1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * SHA-384, SHA-512, HMAC-SHA384, and HMAC-SHA512 library functions 4 * 5 * Copyright (c) Jean-Luc Cooke <jlcooke@certainkey.com> 6 * Copyright (c) Andrew McDonald <andrew@mcdonald.org.uk> 7 * Copyright (c) 2003 Kyle McMartin <kyle@debian.org> 8 * Copyright 2025 Google LLC 9 */ 10 11 #include <crypto/hmac.h> 12 #include <crypto/sha2.h> 13 #include <linux/export.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/overflow.h> 17 #include <linux/string.h> 18 #include <linux/unaligned.h> 19 #include <linux/wordpart.h> 20 21 static const struct sha512_block_state sha384_iv = { 22 .h = { 23 SHA384_H0, SHA384_H1, SHA384_H2, SHA384_H3, 24 SHA384_H4, SHA384_H5, SHA384_H6, SHA384_H7, 25 }, 26 }; 27 28 static const struct sha512_block_state sha512_iv = { 29 .h = { 30 SHA512_H0, SHA512_H1, SHA512_H2, SHA512_H3, 31 SHA512_H4, SHA512_H5, SHA512_H6, SHA512_H7, 32 }, 33 }; 34 35 static const u64 sha512_K[80] = { 36 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 0xb5c0fbcfec4d3b2fULL, 37 0xe9b5dba58189dbbcULL, 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, 38 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 0xd807aa98a3030242ULL, 39 0x12835b0145706fbeULL, 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, 40 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 0x9bdc06a725c71235ULL, 41 0xc19bf174cf692694ULL, 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, 42 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 0x2de92c6f592b0275ULL, 43 0x4a7484aa6ea6e483ULL, 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, 44 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 0xb00327c898fb213fULL, 45 0xbf597fc7beef0ee4ULL, 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, 46 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 0x27b70a8546d22ffcULL, 47 0x2e1b21385c26c926ULL, 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, 48 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 0x81c2c92e47edaee6ULL, 49 0x92722c851482353bULL, 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, 50 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 0xd192e819d6ef5218ULL, 51 0xd69906245565a910ULL, 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, 52 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 0x2748774cdf8eeb99ULL, 53 0x34b0bcb5e19b48a8ULL, 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, 54 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 0x748f82ee5defb2fcULL, 55 0x78a5636f43172f60ULL, 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, 56 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 0xbef9a3f7b2c67915ULL, 57 0xc67178f2e372532bULL, 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, 58 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 0x06f067aa72176fbaULL, 59 0x0a637dc5a2c898a6ULL, 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, 60 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 0x3c9ebe0a15c9bebcULL, 61 0x431d67c49c100d4cULL, 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, 62 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL, 63 }; 64 65 #define Ch(x, y, z) ((z) ^ ((x) & ((y) ^ (z)))) 66 #define Maj(x, y, z) (((x) & (y)) | ((z) & ((x) | (y)))) 67 #define e0(x) (ror64((x), 28) ^ ror64((x), 34) ^ ror64((x), 39)) 68 #define e1(x) (ror64((x), 14) ^ ror64((x), 18) ^ ror64((x), 41)) 69 #define s0(x) (ror64((x), 1) ^ ror64((x), 8) ^ ((x) >> 7)) 70 #define s1(x) (ror64((x), 19) ^ ror64((x), 61) ^ ((x) >> 6)) 71 72 static void sha512_block_generic(struct sha512_block_state *state, 73 const u8 *data) 74 { 75 u64 a = state->h[0]; 76 u64 b = state->h[1]; 77 u64 c = state->h[2]; 78 u64 d = state->h[3]; 79 u64 e = state->h[4]; 80 u64 f = state->h[5]; 81 u64 g = state->h[6]; 82 u64 h = state->h[7]; 83 u64 t1, t2; 84 u64 W[16]; 85 86 for (int j = 0; j < 16; j++) 87 W[j] = get_unaligned_be64(data + j * sizeof(u64)); 88 89 for (int i = 0; i < 80; i += 8) { 90 if ((i & 15) == 0 && i != 0) { 91 for (int j = 0; j < 16; j++) { 92 W[j & 15] += s1(W[(j - 2) & 15]) + 93 W[(j - 7) & 15] + 94 s0(W[(j - 15) & 15]); 95 } 96 } 97 t1 = h + e1(e) + Ch(e, f, g) + sha512_K[i] + W[(i & 15)]; 98 t2 = e0(a) + Maj(a, b, c); d += t1; h = t1 + t2; 99 t1 = g + e1(d) + Ch(d, e, f) + sha512_K[i+1] + W[(i & 15) + 1]; 100 t2 = e0(h) + Maj(h, a, b); c += t1; g = t1 + t2; 101 t1 = f + e1(c) + Ch(c, d, e) + sha512_K[i+2] + W[(i & 15) + 2]; 102 t2 = e0(g) + Maj(g, h, a); b += t1; f = t1 + t2; 103 t1 = e + e1(b) + Ch(b, c, d) + sha512_K[i+3] + W[(i & 15) + 3]; 104 t2 = e0(f) + Maj(f, g, h); a += t1; e = t1 + t2; 105 t1 = d + e1(a) + Ch(a, b, c) + sha512_K[i+4] + W[(i & 15) + 4]; 106 t2 = e0(e) + Maj(e, f, g); h += t1; d = t1 + t2; 107 t1 = c + e1(h) + Ch(h, a, b) + sha512_K[i+5] + W[(i & 15) + 5]; 108 t2 = e0(d) + Maj(d, e, f); g += t1; c = t1 + t2; 109 t1 = b + e1(g) + Ch(g, h, a) + sha512_K[i+6] + W[(i & 15) + 6]; 110 t2 = e0(c) + Maj(c, d, e); f += t1; b = t1 + t2; 111 t1 = a + e1(f) + Ch(f, g, h) + sha512_K[i+7] + W[(i & 15) + 7]; 112 t2 = e0(b) + Maj(b, c, d); e += t1; a = t1 + t2; 113 } 114 115 state->h[0] += a; 116 state->h[1] += b; 117 state->h[2] += c; 118 state->h[3] += d; 119 state->h[4] += e; 120 state->h[5] += f; 121 state->h[6] += g; 122 state->h[7] += h; 123 } 124 125 static void __maybe_unused 126 sha512_blocks_generic(struct sha512_block_state *state, 127 const u8 *data, size_t nblocks) 128 { 129 do { 130 sha512_block_generic(state, data); 131 data += SHA512_BLOCK_SIZE; 132 } while (--nblocks); 133 } 134 135 #ifdef CONFIG_CRYPTO_LIB_SHA512_ARCH 136 #include "sha512.h" /* $(SRCARCH)/sha512.h */ 137 #else 138 #define sha512_blocks sha512_blocks_generic 139 #endif 140 141 static void __sha512_init(struct __sha512_ctx *ctx, 142 const struct sha512_block_state *iv, 143 u64 initial_bytecount) 144 { 145 ctx->state = *iv; 146 ctx->bytecount_lo = initial_bytecount; 147 ctx->bytecount_hi = 0; 148 } 149 150 void sha384_init(struct sha384_ctx *ctx) 151 { 152 __sha512_init(&ctx->ctx, &sha384_iv, 0); 153 } 154 EXPORT_SYMBOL_GPL(sha384_init); 155 156 void sha512_init(struct sha512_ctx *ctx) 157 { 158 __sha512_init(&ctx->ctx, &sha512_iv, 0); 159 } 160 EXPORT_SYMBOL_GPL(sha512_init); 161 162 void __sha512_update(struct __sha512_ctx *ctx, const u8 *data, size_t len) 163 { 164 size_t partial = ctx->bytecount_lo % SHA512_BLOCK_SIZE; 165 166 if (check_add_overflow(ctx->bytecount_lo, len, &ctx->bytecount_lo)) 167 ctx->bytecount_hi++; 168 169 if (partial + len >= SHA512_BLOCK_SIZE) { 170 size_t nblocks; 171 172 if (partial) { 173 size_t l = SHA512_BLOCK_SIZE - partial; 174 175 memcpy(&ctx->buf[partial], data, l); 176 data += l; 177 len -= l; 178 179 sha512_blocks(&ctx->state, ctx->buf, 1); 180 } 181 182 nblocks = len / SHA512_BLOCK_SIZE; 183 len %= SHA512_BLOCK_SIZE; 184 185 if (nblocks) { 186 sha512_blocks(&ctx->state, data, nblocks); 187 data += nblocks * SHA512_BLOCK_SIZE; 188 } 189 partial = 0; 190 } 191 if (len) 192 memcpy(&ctx->buf[partial], data, len); 193 } 194 EXPORT_SYMBOL_GPL(__sha512_update); 195 196 static void __sha512_final(struct __sha512_ctx *ctx, 197 u8 *out, size_t digest_size) 198 { 199 u64 bitcount_hi = (ctx->bytecount_hi << 3) | (ctx->bytecount_lo >> 61); 200 u64 bitcount_lo = ctx->bytecount_lo << 3; 201 size_t partial = ctx->bytecount_lo % SHA512_BLOCK_SIZE; 202 203 ctx->buf[partial++] = 0x80; 204 if (partial > SHA512_BLOCK_SIZE - 16) { 205 memset(&ctx->buf[partial], 0, SHA512_BLOCK_SIZE - partial); 206 sha512_blocks(&ctx->state, ctx->buf, 1); 207 partial = 0; 208 } 209 memset(&ctx->buf[partial], 0, SHA512_BLOCK_SIZE - 16 - partial); 210 *(__be64 *)&ctx->buf[SHA512_BLOCK_SIZE - 16] = cpu_to_be64(bitcount_hi); 211 *(__be64 *)&ctx->buf[SHA512_BLOCK_SIZE - 8] = cpu_to_be64(bitcount_lo); 212 sha512_blocks(&ctx->state, ctx->buf, 1); 213 214 for (size_t i = 0; i < digest_size; i += 8) 215 put_unaligned_be64(ctx->state.h[i / 8], out + i); 216 } 217 218 void sha384_final(struct sha384_ctx *ctx, u8 out[SHA384_DIGEST_SIZE]) 219 { 220 __sha512_final(&ctx->ctx, out, SHA384_DIGEST_SIZE); 221 memzero_explicit(ctx, sizeof(*ctx)); 222 } 223 EXPORT_SYMBOL_GPL(sha384_final); 224 225 void sha512_final(struct sha512_ctx *ctx, u8 out[SHA512_DIGEST_SIZE]) 226 { 227 __sha512_final(&ctx->ctx, out, SHA512_DIGEST_SIZE); 228 memzero_explicit(ctx, sizeof(*ctx)); 229 } 230 EXPORT_SYMBOL_GPL(sha512_final); 231 232 void sha384(const u8 *data, size_t len, u8 out[SHA384_DIGEST_SIZE]) 233 { 234 struct sha384_ctx ctx; 235 236 sha384_init(&ctx); 237 sha384_update(&ctx, data, len); 238 sha384_final(&ctx, out); 239 } 240 EXPORT_SYMBOL_GPL(sha384); 241 242 void sha512(const u8 *data, size_t len, u8 out[SHA512_DIGEST_SIZE]) 243 { 244 struct sha512_ctx ctx; 245 246 sha512_init(&ctx); 247 sha512_update(&ctx, data, len); 248 sha512_final(&ctx, out); 249 } 250 EXPORT_SYMBOL_GPL(sha512); 251 252 static void __hmac_sha512_preparekey(struct sha512_block_state *istate, 253 struct sha512_block_state *ostate, 254 const u8 *raw_key, size_t raw_key_len, 255 const struct sha512_block_state *iv) 256 { 257 union { 258 u8 b[SHA512_BLOCK_SIZE]; 259 unsigned long w[SHA512_BLOCK_SIZE / sizeof(unsigned long)]; 260 } derived_key = { 0 }; 261 262 if (unlikely(raw_key_len > SHA512_BLOCK_SIZE)) { 263 if (iv == &sha384_iv) 264 sha384(raw_key, raw_key_len, derived_key.b); 265 else 266 sha512(raw_key, raw_key_len, derived_key.b); 267 } else { 268 memcpy(derived_key.b, raw_key, raw_key_len); 269 } 270 271 for (size_t i = 0; i < ARRAY_SIZE(derived_key.w); i++) 272 derived_key.w[i] ^= REPEAT_BYTE(HMAC_IPAD_VALUE); 273 *istate = *iv; 274 sha512_blocks(istate, derived_key.b, 1); 275 276 for (size_t i = 0; i < ARRAY_SIZE(derived_key.w); i++) 277 derived_key.w[i] ^= REPEAT_BYTE(HMAC_OPAD_VALUE ^ 278 HMAC_IPAD_VALUE); 279 *ostate = *iv; 280 sha512_blocks(ostate, derived_key.b, 1); 281 282 memzero_explicit(&derived_key, sizeof(derived_key)); 283 } 284 285 void hmac_sha384_preparekey(struct hmac_sha384_key *key, 286 const u8 *raw_key, size_t raw_key_len) 287 { 288 __hmac_sha512_preparekey(&key->key.istate, &key->key.ostate, 289 raw_key, raw_key_len, &sha384_iv); 290 } 291 EXPORT_SYMBOL_GPL(hmac_sha384_preparekey); 292 293 void hmac_sha512_preparekey(struct hmac_sha512_key *key, 294 const u8 *raw_key, size_t raw_key_len) 295 { 296 __hmac_sha512_preparekey(&key->key.istate, &key->key.ostate, 297 raw_key, raw_key_len, &sha512_iv); 298 } 299 EXPORT_SYMBOL_GPL(hmac_sha512_preparekey); 300 301 void __hmac_sha512_init(struct __hmac_sha512_ctx *ctx, 302 const struct __hmac_sha512_key *key) 303 { 304 __sha512_init(&ctx->sha_ctx, &key->istate, SHA512_BLOCK_SIZE); 305 ctx->ostate = key->ostate; 306 } 307 EXPORT_SYMBOL_GPL(__hmac_sha512_init); 308 309 void hmac_sha384_init_usingrawkey(struct hmac_sha384_ctx *ctx, 310 const u8 *raw_key, size_t raw_key_len) 311 { 312 __hmac_sha512_preparekey(&ctx->ctx.sha_ctx.state, &ctx->ctx.ostate, 313 raw_key, raw_key_len, &sha384_iv); 314 ctx->ctx.sha_ctx.bytecount_lo = SHA512_BLOCK_SIZE; 315 ctx->ctx.sha_ctx.bytecount_hi = 0; 316 } 317 EXPORT_SYMBOL_GPL(hmac_sha384_init_usingrawkey); 318 319 void hmac_sha512_init_usingrawkey(struct hmac_sha512_ctx *ctx, 320 const u8 *raw_key, size_t raw_key_len) 321 { 322 __hmac_sha512_preparekey(&ctx->ctx.sha_ctx.state, &ctx->ctx.ostate, 323 raw_key, raw_key_len, &sha512_iv); 324 ctx->ctx.sha_ctx.bytecount_lo = SHA512_BLOCK_SIZE; 325 ctx->ctx.sha_ctx.bytecount_hi = 0; 326 } 327 EXPORT_SYMBOL_GPL(hmac_sha512_init_usingrawkey); 328 329 static void __hmac_sha512_final(struct __hmac_sha512_ctx *ctx, 330 u8 *out, size_t digest_size) 331 { 332 /* Generate the padded input for the outer hash in ctx->sha_ctx.buf. */ 333 __sha512_final(&ctx->sha_ctx, ctx->sha_ctx.buf, digest_size); 334 memset(&ctx->sha_ctx.buf[digest_size], 0, 335 SHA512_BLOCK_SIZE - digest_size); 336 ctx->sha_ctx.buf[digest_size] = 0x80; 337 *(__be32 *)&ctx->sha_ctx.buf[SHA512_BLOCK_SIZE - 4] = 338 cpu_to_be32(8 * (SHA512_BLOCK_SIZE + digest_size)); 339 340 /* Compute the outer hash, which gives the HMAC value. */ 341 sha512_blocks(&ctx->ostate, ctx->sha_ctx.buf, 1); 342 for (size_t i = 0; i < digest_size; i += 8) 343 put_unaligned_be64(ctx->ostate.h[i / 8], out + i); 344 345 memzero_explicit(ctx, sizeof(*ctx)); 346 } 347 348 void hmac_sha384_final(struct hmac_sha384_ctx *ctx, 349 u8 out[SHA384_DIGEST_SIZE]) 350 { 351 __hmac_sha512_final(&ctx->ctx, out, SHA384_DIGEST_SIZE); 352 } 353 EXPORT_SYMBOL_GPL(hmac_sha384_final); 354 355 void hmac_sha512_final(struct hmac_sha512_ctx *ctx, 356 u8 out[SHA512_DIGEST_SIZE]) 357 { 358 __hmac_sha512_final(&ctx->ctx, out, SHA512_DIGEST_SIZE); 359 } 360 EXPORT_SYMBOL_GPL(hmac_sha512_final); 361 362 void hmac_sha384(const struct hmac_sha384_key *key, 363 const u8 *data, size_t data_len, u8 out[SHA384_DIGEST_SIZE]) 364 { 365 struct hmac_sha384_ctx ctx; 366 367 hmac_sha384_init(&ctx, key); 368 hmac_sha384_update(&ctx, data, data_len); 369 hmac_sha384_final(&ctx, out); 370 } 371 EXPORT_SYMBOL_GPL(hmac_sha384); 372 373 void hmac_sha512(const struct hmac_sha512_key *key, 374 const u8 *data, size_t data_len, u8 out[SHA512_DIGEST_SIZE]) 375 { 376 struct hmac_sha512_ctx ctx; 377 378 hmac_sha512_init(&ctx, key); 379 hmac_sha512_update(&ctx, data, data_len); 380 hmac_sha512_final(&ctx, out); 381 } 382 EXPORT_SYMBOL_GPL(hmac_sha512); 383 384 void hmac_sha384_usingrawkey(const u8 *raw_key, size_t raw_key_len, 385 const u8 *data, size_t data_len, 386 u8 out[SHA384_DIGEST_SIZE]) 387 { 388 struct hmac_sha384_ctx ctx; 389 390 hmac_sha384_init_usingrawkey(&ctx, raw_key, raw_key_len); 391 hmac_sha384_update(&ctx, data, data_len); 392 hmac_sha384_final(&ctx, out); 393 } 394 EXPORT_SYMBOL_GPL(hmac_sha384_usingrawkey); 395 396 void hmac_sha512_usingrawkey(const u8 *raw_key, size_t raw_key_len, 397 const u8 *data, size_t data_len, 398 u8 out[SHA512_DIGEST_SIZE]) 399 { 400 struct hmac_sha512_ctx ctx; 401 402 hmac_sha512_init_usingrawkey(&ctx, raw_key, raw_key_len); 403 hmac_sha512_update(&ctx, data, data_len); 404 hmac_sha512_final(&ctx, out); 405 } 406 EXPORT_SYMBOL_GPL(hmac_sha512_usingrawkey); 407 408 #ifdef sha512_mod_init_arch 409 static int __init sha512_mod_init(void) 410 { 411 sha512_mod_init_arch(); 412 return 0; 413 } 414 subsys_initcall(sha512_mod_init); 415 416 static void __exit sha512_mod_exit(void) 417 { 418 } 419 module_exit(sha512_mod_exit); 420 #endif 421 422 MODULE_DESCRIPTION("SHA-384, SHA-512, HMAC-SHA384, and HMAC-SHA512 library functions"); 423 MODULE_LICENSE("GPL"); 424