1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * SHA-384, SHA-512, HMAC-SHA384, and HMAC-SHA512 library functions 4 * 5 * Copyright (c) Jean-Luc Cooke <jlcooke@certainkey.com> 6 * Copyright (c) Andrew McDonald <andrew@mcdonald.org.uk> 7 * Copyright (c) 2003 Kyle McMartin <kyle@debian.org> 8 * Copyright 2025 Google LLC 9 */ 10 11 #include <crypto/hmac.h> 12 #include <crypto/sha2.h> 13 #include <linux/export.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/overflow.h> 17 #include <linux/string.h> 18 #include <linux/unaligned.h> 19 #include <linux/wordpart.h> 20 #include "fips.h" 21 22 static const struct sha512_block_state sha384_iv = { 23 .h = { 24 SHA384_H0, SHA384_H1, SHA384_H2, SHA384_H3, 25 SHA384_H4, SHA384_H5, SHA384_H6, SHA384_H7, 26 }, 27 }; 28 29 static const struct sha512_block_state sha512_iv = { 30 .h = { 31 SHA512_H0, SHA512_H1, SHA512_H2, SHA512_H3, 32 SHA512_H4, SHA512_H5, SHA512_H6, SHA512_H7, 33 }, 34 }; 35 36 static const u64 sha512_K[80] = { 37 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 0xb5c0fbcfec4d3b2fULL, 38 0xe9b5dba58189dbbcULL, 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, 39 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 0xd807aa98a3030242ULL, 40 0x12835b0145706fbeULL, 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, 41 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 0x9bdc06a725c71235ULL, 42 0xc19bf174cf692694ULL, 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, 43 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 0x2de92c6f592b0275ULL, 44 0x4a7484aa6ea6e483ULL, 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, 45 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 0xb00327c898fb213fULL, 46 0xbf597fc7beef0ee4ULL, 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, 47 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 0x27b70a8546d22ffcULL, 48 0x2e1b21385c26c926ULL, 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, 49 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 0x81c2c92e47edaee6ULL, 50 0x92722c851482353bULL, 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, 51 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 0xd192e819d6ef5218ULL, 52 0xd69906245565a910ULL, 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, 53 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 0x2748774cdf8eeb99ULL, 54 0x34b0bcb5e19b48a8ULL, 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, 55 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 0x748f82ee5defb2fcULL, 56 0x78a5636f43172f60ULL, 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, 57 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 0xbef9a3f7b2c67915ULL, 58 0xc67178f2e372532bULL, 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, 59 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 0x06f067aa72176fbaULL, 60 0x0a637dc5a2c898a6ULL, 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, 61 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 0x3c9ebe0a15c9bebcULL, 62 0x431d67c49c100d4cULL, 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, 63 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL, 64 }; 65 66 #define Ch(x, y, z) ((z) ^ ((x) & ((y) ^ (z)))) 67 #define Maj(x, y, z) (((x) & (y)) | ((z) & ((x) | (y)))) 68 #define e0(x) (ror64((x), 28) ^ ror64((x), 34) ^ ror64((x), 39)) 69 #define e1(x) (ror64((x), 14) ^ ror64((x), 18) ^ ror64((x), 41)) 70 #define s0(x) (ror64((x), 1) ^ ror64((x), 8) ^ ((x) >> 7)) 71 #define s1(x) (ror64((x), 19) ^ ror64((x), 61) ^ ((x) >> 6)) 72 73 static void sha512_block_generic(struct sha512_block_state *state, 74 const u8 *data) 75 { 76 u64 a = state->h[0]; 77 u64 b = state->h[1]; 78 u64 c = state->h[2]; 79 u64 d = state->h[3]; 80 u64 e = state->h[4]; 81 u64 f = state->h[5]; 82 u64 g = state->h[6]; 83 u64 h = state->h[7]; 84 u64 t1, t2; 85 u64 W[16]; 86 87 for (int j = 0; j < 16; j++) 88 W[j] = get_unaligned_be64(data + j * sizeof(u64)); 89 90 for (int i = 0; i < 80; i += 8) { 91 if ((i & 15) == 0 && i != 0) { 92 for (int j = 0; j < 16; j++) { 93 W[j & 15] += s1(W[(j - 2) & 15]) + 94 W[(j - 7) & 15] + 95 s0(W[(j - 15) & 15]); 96 } 97 } 98 t1 = h + e1(e) + Ch(e, f, g) + sha512_K[i] + W[(i & 15)]; 99 t2 = e0(a) + Maj(a, b, c); d += t1; h = t1 + t2; 100 t1 = g + e1(d) + Ch(d, e, f) + sha512_K[i+1] + W[(i & 15) + 1]; 101 t2 = e0(h) + Maj(h, a, b); c += t1; g = t1 + t2; 102 t1 = f + e1(c) + Ch(c, d, e) + sha512_K[i+2] + W[(i & 15) + 2]; 103 t2 = e0(g) + Maj(g, h, a); b += t1; f = t1 + t2; 104 t1 = e + e1(b) + Ch(b, c, d) + sha512_K[i+3] + W[(i & 15) + 3]; 105 t2 = e0(f) + Maj(f, g, h); a += t1; e = t1 + t2; 106 t1 = d + e1(a) + Ch(a, b, c) + sha512_K[i+4] + W[(i & 15) + 4]; 107 t2 = e0(e) + Maj(e, f, g); h += t1; d = t1 + t2; 108 t1 = c + e1(h) + Ch(h, a, b) + sha512_K[i+5] + W[(i & 15) + 5]; 109 t2 = e0(d) + Maj(d, e, f); g += t1; c = t1 + t2; 110 t1 = b + e1(g) + Ch(g, h, a) + sha512_K[i+6] + W[(i & 15) + 6]; 111 t2 = e0(c) + Maj(c, d, e); f += t1; b = t1 + t2; 112 t1 = a + e1(f) + Ch(f, g, h) + sha512_K[i+7] + W[(i & 15) + 7]; 113 t2 = e0(b) + Maj(b, c, d); e += t1; a = t1 + t2; 114 } 115 116 state->h[0] += a; 117 state->h[1] += b; 118 state->h[2] += c; 119 state->h[3] += d; 120 state->h[4] += e; 121 state->h[5] += f; 122 state->h[6] += g; 123 state->h[7] += h; 124 } 125 126 static void __maybe_unused 127 sha512_blocks_generic(struct sha512_block_state *state, 128 const u8 *data, size_t nblocks) 129 { 130 do { 131 sha512_block_generic(state, data); 132 data += SHA512_BLOCK_SIZE; 133 } while (--nblocks); 134 } 135 136 #ifdef CONFIG_CRYPTO_LIB_SHA512_ARCH 137 #include "sha512.h" /* $(SRCARCH)/sha512.h */ 138 #else 139 #define sha512_blocks sha512_blocks_generic 140 #endif 141 142 static void __sha512_init(struct __sha512_ctx *ctx, 143 const struct sha512_block_state *iv, 144 u64 initial_bytecount) 145 { 146 ctx->state = *iv; 147 ctx->bytecount_lo = initial_bytecount; 148 ctx->bytecount_hi = 0; 149 } 150 151 void sha384_init(struct sha384_ctx *ctx) 152 { 153 __sha512_init(&ctx->ctx, &sha384_iv, 0); 154 } 155 EXPORT_SYMBOL_GPL(sha384_init); 156 157 void sha512_init(struct sha512_ctx *ctx) 158 { 159 __sha512_init(&ctx->ctx, &sha512_iv, 0); 160 } 161 EXPORT_SYMBOL_GPL(sha512_init); 162 163 void __sha512_update(struct __sha512_ctx *ctx, const u8 *data, size_t len) 164 { 165 size_t partial = ctx->bytecount_lo % SHA512_BLOCK_SIZE; 166 167 if (check_add_overflow(ctx->bytecount_lo, len, &ctx->bytecount_lo)) 168 ctx->bytecount_hi++; 169 170 if (partial + len >= SHA512_BLOCK_SIZE) { 171 size_t nblocks; 172 173 if (partial) { 174 size_t l = SHA512_BLOCK_SIZE - partial; 175 176 memcpy(&ctx->buf[partial], data, l); 177 data += l; 178 len -= l; 179 180 sha512_blocks(&ctx->state, ctx->buf, 1); 181 } 182 183 nblocks = len / SHA512_BLOCK_SIZE; 184 len %= SHA512_BLOCK_SIZE; 185 186 if (nblocks) { 187 sha512_blocks(&ctx->state, data, nblocks); 188 data += nblocks * SHA512_BLOCK_SIZE; 189 } 190 partial = 0; 191 } 192 if (len) 193 memcpy(&ctx->buf[partial], data, len); 194 } 195 EXPORT_SYMBOL_GPL(__sha512_update); 196 197 static void __sha512_final(struct __sha512_ctx *ctx, 198 u8 *out, size_t digest_size) 199 { 200 u64 bitcount_hi = (ctx->bytecount_hi << 3) | (ctx->bytecount_lo >> 61); 201 u64 bitcount_lo = ctx->bytecount_lo << 3; 202 size_t partial = ctx->bytecount_lo % SHA512_BLOCK_SIZE; 203 204 ctx->buf[partial++] = 0x80; 205 if (partial > SHA512_BLOCK_SIZE - 16) { 206 memset(&ctx->buf[partial], 0, SHA512_BLOCK_SIZE - partial); 207 sha512_blocks(&ctx->state, ctx->buf, 1); 208 partial = 0; 209 } 210 memset(&ctx->buf[partial], 0, SHA512_BLOCK_SIZE - 16 - partial); 211 *(__be64 *)&ctx->buf[SHA512_BLOCK_SIZE - 16] = cpu_to_be64(bitcount_hi); 212 *(__be64 *)&ctx->buf[SHA512_BLOCK_SIZE - 8] = cpu_to_be64(bitcount_lo); 213 sha512_blocks(&ctx->state, ctx->buf, 1); 214 215 for (size_t i = 0; i < digest_size; i += 8) 216 put_unaligned_be64(ctx->state.h[i / 8], out + i); 217 } 218 219 void sha384_final(struct sha384_ctx *ctx, u8 out[SHA384_DIGEST_SIZE]) 220 { 221 __sha512_final(&ctx->ctx, out, SHA384_DIGEST_SIZE); 222 memzero_explicit(ctx, sizeof(*ctx)); 223 } 224 EXPORT_SYMBOL_GPL(sha384_final); 225 226 void sha512_final(struct sha512_ctx *ctx, u8 out[SHA512_DIGEST_SIZE]) 227 { 228 __sha512_final(&ctx->ctx, out, SHA512_DIGEST_SIZE); 229 memzero_explicit(ctx, sizeof(*ctx)); 230 } 231 EXPORT_SYMBOL_GPL(sha512_final); 232 233 void sha384(const u8 *data, size_t len, u8 out[SHA384_DIGEST_SIZE]) 234 { 235 struct sha384_ctx ctx; 236 237 sha384_init(&ctx); 238 sha384_update(&ctx, data, len); 239 sha384_final(&ctx, out); 240 } 241 EXPORT_SYMBOL_GPL(sha384); 242 243 void sha512(const u8 *data, size_t len, u8 out[SHA512_DIGEST_SIZE]) 244 { 245 struct sha512_ctx ctx; 246 247 sha512_init(&ctx); 248 sha512_update(&ctx, data, len); 249 sha512_final(&ctx, out); 250 } 251 EXPORT_SYMBOL_GPL(sha512); 252 253 static void __hmac_sha512_preparekey(struct sha512_block_state *istate, 254 struct sha512_block_state *ostate, 255 const u8 *raw_key, size_t raw_key_len, 256 const struct sha512_block_state *iv) 257 { 258 union { 259 u8 b[SHA512_BLOCK_SIZE]; 260 unsigned long w[SHA512_BLOCK_SIZE / sizeof(unsigned long)]; 261 } derived_key = { 0 }; 262 263 if (unlikely(raw_key_len > SHA512_BLOCK_SIZE)) { 264 if (iv == &sha384_iv) 265 sha384(raw_key, raw_key_len, derived_key.b); 266 else 267 sha512(raw_key, raw_key_len, derived_key.b); 268 } else { 269 memcpy(derived_key.b, raw_key, raw_key_len); 270 } 271 272 for (size_t i = 0; i < ARRAY_SIZE(derived_key.w); i++) 273 derived_key.w[i] ^= REPEAT_BYTE(HMAC_IPAD_VALUE); 274 *istate = *iv; 275 sha512_blocks(istate, derived_key.b, 1); 276 277 for (size_t i = 0; i < ARRAY_SIZE(derived_key.w); i++) 278 derived_key.w[i] ^= REPEAT_BYTE(HMAC_OPAD_VALUE ^ 279 HMAC_IPAD_VALUE); 280 *ostate = *iv; 281 sha512_blocks(ostate, derived_key.b, 1); 282 283 memzero_explicit(&derived_key, sizeof(derived_key)); 284 } 285 286 void hmac_sha384_preparekey(struct hmac_sha384_key *key, 287 const u8 *raw_key, size_t raw_key_len) 288 { 289 __hmac_sha512_preparekey(&key->key.istate, &key->key.ostate, 290 raw_key, raw_key_len, &sha384_iv); 291 } 292 EXPORT_SYMBOL_GPL(hmac_sha384_preparekey); 293 294 void hmac_sha512_preparekey(struct hmac_sha512_key *key, 295 const u8 *raw_key, size_t raw_key_len) 296 { 297 __hmac_sha512_preparekey(&key->key.istate, &key->key.ostate, 298 raw_key, raw_key_len, &sha512_iv); 299 } 300 EXPORT_SYMBOL_GPL(hmac_sha512_preparekey); 301 302 void __hmac_sha512_init(struct __hmac_sha512_ctx *ctx, 303 const struct __hmac_sha512_key *key) 304 { 305 __sha512_init(&ctx->sha_ctx, &key->istate, SHA512_BLOCK_SIZE); 306 ctx->ostate = key->ostate; 307 } 308 EXPORT_SYMBOL_GPL(__hmac_sha512_init); 309 310 void hmac_sha384_init_usingrawkey(struct hmac_sha384_ctx *ctx, 311 const u8 *raw_key, size_t raw_key_len) 312 { 313 __hmac_sha512_preparekey(&ctx->ctx.sha_ctx.state, &ctx->ctx.ostate, 314 raw_key, raw_key_len, &sha384_iv); 315 ctx->ctx.sha_ctx.bytecount_lo = SHA512_BLOCK_SIZE; 316 ctx->ctx.sha_ctx.bytecount_hi = 0; 317 } 318 EXPORT_SYMBOL_GPL(hmac_sha384_init_usingrawkey); 319 320 void hmac_sha512_init_usingrawkey(struct hmac_sha512_ctx *ctx, 321 const u8 *raw_key, size_t raw_key_len) 322 { 323 __hmac_sha512_preparekey(&ctx->ctx.sha_ctx.state, &ctx->ctx.ostate, 324 raw_key, raw_key_len, &sha512_iv); 325 ctx->ctx.sha_ctx.bytecount_lo = SHA512_BLOCK_SIZE; 326 ctx->ctx.sha_ctx.bytecount_hi = 0; 327 } 328 EXPORT_SYMBOL_GPL(hmac_sha512_init_usingrawkey); 329 330 static void __hmac_sha512_final(struct __hmac_sha512_ctx *ctx, 331 u8 *out, size_t digest_size) 332 { 333 /* Generate the padded input for the outer hash in ctx->sha_ctx.buf. */ 334 __sha512_final(&ctx->sha_ctx, ctx->sha_ctx.buf, digest_size); 335 memset(&ctx->sha_ctx.buf[digest_size], 0, 336 SHA512_BLOCK_SIZE - digest_size); 337 ctx->sha_ctx.buf[digest_size] = 0x80; 338 *(__be32 *)&ctx->sha_ctx.buf[SHA512_BLOCK_SIZE - 4] = 339 cpu_to_be32(8 * (SHA512_BLOCK_SIZE + digest_size)); 340 341 /* Compute the outer hash, which gives the HMAC value. */ 342 sha512_blocks(&ctx->ostate, ctx->sha_ctx.buf, 1); 343 for (size_t i = 0; i < digest_size; i += 8) 344 put_unaligned_be64(ctx->ostate.h[i / 8], out + i); 345 346 memzero_explicit(ctx, sizeof(*ctx)); 347 } 348 349 void hmac_sha384_final(struct hmac_sha384_ctx *ctx, 350 u8 out[SHA384_DIGEST_SIZE]) 351 { 352 __hmac_sha512_final(&ctx->ctx, out, SHA384_DIGEST_SIZE); 353 } 354 EXPORT_SYMBOL_GPL(hmac_sha384_final); 355 356 void hmac_sha512_final(struct hmac_sha512_ctx *ctx, 357 u8 out[SHA512_DIGEST_SIZE]) 358 { 359 __hmac_sha512_final(&ctx->ctx, out, SHA512_DIGEST_SIZE); 360 } 361 EXPORT_SYMBOL_GPL(hmac_sha512_final); 362 363 void hmac_sha384(const struct hmac_sha384_key *key, 364 const u8 *data, size_t data_len, u8 out[SHA384_DIGEST_SIZE]) 365 { 366 struct hmac_sha384_ctx ctx; 367 368 hmac_sha384_init(&ctx, key); 369 hmac_sha384_update(&ctx, data, data_len); 370 hmac_sha384_final(&ctx, out); 371 } 372 EXPORT_SYMBOL_GPL(hmac_sha384); 373 374 void hmac_sha512(const struct hmac_sha512_key *key, 375 const u8 *data, size_t data_len, u8 out[SHA512_DIGEST_SIZE]) 376 { 377 struct hmac_sha512_ctx ctx; 378 379 hmac_sha512_init(&ctx, key); 380 hmac_sha512_update(&ctx, data, data_len); 381 hmac_sha512_final(&ctx, out); 382 } 383 EXPORT_SYMBOL_GPL(hmac_sha512); 384 385 void hmac_sha384_usingrawkey(const u8 *raw_key, size_t raw_key_len, 386 const u8 *data, size_t data_len, 387 u8 out[SHA384_DIGEST_SIZE]) 388 { 389 struct hmac_sha384_ctx ctx; 390 391 hmac_sha384_init_usingrawkey(&ctx, raw_key, raw_key_len); 392 hmac_sha384_update(&ctx, data, data_len); 393 hmac_sha384_final(&ctx, out); 394 } 395 EXPORT_SYMBOL_GPL(hmac_sha384_usingrawkey); 396 397 void hmac_sha512_usingrawkey(const u8 *raw_key, size_t raw_key_len, 398 const u8 *data, size_t data_len, 399 u8 out[SHA512_DIGEST_SIZE]) 400 { 401 struct hmac_sha512_ctx ctx; 402 403 hmac_sha512_init_usingrawkey(&ctx, raw_key, raw_key_len); 404 hmac_sha512_update(&ctx, data, data_len); 405 hmac_sha512_final(&ctx, out); 406 } 407 EXPORT_SYMBOL_GPL(hmac_sha512_usingrawkey); 408 409 #if defined(sha512_mod_init_arch) || defined(CONFIG_CRYPTO_FIPS) 410 static int __init sha512_mod_init(void) 411 { 412 #ifdef sha512_mod_init_arch 413 sha512_mod_init_arch(); 414 #endif 415 if (fips_enabled) { 416 /* 417 * FIPS cryptographic algorithm self-test. As per the FIPS 418 * Implementation Guidance, testing HMAC-SHA512 satisfies the 419 * test requirement for SHA-384, SHA-512, and HMAC-SHA384 too. 420 */ 421 u8 mac[SHA512_DIGEST_SIZE]; 422 423 hmac_sha512_usingrawkey(fips_test_key, sizeof(fips_test_key), 424 fips_test_data, sizeof(fips_test_data), 425 mac); 426 if (memcmp(fips_test_hmac_sha512_value, mac, sizeof(mac)) != 0) 427 panic("sha512: FIPS self-test failed\n"); 428 } 429 return 0; 430 } 431 subsys_initcall(sha512_mod_init); 432 433 static void __exit sha512_mod_exit(void) 434 { 435 } 436 module_exit(sha512_mod_exit); 437 #endif 438 439 MODULE_DESCRIPTION("SHA-384, SHA-512, HMAC-SHA384, and HMAC-SHA512 library functions"); 440 MODULE_LICENSE("GPL"); 441