  *Copyright (C) 2006  Alain < alain@knaff.lu >
6  *
7  *Based on small lzma deflate implementation/Small range coder
8  *implementation for lzma.
9  *Copyright (C) 2006  Aurelien Jacobs < aurel@gnuage.org >
10  *
11  *Based on LzmaDecode.c from the LZMA SDK 4.22 (http://www.7-zip.org/)
12  *Copyright (C) 1999-2005  Igor Pavlov
13  *
14  *Copyrights of the parts, see headers below.
15  *
16  *
17  *This program is free software; you can redistribute it and/or
18  *modify it under the terms of the GNU Lesser General Public
19  *License as published by the Free Software Foundation; either
20  *version 2.1 of the License, or (at your option) any later version.
21  *
22  *This program is distributed in the hope that it will be useful,
23  *but WITHOUT ANY WARRANTY; without even the implied warranty of
24  *MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
25  *Lesser General Public License for more details.
26  *
27  *You should have received a copy of the GNU Lesser General Public
28  *License along with this library; if not, write to the Free Software
29  *Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
30  */
31 
32 #ifdef STATIC
33 #define PREBOOT
34 #else
35 #include <linux/decompress/unlzma.h>
36 #include <linux/slab.h>
37 #endif /* STATIC */
38 
39 #include <linux/decompress/mm.h>
40 
41 #define	MIN(a, b) (((a) < (b)) ? (a) : (b))
42 
43 static long long INIT read_int(unsigned char *ptr, int size)
44 {
45 	int i;
46 	long long ret = 0;
47 
48 	for (i = 0; i < size; i++)
49 		ret = (ret << 8) | ptr[size-i-1];
50 	return ret;
51 }
52 
53 #define ENDIAN_CONVERT(x) \
54   x = (typeof(x))read_int((unsigned char *)&x, sizeof(x))
55 
56 
57 /* Small range coder implementation for lzma.
58  *Copyright (C) 2006  Aurelien Jacobs < aurel@gnuage.org >
59  *
60  *Based on LzmaDecode.c from the LZMA SDK 4.22 (http://www.7-zip.org/)
61  *Copyright (c) 1999-2005  Igor Pavlov
62  */
63 
64 #include <linux/compiler.h>
65 
66 #define LZMA_IOBUF_SIZE	0x10000
67 
68 struct rc {
69 	int (*fill)(void*, unsigned int);
70 	uint8_t *ptr;
71 	uint8_t *buffer;
72 	uint8_t *buffer_end;
73 	int buffer_size;
74 	uint32_t code;
75 	uint32_t range;
76 	uint32_t bound;
77 };
78 
79 
80 #define RC_TOP_BITS 24
81 #define RC_MOVE_BITS 5
82 #define RC_MODEL_TOTAL_BITS 11
83 
84 
85 /* Called twice: once at startup and once in rc_normalize() */
86 static void INIT rc_read(struct rc *rc)
87 {
88 	rc->buffer_size = rc->fill((char *)rc->buffer, LZMA_IOBUF_SIZE);
89 	if (rc->buffer_size <= 0)
90 		error("unexpected EOF");
91 	rc->ptr = rc->buffer;
92 	rc->buffer_end = rc->buffer + rc->buffer_size;
93 }
94 
95 /* Called once */
96 static inline void INIT rc_init(struct rc *rc,
97 				       int (*fill)(void*, unsigned int),
98 				       char *buffer, int buffer_size)
99 {
100 	rc->fill = fill;
101 	rc->buffer = (uint8_t *)buffer;
102 	rc->buffer_size = buffer_size;
103 	rc->buffer_end = rc->buffer + rc->buffer_size;
104 	rc->ptr = rc->buffer;
105 
106 	rc->code = 0;
107 	rc->range = 0xFFFFFFFF;
108 }
109 
110 static inline void INIT rc_init_code(struct rc *rc)
111 {
112 	int i;
113 
114 	for (i = 0; i < 5; i++) {
115 		if (rc->ptr >= rc->buffer_end)
116 			rc_read(rc);
117 		rc->code = (rc->code << 8) | *rc->ptr++;
118 	}
119 }
120 
121 
122 /* Called once. TODO: bb_maybe_free() */
123 static inline void INIT rc_free(struct rc *rc)
124 {
125 	free(rc->buffer);
126 }
127 
128 /* Called twice, but one callsite is in inline'd rc_is_bit_0_helper() */
129 static void INIT rc_do_normalize(struct rc *rc)
130 {
131 	if (rc->ptr >= rc->buffer_end)
132 		rc_read(rc);
133 	rc->range <<= 8;
134 	rc->code = (rc->code << 8) | *rc->ptr++;
135 }
136 static inline void INIT rc_normalize(struct rc *rc)
137 {
138 	if (rc->range < (1 << RC_TOP_BITS))
139 		rc_do_normalize(rc);
140 }
141 
142 /* Called 9 times */
143 /* Why rc_is_bit_0_helper exists?
144  *Because we want to always expose (rc->code < rc->bound) to optimizer
145  */
146 static inline uint32_t INIT rc_is_bit_0_helper(struct rc *rc, uint16_t *p)
147 {
148 	rc_normalize(rc);
149 	rc->bound = *p * (rc->range >> RC_MODEL_TOTAL_BITS);
150 	return rc->bound;
151 }
152 static inline int INIT rc_is_bit_0(struct rc *rc, uint16_t *p)
153 {
154 	uint32_t t = rc_is_bit_0_helper(rc, p);
155 	return rc->code < t;
156 }
157 
158 /* Called ~10 times, but very small, thus inlined */
159 static inline void INIT rc_update_bit_0(struct rc *rc, uint16_t *p)
160 {
161 	rc->range = rc->bound;
162 	*p += ((1 << RC_MODEL_TOTAL_BITS) - *p) >> RC_MOVE_BITS;
163 }
164 static inline void rc_update_bit_1(struct rc *rc, uint16_t *p)
165 {
166 	rc->range -= rc->bound;
167 	rc->code -= rc->bound;
168 	*p -= *p >> RC_MOVE_BITS;
169 }
170 
171 /* Called 4 times in unlzma loop */
172 static int INIT rc_get_bit(struct rc *rc, uint16_t *p, int *symbol)
173 {
174 	if (rc_is_bit_0(rc, p)) {
175 		rc_update_bit_0(rc, p);
176 		*symbol *= 2;
177 		return 0;
178 	} else {
179 		rc_update_bit_1(rc, p);
180 		*symbol = *symbol * 2 + 1;
181 		return 1;
182 	}
183 }
184 
185 /* Called once */
186 static inline int INIT rc_direct_bit(struct rc *rc)
187 {
188 	rc_normalize(rc);
189 	rc->range >>= 1;
190 	if (rc->code >= rc->range) {
191 		rc->code -= rc->range;
192 		return 1;
193 	}
194 	return 0;
195 }
196 
197 /* Called twice */
198 static inline void INIT
199 rc_bit_tree_decode(struct rc *rc, uint16_t *p, int num_levels, int *symbol)
200 {
201 	int i = num_levels;
202 
203 	*symbol = 1;
204 	while (i--)
205 		rc_get_bit(rc, p + *symbol, symbol);
206 	*symbol -= 1 << num_levels;
207 }
208 
209 
210 /*
211  * Small lzma deflate implementation.
212  * Copyright (C) 2006  Aurelien Jacobs < aurel@gnuage.org >
213  *
214  * Based on LzmaDecode.c from the LZMA SDK 4.22 (http://www.7-zip.org/)
215  * Copyright (C) 1999-2005  Igor Pavlov
216  */
217 
218 
219 struct lzma_header {
220 	uint8_t pos;
221 	uint32_t dict_size;
222 	uint64_t dst_size;
223 } __attribute__ ((packed)) ;
224 
225 
226 #define LZMA_BASE_SIZE 1846
227 #define LZMA_LIT_SIZE 768
228 
229 #define LZMA_NUM_POS_BITS_MAX 4
230 
231 #define LZMA_LEN_NUM_LOW_BITS 3
232 #define LZMA_LEN_NUM_MID_BITS 3
233 #define LZMA_LEN_NUM_HIGH_BITS 8
234 
235 #define LZMA_LEN_CHOICE 0
236 #define LZMA_LEN_CHOICE_2 (LZMA_LEN_CHOICE + 1)
237 #define LZMA_LEN_LOW (LZMA_LEN_CHOICE_2 + 1)
238 #define LZMA_LEN_MID (LZMA_LEN_LOW \
239 		      + (1 << (LZMA_NUM_POS_BITS_MAX + LZMA_LEN_NUM_LOW_BITS)))
240 #define LZMA_LEN_HIGH (LZMA_LEN_MID \
241 		       +(1 << (LZMA_NUM_POS_BITS_MAX + LZMA_LEN_NUM_MID_BITS)))
242 #define LZMA_NUM_LEN_PROBS (LZMA_LEN_HIGH + (1 << LZMA_LEN_NUM_HIGH_BITS))
243 
244 #define LZMA_NUM_STATES 12
245 #define LZMA_NUM_LIT_STATES 7
246 
247 #define LZMA_START_POS_MODEL_INDEX 4
248 #define LZMA_END_POS_MODEL_INDEX 14
249 #define LZMA_NUM_FULL_DISTANCES (1 << (LZMA_END_POS_MODEL_INDEX >> 1))
250 
251 #define LZMA_NUM_POS_SLOT_BITS 6
252 #define LZMA_NUM_LEN_TO_POS_STATES 4
253 
254 #define LZMA_NUM_ALIGN_BITS 4
255 
256 #define LZMA_MATCH_MIN_LEN 2
257 
258 #define LZMA_IS_MATCH 0
259 #define LZMA_IS_REP (LZMA_IS_MATCH + (LZMA_NUM_STATES << LZMA_NUM_POS_BITS_MAX))
260 #define LZMA_IS_REP_G0 (LZMA_IS_REP + LZMA_NUM_STATES)
261 #define LZMA_IS_REP_G1 (LZMA_IS_REP_G0 + LZMA_NUM_STATES)
262 #define LZMA_IS_REP_G2 (LZMA_IS_REP_G1 + LZMA_NUM_STATES)
263 #define LZMA_IS_REP_0_LONG (LZMA_IS_REP_G2 + LZMA_NUM_STATES)
264 #define LZMA_POS_SLOT (LZMA_IS_REP_0_LONG \
265 		       + (LZMA_NUM_STATES << LZMA_NUM_POS_BITS_MAX))
266 #define LZMA_SPEC_POS (LZMA_POS_SLOT \
267 		       +(LZMA_NUM_LEN_TO_POS_STATES << LZMA_NUM_POS_SLOT_BITS))
268 #define LZMA_ALIGN (LZMA_SPEC_POS \
269 		    + LZMA_NUM_FULL_DISTANCES - LZMA_END_POS_MODEL_INDEX)
270 #define LZMA_LEN_CODER (LZMA_ALIGN + (1 << LZMA_NUM_ALIGN_BITS))
271 #define LZMA_REP_LEN_CODER (LZMA_LEN_CODER + LZMA_NUM_LEN_PROBS)
272 #define LZMA_LITERAL (LZMA_REP_LEN_CODER + LZMA_NUM_LEN_PROBS)
273 
274 
275 struct writer {
276 	uint8_t *buffer;
277 	uint8_t previous_byte;
278 	size_t buffer_pos;
279 	int bufsize;
280 	size_t global_pos;
281 	int(*flush)(void*, unsigned int);
282 	struct lzma_header *header;
283 };
284 
285 struct cstate {
286 	int state;
287 	uint32_t rep0, rep1, rep2, rep3;
288 };
289 
290 static inline size_t INIT get_pos(struct writer *wr)
291 {
292 	return
293 		wr->global_pos + wr->buffer_pos;
294 }
295 
296 static inline uint8_t INIT peek_old_byte(struct writer *wr,
297 						uint32_t offs)
298 {
299 	if (!wr->flush) {
300 		int32_t pos;
301 		while (offs > wr->header->dict_size)
302 			offs -= wr->header->dict_size;
303 		pos = wr->buffer_pos - offs;
304 		return wr->buffer[pos];
305 	} else {
306 		uint32_t pos = wr->buffer_pos - offs;
307 		while (pos >= wr->header->dict_size)
308 			pos += wr->header->dict_size;
309 		return wr->buffer[pos];
310 	}
311 
312 }
313 
314 static inline void INIT write_byte(struct writer *wr, uint8_t byte)
315 {
316 	wr->buffer[wr->buffer_pos++] = wr->previous_byte = byte;
317 	if (wr->flush && wr->buffer_pos == wr->header->dict_size) {
318 		wr->buffer_pos = 0;
319 		wr->global_pos += wr->header->dict_size;
320 		wr->flush((char *)wr->buffer, wr->header->dict_size);
321 	}
322 }
323 
324 
325 static inline void INIT copy_byte(struct writer *wr, uint32_t offs)
326 {
327 	write_byte(wr, peek_old_byte(wr, offs));
328 }
329 
330 static inline void INIT copy_bytes(struct writer *wr,
331 					 uint32_t rep0, int len)
332 {
333 	do {
334 		copy_byte(wr, rep0);
335 		len--;
336 	} while (len != 0 && wr->buffer_pos < wr->header->dst_size);
337 }
338 
339 static inline void INIT process_bit0(struct writer *wr, struct rc *rc,
340 				     struct cstate *cst, uint16_t *p,
341 				     int pos_state, uint16_t *prob,
342 				     int lc, uint32_t literal_pos_mask) {
343 	int mi = 1;
344 	rc_update_bit_0(rc, prob);
345 	prob = (p + LZMA_LITERAL +
346 		(LZMA_LIT_SIZE
347 		 * (((get_pos(wr) & literal_pos_mask) << lc)
348 		    + (wr->previous_byte >> (8 - lc))))
349 		);
350 
351 	if (cst->state >= LZMA_NUM_LIT_STATES) {
352 		int match_byte = peek_old_byte(wr, cst->rep0);
353 		do {
354 			int bit;
355 			uint16_t *prob_lit;
356 
357 			match_byte <<= 1;
358 			bit = match_byte & 0x100;
359 			prob_lit = prob + 0x100 + bit + mi;
360 			if (rc_get_bit(rc, prob_lit, &mi)) {
361 				if (!bit)
362 					break;
363 			} else {
364 				if (bit)
365 					break;
366 			}
367 		} while (mi < 0x100);
368 	}
369 	while (mi < 0x100) {
370 		uint16_t *prob_lit = prob + mi;
371 		rc_get_bit(rc, prob_lit, &mi);
372 	}
373 	write_byte(wr, mi);
374 	if (cst->state < 4)
375 		cst->state = 0;
376 	else if (cst->state < 10)
377 		cst->state -= 3;
378 	else
379 		cst->state -= 6;
380 }
381 
382 static inline void INIT process_bit1(struct writer *wr, struct rc *rc,
383 					    struct cstate *cst, uint16_t *p,
384 					    int pos_state, uint16_t *prob) {
385   int offset;
386 	uint16_t *prob_len;
387 	int num_bits;
388 	int len;
389 
390 	rc_update_bit_1(rc, prob);
391 	prob = p + LZMA_IS_REP + cst->state;
392 	if (rc_is_bit_0(rc, prob)) {
393 		rc_update_bit_0(rc, prob);
394 		cst->rep3 = cst->rep2;
395 		cst->rep2 = cst->rep1;
396 		cst->rep1 = cst->rep0;
397 		cst->state = cst->state < LZMA_NUM_LIT_STATES ? 0 : 3;
398 		prob = p + LZMA_LEN_CODER;
399 	} else {
400 		rc_update_bit_1(rc, prob);
401 		prob = p + LZMA_IS_REP_G0 + cst->state;
402 		if (rc_is_bit_0(rc, prob)) {
403 			rc_update_bit_0(rc, prob);
404 			prob = (p + LZMA_IS_REP_0_LONG
405 				+ (cst->state <<
406 				   LZMA_NUM_POS_BITS_MAX) +
407 				pos_state);
408 			if (rc_is_bit_0(rc, prob)) {
409 				rc_update_bit_0(rc, prob);
410 
411 				cst->state = cst->state < LZMA_NUM_LIT_STATES ?
412 					9 : 11;
413 				copy_byte(wr, cst->rep0);
414 				return;
415 			} else {
416 				rc_update_bit_1(rc, prob);
417 			}
418 		} else {
419 			uint32_t distance;
420 
421 			rc_update_bit_1(rc, prob);
422 			prob = p + LZMA_IS_REP_G1 + cst->state;
423 			if (rc_is_bit_0(rc, prob)) {
424 				rc_update_bit_0(rc, prob);
425 				distance = cst->rep1;
426 			} else {
427 				rc_update_bit_1(rc, prob);
428 				prob = p + LZMA_IS_REP_G2 + cst->state;
429 				if (rc_is_bit_0(rc, prob)) {
430 					rc_update_bit_0(rc, prob);
431 					distance = cst->rep2;
432 				} else {
433 					rc_update_bit_1(rc, prob);
434 					distance = cst->rep3;
435 					cst->rep3 = cst->rep2;
436 				}
437 				cst->rep2 = cst->rep1;
438 			}
439 			cst->rep1 = cst->rep0;
440 			cst->rep0 = distance;
441 		}
442 		cst->state = cst->state < LZMA_NUM_LIT_STATES ? 8 : 11;
443 		prob = p + LZMA_REP_LEN_CODER;
444 	}
445 
446 	prob_len = prob + LZMA_LEN_CHOICE;
447 	if (rc_is_bit_0(rc, prob_len)) {
448 		rc_update_bit_0(rc, prob_len);
449 		prob_len = (prob + LZMA_LEN_LOW
450 			    + (pos_state <<
451 			       LZMA_LEN_NUM_LOW_BITS));
452 		offset = 0;
453 		num_bits = LZMA_LEN_NUM_LOW_BITS;
454 	} else {
455 		rc_update_bit_1(rc, prob_len);
456 		prob_len = prob + LZMA_LEN_CHOICE_2;
457 		if (rc_is_bit_0(rc, prob_len)) {
458 			rc_update_bit_0(rc, prob_len);
459 			prob_len = (prob + LZMA_LEN_MID
460 				    + (pos_state <<
461 				       LZMA_LEN_NUM_MID_BITS));
462 			offset = 1 << LZMA_LEN_NUM_LOW_BITS;
463 			num_bits = LZMA_LEN_NUM_MID_BITS;
464 		} else {
465 			rc_update_bit_1(rc, prob_len);
466 			prob_len = prob + LZMA_LEN_HIGH;
467 			offset = ((1 << LZMA_LEN_NUM_LOW_BITS)
468 				  + (1 << LZMA_LEN_NUM_MID_BITS));
469 			num_bits = LZMA_LEN_NUM_HIGH_BITS;
470 		}
471 	}
472 
473 	rc_bit_tree_decode(rc, prob_len, num_bits, &len);
474 	len += offset;
475 
476 	if (cst->state < 4) {
477 		int pos_slot;
478 
479 		cst->state += LZMA_NUM_LIT_STATES;
480 		prob =
481 			p + LZMA_POS_SLOT +
482 			((len <
483 			  LZMA_NUM_LEN_TO_POS_STATES ? len :
484 			  LZMA_NUM_LEN_TO_POS_STATES - 1)
485 			 << LZMA_NUM_POS_SLOT_BITS);
486 		rc_bit_tree_decode(rc, prob,
487 				   LZMA_NUM_POS_SLOT_BITS,
488 				   &pos_slot);
489 		if (pos_slot >= LZMA_START_POS_MODEL_INDEX) {
490 			int i, mi;
491 			num_bits = (pos_slot >> 1) - 1;
492 			cst->rep0 = 2 | (pos_slot & 1);
493 			if (pos_slot < LZMA_END_POS_MODEL_INDEX) {
494 				cst->rep0 <<= num_bits;
495 				prob = p + LZMA_SPEC_POS +
496 					cst->rep0 - pos_slot - 1;
497 			} else {
498 				num_bits -= LZMA_NUM_ALIGN_BITS;
499 				while (num_bits--)
500 					cst->rep0 = (cst->rep0 << 1) |
501 						rc_direct_bit(rc);
502 				prob = p + LZMA_ALIGN;
503 				cst->rep0 <<= LZMA_NUM_ALIGN_BITS;
504 				num_bits = LZMA_NUM_ALIGN_BITS;
505 			}
506 			i = 1;
507 			mi = 1;
508 			while (num_bits--) {
509 				if (rc_get_bit(rc, prob + mi, &mi))
510 					cst->rep0 |= i;
511 				i <<= 1;
512 			}
513 		} else
514 			cst->rep0 = pos_slot;
515 		if (++(cst->rep0) == 0)
516 			return;
517 	}
518 
519 	len += LZMA_MATCH_MIN_LEN;
520 
521 	copy_bytes(wr, cst->rep0, len);
522 }
523 
524 
525 
526 STATIC inline int INIT unlzma(unsigned char *buf, int in_len,
527 			      int(*fill)(void*, unsigned int),
528 			      int(*flush)(void*, unsigned int),
529 			      unsigned char *output,
530 			      int *posp,
531 			      void(*error_fn)(char *x)
532 	)
533 {
534 	struct lzma_header header;
535 	int lc, pb, lp;
536 	uint32_t pos_state_mask;
537 	uint32_t literal_pos_mask;
538 	uint16_t *p;
539 	int num_probs;
540 	struct rc rc;
541 	int i, mi;
542 	struct writer wr;
543 	struct cstate cst;
544 	unsigned char *inbuf;
545 	int ret = -1;
546 
547 	set_error_fn(error_fn);
548 
549 	if (buf)
550 		inbuf = buf;
551 	else
552 		inbuf = malloc(LZMA_IOBUF_SIZE);
553 	if (!inbuf) {
554 		error("Could not allocate input bufer");
555 		goto exit_0;
556 	}
557 
558 	cst.state = 0;
559 	cst.rep0 = cst.rep1 = cst.rep2 = cst.rep3 = 1;
560 
561 	wr.header = &header;
562 	wr.flush = flush;
563 	wr.global_pos = 0;
564 	wr.previous_byte = 0;
565 	wr.buffer_pos = 0;
566 
567 	rc_init(&rc, fill, inbuf, in_len);
568 
569 	for (i = 0; i < sizeof(header); i++) {
570 		if (rc.ptr >= rc.buffer_end)
571 			rc_read(&rc);
572 		((unsigned char *)&header)[i] = *rc.ptr++;
573 	}
574 
575 	if (header.pos >= (9 * 5 * 5))
576 		error("bad header");
577 
578 	mi = 0;
579 	lc = header.pos;
580 	while (lc >= 9) {
581 		mi++;
582 		lc -= 9;
583 	}
584 	pb = 0;
585 	lp = mi;
586 	while (lp >= 5) {
587 		pb++;
588 		lp -= 5;
589 	}
590 	pos_state_mask = (1 << pb) - 1;
591 	literal_pos_mask = (1 << lp) - 1;
592 
593 	ENDIAN_CONVERT(header.dict_size);
594 	ENDIAN_CONVERT(header.dst_size);
595 
596 	if (header.dict_size == 0)
597 		header.dict_size = 1;
598 
599 	if (output)
600 		wr.buffer = output;
601 	else {
602 		wr.bufsize = MIN(header.dst_size, header.dict_size);
603 		wr.buffer = large_malloc(wr.bufsize);
604 	}
605 	if (wr.buffer == NULL)
606 		goto exit_1;
607 
608 	num_probs = LZMA_BASE_SIZE + (LZMA_LIT_SIZE << (lc + lp));
609 	p = (uint16_t *) large_malloc(num_probs * sizeof(*p));
610 	if (p == 0)
611 		goto exit_2;
612 	num_probs = LZMA_LITERAL + (LZMA_LIT_SIZE << (lc + lp));
613 	for (i = 0; i < num_probs; i++)
614 		p[i] = (1 << RC_MODEL_TOTAL_BITS) >> 1;
615 
616 	rc_init_code(&rc);
617 
618 	while (get_pos(&wr) < header.dst_size) {
619 		int pos_state =	get_pos(&wr) & pos_state_mask;
620 		uint16_t *prob = p + LZMA_IS_MATCH +
621 			(cst.state << LZMA_NUM_POS_BITS_MAX) + pos_state;
622 		if (rc_is_bit_0(&rc, prob))
623 			process_bit0(&wr, &rc, &cst, p, pos_state, prob,
624 				     lc, literal_pos_mask);
625 		else {
626 			process_bit1(&wr, &rc, &cst, p, pos_state, prob);
627 			if (cst.rep0 == 0)
628 				break;
629 		}
630 	}
631 
632 	if (posp)
633 		*posp = rc.ptr-rc.buffer;
634 	if (wr.flush)
635 		wr.flush(wr.buffer, wr.buffer_pos);
636 	ret = 0;
637 	large_free(p);
638 exit_2:
639 	if (!output)
640 		large_free(wr.buffer);
641 exit_1:
642 	if (!buf)
643 		free(inbuf);
644 exit_0:
645 	return ret;
646 }
647 
648 #ifdef PREBOOT
649 STATIC int INIT decompress(unsigned char *buf, int in_len,
650 			      int(*fill)(void*, unsigned int),
651 			      int(*flush)(void*, unsigned int),
652 			      unsigned char *output,
653 			      int *posp,
654 			      void(*error_fn)(char *x)
655 	)
656 {
657 	return unlzma(buf, in_len - 4, fill, flush, output, posp, error_fn);
658 }
659 #endif
660