1 /* 2 * Oct 15, 2000 Matt Domsch <Matt_Domsch@dell.com> 3 * Nicer crc32 functions/docs submitted by linux@horizon.com. Thanks! 4 * Code was from the public domain, copyright abandoned. Code was 5 * subsequently included in the kernel, thus was re-licensed under the 6 * GNU GPL v2. 7 * 8 * Oct 12, 2000 Matt Domsch <Matt_Domsch@dell.com> 9 * Same crc32 function was used in 5 other places in the kernel. 10 * I made one version, and deleted the others. 11 * There are various incantations of crc32(). Some use a seed of 0 or ~0. 12 * Some xor at the end with ~0. The generic crc32() function takes 13 * seed as an argument, and doesn't xor at the end. Then individual 14 * users can do whatever they need. 15 * drivers/net/smc9194.c uses seed ~0, doesn't xor with ~0. 16 * fs/jffs2 uses seed 0, doesn't xor with ~0. 17 * fs/partitions/efi.c uses seed ~0, xor's with ~0. 18 * 19 * This source code is licensed under the GNU General Public License, 20 * Version 2. See the file COPYING for more details. 21 */ 22 23 #include <linux/crc32.h> 24 #include <linux/kernel.h> 25 #include <linux/module.h> 26 #include <linux/compiler.h> 27 #include <linux/types.h> 28 #include <linux/slab.h> 29 #include <linux/init.h> 30 #include <asm/atomic.h> 31 #include "crc32defs.h" 32 #if CRC_LE_BITS == 8 33 #define tole(x) __constant_cpu_to_le32(x) 34 #define tobe(x) __constant_cpu_to_be32(x) 35 #else 36 #define tole(x) (x) 37 #define tobe(x) (x) 38 #endif 39 #include "crc32table.h" 40 41 MODULE_AUTHOR("Matt Domsch <Matt_Domsch@dell.com>"); 42 MODULE_DESCRIPTION("Ethernet CRC32 calculations"); 43 MODULE_LICENSE("GPL"); 44 45 /** 46 * crc32_le() - Calculate bitwise little-endian Ethernet AUTODIN II CRC32 47 * @crc: seed value for computation. ~0 for Ethernet, sometimes 0 for 48 * other uses, or the previous crc32 value if computing incrementally. 49 * @p: pointer to buffer over which CRC is run 50 * @len: length of buffer @p 51 */ 52 u32 __attribute_pure__ crc32_le(u32 crc, unsigned char const *p, size_t len); 53 54 #if CRC_LE_BITS == 1 55 /* 56 * In fact, the table-based code will work in this case, but it can be 57 * simplified by inlining the table in ?: form. 58 */ 59 60 u32 __attribute_pure__ crc32_le(u32 crc, unsigned char const *p, size_t len) 61 { 62 int i; 63 while (len--) { 64 crc ^= *p++; 65 for (i = 0; i < 8; i++) 66 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0); 67 } 68 return crc; 69 } 70 #else /* Table-based approach */ 71 72 u32 __attribute_pure__ crc32_le(u32 crc, unsigned char const *p, size_t len) 73 { 74 # if CRC_LE_BITS == 8 75 const u32 *b =(u32 *)p; 76 const u32 *tab = crc32table_le; 77 78 # ifdef __LITTLE_ENDIAN 79 # define DO_CRC(x) crc = tab[ (crc ^ (x)) & 255 ] ^ (crc>>8) 80 # else 81 # define DO_CRC(x) crc = tab[ ((crc >> 24) ^ (x)) & 255] ^ (crc<<8) 82 # endif 83 84 crc = __cpu_to_le32(crc); 85 /* Align it */ 86 if(unlikely(((long)b)&3 && len)){ 87 do { 88 u8 *p = (u8 *)b; 89 DO_CRC(*p++); 90 b = (void *)p; 91 } while ((--len) && ((long)b)&3 ); 92 } 93 if(likely(len >= 4)){ 94 /* load data 32 bits wide, xor data 32 bits wide. */ 95 size_t save_len = len & 3; 96 len = len >> 2; 97 --b; /* use pre increment below(*++b) for speed */ 98 do { 99 crc ^= *++b; 100 DO_CRC(0); 101 DO_CRC(0); 102 DO_CRC(0); 103 DO_CRC(0); 104 } while (--len); 105 b++; /* point to next byte(s) */ 106 len = save_len; 107 } 108 /* And the last few bytes */ 109 if(len){ 110 do { 111 u8 *p = (u8 *)b; 112 DO_CRC(*p++); 113 b = (void *)p; 114 } while (--len); 115 } 116 117 return __le32_to_cpu(crc); 118 #undef ENDIAN_SHIFT 119 #undef DO_CRC 120 121 # elif CRC_LE_BITS == 4 122 while (len--) { 123 crc ^= *p++; 124 crc = (crc >> 4) ^ crc32table_le[crc & 15]; 125 crc = (crc >> 4) ^ crc32table_le[crc & 15]; 126 } 127 return crc; 128 # elif CRC_LE_BITS == 2 129 while (len--) { 130 crc ^= *p++; 131 crc = (crc >> 2) ^ crc32table_le[crc & 3]; 132 crc = (crc >> 2) ^ crc32table_le[crc & 3]; 133 crc = (crc >> 2) ^ crc32table_le[crc & 3]; 134 crc = (crc >> 2) ^ crc32table_le[crc & 3]; 135 } 136 return crc; 137 # endif 138 } 139 #endif 140 141 /** 142 * crc32_be() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32 143 * @crc: seed value for computation. ~0 for Ethernet, sometimes 0 for 144 * other uses, or the previous crc32 value if computing incrementally. 145 * @p: pointer to buffer over which CRC is run 146 * @len: length of buffer @p 147 */ 148 u32 __attribute_pure__ crc32_be(u32 crc, unsigned char const *p, size_t len); 149 150 #if CRC_BE_BITS == 1 151 /* 152 * In fact, the table-based code will work in this case, but it can be 153 * simplified by inlining the table in ?: form. 154 */ 155 156 u32 __attribute_pure__ crc32_be(u32 crc, unsigned char const *p, size_t len) 157 { 158 int i; 159 while (len--) { 160 crc ^= *p++ << 24; 161 for (i = 0; i < 8; i++) 162 crc = 163 (crc << 1) ^ ((crc & 0x80000000) ? CRCPOLY_BE : 164 0); 165 } 166 return crc; 167 } 168 169 #else /* Table-based approach */ 170 u32 __attribute_pure__ crc32_be(u32 crc, unsigned char const *p, size_t len) 171 { 172 # if CRC_BE_BITS == 8 173 const u32 *b =(u32 *)p; 174 const u32 *tab = crc32table_be; 175 176 # ifdef __LITTLE_ENDIAN 177 # define DO_CRC(x) crc = tab[ (crc ^ (x)) & 255 ] ^ (crc>>8) 178 # else 179 # define DO_CRC(x) crc = tab[ ((crc >> 24) ^ (x)) & 255] ^ (crc<<8) 180 # endif 181 182 crc = __cpu_to_be32(crc); 183 /* Align it */ 184 if(unlikely(((long)b)&3 && len)){ 185 do { 186 u8 *p = (u8 *)b; 187 DO_CRC(*p++); 188 b = (u32 *)p; 189 } while ((--len) && ((long)b)&3 ); 190 } 191 if(likely(len >= 4)){ 192 /* load data 32 bits wide, xor data 32 bits wide. */ 193 size_t save_len = len & 3; 194 len = len >> 2; 195 --b; /* use pre increment below(*++b) for speed */ 196 do { 197 crc ^= *++b; 198 DO_CRC(0); 199 DO_CRC(0); 200 DO_CRC(0); 201 DO_CRC(0); 202 } while (--len); 203 b++; /* point to next byte(s) */ 204 len = save_len; 205 } 206 /* And the last few bytes */ 207 if(len){ 208 do { 209 u8 *p = (u8 *)b; 210 DO_CRC(*p++); 211 b = (void *)p; 212 } while (--len); 213 } 214 return __be32_to_cpu(crc); 215 #undef ENDIAN_SHIFT 216 #undef DO_CRC 217 218 # elif CRC_BE_BITS == 4 219 while (len--) { 220 crc ^= *p++ << 24; 221 crc = (crc << 4) ^ crc32table_be[crc >> 28]; 222 crc = (crc << 4) ^ crc32table_be[crc >> 28]; 223 } 224 return crc; 225 # elif CRC_BE_BITS == 2 226 while (len--) { 227 crc ^= *p++ << 24; 228 crc = (crc << 2) ^ crc32table_be[crc >> 30]; 229 crc = (crc << 2) ^ crc32table_be[crc >> 30]; 230 crc = (crc << 2) ^ crc32table_be[crc >> 30]; 231 crc = (crc << 2) ^ crc32table_be[crc >> 30]; 232 } 233 return crc; 234 # endif 235 } 236 #endif 237 238 /** 239 * bitreverse - reverse the order of bits in a u32 value 240 * @x: value to be bit-reversed 241 */ 242 u32 bitreverse(u32 x) 243 { 244 x = (x >> 16) | (x << 16); 245 x = (x >> 8 & 0x00ff00ff) | (x << 8 & 0xff00ff00); 246 x = (x >> 4 & 0x0f0f0f0f) | (x << 4 & 0xf0f0f0f0); 247 x = (x >> 2 & 0x33333333) | (x << 2 & 0xcccccccc); 248 x = (x >> 1 & 0x55555555) | (x << 1 & 0xaaaaaaaa); 249 return x; 250 } 251 252 EXPORT_SYMBOL(crc32_le); 253 EXPORT_SYMBOL(crc32_be); 254 EXPORT_SYMBOL(bitreverse); 255 256 /* 257 * A brief CRC tutorial. 258 * 259 * A CRC is a long-division remainder. You add the CRC to the message, 260 * and the whole thing (message+CRC) is a multiple of the given 261 * CRC polynomial. To check the CRC, you can either check that the 262 * CRC matches the recomputed value, *or* you can check that the 263 * remainder computed on the message+CRC is 0. This latter approach 264 * is used by a lot of hardware implementations, and is why so many 265 * protocols put the end-of-frame flag after the CRC. 266 * 267 * It's actually the same long division you learned in school, except that 268 * - We're working in binary, so the digits are only 0 and 1, and 269 * - When dividing polynomials, there are no carries. Rather than add and 270 * subtract, we just xor. Thus, we tend to get a bit sloppy about 271 * the difference between adding and subtracting. 272 * 273 * A 32-bit CRC polynomial is actually 33 bits long. But since it's 274 * 33 bits long, bit 32 is always going to be set, so usually the CRC 275 * is written in hex with the most significant bit omitted. (If you're 276 * familiar with the IEEE 754 floating-point format, it's the same idea.) 277 * 278 * Note that a CRC is computed over a string of *bits*, so you have 279 * to decide on the endianness of the bits within each byte. To get 280 * the best error-detecting properties, this should correspond to the 281 * order they're actually sent. For example, standard RS-232 serial is 282 * little-endian; the most significant bit (sometimes used for parity) 283 * is sent last. And when appending a CRC word to a message, you should 284 * do it in the right order, matching the endianness. 285 * 286 * Just like with ordinary division, the remainder is always smaller than 287 * the divisor (the CRC polynomial) you're dividing by. Each step of the 288 * division, you take one more digit (bit) of the dividend and append it 289 * to the current remainder. Then you figure out the appropriate multiple 290 * of the divisor to subtract to being the remainder back into range. 291 * In binary, it's easy - it has to be either 0 or 1, and to make the 292 * XOR cancel, it's just a copy of bit 32 of the remainder. 293 * 294 * When computing a CRC, we don't care about the quotient, so we can 295 * throw the quotient bit away, but subtract the appropriate multiple of 296 * the polynomial from the remainder and we're back to where we started, 297 * ready to process the next bit. 298 * 299 * A big-endian CRC written this way would be coded like: 300 * for (i = 0; i < input_bits; i++) { 301 * multiple = remainder & 0x80000000 ? CRCPOLY : 0; 302 * remainder = (remainder << 1 | next_input_bit()) ^ multiple; 303 * } 304 * Notice how, to get at bit 32 of the shifted remainder, we look 305 * at bit 31 of the remainder *before* shifting it. 306 * 307 * But also notice how the next_input_bit() bits we're shifting into 308 * the remainder don't actually affect any decision-making until 309 * 32 bits later. Thus, the first 32 cycles of this are pretty boring. 310 * Also, to add the CRC to a message, we need a 32-bit-long hole for it at 311 * the end, so we have to add 32 extra cycles shifting in zeros at the 312 * end of every message, 313 * 314 * So the standard trick is to rearrage merging in the next_input_bit() 315 * until the moment it's needed. Then the first 32 cycles can be precomputed, 316 * and merging in the final 32 zero bits to make room for the CRC can be 317 * skipped entirely. 318 * This changes the code to: 319 * for (i = 0; i < input_bits; i++) { 320 * remainder ^= next_input_bit() << 31; 321 * multiple = (remainder & 0x80000000) ? CRCPOLY : 0; 322 * remainder = (remainder << 1) ^ multiple; 323 * } 324 * With this optimization, the little-endian code is simpler: 325 * for (i = 0; i < input_bits; i++) { 326 * remainder ^= next_input_bit(); 327 * multiple = (remainder & 1) ? CRCPOLY : 0; 328 * remainder = (remainder >> 1) ^ multiple; 329 * } 330 * 331 * Note that the other details of endianness have been hidden in CRCPOLY 332 * (which must be bit-reversed) and next_input_bit(). 333 * 334 * However, as long as next_input_bit is returning the bits in a sensible 335 * order, we can actually do the merging 8 or more bits at a time rather 336 * than one bit at a time: 337 * for (i = 0; i < input_bytes; i++) { 338 * remainder ^= next_input_byte() << 24; 339 * for (j = 0; j < 8; j++) { 340 * multiple = (remainder & 0x80000000) ? CRCPOLY : 0; 341 * remainder = (remainder << 1) ^ multiple; 342 * } 343 * } 344 * Or in little-endian: 345 * for (i = 0; i < input_bytes; i++) { 346 * remainder ^= next_input_byte(); 347 * for (j = 0; j < 8; j++) { 348 * multiple = (remainder & 1) ? CRCPOLY : 0; 349 * remainder = (remainder << 1) ^ multiple; 350 * } 351 * } 352 * If the input is a multiple of 32 bits, you can even XOR in a 32-bit 353 * word at a time and increase the inner loop count to 32. 354 * 355 * You can also mix and match the two loop styles, for example doing the 356 * bulk of a message byte-at-a-time and adding bit-at-a-time processing 357 * for any fractional bytes at the end. 358 * 359 * The only remaining optimization is to the byte-at-a-time table method. 360 * Here, rather than just shifting one bit of the remainder to decide 361 * in the correct multiple to subtract, we can shift a byte at a time. 362 * This produces a 40-bit (rather than a 33-bit) intermediate remainder, 363 * but again the multiple of the polynomial to subtract depends only on 364 * the high bits, the high 8 bits in this case. 365 * 366 * The multile we need in that case is the low 32 bits of a 40-bit 367 * value whose high 8 bits are given, and which is a multiple of the 368 * generator polynomial. This is simply the CRC-32 of the given 369 * one-byte message. 370 * 371 * Two more details: normally, appending zero bits to a message which 372 * is already a multiple of a polynomial produces a larger multiple of that 373 * polynomial. To enable a CRC to detect this condition, it's common to 374 * invert the CRC before appending it. This makes the remainder of the 375 * message+crc come out not as zero, but some fixed non-zero value. 376 * 377 * The same problem applies to zero bits prepended to the message, and 378 * a similar solution is used. Instead of starting with a remainder of 379 * 0, an initial remainder of all ones is used. As long as you start 380 * the same way on decoding, it doesn't make a difference. 381 */ 382 383 #ifdef UNITTEST 384 385 #include <stdlib.h> 386 #include <stdio.h> 387 388 #if 0 /*Not used at present */ 389 static void 390 buf_dump(char const *prefix, unsigned char const *buf, size_t len) 391 { 392 fputs(prefix, stdout); 393 while (len--) 394 printf(" %02x", *buf++); 395 putchar('\n'); 396 397 } 398 #endif 399 400 static void bytereverse(unsigned char *buf, size_t len) 401 { 402 while (len--) { 403 unsigned char x = *buf; 404 x = (x >> 4) | (x << 4); 405 x = (x >> 2 & 0x33) | (x << 2 & 0xcc); 406 x = (x >> 1 & 0x55) | (x << 1 & 0xaa); 407 *buf++ = x; 408 } 409 } 410 411 static void random_garbage(unsigned char *buf, size_t len) 412 { 413 while (len--) 414 *buf++ = (unsigned char) random(); 415 } 416 417 #if 0 /* Not used at present */ 418 static void store_le(u32 x, unsigned char *buf) 419 { 420 buf[0] = (unsigned char) x; 421 buf[1] = (unsigned char) (x >> 8); 422 buf[2] = (unsigned char) (x >> 16); 423 buf[3] = (unsigned char) (x >> 24); 424 } 425 #endif 426 427 static void store_be(u32 x, unsigned char *buf) 428 { 429 buf[0] = (unsigned char) (x >> 24); 430 buf[1] = (unsigned char) (x >> 16); 431 buf[2] = (unsigned char) (x >> 8); 432 buf[3] = (unsigned char) x; 433 } 434 435 /* 436 * This checks that CRC(buf + CRC(buf)) = 0, and that 437 * CRC commutes with bit-reversal. This has the side effect 438 * of bytewise bit-reversing the input buffer, and returns 439 * the CRC of the reversed buffer. 440 */ 441 static u32 test_step(u32 init, unsigned char *buf, size_t len) 442 { 443 u32 crc1, crc2; 444 size_t i; 445 446 crc1 = crc32_be(init, buf, len); 447 store_be(crc1, buf + len); 448 crc2 = crc32_be(init, buf, len + 4); 449 if (crc2) 450 printf("\nCRC cancellation fail: 0x%08x should be 0\n", 451 crc2); 452 453 for (i = 0; i <= len + 4; i++) { 454 crc2 = crc32_be(init, buf, i); 455 crc2 = crc32_be(crc2, buf + i, len + 4 - i); 456 if (crc2) 457 printf("\nCRC split fail: 0x%08x\n", crc2); 458 } 459 460 /* Now swap it around for the other test */ 461 462 bytereverse(buf, len + 4); 463 init = bitreverse(init); 464 crc2 = bitreverse(crc1); 465 if (crc1 != bitreverse(crc2)) 466 printf("\nBit reversal fail: 0x%08x -> 0x%08x -> 0x%08x\n", 467 crc1, crc2, bitreverse(crc2)); 468 crc1 = crc32_le(init, buf, len); 469 if (crc1 != crc2) 470 printf("\nCRC endianness fail: 0x%08x != 0x%08x\n", crc1, 471 crc2); 472 crc2 = crc32_le(init, buf, len + 4); 473 if (crc2) 474 printf("\nCRC cancellation fail: 0x%08x should be 0\n", 475 crc2); 476 477 for (i = 0; i <= len + 4; i++) { 478 crc2 = crc32_le(init, buf, i); 479 crc2 = crc32_le(crc2, buf + i, len + 4 - i); 480 if (crc2) 481 printf("\nCRC split fail: 0x%08x\n", crc2); 482 } 483 484 return crc1; 485 } 486 487 #define SIZE 64 488 #define INIT1 0 489 #define INIT2 0 490 491 int main(void) 492 { 493 unsigned char buf1[SIZE + 4]; 494 unsigned char buf2[SIZE + 4]; 495 unsigned char buf3[SIZE + 4]; 496 int i, j; 497 u32 crc1, crc2, crc3; 498 499 for (i = 0; i <= SIZE; i++) { 500 printf("\rTesting length %d...", i); 501 fflush(stdout); 502 random_garbage(buf1, i); 503 random_garbage(buf2, i); 504 for (j = 0; j < i; j++) 505 buf3[j] = buf1[j] ^ buf2[j]; 506 507 crc1 = test_step(INIT1, buf1, i); 508 crc2 = test_step(INIT2, buf2, i); 509 /* Now check that CRC(buf1 ^ buf2) = CRC(buf1) ^ CRC(buf2) */ 510 crc3 = test_step(INIT1 ^ INIT2, buf3, i); 511 if (crc3 != (crc1 ^ crc2)) 512 printf("CRC XOR fail: 0x%08x != 0x%08x ^ 0x%08x\n", 513 crc3, crc1, crc2); 514 } 515 printf("\nAll test complete. No failures expected.\n"); 516 return 0; 517 } 518 519 #endif /* UNITTEST */ 520