xref: /linux/lib/crc/powerpc/crct10dif-vpmsum_asm.S (revision a578dd095dfe8b56c167201d9aea43e47d27f807)
1*190c253dSEric Biggers/* SPDX-License-Identifier: GPL-2.0-or-later */
2*190c253dSEric Biggers/*
3*190c253dSEric Biggers * Calculate a CRC T10DIF  with vpmsum acceleration
4*190c253dSEric Biggers *
5*190c253dSEric Biggers * Constants generated by crc32-vpmsum, available at
6*190c253dSEric Biggers * https://github.com/antonblanchard/crc32-vpmsum
7*190c253dSEric Biggers *
8*190c253dSEric Biggers * crc32-vpmsum is
9*190c253dSEric Biggers * Copyright (C) 2015 Anton Blanchard <anton@au.ibm.com>, IBM
10*190c253dSEric Biggers */
11*190c253dSEric Biggers	.section	.rodata
12*190c253dSEric Biggers.balign 16
13*190c253dSEric Biggers
14*190c253dSEric Biggers.byteswap_constant:
15*190c253dSEric Biggers	/* byte reverse permute constant */
16*190c253dSEric Biggers	.octa 0x0F0E0D0C0B0A09080706050403020100
17*190c253dSEric Biggers
18*190c253dSEric Biggers.constants:
19*190c253dSEric Biggers
20*190c253dSEric Biggers	/* Reduce 262144 kbits to 1024 bits */
21*190c253dSEric Biggers	/* x^261184 mod p(x), x^261120 mod p(x) */
22*190c253dSEric Biggers	.octa 0x0000000056d300000000000052550000
23*190c253dSEric Biggers
24*190c253dSEric Biggers	/* x^260160 mod p(x), x^260096 mod p(x) */
25*190c253dSEric Biggers	.octa 0x00000000ee67000000000000a1e40000
26*190c253dSEric Biggers
27*190c253dSEric Biggers	/* x^259136 mod p(x), x^259072 mod p(x) */
28*190c253dSEric Biggers	.octa 0x0000000060830000000000004ad10000
29*190c253dSEric Biggers
30*190c253dSEric Biggers	/* x^258112 mod p(x), x^258048 mod p(x) */
31*190c253dSEric Biggers	.octa 0x000000008cfe0000000000009ab40000
32*190c253dSEric Biggers
33*190c253dSEric Biggers	/* x^257088 mod p(x), x^257024 mod p(x) */
34*190c253dSEric Biggers	.octa 0x000000003e93000000000000fdb50000
35*190c253dSEric Biggers
36*190c253dSEric Biggers	/* x^256064 mod p(x), x^256000 mod p(x) */
37*190c253dSEric Biggers	.octa 0x000000003c2000000000000045480000
38*190c253dSEric Biggers
39*190c253dSEric Biggers	/* x^255040 mod p(x), x^254976 mod p(x) */
40*190c253dSEric Biggers	.octa 0x00000000b1fc0000000000008d690000
41*190c253dSEric Biggers
42*190c253dSEric Biggers	/* x^254016 mod p(x), x^253952 mod p(x) */
43*190c253dSEric Biggers	.octa 0x00000000f82b00000000000024ad0000
44*190c253dSEric Biggers
45*190c253dSEric Biggers	/* x^252992 mod p(x), x^252928 mod p(x) */
46*190c253dSEric Biggers	.octa 0x0000000044420000000000009f1a0000
47*190c253dSEric Biggers
48*190c253dSEric Biggers	/* x^251968 mod p(x), x^251904 mod p(x) */
49*190c253dSEric Biggers	.octa 0x00000000e88c00000000000066ec0000
50*190c253dSEric Biggers
51*190c253dSEric Biggers	/* x^250944 mod p(x), x^250880 mod p(x) */
52*190c253dSEric Biggers	.octa 0x00000000385c000000000000c87d0000
53*190c253dSEric Biggers
54*190c253dSEric Biggers	/* x^249920 mod p(x), x^249856 mod p(x) */
55*190c253dSEric Biggers	.octa 0x000000003227000000000000c8ff0000
56*190c253dSEric Biggers
57*190c253dSEric Biggers	/* x^248896 mod p(x), x^248832 mod p(x) */
58*190c253dSEric Biggers	.octa 0x00000000a9a900000000000033440000
59*190c253dSEric Biggers
60*190c253dSEric Biggers	/* x^247872 mod p(x), x^247808 mod p(x) */
61*190c253dSEric Biggers	.octa 0x00000000abaa00000000000066eb0000
62*190c253dSEric Biggers
63*190c253dSEric Biggers	/* x^246848 mod p(x), x^246784 mod p(x) */
64*190c253dSEric Biggers	.octa 0x000000001ac3000000000000c4ef0000
65*190c253dSEric Biggers
66*190c253dSEric Biggers	/* x^245824 mod p(x), x^245760 mod p(x) */
67*190c253dSEric Biggers	.octa 0x0000000063f000000000000056f30000
68*190c253dSEric Biggers
69*190c253dSEric Biggers	/* x^244800 mod p(x), x^244736 mod p(x) */
70*190c253dSEric Biggers	.octa 0x0000000032cc00000000000002050000
71*190c253dSEric Biggers
72*190c253dSEric Biggers	/* x^243776 mod p(x), x^243712 mod p(x) */
73*190c253dSEric Biggers	.octa 0x00000000f8b5000000000000568e0000
74*190c253dSEric Biggers
75*190c253dSEric Biggers	/* x^242752 mod p(x), x^242688 mod p(x) */
76*190c253dSEric Biggers	.octa 0x000000008db100000000000064290000
77*190c253dSEric Biggers
78*190c253dSEric Biggers	/* x^241728 mod p(x), x^241664 mod p(x) */
79*190c253dSEric Biggers	.octa 0x0000000059ca0000000000006b660000
80*190c253dSEric Biggers
81*190c253dSEric Biggers	/* x^240704 mod p(x), x^240640 mod p(x) */
82*190c253dSEric Biggers	.octa 0x000000005f5c00000000000018f80000
83*190c253dSEric Biggers
84*190c253dSEric Biggers	/* x^239680 mod p(x), x^239616 mod p(x) */
85*190c253dSEric Biggers	.octa 0x0000000061af000000000000b6090000
86*190c253dSEric Biggers
87*190c253dSEric Biggers	/* x^238656 mod p(x), x^238592 mod p(x) */
88*190c253dSEric Biggers	.octa 0x00000000e29e000000000000099a0000
89*190c253dSEric Biggers
90*190c253dSEric Biggers	/* x^237632 mod p(x), x^237568 mod p(x) */
91*190c253dSEric Biggers	.octa 0x000000000975000000000000a8360000
92*190c253dSEric Biggers
93*190c253dSEric Biggers	/* x^236608 mod p(x), x^236544 mod p(x) */
94*190c253dSEric Biggers	.octa 0x0000000043900000000000004f570000
95*190c253dSEric Biggers
96*190c253dSEric Biggers	/* x^235584 mod p(x), x^235520 mod p(x) */
97*190c253dSEric Biggers	.octa 0x00000000f9cd000000000000134c0000
98*190c253dSEric Biggers
99*190c253dSEric Biggers	/* x^234560 mod p(x), x^234496 mod p(x) */
100*190c253dSEric Biggers	.octa 0x000000007c29000000000000ec380000
101*190c253dSEric Biggers
102*190c253dSEric Biggers	/* x^233536 mod p(x), x^233472 mod p(x) */
103*190c253dSEric Biggers	.octa 0x000000004c6a000000000000b0d10000
104*190c253dSEric Biggers
105*190c253dSEric Biggers	/* x^232512 mod p(x), x^232448 mod p(x) */
106*190c253dSEric Biggers	.octa 0x00000000e7290000000000007d3e0000
107*190c253dSEric Biggers
108*190c253dSEric Biggers	/* x^231488 mod p(x), x^231424 mod p(x) */
109*190c253dSEric Biggers	.octa 0x00000000f1ab000000000000f0b20000
110*190c253dSEric Biggers
111*190c253dSEric Biggers	/* x^230464 mod p(x), x^230400 mod p(x) */
112*190c253dSEric Biggers	.octa 0x0000000039db0000000000009c270000
113*190c253dSEric Biggers
114*190c253dSEric Biggers	/* x^229440 mod p(x), x^229376 mod p(x) */
115*190c253dSEric Biggers	.octa 0x000000005e2800000000000092890000
116*190c253dSEric Biggers
117*190c253dSEric Biggers	/* x^228416 mod p(x), x^228352 mod p(x) */
118*190c253dSEric Biggers	.octa 0x00000000d44e000000000000d5ee0000
119*190c253dSEric Biggers
120*190c253dSEric Biggers	/* x^227392 mod p(x), x^227328 mod p(x) */
121*190c253dSEric Biggers	.octa 0x00000000cd0a00000000000041f50000
122*190c253dSEric Biggers
123*190c253dSEric Biggers	/* x^226368 mod p(x), x^226304 mod p(x) */
124*190c253dSEric Biggers	.octa 0x00000000c5b400000000000010520000
125*190c253dSEric Biggers
126*190c253dSEric Biggers	/* x^225344 mod p(x), x^225280 mod p(x) */
127*190c253dSEric Biggers	.octa 0x00000000fd2100000000000042170000
128*190c253dSEric Biggers
129*190c253dSEric Biggers	/* x^224320 mod p(x), x^224256 mod p(x) */
130*190c253dSEric Biggers	.octa 0x000000002f2500000000000095c20000
131*190c253dSEric Biggers
132*190c253dSEric Biggers	/* x^223296 mod p(x), x^223232 mod p(x) */
133*190c253dSEric Biggers	.octa 0x000000001b0100000000000001ce0000
134*190c253dSEric Biggers
135*190c253dSEric Biggers	/* x^222272 mod p(x), x^222208 mod p(x) */
136*190c253dSEric Biggers	.octa 0x000000000d430000000000002aca0000
137*190c253dSEric Biggers
138*190c253dSEric Biggers	/* x^221248 mod p(x), x^221184 mod p(x) */
139*190c253dSEric Biggers	.octa 0x0000000030a6000000000000385e0000
140*190c253dSEric Biggers
141*190c253dSEric Biggers	/* x^220224 mod p(x), x^220160 mod p(x) */
142*190c253dSEric Biggers	.octa 0x00000000e37b0000000000006f7a0000
143*190c253dSEric Biggers
144*190c253dSEric Biggers	/* x^219200 mod p(x), x^219136 mod p(x) */
145*190c253dSEric Biggers	.octa 0x00000000873600000000000024320000
146*190c253dSEric Biggers
147*190c253dSEric Biggers	/* x^218176 mod p(x), x^218112 mod p(x) */
148*190c253dSEric Biggers	.octa 0x00000000e9fb000000000000bd9c0000
149*190c253dSEric Biggers
150*190c253dSEric Biggers	/* x^217152 mod p(x), x^217088 mod p(x) */
151*190c253dSEric Biggers	.octa 0x000000003b9500000000000054bc0000
152*190c253dSEric Biggers
153*190c253dSEric Biggers	/* x^216128 mod p(x), x^216064 mod p(x) */
154*190c253dSEric Biggers	.octa 0x00000000133e000000000000a4660000
155*190c253dSEric Biggers
156*190c253dSEric Biggers	/* x^215104 mod p(x), x^215040 mod p(x) */
157*190c253dSEric Biggers	.octa 0x00000000784500000000000079930000
158*190c253dSEric Biggers
159*190c253dSEric Biggers	/* x^214080 mod p(x), x^214016 mod p(x) */
160*190c253dSEric Biggers	.octa 0x00000000b9800000000000001bb80000
161*190c253dSEric Biggers
162*190c253dSEric Biggers	/* x^213056 mod p(x), x^212992 mod p(x) */
163*190c253dSEric Biggers	.octa 0x00000000687600000000000024400000
164*190c253dSEric Biggers
165*190c253dSEric Biggers	/* x^212032 mod p(x), x^211968 mod p(x) */
166*190c253dSEric Biggers	.octa 0x00000000aff300000000000029e10000
167*190c253dSEric Biggers
168*190c253dSEric Biggers	/* x^211008 mod p(x), x^210944 mod p(x) */
169*190c253dSEric Biggers	.octa 0x0000000024b50000000000005ded0000
170*190c253dSEric Biggers
171*190c253dSEric Biggers	/* x^209984 mod p(x), x^209920 mod p(x) */
172*190c253dSEric Biggers	.octa 0x0000000017e8000000000000b12e0000
173*190c253dSEric Biggers
174*190c253dSEric Biggers	/* x^208960 mod p(x), x^208896 mod p(x) */
175*190c253dSEric Biggers	.octa 0x00000000128400000000000026d20000
176*190c253dSEric Biggers
177*190c253dSEric Biggers	/* x^207936 mod p(x), x^207872 mod p(x) */
178*190c253dSEric Biggers	.octa 0x000000002115000000000000a32a0000
179*190c253dSEric Biggers
180*190c253dSEric Biggers	/* x^206912 mod p(x), x^206848 mod p(x) */
181*190c253dSEric Biggers	.octa 0x000000009595000000000000a1210000
182*190c253dSEric Biggers
183*190c253dSEric Biggers	/* x^205888 mod p(x), x^205824 mod p(x) */
184*190c253dSEric Biggers	.octa 0x00000000281e000000000000ee8b0000
185*190c253dSEric Biggers
186*190c253dSEric Biggers	/* x^204864 mod p(x), x^204800 mod p(x) */
187*190c253dSEric Biggers	.octa 0x0000000006010000000000003d0d0000
188*190c253dSEric Biggers
189*190c253dSEric Biggers	/* x^203840 mod p(x), x^203776 mod p(x) */
190*190c253dSEric Biggers	.octa 0x00000000e2b600000000000034e90000
191*190c253dSEric Biggers
192*190c253dSEric Biggers	/* x^202816 mod p(x), x^202752 mod p(x) */
193*190c253dSEric Biggers	.octa 0x000000001bd40000000000004cdb0000
194*190c253dSEric Biggers
195*190c253dSEric Biggers	/* x^201792 mod p(x), x^201728 mod p(x) */
196*190c253dSEric Biggers	.octa 0x00000000df2800000000000030e90000
197*190c253dSEric Biggers
198*190c253dSEric Biggers	/* x^200768 mod p(x), x^200704 mod p(x) */
199*190c253dSEric Biggers	.octa 0x0000000049c200000000000042590000
200*190c253dSEric Biggers
201*190c253dSEric Biggers	/* x^199744 mod p(x), x^199680 mod p(x) */
202*190c253dSEric Biggers	.octa 0x000000009b97000000000000df950000
203*190c253dSEric Biggers
204*190c253dSEric Biggers	/* x^198720 mod p(x), x^198656 mod p(x) */
205*190c253dSEric Biggers	.octa 0x000000006184000000000000da7b0000
206*190c253dSEric Biggers
207*190c253dSEric Biggers	/* x^197696 mod p(x), x^197632 mod p(x) */
208*190c253dSEric Biggers	.octa 0x00000000461700000000000012510000
209*190c253dSEric Biggers
210*190c253dSEric Biggers	/* x^196672 mod p(x), x^196608 mod p(x) */
211*190c253dSEric Biggers	.octa 0x000000009b40000000000000f37e0000
212*190c253dSEric Biggers
213*190c253dSEric Biggers	/* x^195648 mod p(x), x^195584 mod p(x) */
214*190c253dSEric Biggers	.octa 0x00000000eeb2000000000000ecf10000
215*190c253dSEric Biggers
216*190c253dSEric Biggers	/* x^194624 mod p(x), x^194560 mod p(x) */
217*190c253dSEric Biggers	.octa 0x00000000b2e800000000000050f20000
218*190c253dSEric Biggers
219*190c253dSEric Biggers	/* x^193600 mod p(x), x^193536 mod p(x) */
220*190c253dSEric Biggers	.octa 0x00000000f59a000000000000e0b30000
221*190c253dSEric Biggers
222*190c253dSEric Biggers	/* x^192576 mod p(x), x^192512 mod p(x) */
223*190c253dSEric Biggers	.octa 0x00000000467f0000000000004d5a0000
224*190c253dSEric Biggers
225*190c253dSEric Biggers	/* x^191552 mod p(x), x^191488 mod p(x) */
226*190c253dSEric Biggers	.octa 0x00000000da92000000000000bb010000
227*190c253dSEric Biggers
228*190c253dSEric Biggers	/* x^190528 mod p(x), x^190464 mod p(x) */
229*190c253dSEric Biggers	.octa 0x000000001e1000000000000022a40000
230*190c253dSEric Biggers
231*190c253dSEric Biggers	/* x^189504 mod p(x), x^189440 mod p(x) */
232*190c253dSEric Biggers	.octa 0x0000000058fe000000000000836f0000
233*190c253dSEric Biggers
234*190c253dSEric Biggers	/* x^188480 mod p(x), x^188416 mod p(x) */
235*190c253dSEric Biggers	.octa 0x00000000b9ce000000000000d78d0000
236*190c253dSEric Biggers
237*190c253dSEric Biggers	/* x^187456 mod p(x), x^187392 mod p(x) */
238*190c253dSEric Biggers	.octa 0x0000000022210000000000004f8d0000
239*190c253dSEric Biggers
240*190c253dSEric Biggers	/* x^186432 mod p(x), x^186368 mod p(x) */
241*190c253dSEric Biggers	.octa 0x00000000744600000000000033760000
242*190c253dSEric Biggers
243*190c253dSEric Biggers	/* x^185408 mod p(x), x^185344 mod p(x) */
244*190c253dSEric Biggers	.octa 0x000000001c2e000000000000a1e50000
245*190c253dSEric Biggers
246*190c253dSEric Biggers	/* x^184384 mod p(x), x^184320 mod p(x) */
247*190c253dSEric Biggers	.octa 0x00000000dcc8000000000000a1a40000
248*190c253dSEric Biggers
249*190c253dSEric Biggers	/* x^183360 mod p(x), x^183296 mod p(x) */
250*190c253dSEric Biggers	.octa 0x00000000910f00000000000019a20000
251*190c253dSEric Biggers
252*190c253dSEric Biggers	/* x^182336 mod p(x), x^182272 mod p(x) */
253*190c253dSEric Biggers	.octa 0x0000000055d5000000000000f6ae0000
254*190c253dSEric Biggers
255*190c253dSEric Biggers	/* x^181312 mod p(x), x^181248 mod p(x) */
256*190c253dSEric Biggers	.octa 0x00000000c8ba000000000000a7ac0000
257*190c253dSEric Biggers
258*190c253dSEric Biggers	/* x^180288 mod p(x), x^180224 mod p(x) */
259*190c253dSEric Biggers	.octa 0x0000000031f8000000000000eea20000
260*190c253dSEric Biggers
261*190c253dSEric Biggers	/* x^179264 mod p(x), x^179200 mod p(x) */
262*190c253dSEric Biggers	.octa 0x000000001966000000000000c4d90000
263*190c253dSEric Biggers
264*190c253dSEric Biggers	/* x^178240 mod p(x), x^178176 mod p(x) */
265*190c253dSEric Biggers	.octa 0x00000000b9810000000000002b470000
266*190c253dSEric Biggers
267*190c253dSEric Biggers	/* x^177216 mod p(x), x^177152 mod p(x) */
268*190c253dSEric Biggers	.octa 0x000000008303000000000000f7cf0000
269*190c253dSEric Biggers
270*190c253dSEric Biggers	/* x^176192 mod p(x), x^176128 mod p(x) */
271*190c253dSEric Biggers	.octa 0x000000002ce500000000000035b30000
272*190c253dSEric Biggers
273*190c253dSEric Biggers	/* x^175168 mod p(x), x^175104 mod p(x) */
274*190c253dSEric Biggers	.octa 0x000000002fae0000000000000c7c0000
275*190c253dSEric Biggers
276*190c253dSEric Biggers	/* x^174144 mod p(x), x^174080 mod p(x) */
277*190c253dSEric Biggers	.octa 0x00000000f50c0000000000009edf0000
278*190c253dSEric Biggers
279*190c253dSEric Biggers	/* x^173120 mod p(x), x^173056 mod p(x) */
280*190c253dSEric Biggers	.octa 0x00000000714f00000000000004cd0000
281*190c253dSEric Biggers
282*190c253dSEric Biggers	/* x^172096 mod p(x), x^172032 mod p(x) */
283*190c253dSEric Biggers	.octa 0x00000000c161000000000000541b0000
284*190c253dSEric Biggers
285*190c253dSEric Biggers	/* x^171072 mod p(x), x^171008 mod p(x) */
286*190c253dSEric Biggers	.octa 0x0000000021c8000000000000e2700000
287*190c253dSEric Biggers
288*190c253dSEric Biggers	/* x^170048 mod p(x), x^169984 mod p(x) */
289*190c253dSEric Biggers	.octa 0x00000000b93d00000000000009a60000
290*190c253dSEric Biggers
291*190c253dSEric Biggers	/* x^169024 mod p(x), x^168960 mod p(x) */
292*190c253dSEric Biggers	.octa 0x00000000fbcf000000000000761c0000
293*190c253dSEric Biggers
294*190c253dSEric Biggers	/* x^168000 mod p(x), x^167936 mod p(x) */
295*190c253dSEric Biggers	.octa 0x0000000026350000000000009db30000
296*190c253dSEric Biggers
297*190c253dSEric Biggers	/* x^166976 mod p(x), x^166912 mod p(x) */
298*190c253dSEric Biggers	.octa 0x00000000b64f0000000000003e9f0000
299*190c253dSEric Biggers
300*190c253dSEric Biggers	/* x^165952 mod p(x), x^165888 mod p(x) */
301*190c253dSEric Biggers	.octa 0x00000000bd0e00000000000078590000
302*190c253dSEric Biggers
303*190c253dSEric Biggers	/* x^164928 mod p(x), x^164864 mod p(x) */
304*190c253dSEric Biggers	.octa 0x00000000d9360000000000008bc80000
305*190c253dSEric Biggers
306*190c253dSEric Biggers	/* x^163904 mod p(x), x^163840 mod p(x) */
307*190c253dSEric Biggers	.octa 0x000000002f140000000000008c9f0000
308*190c253dSEric Biggers
309*190c253dSEric Biggers	/* x^162880 mod p(x), x^162816 mod p(x) */
310*190c253dSEric Biggers	.octa 0x000000006a270000000000006af70000
311*190c253dSEric Biggers
312*190c253dSEric Biggers	/* x^161856 mod p(x), x^161792 mod p(x) */
313*190c253dSEric Biggers	.octa 0x000000006685000000000000e5210000
314*190c253dSEric Biggers
315*190c253dSEric Biggers	/* x^160832 mod p(x), x^160768 mod p(x) */
316*190c253dSEric Biggers	.octa 0x0000000062da00000000000008290000
317*190c253dSEric Biggers
318*190c253dSEric Biggers	/* x^159808 mod p(x), x^159744 mod p(x) */
319*190c253dSEric Biggers	.octa 0x00000000bb4b000000000000e4d00000
320*190c253dSEric Biggers
321*190c253dSEric Biggers	/* x^158784 mod p(x), x^158720 mod p(x) */
322*190c253dSEric Biggers	.octa 0x00000000d2490000000000004ae10000
323*190c253dSEric Biggers
324*190c253dSEric Biggers	/* x^157760 mod p(x), x^157696 mod p(x) */
325*190c253dSEric Biggers	.octa 0x00000000c85b00000000000000e70000
326*190c253dSEric Biggers
327*190c253dSEric Biggers	/* x^156736 mod p(x), x^156672 mod p(x) */
328*190c253dSEric Biggers	.octa 0x00000000c37a00000000000015650000
329*190c253dSEric Biggers
330*190c253dSEric Biggers	/* x^155712 mod p(x), x^155648 mod p(x) */
331*190c253dSEric Biggers	.octa 0x0000000018530000000000001c2f0000
332*190c253dSEric Biggers
333*190c253dSEric Biggers	/* x^154688 mod p(x), x^154624 mod p(x) */
334*190c253dSEric Biggers	.octa 0x00000000b46600000000000037bd0000
335*190c253dSEric Biggers
336*190c253dSEric Biggers	/* x^153664 mod p(x), x^153600 mod p(x) */
337*190c253dSEric Biggers	.octa 0x00000000439b00000000000012190000
338*190c253dSEric Biggers
339*190c253dSEric Biggers	/* x^152640 mod p(x), x^152576 mod p(x) */
340*190c253dSEric Biggers	.octa 0x00000000b1260000000000005ece0000
341*190c253dSEric Biggers
342*190c253dSEric Biggers	/* x^151616 mod p(x), x^151552 mod p(x) */
343*190c253dSEric Biggers	.octa 0x00000000d8110000000000002a5e0000
344*190c253dSEric Biggers
345*190c253dSEric Biggers	/* x^150592 mod p(x), x^150528 mod p(x) */
346*190c253dSEric Biggers	.octa 0x00000000099f00000000000052330000
347*190c253dSEric Biggers
348*190c253dSEric Biggers	/* x^149568 mod p(x), x^149504 mod p(x) */
349*190c253dSEric Biggers	.octa 0x00000000f9f9000000000000f9120000
350*190c253dSEric Biggers
351*190c253dSEric Biggers	/* x^148544 mod p(x), x^148480 mod p(x) */
352*190c253dSEric Biggers	.octa 0x000000005cc00000000000000ddc0000
353*190c253dSEric Biggers
354*190c253dSEric Biggers	/* x^147520 mod p(x), x^147456 mod p(x) */
355*190c253dSEric Biggers	.octa 0x00000000343b00000000000012200000
356*190c253dSEric Biggers
357*190c253dSEric Biggers	/* x^146496 mod p(x), x^146432 mod p(x) */
358*190c253dSEric Biggers	.octa 0x000000009222000000000000d12b0000
359*190c253dSEric Biggers
360*190c253dSEric Biggers	/* x^145472 mod p(x), x^145408 mod p(x) */
361*190c253dSEric Biggers	.octa 0x00000000d781000000000000eb2d0000
362*190c253dSEric Biggers
363*190c253dSEric Biggers	/* x^144448 mod p(x), x^144384 mod p(x) */
364*190c253dSEric Biggers	.octa 0x000000000bf400000000000058970000
365*190c253dSEric Biggers
366*190c253dSEric Biggers	/* x^143424 mod p(x), x^143360 mod p(x) */
367*190c253dSEric Biggers	.octa 0x00000000094200000000000013690000
368*190c253dSEric Biggers
369*190c253dSEric Biggers	/* x^142400 mod p(x), x^142336 mod p(x) */
370*190c253dSEric Biggers	.octa 0x00000000d55100000000000051950000
371*190c253dSEric Biggers
372*190c253dSEric Biggers	/* x^141376 mod p(x), x^141312 mod p(x) */
373*190c253dSEric Biggers	.octa 0x000000008f11000000000000954b0000
374*190c253dSEric Biggers
375*190c253dSEric Biggers	/* x^140352 mod p(x), x^140288 mod p(x) */
376*190c253dSEric Biggers	.octa 0x00000000140f000000000000b29e0000
377*190c253dSEric Biggers
378*190c253dSEric Biggers	/* x^139328 mod p(x), x^139264 mod p(x) */
379*190c253dSEric Biggers	.octa 0x00000000c6db000000000000db5d0000
380*190c253dSEric Biggers
381*190c253dSEric Biggers	/* x^138304 mod p(x), x^138240 mod p(x) */
382*190c253dSEric Biggers	.octa 0x00000000715b000000000000dfaf0000
383*190c253dSEric Biggers
384*190c253dSEric Biggers	/* x^137280 mod p(x), x^137216 mod p(x) */
385*190c253dSEric Biggers	.octa 0x000000000dea000000000000e3b60000
386*190c253dSEric Biggers
387*190c253dSEric Biggers	/* x^136256 mod p(x), x^136192 mod p(x) */
388*190c253dSEric Biggers	.octa 0x000000006f94000000000000ddaf0000
389*190c253dSEric Biggers
390*190c253dSEric Biggers	/* x^135232 mod p(x), x^135168 mod p(x) */
391*190c253dSEric Biggers	.octa 0x0000000024e1000000000000e4f70000
392*190c253dSEric Biggers
393*190c253dSEric Biggers	/* x^134208 mod p(x), x^134144 mod p(x) */
394*190c253dSEric Biggers	.octa 0x000000008810000000000000aa110000
395*190c253dSEric Biggers
396*190c253dSEric Biggers	/* x^133184 mod p(x), x^133120 mod p(x) */
397*190c253dSEric Biggers	.octa 0x0000000030c2000000000000a8e60000
398*190c253dSEric Biggers
399*190c253dSEric Biggers	/* x^132160 mod p(x), x^132096 mod p(x) */
400*190c253dSEric Biggers	.octa 0x00000000e6d0000000000000ccf30000
401*190c253dSEric Biggers
402*190c253dSEric Biggers	/* x^131136 mod p(x), x^131072 mod p(x) */
403*190c253dSEric Biggers	.octa 0x000000004da000000000000079bf0000
404*190c253dSEric Biggers
405*190c253dSEric Biggers	/* x^130112 mod p(x), x^130048 mod p(x) */
406*190c253dSEric Biggers	.octa 0x000000007759000000000000b3a30000
407*190c253dSEric Biggers
408*190c253dSEric Biggers	/* x^129088 mod p(x), x^129024 mod p(x) */
409*190c253dSEric Biggers	.octa 0x00000000597400000000000028790000
410*190c253dSEric Biggers
411*190c253dSEric Biggers	/* x^128064 mod p(x), x^128000 mod p(x) */
412*190c253dSEric Biggers	.octa 0x000000007acd000000000000b5820000
413*190c253dSEric Biggers
414*190c253dSEric Biggers	/* x^127040 mod p(x), x^126976 mod p(x) */
415*190c253dSEric Biggers	.octa 0x00000000e6e400000000000026ad0000
416*190c253dSEric Biggers
417*190c253dSEric Biggers	/* x^126016 mod p(x), x^125952 mod p(x) */
418*190c253dSEric Biggers	.octa 0x000000006d49000000000000985b0000
419*190c253dSEric Biggers
420*190c253dSEric Biggers	/* x^124992 mod p(x), x^124928 mod p(x) */
421*190c253dSEric Biggers	.octa 0x000000000f0800000000000011520000
422*190c253dSEric Biggers
423*190c253dSEric Biggers	/* x^123968 mod p(x), x^123904 mod p(x) */
424*190c253dSEric Biggers	.octa 0x000000002c7f000000000000846c0000
425*190c253dSEric Biggers
426*190c253dSEric Biggers	/* x^122944 mod p(x), x^122880 mod p(x) */
427*190c253dSEric Biggers	.octa 0x000000005ce7000000000000ae1d0000
428*190c253dSEric Biggers
429*190c253dSEric Biggers	/* x^121920 mod p(x), x^121856 mod p(x) */
430*190c253dSEric Biggers	.octa 0x00000000d4cb000000000000e21d0000
431*190c253dSEric Biggers
432*190c253dSEric Biggers	/* x^120896 mod p(x), x^120832 mod p(x) */
433*190c253dSEric Biggers	.octa 0x000000003a2300000000000019bb0000
434*190c253dSEric Biggers
435*190c253dSEric Biggers	/* x^119872 mod p(x), x^119808 mod p(x) */
436*190c253dSEric Biggers	.octa 0x000000000e1700000000000095290000
437*190c253dSEric Biggers
438*190c253dSEric Biggers	/* x^118848 mod p(x), x^118784 mod p(x) */
439*190c253dSEric Biggers	.octa 0x000000006e6400000000000050d20000
440*190c253dSEric Biggers
441*190c253dSEric Biggers	/* x^117824 mod p(x), x^117760 mod p(x) */
442*190c253dSEric Biggers	.octa 0x000000008d5c0000000000000cd10000
443*190c253dSEric Biggers
444*190c253dSEric Biggers	/* x^116800 mod p(x), x^116736 mod p(x) */
445*190c253dSEric Biggers	.octa 0x00000000ef310000000000007b570000
446*190c253dSEric Biggers
447*190c253dSEric Biggers	/* x^115776 mod p(x), x^115712 mod p(x) */
448*190c253dSEric Biggers	.octa 0x00000000645d00000000000053d60000
449*190c253dSEric Biggers
450*190c253dSEric Biggers	/* x^114752 mod p(x), x^114688 mod p(x) */
451*190c253dSEric Biggers	.octa 0x0000000018fc00000000000077510000
452*190c253dSEric Biggers
453*190c253dSEric Biggers	/* x^113728 mod p(x), x^113664 mod p(x) */
454*190c253dSEric Biggers	.octa 0x000000000cb3000000000000a7b70000
455*190c253dSEric Biggers
456*190c253dSEric Biggers	/* x^112704 mod p(x), x^112640 mod p(x) */
457*190c253dSEric Biggers	.octa 0x00000000991b000000000000d0780000
458*190c253dSEric Biggers
459*190c253dSEric Biggers	/* x^111680 mod p(x), x^111616 mod p(x) */
460*190c253dSEric Biggers	.octa 0x00000000845a000000000000be3c0000
461*190c253dSEric Biggers
462*190c253dSEric Biggers	/* x^110656 mod p(x), x^110592 mod p(x) */
463*190c253dSEric Biggers	.octa 0x00000000d3a9000000000000df020000
464*190c253dSEric Biggers
465*190c253dSEric Biggers	/* x^109632 mod p(x), x^109568 mod p(x) */
466*190c253dSEric Biggers	.octa 0x0000000017d7000000000000063e0000
467*190c253dSEric Biggers
468*190c253dSEric Biggers	/* x^108608 mod p(x), x^108544 mod p(x) */
469*190c253dSEric Biggers	.octa 0x000000007a860000000000008ab40000
470*190c253dSEric Biggers
471*190c253dSEric Biggers	/* x^107584 mod p(x), x^107520 mod p(x) */
472*190c253dSEric Biggers	.octa 0x00000000fd7c000000000000c7bd0000
473*190c253dSEric Biggers
474*190c253dSEric Biggers	/* x^106560 mod p(x), x^106496 mod p(x) */
475*190c253dSEric Biggers	.octa 0x00000000a56b000000000000efd60000
476*190c253dSEric Biggers
477*190c253dSEric Biggers	/* x^105536 mod p(x), x^105472 mod p(x) */
478*190c253dSEric Biggers	.octa 0x0000000010e400000000000071380000
479*190c253dSEric Biggers
480*190c253dSEric Biggers	/* x^104512 mod p(x), x^104448 mod p(x) */
481*190c253dSEric Biggers	.octa 0x00000000994500000000000004d30000
482*190c253dSEric Biggers
483*190c253dSEric Biggers	/* x^103488 mod p(x), x^103424 mod p(x) */
484*190c253dSEric Biggers	.octa 0x00000000b83c0000000000003b0e0000
485*190c253dSEric Biggers
486*190c253dSEric Biggers	/* x^102464 mod p(x), x^102400 mod p(x) */
487*190c253dSEric Biggers	.octa 0x00000000d6c10000000000008b020000
488*190c253dSEric Biggers
489*190c253dSEric Biggers	/* x^101440 mod p(x), x^101376 mod p(x) */
490*190c253dSEric Biggers	.octa 0x000000009efc000000000000da940000
491*190c253dSEric Biggers
492*190c253dSEric Biggers	/* x^100416 mod p(x), x^100352 mod p(x) */
493*190c253dSEric Biggers	.octa 0x000000005e87000000000000f9f70000
494*190c253dSEric Biggers
495*190c253dSEric Biggers	/* x^99392 mod p(x), x^99328 mod p(x) */
496*190c253dSEric Biggers	.octa 0x000000006c9b00000000000045e40000
497*190c253dSEric Biggers
498*190c253dSEric Biggers	/* x^98368 mod p(x), x^98304 mod p(x) */
499*190c253dSEric Biggers	.octa 0x00000000178a00000000000083940000
500*190c253dSEric Biggers
501*190c253dSEric Biggers	/* x^97344 mod p(x), x^97280 mod p(x) */
502*190c253dSEric Biggers	.octa 0x00000000f0c8000000000000f0a00000
503*190c253dSEric Biggers
504*190c253dSEric Biggers	/* x^96320 mod p(x), x^96256 mod p(x) */
505*190c253dSEric Biggers	.octa 0x00000000f699000000000000b74b0000
506*190c253dSEric Biggers
507*190c253dSEric Biggers	/* x^95296 mod p(x), x^95232 mod p(x) */
508*190c253dSEric Biggers	.octa 0x00000000316d000000000000c1cf0000
509*190c253dSEric Biggers
510*190c253dSEric Biggers	/* x^94272 mod p(x), x^94208 mod p(x) */
511*190c253dSEric Biggers	.octa 0x00000000987e00000000000072680000
512*190c253dSEric Biggers
513*190c253dSEric Biggers	/* x^93248 mod p(x), x^93184 mod p(x) */
514*190c253dSEric Biggers	.octa 0x00000000acff000000000000e0ab0000
515*190c253dSEric Biggers
516*190c253dSEric Biggers	/* x^92224 mod p(x), x^92160 mod p(x) */
517*190c253dSEric Biggers	.octa 0x00000000a1f6000000000000c5a80000
518*190c253dSEric Biggers
519*190c253dSEric Biggers	/* x^91200 mod p(x), x^91136 mod p(x) */
520*190c253dSEric Biggers	.octa 0x0000000061bd000000000000cf690000
521*190c253dSEric Biggers
522*190c253dSEric Biggers	/* x^90176 mod p(x), x^90112 mod p(x) */
523*190c253dSEric Biggers	.octa 0x00000000c9f2000000000000cbcc0000
524*190c253dSEric Biggers
525*190c253dSEric Biggers	/* x^89152 mod p(x), x^89088 mod p(x) */
526*190c253dSEric Biggers	.octa 0x000000005a33000000000000de050000
527*190c253dSEric Biggers
528*190c253dSEric Biggers	/* x^88128 mod p(x), x^88064 mod p(x) */
529*190c253dSEric Biggers	.octa 0x00000000e416000000000000ccd70000
530*190c253dSEric Biggers
531*190c253dSEric Biggers	/* x^87104 mod p(x), x^87040 mod p(x) */
532*190c253dSEric Biggers	.octa 0x0000000058930000000000002f670000
533*190c253dSEric Biggers
534*190c253dSEric Biggers	/* x^86080 mod p(x), x^86016 mod p(x) */
535*190c253dSEric Biggers	.octa 0x00000000a9d3000000000000152f0000
536*190c253dSEric Biggers
537*190c253dSEric Biggers	/* x^85056 mod p(x), x^84992 mod p(x) */
538*190c253dSEric Biggers	.octa 0x00000000c114000000000000ecc20000
539*190c253dSEric Biggers
540*190c253dSEric Biggers	/* x^84032 mod p(x), x^83968 mod p(x) */
541*190c253dSEric Biggers	.octa 0x00000000b9270000000000007c890000
542*190c253dSEric Biggers
543*190c253dSEric Biggers	/* x^83008 mod p(x), x^82944 mod p(x) */
544*190c253dSEric Biggers	.octa 0x000000002e6000000000000006ee0000
545*190c253dSEric Biggers
546*190c253dSEric Biggers	/* x^81984 mod p(x), x^81920 mod p(x) */
547*190c253dSEric Biggers	.octa 0x00000000dfc600000000000009100000
548*190c253dSEric Biggers
549*190c253dSEric Biggers	/* x^80960 mod p(x), x^80896 mod p(x) */
550*190c253dSEric Biggers	.octa 0x000000004911000000000000ad4e0000
551*190c253dSEric Biggers
552*190c253dSEric Biggers	/* x^79936 mod p(x), x^79872 mod p(x) */
553*190c253dSEric Biggers	.octa 0x00000000ae1b000000000000b04d0000
554*190c253dSEric Biggers
555*190c253dSEric Biggers	/* x^78912 mod p(x), x^78848 mod p(x) */
556*190c253dSEric Biggers	.octa 0x0000000005fa000000000000e9900000
557*190c253dSEric Biggers
558*190c253dSEric Biggers	/* x^77888 mod p(x), x^77824 mod p(x) */
559*190c253dSEric Biggers	.octa 0x0000000004a1000000000000cc6f0000
560*190c253dSEric Biggers
561*190c253dSEric Biggers	/* x^76864 mod p(x), x^76800 mod p(x) */
562*190c253dSEric Biggers	.octa 0x00000000af73000000000000ed110000
563*190c253dSEric Biggers
564*190c253dSEric Biggers	/* x^75840 mod p(x), x^75776 mod p(x) */
565*190c253dSEric Biggers	.octa 0x0000000082530000000000008f7e0000
566*190c253dSEric Biggers
567*190c253dSEric Biggers	/* x^74816 mod p(x), x^74752 mod p(x) */
568*190c253dSEric Biggers	.octa 0x00000000cfdc000000000000594f0000
569*190c253dSEric Biggers
570*190c253dSEric Biggers	/* x^73792 mod p(x), x^73728 mod p(x) */
571*190c253dSEric Biggers	.octa 0x00000000a6b6000000000000a8750000
572*190c253dSEric Biggers
573*190c253dSEric Biggers	/* x^72768 mod p(x), x^72704 mod p(x) */
574*190c253dSEric Biggers	.octa 0x00000000fd76000000000000aa0c0000
575*190c253dSEric Biggers
576*190c253dSEric Biggers	/* x^71744 mod p(x), x^71680 mod p(x) */
577*190c253dSEric Biggers	.octa 0x0000000006f500000000000071db0000
578*190c253dSEric Biggers
579*190c253dSEric Biggers	/* x^70720 mod p(x), x^70656 mod p(x) */
580*190c253dSEric Biggers	.octa 0x0000000037ca000000000000ab0c0000
581*190c253dSEric Biggers
582*190c253dSEric Biggers	/* x^69696 mod p(x), x^69632 mod p(x) */
583*190c253dSEric Biggers	.octa 0x00000000d7ab000000000000b7a00000
584*190c253dSEric Biggers
585*190c253dSEric Biggers	/* x^68672 mod p(x), x^68608 mod p(x) */
586*190c253dSEric Biggers	.octa 0x00000000440800000000000090d30000
587*190c253dSEric Biggers
588*190c253dSEric Biggers	/* x^67648 mod p(x), x^67584 mod p(x) */
589*190c253dSEric Biggers	.octa 0x00000000186100000000000054730000
590*190c253dSEric Biggers
591*190c253dSEric Biggers	/* x^66624 mod p(x), x^66560 mod p(x) */
592*190c253dSEric Biggers	.octa 0x000000007368000000000000a3a20000
593*190c253dSEric Biggers
594*190c253dSEric Biggers	/* x^65600 mod p(x), x^65536 mod p(x) */
595*190c253dSEric Biggers	.octa 0x0000000026d0000000000000f9040000
596*190c253dSEric Biggers
597*190c253dSEric Biggers	/* x^64576 mod p(x), x^64512 mod p(x) */
598*190c253dSEric Biggers	.octa 0x00000000fe770000000000009c0a0000
599*190c253dSEric Biggers
600*190c253dSEric Biggers	/* x^63552 mod p(x), x^63488 mod p(x) */
601*190c253dSEric Biggers	.octa 0x000000002cba000000000000d1e70000
602*190c253dSEric Biggers
603*190c253dSEric Biggers	/* x^62528 mod p(x), x^62464 mod p(x) */
604*190c253dSEric Biggers	.octa 0x00000000f8bd0000000000005ac10000
605*190c253dSEric Biggers
606*190c253dSEric Biggers	/* x^61504 mod p(x), x^61440 mod p(x) */
607*190c253dSEric Biggers	.octa 0x000000007372000000000000d68d0000
608*190c253dSEric Biggers
609*190c253dSEric Biggers	/* x^60480 mod p(x), x^60416 mod p(x) */
610*190c253dSEric Biggers	.octa 0x00000000f37f00000000000089f60000
611*190c253dSEric Biggers
612*190c253dSEric Biggers	/* x^59456 mod p(x), x^59392 mod p(x) */
613*190c253dSEric Biggers	.octa 0x00000000078400000000000008a90000
614*190c253dSEric Biggers
615*190c253dSEric Biggers	/* x^58432 mod p(x), x^58368 mod p(x) */
616*190c253dSEric Biggers	.octa 0x00000000d3e400000000000042360000
617*190c253dSEric Biggers
618*190c253dSEric Biggers	/* x^57408 mod p(x), x^57344 mod p(x) */
619*190c253dSEric Biggers	.octa 0x00000000eba800000000000092d50000
620*190c253dSEric Biggers
621*190c253dSEric Biggers	/* x^56384 mod p(x), x^56320 mod p(x) */
622*190c253dSEric Biggers	.octa 0x00000000afbe000000000000b4d50000
623*190c253dSEric Biggers
624*190c253dSEric Biggers	/* x^55360 mod p(x), x^55296 mod p(x) */
625*190c253dSEric Biggers	.octa 0x00000000d8ca000000000000c9060000
626*190c253dSEric Biggers
627*190c253dSEric Biggers	/* x^54336 mod p(x), x^54272 mod p(x) */
628*190c253dSEric Biggers	.octa 0x00000000c2d00000000000008f4f0000
629*190c253dSEric Biggers
630*190c253dSEric Biggers	/* x^53312 mod p(x), x^53248 mod p(x) */
631*190c253dSEric Biggers	.octa 0x00000000373200000000000028690000
632*190c253dSEric Biggers
633*190c253dSEric Biggers	/* x^52288 mod p(x), x^52224 mod p(x) */
634*190c253dSEric Biggers	.octa 0x0000000046ae000000000000c3b30000
635*190c253dSEric Biggers
636*190c253dSEric Biggers	/* x^51264 mod p(x), x^51200 mod p(x) */
637*190c253dSEric Biggers	.octa 0x00000000b243000000000000f8700000
638*190c253dSEric Biggers
639*190c253dSEric Biggers	/* x^50240 mod p(x), x^50176 mod p(x) */
640*190c253dSEric Biggers	.octa 0x00000000f7f500000000000029eb0000
641*190c253dSEric Biggers
642*190c253dSEric Biggers	/* x^49216 mod p(x), x^49152 mod p(x) */
643*190c253dSEric Biggers	.octa 0x000000000c7e000000000000fe730000
644*190c253dSEric Biggers
645*190c253dSEric Biggers	/* x^48192 mod p(x), x^48128 mod p(x) */
646*190c253dSEric Biggers	.octa 0x00000000c38200000000000096000000
647*190c253dSEric Biggers
648*190c253dSEric Biggers	/* x^47168 mod p(x), x^47104 mod p(x) */
649*190c253dSEric Biggers	.octa 0x000000008956000000000000683c0000
650*190c253dSEric Biggers
651*190c253dSEric Biggers	/* x^46144 mod p(x), x^46080 mod p(x) */
652*190c253dSEric Biggers	.octa 0x00000000422d0000000000005f1e0000
653*190c253dSEric Biggers
654*190c253dSEric Biggers	/* x^45120 mod p(x), x^45056 mod p(x) */
655*190c253dSEric Biggers	.octa 0x00000000ac0f0000000000006f810000
656*190c253dSEric Biggers
657*190c253dSEric Biggers	/* x^44096 mod p(x), x^44032 mod p(x) */
658*190c253dSEric Biggers	.octa 0x00000000ce30000000000000031f0000
659*190c253dSEric Biggers
660*190c253dSEric Biggers	/* x^43072 mod p(x), x^43008 mod p(x) */
661*190c253dSEric Biggers	.octa 0x000000003d43000000000000455a0000
662*190c253dSEric Biggers
663*190c253dSEric Biggers	/* x^42048 mod p(x), x^41984 mod p(x) */
664*190c253dSEric Biggers	.octa 0x000000007ebe000000000000a6050000
665*190c253dSEric Biggers
666*190c253dSEric Biggers	/* x^41024 mod p(x), x^40960 mod p(x) */
667*190c253dSEric Biggers	.octa 0x00000000976e00000000000077eb0000
668*190c253dSEric Biggers
669*190c253dSEric Biggers	/* x^40000 mod p(x), x^39936 mod p(x) */
670*190c253dSEric Biggers	.octa 0x000000000872000000000000389c0000
671*190c253dSEric Biggers
672*190c253dSEric Biggers	/* x^38976 mod p(x), x^38912 mod p(x) */
673*190c253dSEric Biggers	.octa 0x000000008979000000000000c7b20000
674*190c253dSEric Biggers
675*190c253dSEric Biggers	/* x^37952 mod p(x), x^37888 mod p(x) */
676*190c253dSEric Biggers	.octa 0x000000005c1e0000000000001d870000
677*190c253dSEric Biggers
678*190c253dSEric Biggers	/* x^36928 mod p(x), x^36864 mod p(x) */
679*190c253dSEric Biggers	.octa 0x00000000aebb00000000000045810000
680*190c253dSEric Biggers
681*190c253dSEric Biggers	/* x^35904 mod p(x), x^35840 mod p(x) */
682*190c253dSEric Biggers	.octa 0x000000004f7e0000000000006d4a0000
683*190c253dSEric Biggers
684*190c253dSEric Biggers	/* x^34880 mod p(x), x^34816 mod p(x) */
685*190c253dSEric Biggers	.octa 0x00000000ea98000000000000b9200000
686*190c253dSEric Biggers
687*190c253dSEric Biggers	/* x^33856 mod p(x), x^33792 mod p(x) */
688*190c253dSEric Biggers	.octa 0x00000000f39600000000000022f20000
689*190c253dSEric Biggers
690*190c253dSEric Biggers	/* x^32832 mod p(x), x^32768 mod p(x) */
691*190c253dSEric Biggers	.octa 0x000000000bc500000000000041ca0000
692*190c253dSEric Biggers
693*190c253dSEric Biggers	/* x^31808 mod p(x), x^31744 mod p(x) */
694*190c253dSEric Biggers	.octa 0x00000000786400000000000078500000
695*190c253dSEric Biggers
696*190c253dSEric Biggers	/* x^30784 mod p(x), x^30720 mod p(x) */
697*190c253dSEric Biggers	.octa 0x00000000be970000000000009e7e0000
698*190c253dSEric Biggers
699*190c253dSEric Biggers	/* x^29760 mod p(x), x^29696 mod p(x) */
700*190c253dSEric Biggers	.octa 0x00000000dd6d000000000000a53c0000
701*190c253dSEric Biggers
702*190c253dSEric Biggers	/* x^28736 mod p(x), x^28672 mod p(x) */
703*190c253dSEric Biggers	.octa 0x000000004c3f00000000000039340000
704*190c253dSEric Biggers
705*190c253dSEric Biggers	/* x^27712 mod p(x), x^27648 mod p(x) */
706*190c253dSEric Biggers	.octa 0x0000000093a4000000000000b58e0000
707*190c253dSEric Biggers
708*190c253dSEric Biggers	/* x^26688 mod p(x), x^26624 mod p(x) */
709*190c253dSEric Biggers	.octa 0x0000000050fb00000000000062d40000
710*190c253dSEric Biggers
711*190c253dSEric Biggers	/* x^25664 mod p(x), x^25600 mod p(x) */
712*190c253dSEric Biggers	.octa 0x00000000f505000000000000a26f0000
713*190c253dSEric Biggers
714*190c253dSEric Biggers	/* x^24640 mod p(x), x^24576 mod p(x) */
715*190c253dSEric Biggers	.octa 0x0000000064f900000000000065e60000
716*190c253dSEric Biggers
717*190c253dSEric Biggers	/* x^23616 mod p(x), x^23552 mod p(x) */
718*190c253dSEric Biggers	.octa 0x00000000e8c2000000000000aad90000
719*190c253dSEric Biggers
720*190c253dSEric Biggers	/* x^22592 mod p(x), x^22528 mod p(x) */
721*190c253dSEric Biggers	.octa 0x00000000720b000000000000a3b00000
722*190c253dSEric Biggers
723*190c253dSEric Biggers	/* x^21568 mod p(x), x^21504 mod p(x) */
724*190c253dSEric Biggers	.octa 0x00000000e992000000000000d2680000
725*190c253dSEric Biggers
726*190c253dSEric Biggers	/* x^20544 mod p(x), x^20480 mod p(x) */
727*190c253dSEric Biggers	.octa 0x000000009132000000000000cf4c0000
728*190c253dSEric Biggers
729*190c253dSEric Biggers	/* x^19520 mod p(x), x^19456 mod p(x) */
730*190c253dSEric Biggers	.octa 0x00000000608a00000000000076610000
731*190c253dSEric Biggers
732*190c253dSEric Biggers	/* x^18496 mod p(x), x^18432 mod p(x) */
733*190c253dSEric Biggers	.octa 0x000000009948000000000000fb9f0000
734*190c253dSEric Biggers
735*190c253dSEric Biggers	/* x^17472 mod p(x), x^17408 mod p(x) */
736*190c253dSEric Biggers	.octa 0x00000000173000000000000003770000
737*190c253dSEric Biggers
738*190c253dSEric Biggers	/* x^16448 mod p(x), x^16384 mod p(x) */
739*190c253dSEric Biggers	.octa 0x000000006fe300000000000004880000
740*190c253dSEric Biggers
741*190c253dSEric Biggers	/* x^15424 mod p(x), x^15360 mod p(x) */
742*190c253dSEric Biggers	.octa 0x00000000e15300000000000056a70000
743*190c253dSEric Biggers
744*190c253dSEric Biggers	/* x^14400 mod p(x), x^14336 mod p(x) */
745*190c253dSEric Biggers	.octa 0x0000000092d60000000000009dfd0000
746*190c253dSEric Biggers
747*190c253dSEric Biggers	/* x^13376 mod p(x), x^13312 mod p(x) */
748*190c253dSEric Biggers	.octa 0x0000000002fd00000000000074c80000
749*190c253dSEric Biggers
750*190c253dSEric Biggers	/* x^12352 mod p(x), x^12288 mod p(x) */
751*190c253dSEric Biggers	.octa 0x00000000c78b000000000000a3ec0000
752*190c253dSEric Biggers
753*190c253dSEric Biggers	/* x^11328 mod p(x), x^11264 mod p(x) */
754*190c253dSEric Biggers	.octa 0x000000009262000000000000b3530000
755*190c253dSEric Biggers
756*190c253dSEric Biggers	/* x^10304 mod p(x), x^10240 mod p(x) */
757*190c253dSEric Biggers	.octa 0x0000000084f200000000000047bf0000
758*190c253dSEric Biggers
759*190c253dSEric Biggers	/* x^9280 mod p(x), x^9216 mod p(x) */
760*190c253dSEric Biggers	.octa 0x0000000067ee000000000000e97c0000
761*190c253dSEric Biggers
762*190c253dSEric Biggers	/* x^8256 mod p(x), x^8192 mod p(x) */
763*190c253dSEric Biggers	.octa 0x00000000535b00000000000091e10000
764*190c253dSEric Biggers
765*190c253dSEric Biggers	/* x^7232 mod p(x), x^7168 mod p(x) */
766*190c253dSEric Biggers	.octa 0x000000007ebb00000000000055060000
767*190c253dSEric Biggers
768*190c253dSEric Biggers	/* x^6208 mod p(x), x^6144 mod p(x) */
769*190c253dSEric Biggers	.octa 0x00000000c6a1000000000000fd360000
770*190c253dSEric Biggers
771*190c253dSEric Biggers	/* x^5184 mod p(x), x^5120 mod p(x) */
772*190c253dSEric Biggers	.octa 0x000000001be500000000000055860000
773*190c253dSEric Biggers
774*190c253dSEric Biggers	/* x^4160 mod p(x), x^4096 mod p(x) */
775*190c253dSEric Biggers	.octa 0x00000000ae0e0000000000005bd00000
776*190c253dSEric Biggers
777*190c253dSEric Biggers	/* x^3136 mod p(x), x^3072 mod p(x) */
778*190c253dSEric Biggers	.octa 0x0000000022040000000000008db20000
779*190c253dSEric Biggers
780*190c253dSEric Biggers	/* x^2112 mod p(x), x^2048 mod p(x) */
781*190c253dSEric Biggers	.octa 0x00000000c9eb000000000000efe20000
782*190c253dSEric Biggers
783*190c253dSEric Biggers	/* x^1088 mod p(x), x^1024 mod p(x) */
784*190c253dSEric Biggers	.octa 0x0000000039b400000000000051d10000
785*190c253dSEric Biggers
786*190c253dSEric Biggers.short_constants:
787*190c253dSEric Biggers
788*190c253dSEric Biggers	/* Reduce final 1024-2048 bits to 64 bits, shifting 32 bits to include the trailing 32 bits of zeros */
789*190c253dSEric Biggers	/* x^2048 mod p(x), x^2016 mod p(x), x^1984 mod p(x), x^1952 mod p(x) */
790*190c253dSEric Biggers	.octa 0xefe20000dccf00009440000033590000
791*190c253dSEric Biggers
792*190c253dSEric Biggers	/* x^1920 mod p(x), x^1888 mod p(x), x^1856 mod p(x), x^1824 mod p(x) */
793*190c253dSEric Biggers	.octa 0xee6300002f3f000062180000e0ed0000
794*190c253dSEric Biggers
795*190c253dSEric Biggers	/* x^1792 mod p(x), x^1760 mod p(x), x^1728 mod p(x), x^1696 mod p(x) */
796*190c253dSEric Biggers	.octa 0xcf5f000017ef0000ccbe000023d30000
797*190c253dSEric Biggers
798*190c253dSEric Biggers	/* x^1664 mod p(x), x^1632 mod p(x), x^1600 mod p(x), x^1568 mod p(x) */
799*190c253dSEric Biggers	.octa 0x6d0c0000a30e00000920000042630000
800*190c253dSEric Biggers
801*190c253dSEric Biggers	/* x^1536 mod p(x), x^1504 mod p(x), x^1472 mod p(x), x^1440 mod p(x) */
802*190c253dSEric Biggers	.octa 0x21d30000932b0000a7a00000efcc0000
803*190c253dSEric Biggers
804*190c253dSEric Biggers	/* x^1408 mod p(x), x^1376 mod p(x), x^1344 mod p(x), x^1312 mod p(x) */
805*190c253dSEric Biggers	.octa 0x10be00000b310000666f00000d1c0000
806*190c253dSEric Biggers
807*190c253dSEric Biggers	/* x^1280 mod p(x), x^1248 mod p(x), x^1216 mod p(x), x^1184 mod p(x) */
808*190c253dSEric Biggers	.octa 0x1f240000ce9e0000caad0000589e0000
809*190c253dSEric Biggers
810*190c253dSEric Biggers	/* x^1152 mod p(x), x^1120 mod p(x), x^1088 mod p(x), x^1056 mod p(x) */
811*190c253dSEric Biggers	.octa 0x29610000d02b000039b400007cf50000
812*190c253dSEric Biggers
813*190c253dSEric Biggers	/* x^1024 mod p(x), x^992 mod p(x), x^960 mod p(x), x^928 mod p(x) */
814*190c253dSEric Biggers	.octa 0x51d100009d9d00003c0e0000bfd60000
815*190c253dSEric Biggers
816*190c253dSEric Biggers	/* x^896 mod p(x), x^864 mod p(x), x^832 mod p(x), x^800 mod p(x) */
817*190c253dSEric Biggers	.octa 0xda390000ceae000013830000713c0000
818*190c253dSEric Biggers
819*190c253dSEric Biggers	/* x^768 mod p(x), x^736 mod p(x), x^704 mod p(x), x^672 mod p(x) */
820*190c253dSEric Biggers	.octa 0xb67800001e16000085c0000080a60000
821*190c253dSEric Biggers
822*190c253dSEric Biggers	/* x^640 mod p(x), x^608 mod p(x), x^576 mod p(x), x^544 mod p(x) */
823*190c253dSEric Biggers	.octa 0x0db40000f7f90000371d0000e6580000
824*190c253dSEric Biggers
825*190c253dSEric Biggers	/* x^512 mod p(x), x^480 mod p(x), x^448 mod p(x), x^416 mod p(x) */
826*190c253dSEric Biggers	.octa 0x87e70000044c0000aadb0000a4970000
827*190c253dSEric Biggers
828*190c253dSEric Biggers	/* x^384 mod p(x), x^352 mod p(x), x^320 mod p(x), x^288 mod p(x) */
829*190c253dSEric Biggers	.octa 0x1f990000ad180000d8b30000e7b50000
830*190c253dSEric Biggers
831*190c253dSEric Biggers	/* x^256 mod p(x), x^224 mod p(x), x^192 mod p(x), x^160 mod p(x) */
832*190c253dSEric Biggers	.octa 0xbe6c00006ee300004c1a000006df0000
833*190c253dSEric Biggers
834*190c253dSEric Biggers	/* x^128 mod p(x), x^96 mod p(x), x^64 mod p(x), x^32 mod p(x) */
835*190c253dSEric Biggers	.octa 0xfb0b00002d560000136800008bb70000
836*190c253dSEric Biggers
837*190c253dSEric Biggers
838*190c253dSEric Biggers.barrett_constants:
839*190c253dSEric Biggers	/* Barrett constant m - (4^32)/n */
840*190c253dSEric Biggers	.octa 0x000000000000000000000001f65a57f8	/* x^64 div p(x) */
841*190c253dSEric Biggers	/* Barrett constant n */
842*190c253dSEric Biggers	.octa 0x0000000000000000000000018bb70000
843*190c253dSEric Biggers
844*190c253dSEric Biggers#define CRC_FUNCTION_NAME __crct10dif_vpmsum
845*190c253dSEric Biggers#include "crc-vpmsum-template.S"
846