1*190c253dSEric Biggers/* SPDX-License-Identifier: GPL-2.0-or-later */ 2*190c253dSEric Biggers/* 3*190c253dSEric Biggers * Calculate a CRC T10DIF with vpmsum acceleration 4*190c253dSEric Biggers * 5*190c253dSEric Biggers * Constants generated by crc32-vpmsum, available at 6*190c253dSEric Biggers * https://github.com/antonblanchard/crc32-vpmsum 7*190c253dSEric Biggers * 8*190c253dSEric Biggers * crc32-vpmsum is 9*190c253dSEric Biggers * Copyright (C) 2015 Anton Blanchard <anton@au.ibm.com>, IBM 10*190c253dSEric Biggers */ 11*190c253dSEric Biggers .section .rodata 12*190c253dSEric Biggers.balign 16 13*190c253dSEric Biggers 14*190c253dSEric Biggers.byteswap_constant: 15*190c253dSEric Biggers /* byte reverse permute constant */ 16*190c253dSEric Biggers .octa 0x0F0E0D0C0B0A09080706050403020100 17*190c253dSEric Biggers 18*190c253dSEric Biggers.constants: 19*190c253dSEric Biggers 20*190c253dSEric Biggers /* Reduce 262144 kbits to 1024 bits */ 21*190c253dSEric Biggers /* x^261184 mod p(x), x^261120 mod p(x) */ 22*190c253dSEric Biggers .octa 0x0000000056d300000000000052550000 23*190c253dSEric Biggers 24*190c253dSEric Biggers /* x^260160 mod p(x), x^260096 mod p(x) */ 25*190c253dSEric Biggers .octa 0x00000000ee67000000000000a1e40000 26*190c253dSEric Biggers 27*190c253dSEric Biggers /* x^259136 mod p(x), x^259072 mod p(x) */ 28*190c253dSEric Biggers .octa 0x0000000060830000000000004ad10000 29*190c253dSEric Biggers 30*190c253dSEric Biggers /* x^258112 mod p(x), x^258048 mod p(x) */ 31*190c253dSEric Biggers .octa 0x000000008cfe0000000000009ab40000 32*190c253dSEric Biggers 33*190c253dSEric Biggers /* x^257088 mod p(x), x^257024 mod p(x) */ 34*190c253dSEric Biggers .octa 0x000000003e93000000000000fdb50000 35*190c253dSEric Biggers 36*190c253dSEric Biggers /* x^256064 mod p(x), x^256000 mod p(x) */ 37*190c253dSEric Biggers .octa 0x000000003c2000000000000045480000 38*190c253dSEric Biggers 39*190c253dSEric Biggers /* x^255040 mod p(x), x^254976 mod p(x) */ 40*190c253dSEric Biggers .octa 0x00000000b1fc0000000000008d690000 41*190c253dSEric Biggers 42*190c253dSEric Biggers /* x^254016 mod p(x), x^253952 mod p(x) */ 43*190c253dSEric Biggers .octa 0x00000000f82b00000000000024ad0000 44*190c253dSEric Biggers 45*190c253dSEric Biggers /* x^252992 mod p(x), x^252928 mod p(x) */ 46*190c253dSEric Biggers .octa 0x0000000044420000000000009f1a0000 47*190c253dSEric Biggers 48*190c253dSEric Biggers /* x^251968 mod p(x), x^251904 mod p(x) */ 49*190c253dSEric Biggers .octa 0x00000000e88c00000000000066ec0000 50*190c253dSEric Biggers 51*190c253dSEric Biggers /* x^250944 mod p(x), x^250880 mod p(x) */ 52*190c253dSEric Biggers .octa 0x00000000385c000000000000c87d0000 53*190c253dSEric Biggers 54*190c253dSEric Biggers /* x^249920 mod p(x), x^249856 mod p(x) */ 55*190c253dSEric Biggers .octa 0x000000003227000000000000c8ff0000 56*190c253dSEric Biggers 57*190c253dSEric Biggers /* x^248896 mod p(x), x^248832 mod p(x) */ 58*190c253dSEric Biggers .octa 0x00000000a9a900000000000033440000 59*190c253dSEric Biggers 60*190c253dSEric Biggers /* x^247872 mod p(x), x^247808 mod p(x) */ 61*190c253dSEric Biggers .octa 0x00000000abaa00000000000066eb0000 62*190c253dSEric Biggers 63*190c253dSEric Biggers /* x^246848 mod p(x), x^246784 mod p(x) */ 64*190c253dSEric Biggers .octa 0x000000001ac3000000000000c4ef0000 65*190c253dSEric Biggers 66*190c253dSEric Biggers /* x^245824 mod p(x), x^245760 mod p(x) */ 67*190c253dSEric Biggers .octa 0x0000000063f000000000000056f30000 68*190c253dSEric Biggers 69*190c253dSEric Biggers /* x^244800 mod p(x), x^244736 mod p(x) */ 70*190c253dSEric Biggers .octa 0x0000000032cc00000000000002050000 71*190c253dSEric Biggers 72*190c253dSEric Biggers /* x^243776 mod p(x), x^243712 mod p(x) */ 73*190c253dSEric Biggers .octa 0x00000000f8b5000000000000568e0000 74*190c253dSEric Biggers 75*190c253dSEric Biggers /* x^242752 mod p(x), x^242688 mod p(x) */ 76*190c253dSEric Biggers .octa 0x000000008db100000000000064290000 77*190c253dSEric Biggers 78*190c253dSEric Biggers /* x^241728 mod p(x), x^241664 mod p(x) */ 79*190c253dSEric Biggers .octa 0x0000000059ca0000000000006b660000 80*190c253dSEric Biggers 81*190c253dSEric Biggers /* x^240704 mod p(x), x^240640 mod p(x) */ 82*190c253dSEric Biggers .octa 0x000000005f5c00000000000018f80000 83*190c253dSEric Biggers 84*190c253dSEric Biggers /* x^239680 mod p(x), x^239616 mod p(x) */ 85*190c253dSEric Biggers .octa 0x0000000061af000000000000b6090000 86*190c253dSEric Biggers 87*190c253dSEric Biggers /* x^238656 mod p(x), x^238592 mod p(x) */ 88*190c253dSEric Biggers .octa 0x00000000e29e000000000000099a0000 89*190c253dSEric Biggers 90*190c253dSEric Biggers /* x^237632 mod p(x), x^237568 mod p(x) */ 91*190c253dSEric Biggers .octa 0x000000000975000000000000a8360000 92*190c253dSEric Biggers 93*190c253dSEric Biggers /* x^236608 mod p(x), x^236544 mod p(x) */ 94*190c253dSEric Biggers .octa 0x0000000043900000000000004f570000 95*190c253dSEric Biggers 96*190c253dSEric Biggers /* x^235584 mod p(x), x^235520 mod p(x) */ 97*190c253dSEric Biggers .octa 0x00000000f9cd000000000000134c0000 98*190c253dSEric Biggers 99*190c253dSEric Biggers /* x^234560 mod p(x), x^234496 mod p(x) */ 100*190c253dSEric Biggers .octa 0x000000007c29000000000000ec380000 101*190c253dSEric Biggers 102*190c253dSEric Biggers /* x^233536 mod p(x), x^233472 mod p(x) */ 103*190c253dSEric Biggers .octa 0x000000004c6a000000000000b0d10000 104*190c253dSEric Biggers 105*190c253dSEric Biggers /* x^232512 mod p(x), x^232448 mod p(x) */ 106*190c253dSEric Biggers .octa 0x00000000e7290000000000007d3e0000 107*190c253dSEric Biggers 108*190c253dSEric Biggers /* x^231488 mod p(x), x^231424 mod p(x) */ 109*190c253dSEric Biggers .octa 0x00000000f1ab000000000000f0b20000 110*190c253dSEric Biggers 111*190c253dSEric Biggers /* x^230464 mod p(x), x^230400 mod p(x) */ 112*190c253dSEric Biggers .octa 0x0000000039db0000000000009c270000 113*190c253dSEric Biggers 114*190c253dSEric Biggers /* x^229440 mod p(x), x^229376 mod p(x) */ 115*190c253dSEric Biggers .octa 0x000000005e2800000000000092890000 116*190c253dSEric Biggers 117*190c253dSEric Biggers /* x^228416 mod p(x), x^228352 mod p(x) */ 118*190c253dSEric Biggers .octa 0x00000000d44e000000000000d5ee0000 119*190c253dSEric Biggers 120*190c253dSEric Biggers /* x^227392 mod p(x), x^227328 mod p(x) */ 121*190c253dSEric Biggers .octa 0x00000000cd0a00000000000041f50000 122*190c253dSEric Biggers 123*190c253dSEric Biggers /* x^226368 mod p(x), x^226304 mod p(x) */ 124*190c253dSEric Biggers .octa 0x00000000c5b400000000000010520000 125*190c253dSEric Biggers 126*190c253dSEric Biggers /* x^225344 mod p(x), x^225280 mod p(x) */ 127*190c253dSEric Biggers .octa 0x00000000fd2100000000000042170000 128*190c253dSEric Biggers 129*190c253dSEric Biggers /* x^224320 mod p(x), x^224256 mod p(x) */ 130*190c253dSEric Biggers .octa 0x000000002f2500000000000095c20000 131*190c253dSEric Biggers 132*190c253dSEric Biggers /* x^223296 mod p(x), x^223232 mod p(x) */ 133*190c253dSEric Biggers .octa 0x000000001b0100000000000001ce0000 134*190c253dSEric Biggers 135*190c253dSEric Biggers /* x^222272 mod p(x), x^222208 mod p(x) */ 136*190c253dSEric Biggers .octa 0x000000000d430000000000002aca0000 137*190c253dSEric Biggers 138*190c253dSEric Biggers /* x^221248 mod p(x), x^221184 mod p(x) */ 139*190c253dSEric Biggers .octa 0x0000000030a6000000000000385e0000 140*190c253dSEric Biggers 141*190c253dSEric Biggers /* x^220224 mod p(x), x^220160 mod p(x) */ 142*190c253dSEric Biggers .octa 0x00000000e37b0000000000006f7a0000 143*190c253dSEric Biggers 144*190c253dSEric Biggers /* x^219200 mod p(x), x^219136 mod p(x) */ 145*190c253dSEric Biggers .octa 0x00000000873600000000000024320000 146*190c253dSEric Biggers 147*190c253dSEric Biggers /* x^218176 mod p(x), x^218112 mod p(x) */ 148*190c253dSEric Biggers .octa 0x00000000e9fb000000000000bd9c0000 149*190c253dSEric Biggers 150*190c253dSEric Biggers /* x^217152 mod p(x), x^217088 mod p(x) */ 151*190c253dSEric Biggers .octa 0x000000003b9500000000000054bc0000 152*190c253dSEric Biggers 153*190c253dSEric Biggers /* x^216128 mod p(x), x^216064 mod p(x) */ 154*190c253dSEric Biggers .octa 0x00000000133e000000000000a4660000 155*190c253dSEric Biggers 156*190c253dSEric Biggers /* x^215104 mod p(x), x^215040 mod p(x) */ 157*190c253dSEric Biggers .octa 0x00000000784500000000000079930000 158*190c253dSEric Biggers 159*190c253dSEric Biggers /* x^214080 mod p(x), x^214016 mod p(x) */ 160*190c253dSEric Biggers .octa 0x00000000b9800000000000001bb80000 161*190c253dSEric Biggers 162*190c253dSEric Biggers /* x^213056 mod p(x), x^212992 mod p(x) */ 163*190c253dSEric Biggers .octa 0x00000000687600000000000024400000 164*190c253dSEric Biggers 165*190c253dSEric Biggers /* x^212032 mod p(x), x^211968 mod p(x) */ 166*190c253dSEric Biggers .octa 0x00000000aff300000000000029e10000 167*190c253dSEric Biggers 168*190c253dSEric Biggers /* x^211008 mod p(x), x^210944 mod p(x) */ 169*190c253dSEric Biggers .octa 0x0000000024b50000000000005ded0000 170*190c253dSEric Biggers 171*190c253dSEric Biggers /* x^209984 mod p(x), x^209920 mod p(x) */ 172*190c253dSEric Biggers .octa 0x0000000017e8000000000000b12e0000 173*190c253dSEric Biggers 174*190c253dSEric Biggers /* x^208960 mod p(x), x^208896 mod p(x) */ 175*190c253dSEric Biggers .octa 0x00000000128400000000000026d20000 176*190c253dSEric Biggers 177*190c253dSEric Biggers /* x^207936 mod p(x), x^207872 mod p(x) */ 178*190c253dSEric Biggers .octa 0x000000002115000000000000a32a0000 179*190c253dSEric Biggers 180*190c253dSEric Biggers /* x^206912 mod p(x), x^206848 mod p(x) */ 181*190c253dSEric Biggers .octa 0x000000009595000000000000a1210000 182*190c253dSEric Biggers 183*190c253dSEric Biggers /* x^205888 mod p(x), x^205824 mod p(x) */ 184*190c253dSEric Biggers .octa 0x00000000281e000000000000ee8b0000 185*190c253dSEric Biggers 186*190c253dSEric Biggers /* x^204864 mod p(x), x^204800 mod p(x) */ 187*190c253dSEric Biggers .octa 0x0000000006010000000000003d0d0000 188*190c253dSEric Biggers 189*190c253dSEric Biggers /* x^203840 mod p(x), x^203776 mod p(x) */ 190*190c253dSEric Biggers .octa 0x00000000e2b600000000000034e90000 191*190c253dSEric Biggers 192*190c253dSEric Biggers /* x^202816 mod p(x), x^202752 mod p(x) */ 193*190c253dSEric Biggers .octa 0x000000001bd40000000000004cdb0000 194*190c253dSEric Biggers 195*190c253dSEric Biggers /* x^201792 mod p(x), x^201728 mod p(x) */ 196*190c253dSEric Biggers .octa 0x00000000df2800000000000030e90000 197*190c253dSEric Biggers 198*190c253dSEric Biggers /* x^200768 mod p(x), x^200704 mod p(x) */ 199*190c253dSEric Biggers .octa 0x0000000049c200000000000042590000 200*190c253dSEric Biggers 201*190c253dSEric Biggers /* x^199744 mod p(x), x^199680 mod p(x) */ 202*190c253dSEric Biggers .octa 0x000000009b97000000000000df950000 203*190c253dSEric Biggers 204*190c253dSEric Biggers /* x^198720 mod p(x), x^198656 mod p(x) */ 205*190c253dSEric Biggers .octa 0x000000006184000000000000da7b0000 206*190c253dSEric Biggers 207*190c253dSEric Biggers /* x^197696 mod p(x), x^197632 mod p(x) */ 208*190c253dSEric Biggers .octa 0x00000000461700000000000012510000 209*190c253dSEric Biggers 210*190c253dSEric Biggers /* x^196672 mod p(x), x^196608 mod p(x) */ 211*190c253dSEric Biggers .octa 0x000000009b40000000000000f37e0000 212*190c253dSEric Biggers 213*190c253dSEric Biggers /* x^195648 mod p(x), x^195584 mod p(x) */ 214*190c253dSEric Biggers .octa 0x00000000eeb2000000000000ecf10000 215*190c253dSEric Biggers 216*190c253dSEric Biggers /* x^194624 mod p(x), x^194560 mod p(x) */ 217*190c253dSEric Biggers .octa 0x00000000b2e800000000000050f20000 218*190c253dSEric Biggers 219*190c253dSEric Biggers /* x^193600 mod p(x), x^193536 mod p(x) */ 220*190c253dSEric Biggers .octa 0x00000000f59a000000000000e0b30000 221*190c253dSEric Biggers 222*190c253dSEric Biggers /* x^192576 mod p(x), x^192512 mod p(x) */ 223*190c253dSEric Biggers .octa 0x00000000467f0000000000004d5a0000 224*190c253dSEric Biggers 225*190c253dSEric Biggers /* x^191552 mod p(x), x^191488 mod p(x) */ 226*190c253dSEric Biggers .octa 0x00000000da92000000000000bb010000 227*190c253dSEric Biggers 228*190c253dSEric Biggers /* x^190528 mod p(x), x^190464 mod p(x) */ 229*190c253dSEric Biggers .octa 0x000000001e1000000000000022a40000 230*190c253dSEric Biggers 231*190c253dSEric Biggers /* x^189504 mod p(x), x^189440 mod p(x) */ 232*190c253dSEric Biggers .octa 0x0000000058fe000000000000836f0000 233*190c253dSEric Biggers 234*190c253dSEric Biggers /* x^188480 mod p(x), x^188416 mod p(x) */ 235*190c253dSEric Biggers .octa 0x00000000b9ce000000000000d78d0000 236*190c253dSEric Biggers 237*190c253dSEric Biggers /* x^187456 mod p(x), x^187392 mod p(x) */ 238*190c253dSEric Biggers .octa 0x0000000022210000000000004f8d0000 239*190c253dSEric Biggers 240*190c253dSEric Biggers /* x^186432 mod p(x), x^186368 mod p(x) */ 241*190c253dSEric Biggers .octa 0x00000000744600000000000033760000 242*190c253dSEric Biggers 243*190c253dSEric Biggers /* x^185408 mod p(x), x^185344 mod p(x) */ 244*190c253dSEric Biggers .octa 0x000000001c2e000000000000a1e50000 245*190c253dSEric Biggers 246*190c253dSEric Biggers /* x^184384 mod p(x), x^184320 mod p(x) */ 247*190c253dSEric Biggers .octa 0x00000000dcc8000000000000a1a40000 248*190c253dSEric Biggers 249*190c253dSEric Biggers /* x^183360 mod p(x), x^183296 mod p(x) */ 250*190c253dSEric Biggers .octa 0x00000000910f00000000000019a20000 251*190c253dSEric Biggers 252*190c253dSEric Biggers /* x^182336 mod p(x), x^182272 mod p(x) */ 253*190c253dSEric Biggers .octa 0x0000000055d5000000000000f6ae0000 254*190c253dSEric Biggers 255*190c253dSEric Biggers /* x^181312 mod p(x), x^181248 mod p(x) */ 256*190c253dSEric Biggers .octa 0x00000000c8ba000000000000a7ac0000 257*190c253dSEric Biggers 258*190c253dSEric Biggers /* x^180288 mod p(x), x^180224 mod p(x) */ 259*190c253dSEric Biggers .octa 0x0000000031f8000000000000eea20000 260*190c253dSEric Biggers 261*190c253dSEric Biggers /* x^179264 mod p(x), x^179200 mod p(x) */ 262*190c253dSEric Biggers .octa 0x000000001966000000000000c4d90000 263*190c253dSEric Biggers 264*190c253dSEric Biggers /* x^178240 mod p(x), x^178176 mod p(x) */ 265*190c253dSEric Biggers .octa 0x00000000b9810000000000002b470000 266*190c253dSEric Biggers 267*190c253dSEric Biggers /* x^177216 mod p(x), x^177152 mod p(x) */ 268*190c253dSEric Biggers .octa 0x000000008303000000000000f7cf0000 269*190c253dSEric Biggers 270*190c253dSEric Biggers /* x^176192 mod p(x), x^176128 mod p(x) */ 271*190c253dSEric Biggers .octa 0x000000002ce500000000000035b30000 272*190c253dSEric Biggers 273*190c253dSEric Biggers /* x^175168 mod p(x), x^175104 mod p(x) */ 274*190c253dSEric Biggers .octa 0x000000002fae0000000000000c7c0000 275*190c253dSEric Biggers 276*190c253dSEric Biggers /* x^174144 mod p(x), x^174080 mod p(x) */ 277*190c253dSEric Biggers .octa 0x00000000f50c0000000000009edf0000 278*190c253dSEric Biggers 279*190c253dSEric Biggers /* x^173120 mod p(x), x^173056 mod p(x) */ 280*190c253dSEric Biggers .octa 0x00000000714f00000000000004cd0000 281*190c253dSEric Biggers 282*190c253dSEric Biggers /* x^172096 mod p(x), x^172032 mod p(x) */ 283*190c253dSEric Biggers .octa 0x00000000c161000000000000541b0000 284*190c253dSEric Biggers 285*190c253dSEric Biggers /* x^171072 mod p(x), x^171008 mod p(x) */ 286*190c253dSEric Biggers .octa 0x0000000021c8000000000000e2700000 287*190c253dSEric Biggers 288*190c253dSEric Biggers /* x^170048 mod p(x), x^169984 mod p(x) */ 289*190c253dSEric Biggers .octa 0x00000000b93d00000000000009a60000 290*190c253dSEric Biggers 291*190c253dSEric Biggers /* x^169024 mod p(x), x^168960 mod p(x) */ 292*190c253dSEric Biggers .octa 0x00000000fbcf000000000000761c0000 293*190c253dSEric Biggers 294*190c253dSEric Biggers /* x^168000 mod p(x), x^167936 mod p(x) */ 295*190c253dSEric Biggers .octa 0x0000000026350000000000009db30000 296*190c253dSEric Biggers 297*190c253dSEric Biggers /* x^166976 mod p(x), x^166912 mod p(x) */ 298*190c253dSEric Biggers .octa 0x00000000b64f0000000000003e9f0000 299*190c253dSEric Biggers 300*190c253dSEric Biggers /* x^165952 mod p(x), x^165888 mod p(x) */ 301*190c253dSEric Biggers .octa 0x00000000bd0e00000000000078590000 302*190c253dSEric Biggers 303*190c253dSEric Biggers /* x^164928 mod p(x), x^164864 mod p(x) */ 304*190c253dSEric Biggers .octa 0x00000000d9360000000000008bc80000 305*190c253dSEric Biggers 306*190c253dSEric Biggers /* x^163904 mod p(x), x^163840 mod p(x) */ 307*190c253dSEric Biggers .octa 0x000000002f140000000000008c9f0000 308*190c253dSEric Biggers 309*190c253dSEric Biggers /* x^162880 mod p(x), x^162816 mod p(x) */ 310*190c253dSEric Biggers .octa 0x000000006a270000000000006af70000 311*190c253dSEric Biggers 312*190c253dSEric Biggers /* x^161856 mod p(x), x^161792 mod p(x) */ 313*190c253dSEric Biggers .octa 0x000000006685000000000000e5210000 314*190c253dSEric Biggers 315*190c253dSEric Biggers /* x^160832 mod p(x), x^160768 mod p(x) */ 316*190c253dSEric Biggers .octa 0x0000000062da00000000000008290000 317*190c253dSEric Biggers 318*190c253dSEric Biggers /* x^159808 mod p(x), x^159744 mod p(x) */ 319*190c253dSEric Biggers .octa 0x00000000bb4b000000000000e4d00000 320*190c253dSEric Biggers 321*190c253dSEric Biggers /* x^158784 mod p(x), x^158720 mod p(x) */ 322*190c253dSEric Biggers .octa 0x00000000d2490000000000004ae10000 323*190c253dSEric Biggers 324*190c253dSEric Biggers /* x^157760 mod p(x), x^157696 mod p(x) */ 325*190c253dSEric Biggers .octa 0x00000000c85b00000000000000e70000 326*190c253dSEric Biggers 327*190c253dSEric Biggers /* x^156736 mod p(x), x^156672 mod p(x) */ 328*190c253dSEric Biggers .octa 0x00000000c37a00000000000015650000 329*190c253dSEric Biggers 330*190c253dSEric Biggers /* x^155712 mod p(x), x^155648 mod p(x) */ 331*190c253dSEric Biggers .octa 0x0000000018530000000000001c2f0000 332*190c253dSEric Biggers 333*190c253dSEric Biggers /* x^154688 mod p(x), x^154624 mod p(x) */ 334*190c253dSEric Biggers .octa 0x00000000b46600000000000037bd0000 335*190c253dSEric Biggers 336*190c253dSEric Biggers /* x^153664 mod p(x), x^153600 mod p(x) */ 337*190c253dSEric Biggers .octa 0x00000000439b00000000000012190000 338*190c253dSEric Biggers 339*190c253dSEric Biggers /* x^152640 mod p(x), x^152576 mod p(x) */ 340*190c253dSEric Biggers .octa 0x00000000b1260000000000005ece0000 341*190c253dSEric Biggers 342*190c253dSEric Biggers /* x^151616 mod p(x), x^151552 mod p(x) */ 343*190c253dSEric Biggers .octa 0x00000000d8110000000000002a5e0000 344*190c253dSEric Biggers 345*190c253dSEric Biggers /* x^150592 mod p(x), x^150528 mod p(x) */ 346*190c253dSEric Biggers .octa 0x00000000099f00000000000052330000 347*190c253dSEric Biggers 348*190c253dSEric Biggers /* x^149568 mod p(x), x^149504 mod p(x) */ 349*190c253dSEric Biggers .octa 0x00000000f9f9000000000000f9120000 350*190c253dSEric Biggers 351*190c253dSEric Biggers /* x^148544 mod p(x), x^148480 mod p(x) */ 352*190c253dSEric Biggers .octa 0x000000005cc00000000000000ddc0000 353*190c253dSEric Biggers 354*190c253dSEric Biggers /* x^147520 mod p(x), x^147456 mod p(x) */ 355*190c253dSEric Biggers .octa 0x00000000343b00000000000012200000 356*190c253dSEric Biggers 357*190c253dSEric Biggers /* x^146496 mod p(x), x^146432 mod p(x) */ 358*190c253dSEric Biggers .octa 0x000000009222000000000000d12b0000 359*190c253dSEric Biggers 360*190c253dSEric Biggers /* x^145472 mod p(x), x^145408 mod p(x) */ 361*190c253dSEric Biggers .octa 0x00000000d781000000000000eb2d0000 362*190c253dSEric Biggers 363*190c253dSEric Biggers /* x^144448 mod p(x), x^144384 mod p(x) */ 364*190c253dSEric Biggers .octa 0x000000000bf400000000000058970000 365*190c253dSEric Biggers 366*190c253dSEric Biggers /* x^143424 mod p(x), x^143360 mod p(x) */ 367*190c253dSEric Biggers .octa 0x00000000094200000000000013690000 368*190c253dSEric Biggers 369*190c253dSEric Biggers /* x^142400 mod p(x), x^142336 mod p(x) */ 370*190c253dSEric Biggers .octa 0x00000000d55100000000000051950000 371*190c253dSEric Biggers 372*190c253dSEric Biggers /* x^141376 mod p(x), x^141312 mod p(x) */ 373*190c253dSEric Biggers .octa 0x000000008f11000000000000954b0000 374*190c253dSEric Biggers 375*190c253dSEric Biggers /* x^140352 mod p(x), x^140288 mod p(x) */ 376*190c253dSEric Biggers .octa 0x00000000140f000000000000b29e0000 377*190c253dSEric Biggers 378*190c253dSEric Biggers /* x^139328 mod p(x), x^139264 mod p(x) */ 379*190c253dSEric Biggers .octa 0x00000000c6db000000000000db5d0000 380*190c253dSEric Biggers 381*190c253dSEric Biggers /* x^138304 mod p(x), x^138240 mod p(x) */ 382*190c253dSEric Biggers .octa 0x00000000715b000000000000dfaf0000 383*190c253dSEric Biggers 384*190c253dSEric Biggers /* x^137280 mod p(x), x^137216 mod p(x) */ 385*190c253dSEric Biggers .octa 0x000000000dea000000000000e3b60000 386*190c253dSEric Biggers 387*190c253dSEric Biggers /* x^136256 mod p(x), x^136192 mod p(x) */ 388*190c253dSEric Biggers .octa 0x000000006f94000000000000ddaf0000 389*190c253dSEric Biggers 390*190c253dSEric Biggers /* x^135232 mod p(x), x^135168 mod p(x) */ 391*190c253dSEric Biggers .octa 0x0000000024e1000000000000e4f70000 392*190c253dSEric Biggers 393*190c253dSEric Biggers /* x^134208 mod p(x), x^134144 mod p(x) */ 394*190c253dSEric Biggers .octa 0x000000008810000000000000aa110000 395*190c253dSEric Biggers 396*190c253dSEric Biggers /* x^133184 mod p(x), x^133120 mod p(x) */ 397*190c253dSEric Biggers .octa 0x0000000030c2000000000000a8e60000 398*190c253dSEric Biggers 399*190c253dSEric Biggers /* x^132160 mod p(x), x^132096 mod p(x) */ 400*190c253dSEric Biggers .octa 0x00000000e6d0000000000000ccf30000 401*190c253dSEric Biggers 402*190c253dSEric Biggers /* x^131136 mod p(x), x^131072 mod p(x) */ 403*190c253dSEric Biggers .octa 0x000000004da000000000000079bf0000 404*190c253dSEric Biggers 405*190c253dSEric Biggers /* x^130112 mod p(x), x^130048 mod p(x) */ 406*190c253dSEric Biggers .octa 0x000000007759000000000000b3a30000 407*190c253dSEric Biggers 408*190c253dSEric Biggers /* x^129088 mod p(x), x^129024 mod p(x) */ 409*190c253dSEric Biggers .octa 0x00000000597400000000000028790000 410*190c253dSEric Biggers 411*190c253dSEric Biggers /* x^128064 mod p(x), x^128000 mod p(x) */ 412*190c253dSEric Biggers .octa 0x000000007acd000000000000b5820000 413*190c253dSEric Biggers 414*190c253dSEric Biggers /* x^127040 mod p(x), x^126976 mod p(x) */ 415*190c253dSEric Biggers .octa 0x00000000e6e400000000000026ad0000 416*190c253dSEric Biggers 417*190c253dSEric Biggers /* x^126016 mod p(x), x^125952 mod p(x) */ 418*190c253dSEric Biggers .octa 0x000000006d49000000000000985b0000 419*190c253dSEric Biggers 420*190c253dSEric Biggers /* x^124992 mod p(x), x^124928 mod p(x) */ 421*190c253dSEric Biggers .octa 0x000000000f0800000000000011520000 422*190c253dSEric Biggers 423*190c253dSEric Biggers /* x^123968 mod p(x), x^123904 mod p(x) */ 424*190c253dSEric Biggers .octa 0x000000002c7f000000000000846c0000 425*190c253dSEric Biggers 426*190c253dSEric Biggers /* x^122944 mod p(x), x^122880 mod p(x) */ 427*190c253dSEric Biggers .octa 0x000000005ce7000000000000ae1d0000 428*190c253dSEric Biggers 429*190c253dSEric Biggers /* x^121920 mod p(x), x^121856 mod p(x) */ 430*190c253dSEric Biggers .octa 0x00000000d4cb000000000000e21d0000 431*190c253dSEric Biggers 432*190c253dSEric Biggers /* x^120896 mod p(x), x^120832 mod p(x) */ 433*190c253dSEric Biggers .octa 0x000000003a2300000000000019bb0000 434*190c253dSEric Biggers 435*190c253dSEric Biggers /* x^119872 mod p(x), x^119808 mod p(x) */ 436*190c253dSEric Biggers .octa 0x000000000e1700000000000095290000 437*190c253dSEric Biggers 438*190c253dSEric Biggers /* x^118848 mod p(x), x^118784 mod p(x) */ 439*190c253dSEric Biggers .octa 0x000000006e6400000000000050d20000 440*190c253dSEric Biggers 441*190c253dSEric Biggers /* x^117824 mod p(x), x^117760 mod p(x) */ 442*190c253dSEric Biggers .octa 0x000000008d5c0000000000000cd10000 443*190c253dSEric Biggers 444*190c253dSEric Biggers /* x^116800 mod p(x), x^116736 mod p(x) */ 445*190c253dSEric Biggers .octa 0x00000000ef310000000000007b570000 446*190c253dSEric Biggers 447*190c253dSEric Biggers /* x^115776 mod p(x), x^115712 mod p(x) */ 448*190c253dSEric Biggers .octa 0x00000000645d00000000000053d60000 449*190c253dSEric Biggers 450*190c253dSEric Biggers /* x^114752 mod p(x), x^114688 mod p(x) */ 451*190c253dSEric Biggers .octa 0x0000000018fc00000000000077510000 452*190c253dSEric Biggers 453*190c253dSEric Biggers /* x^113728 mod p(x), x^113664 mod p(x) */ 454*190c253dSEric Biggers .octa 0x000000000cb3000000000000a7b70000 455*190c253dSEric Biggers 456*190c253dSEric Biggers /* x^112704 mod p(x), x^112640 mod p(x) */ 457*190c253dSEric Biggers .octa 0x00000000991b000000000000d0780000 458*190c253dSEric Biggers 459*190c253dSEric Biggers /* x^111680 mod p(x), x^111616 mod p(x) */ 460*190c253dSEric Biggers .octa 0x00000000845a000000000000be3c0000 461*190c253dSEric Biggers 462*190c253dSEric Biggers /* x^110656 mod p(x), x^110592 mod p(x) */ 463*190c253dSEric Biggers .octa 0x00000000d3a9000000000000df020000 464*190c253dSEric Biggers 465*190c253dSEric Biggers /* x^109632 mod p(x), x^109568 mod p(x) */ 466*190c253dSEric Biggers .octa 0x0000000017d7000000000000063e0000 467*190c253dSEric Biggers 468*190c253dSEric Biggers /* x^108608 mod p(x), x^108544 mod p(x) */ 469*190c253dSEric Biggers .octa 0x000000007a860000000000008ab40000 470*190c253dSEric Biggers 471*190c253dSEric Biggers /* x^107584 mod p(x), x^107520 mod p(x) */ 472*190c253dSEric Biggers .octa 0x00000000fd7c000000000000c7bd0000 473*190c253dSEric Biggers 474*190c253dSEric Biggers /* x^106560 mod p(x), x^106496 mod p(x) */ 475*190c253dSEric Biggers .octa 0x00000000a56b000000000000efd60000 476*190c253dSEric Biggers 477*190c253dSEric Biggers /* x^105536 mod p(x), x^105472 mod p(x) */ 478*190c253dSEric Biggers .octa 0x0000000010e400000000000071380000 479*190c253dSEric Biggers 480*190c253dSEric Biggers /* x^104512 mod p(x), x^104448 mod p(x) */ 481*190c253dSEric Biggers .octa 0x00000000994500000000000004d30000 482*190c253dSEric Biggers 483*190c253dSEric Biggers /* x^103488 mod p(x), x^103424 mod p(x) */ 484*190c253dSEric Biggers .octa 0x00000000b83c0000000000003b0e0000 485*190c253dSEric Biggers 486*190c253dSEric Biggers /* x^102464 mod p(x), x^102400 mod p(x) */ 487*190c253dSEric Biggers .octa 0x00000000d6c10000000000008b020000 488*190c253dSEric Biggers 489*190c253dSEric Biggers /* x^101440 mod p(x), x^101376 mod p(x) */ 490*190c253dSEric Biggers .octa 0x000000009efc000000000000da940000 491*190c253dSEric Biggers 492*190c253dSEric Biggers /* x^100416 mod p(x), x^100352 mod p(x) */ 493*190c253dSEric Biggers .octa 0x000000005e87000000000000f9f70000 494*190c253dSEric Biggers 495*190c253dSEric Biggers /* x^99392 mod p(x), x^99328 mod p(x) */ 496*190c253dSEric Biggers .octa 0x000000006c9b00000000000045e40000 497*190c253dSEric Biggers 498*190c253dSEric Biggers /* x^98368 mod p(x), x^98304 mod p(x) */ 499*190c253dSEric Biggers .octa 0x00000000178a00000000000083940000 500*190c253dSEric Biggers 501*190c253dSEric Biggers /* x^97344 mod p(x), x^97280 mod p(x) */ 502*190c253dSEric Biggers .octa 0x00000000f0c8000000000000f0a00000 503*190c253dSEric Biggers 504*190c253dSEric Biggers /* x^96320 mod p(x), x^96256 mod p(x) */ 505*190c253dSEric Biggers .octa 0x00000000f699000000000000b74b0000 506*190c253dSEric Biggers 507*190c253dSEric Biggers /* x^95296 mod p(x), x^95232 mod p(x) */ 508*190c253dSEric Biggers .octa 0x00000000316d000000000000c1cf0000 509*190c253dSEric Biggers 510*190c253dSEric Biggers /* x^94272 mod p(x), x^94208 mod p(x) */ 511*190c253dSEric Biggers .octa 0x00000000987e00000000000072680000 512*190c253dSEric Biggers 513*190c253dSEric Biggers /* x^93248 mod p(x), x^93184 mod p(x) */ 514*190c253dSEric Biggers .octa 0x00000000acff000000000000e0ab0000 515*190c253dSEric Biggers 516*190c253dSEric Biggers /* x^92224 mod p(x), x^92160 mod p(x) */ 517*190c253dSEric Biggers .octa 0x00000000a1f6000000000000c5a80000 518*190c253dSEric Biggers 519*190c253dSEric Biggers /* x^91200 mod p(x), x^91136 mod p(x) */ 520*190c253dSEric Biggers .octa 0x0000000061bd000000000000cf690000 521*190c253dSEric Biggers 522*190c253dSEric Biggers /* x^90176 mod p(x), x^90112 mod p(x) */ 523*190c253dSEric Biggers .octa 0x00000000c9f2000000000000cbcc0000 524*190c253dSEric Biggers 525*190c253dSEric Biggers /* x^89152 mod p(x), x^89088 mod p(x) */ 526*190c253dSEric Biggers .octa 0x000000005a33000000000000de050000 527*190c253dSEric Biggers 528*190c253dSEric Biggers /* x^88128 mod p(x), x^88064 mod p(x) */ 529*190c253dSEric Biggers .octa 0x00000000e416000000000000ccd70000 530*190c253dSEric Biggers 531*190c253dSEric Biggers /* x^87104 mod p(x), x^87040 mod p(x) */ 532*190c253dSEric Biggers .octa 0x0000000058930000000000002f670000 533*190c253dSEric Biggers 534*190c253dSEric Biggers /* x^86080 mod p(x), x^86016 mod p(x) */ 535*190c253dSEric Biggers .octa 0x00000000a9d3000000000000152f0000 536*190c253dSEric Biggers 537*190c253dSEric Biggers /* x^85056 mod p(x), x^84992 mod p(x) */ 538*190c253dSEric Biggers .octa 0x00000000c114000000000000ecc20000 539*190c253dSEric Biggers 540*190c253dSEric Biggers /* x^84032 mod p(x), x^83968 mod p(x) */ 541*190c253dSEric Biggers .octa 0x00000000b9270000000000007c890000 542*190c253dSEric Biggers 543*190c253dSEric Biggers /* x^83008 mod p(x), x^82944 mod p(x) */ 544*190c253dSEric Biggers .octa 0x000000002e6000000000000006ee0000 545*190c253dSEric Biggers 546*190c253dSEric Biggers /* x^81984 mod p(x), x^81920 mod p(x) */ 547*190c253dSEric Biggers .octa 0x00000000dfc600000000000009100000 548*190c253dSEric Biggers 549*190c253dSEric Biggers /* x^80960 mod p(x), x^80896 mod p(x) */ 550*190c253dSEric Biggers .octa 0x000000004911000000000000ad4e0000 551*190c253dSEric Biggers 552*190c253dSEric Biggers /* x^79936 mod p(x), x^79872 mod p(x) */ 553*190c253dSEric Biggers .octa 0x00000000ae1b000000000000b04d0000 554*190c253dSEric Biggers 555*190c253dSEric Biggers /* x^78912 mod p(x), x^78848 mod p(x) */ 556*190c253dSEric Biggers .octa 0x0000000005fa000000000000e9900000 557*190c253dSEric Biggers 558*190c253dSEric Biggers /* x^77888 mod p(x), x^77824 mod p(x) */ 559*190c253dSEric Biggers .octa 0x0000000004a1000000000000cc6f0000 560*190c253dSEric Biggers 561*190c253dSEric Biggers /* x^76864 mod p(x), x^76800 mod p(x) */ 562*190c253dSEric Biggers .octa 0x00000000af73000000000000ed110000 563*190c253dSEric Biggers 564*190c253dSEric Biggers /* x^75840 mod p(x), x^75776 mod p(x) */ 565*190c253dSEric Biggers .octa 0x0000000082530000000000008f7e0000 566*190c253dSEric Biggers 567*190c253dSEric Biggers /* x^74816 mod p(x), x^74752 mod p(x) */ 568*190c253dSEric Biggers .octa 0x00000000cfdc000000000000594f0000 569*190c253dSEric Biggers 570*190c253dSEric Biggers /* x^73792 mod p(x), x^73728 mod p(x) */ 571*190c253dSEric Biggers .octa 0x00000000a6b6000000000000a8750000 572*190c253dSEric Biggers 573*190c253dSEric Biggers /* x^72768 mod p(x), x^72704 mod p(x) */ 574*190c253dSEric Biggers .octa 0x00000000fd76000000000000aa0c0000 575*190c253dSEric Biggers 576*190c253dSEric Biggers /* x^71744 mod p(x), x^71680 mod p(x) */ 577*190c253dSEric Biggers .octa 0x0000000006f500000000000071db0000 578*190c253dSEric Biggers 579*190c253dSEric Biggers /* x^70720 mod p(x), x^70656 mod p(x) */ 580*190c253dSEric Biggers .octa 0x0000000037ca000000000000ab0c0000 581*190c253dSEric Biggers 582*190c253dSEric Biggers /* x^69696 mod p(x), x^69632 mod p(x) */ 583*190c253dSEric Biggers .octa 0x00000000d7ab000000000000b7a00000 584*190c253dSEric Biggers 585*190c253dSEric Biggers /* x^68672 mod p(x), x^68608 mod p(x) */ 586*190c253dSEric Biggers .octa 0x00000000440800000000000090d30000 587*190c253dSEric Biggers 588*190c253dSEric Biggers /* x^67648 mod p(x), x^67584 mod p(x) */ 589*190c253dSEric Biggers .octa 0x00000000186100000000000054730000 590*190c253dSEric Biggers 591*190c253dSEric Biggers /* x^66624 mod p(x), x^66560 mod p(x) */ 592*190c253dSEric Biggers .octa 0x000000007368000000000000a3a20000 593*190c253dSEric Biggers 594*190c253dSEric Biggers /* x^65600 mod p(x), x^65536 mod p(x) */ 595*190c253dSEric Biggers .octa 0x0000000026d0000000000000f9040000 596*190c253dSEric Biggers 597*190c253dSEric Biggers /* x^64576 mod p(x), x^64512 mod p(x) */ 598*190c253dSEric Biggers .octa 0x00000000fe770000000000009c0a0000 599*190c253dSEric Biggers 600*190c253dSEric Biggers /* x^63552 mod p(x), x^63488 mod p(x) */ 601*190c253dSEric Biggers .octa 0x000000002cba000000000000d1e70000 602*190c253dSEric Biggers 603*190c253dSEric Biggers /* x^62528 mod p(x), x^62464 mod p(x) */ 604*190c253dSEric Biggers .octa 0x00000000f8bd0000000000005ac10000 605*190c253dSEric Biggers 606*190c253dSEric Biggers /* x^61504 mod p(x), x^61440 mod p(x) */ 607*190c253dSEric Biggers .octa 0x000000007372000000000000d68d0000 608*190c253dSEric Biggers 609*190c253dSEric Biggers /* x^60480 mod p(x), x^60416 mod p(x) */ 610*190c253dSEric Biggers .octa 0x00000000f37f00000000000089f60000 611*190c253dSEric Biggers 612*190c253dSEric Biggers /* x^59456 mod p(x), x^59392 mod p(x) */ 613*190c253dSEric Biggers .octa 0x00000000078400000000000008a90000 614*190c253dSEric Biggers 615*190c253dSEric Biggers /* x^58432 mod p(x), x^58368 mod p(x) */ 616*190c253dSEric Biggers .octa 0x00000000d3e400000000000042360000 617*190c253dSEric Biggers 618*190c253dSEric Biggers /* x^57408 mod p(x), x^57344 mod p(x) */ 619*190c253dSEric Biggers .octa 0x00000000eba800000000000092d50000 620*190c253dSEric Biggers 621*190c253dSEric Biggers /* x^56384 mod p(x), x^56320 mod p(x) */ 622*190c253dSEric Biggers .octa 0x00000000afbe000000000000b4d50000 623*190c253dSEric Biggers 624*190c253dSEric Biggers /* x^55360 mod p(x), x^55296 mod p(x) */ 625*190c253dSEric Biggers .octa 0x00000000d8ca000000000000c9060000 626*190c253dSEric Biggers 627*190c253dSEric Biggers /* x^54336 mod p(x), x^54272 mod p(x) */ 628*190c253dSEric Biggers .octa 0x00000000c2d00000000000008f4f0000 629*190c253dSEric Biggers 630*190c253dSEric Biggers /* x^53312 mod p(x), x^53248 mod p(x) */ 631*190c253dSEric Biggers .octa 0x00000000373200000000000028690000 632*190c253dSEric Biggers 633*190c253dSEric Biggers /* x^52288 mod p(x), x^52224 mod p(x) */ 634*190c253dSEric Biggers .octa 0x0000000046ae000000000000c3b30000 635*190c253dSEric Biggers 636*190c253dSEric Biggers /* x^51264 mod p(x), x^51200 mod p(x) */ 637*190c253dSEric Biggers .octa 0x00000000b243000000000000f8700000 638*190c253dSEric Biggers 639*190c253dSEric Biggers /* x^50240 mod p(x), x^50176 mod p(x) */ 640*190c253dSEric Biggers .octa 0x00000000f7f500000000000029eb0000 641*190c253dSEric Biggers 642*190c253dSEric Biggers /* x^49216 mod p(x), x^49152 mod p(x) */ 643*190c253dSEric Biggers .octa 0x000000000c7e000000000000fe730000 644*190c253dSEric Biggers 645*190c253dSEric Biggers /* x^48192 mod p(x), x^48128 mod p(x) */ 646*190c253dSEric Biggers .octa 0x00000000c38200000000000096000000 647*190c253dSEric Biggers 648*190c253dSEric Biggers /* x^47168 mod p(x), x^47104 mod p(x) */ 649*190c253dSEric Biggers .octa 0x000000008956000000000000683c0000 650*190c253dSEric Biggers 651*190c253dSEric Biggers /* x^46144 mod p(x), x^46080 mod p(x) */ 652*190c253dSEric Biggers .octa 0x00000000422d0000000000005f1e0000 653*190c253dSEric Biggers 654*190c253dSEric Biggers /* x^45120 mod p(x), x^45056 mod p(x) */ 655*190c253dSEric Biggers .octa 0x00000000ac0f0000000000006f810000 656*190c253dSEric Biggers 657*190c253dSEric Biggers /* x^44096 mod p(x), x^44032 mod p(x) */ 658*190c253dSEric Biggers .octa 0x00000000ce30000000000000031f0000 659*190c253dSEric Biggers 660*190c253dSEric Biggers /* x^43072 mod p(x), x^43008 mod p(x) */ 661*190c253dSEric Biggers .octa 0x000000003d43000000000000455a0000 662*190c253dSEric Biggers 663*190c253dSEric Biggers /* x^42048 mod p(x), x^41984 mod p(x) */ 664*190c253dSEric Biggers .octa 0x000000007ebe000000000000a6050000 665*190c253dSEric Biggers 666*190c253dSEric Biggers /* x^41024 mod p(x), x^40960 mod p(x) */ 667*190c253dSEric Biggers .octa 0x00000000976e00000000000077eb0000 668*190c253dSEric Biggers 669*190c253dSEric Biggers /* x^40000 mod p(x), x^39936 mod p(x) */ 670*190c253dSEric Biggers .octa 0x000000000872000000000000389c0000 671*190c253dSEric Biggers 672*190c253dSEric Biggers /* x^38976 mod p(x), x^38912 mod p(x) */ 673*190c253dSEric Biggers .octa 0x000000008979000000000000c7b20000 674*190c253dSEric Biggers 675*190c253dSEric Biggers /* x^37952 mod p(x), x^37888 mod p(x) */ 676*190c253dSEric Biggers .octa 0x000000005c1e0000000000001d870000 677*190c253dSEric Biggers 678*190c253dSEric Biggers /* x^36928 mod p(x), x^36864 mod p(x) */ 679*190c253dSEric Biggers .octa 0x00000000aebb00000000000045810000 680*190c253dSEric Biggers 681*190c253dSEric Biggers /* x^35904 mod p(x), x^35840 mod p(x) */ 682*190c253dSEric Biggers .octa 0x000000004f7e0000000000006d4a0000 683*190c253dSEric Biggers 684*190c253dSEric Biggers /* x^34880 mod p(x), x^34816 mod p(x) */ 685*190c253dSEric Biggers .octa 0x00000000ea98000000000000b9200000 686*190c253dSEric Biggers 687*190c253dSEric Biggers /* x^33856 mod p(x), x^33792 mod p(x) */ 688*190c253dSEric Biggers .octa 0x00000000f39600000000000022f20000 689*190c253dSEric Biggers 690*190c253dSEric Biggers /* x^32832 mod p(x), x^32768 mod p(x) */ 691*190c253dSEric Biggers .octa 0x000000000bc500000000000041ca0000 692*190c253dSEric Biggers 693*190c253dSEric Biggers /* x^31808 mod p(x), x^31744 mod p(x) */ 694*190c253dSEric Biggers .octa 0x00000000786400000000000078500000 695*190c253dSEric Biggers 696*190c253dSEric Biggers /* x^30784 mod p(x), x^30720 mod p(x) */ 697*190c253dSEric Biggers .octa 0x00000000be970000000000009e7e0000 698*190c253dSEric Biggers 699*190c253dSEric Biggers /* x^29760 mod p(x), x^29696 mod p(x) */ 700*190c253dSEric Biggers .octa 0x00000000dd6d000000000000a53c0000 701*190c253dSEric Biggers 702*190c253dSEric Biggers /* x^28736 mod p(x), x^28672 mod p(x) */ 703*190c253dSEric Biggers .octa 0x000000004c3f00000000000039340000 704*190c253dSEric Biggers 705*190c253dSEric Biggers /* x^27712 mod p(x), x^27648 mod p(x) */ 706*190c253dSEric Biggers .octa 0x0000000093a4000000000000b58e0000 707*190c253dSEric Biggers 708*190c253dSEric Biggers /* x^26688 mod p(x), x^26624 mod p(x) */ 709*190c253dSEric Biggers .octa 0x0000000050fb00000000000062d40000 710*190c253dSEric Biggers 711*190c253dSEric Biggers /* x^25664 mod p(x), x^25600 mod p(x) */ 712*190c253dSEric Biggers .octa 0x00000000f505000000000000a26f0000 713*190c253dSEric Biggers 714*190c253dSEric Biggers /* x^24640 mod p(x), x^24576 mod p(x) */ 715*190c253dSEric Biggers .octa 0x0000000064f900000000000065e60000 716*190c253dSEric Biggers 717*190c253dSEric Biggers /* x^23616 mod p(x), x^23552 mod p(x) */ 718*190c253dSEric Biggers .octa 0x00000000e8c2000000000000aad90000 719*190c253dSEric Biggers 720*190c253dSEric Biggers /* x^22592 mod p(x), x^22528 mod p(x) */ 721*190c253dSEric Biggers .octa 0x00000000720b000000000000a3b00000 722*190c253dSEric Biggers 723*190c253dSEric Biggers /* x^21568 mod p(x), x^21504 mod p(x) */ 724*190c253dSEric Biggers .octa 0x00000000e992000000000000d2680000 725*190c253dSEric Biggers 726*190c253dSEric Biggers /* x^20544 mod p(x), x^20480 mod p(x) */ 727*190c253dSEric Biggers .octa 0x000000009132000000000000cf4c0000 728*190c253dSEric Biggers 729*190c253dSEric Biggers /* x^19520 mod p(x), x^19456 mod p(x) */ 730*190c253dSEric Biggers .octa 0x00000000608a00000000000076610000 731*190c253dSEric Biggers 732*190c253dSEric Biggers /* x^18496 mod p(x), x^18432 mod p(x) */ 733*190c253dSEric Biggers .octa 0x000000009948000000000000fb9f0000 734*190c253dSEric Biggers 735*190c253dSEric Biggers /* x^17472 mod p(x), x^17408 mod p(x) */ 736*190c253dSEric Biggers .octa 0x00000000173000000000000003770000 737*190c253dSEric Biggers 738*190c253dSEric Biggers /* x^16448 mod p(x), x^16384 mod p(x) */ 739*190c253dSEric Biggers .octa 0x000000006fe300000000000004880000 740*190c253dSEric Biggers 741*190c253dSEric Biggers /* x^15424 mod p(x), x^15360 mod p(x) */ 742*190c253dSEric Biggers .octa 0x00000000e15300000000000056a70000 743*190c253dSEric Biggers 744*190c253dSEric Biggers /* x^14400 mod p(x), x^14336 mod p(x) */ 745*190c253dSEric Biggers .octa 0x0000000092d60000000000009dfd0000 746*190c253dSEric Biggers 747*190c253dSEric Biggers /* x^13376 mod p(x), x^13312 mod p(x) */ 748*190c253dSEric Biggers .octa 0x0000000002fd00000000000074c80000 749*190c253dSEric Biggers 750*190c253dSEric Biggers /* x^12352 mod p(x), x^12288 mod p(x) */ 751*190c253dSEric Biggers .octa 0x00000000c78b000000000000a3ec0000 752*190c253dSEric Biggers 753*190c253dSEric Biggers /* x^11328 mod p(x), x^11264 mod p(x) */ 754*190c253dSEric Biggers .octa 0x000000009262000000000000b3530000 755*190c253dSEric Biggers 756*190c253dSEric Biggers /* x^10304 mod p(x), x^10240 mod p(x) */ 757*190c253dSEric Biggers .octa 0x0000000084f200000000000047bf0000 758*190c253dSEric Biggers 759*190c253dSEric Biggers /* x^9280 mod p(x), x^9216 mod p(x) */ 760*190c253dSEric Biggers .octa 0x0000000067ee000000000000e97c0000 761*190c253dSEric Biggers 762*190c253dSEric Biggers /* x^8256 mod p(x), x^8192 mod p(x) */ 763*190c253dSEric Biggers .octa 0x00000000535b00000000000091e10000 764*190c253dSEric Biggers 765*190c253dSEric Biggers /* x^7232 mod p(x), x^7168 mod p(x) */ 766*190c253dSEric Biggers .octa 0x000000007ebb00000000000055060000 767*190c253dSEric Biggers 768*190c253dSEric Biggers /* x^6208 mod p(x), x^6144 mod p(x) */ 769*190c253dSEric Biggers .octa 0x00000000c6a1000000000000fd360000 770*190c253dSEric Biggers 771*190c253dSEric Biggers /* x^5184 mod p(x), x^5120 mod p(x) */ 772*190c253dSEric Biggers .octa 0x000000001be500000000000055860000 773*190c253dSEric Biggers 774*190c253dSEric Biggers /* x^4160 mod p(x), x^4096 mod p(x) */ 775*190c253dSEric Biggers .octa 0x00000000ae0e0000000000005bd00000 776*190c253dSEric Biggers 777*190c253dSEric Biggers /* x^3136 mod p(x), x^3072 mod p(x) */ 778*190c253dSEric Biggers .octa 0x0000000022040000000000008db20000 779*190c253dSEric Biggers 780*190c253dSEric Biggers /* x^2112 mod p(x), x^2048 mod p(x) */ 781*190c253dSEric Biggers .octa 0x00000000c9eb000000000000efe20000 782*190c253dSEric Biggers 783*190c253dSEric Biggers /* x^1088 mod p(x), x^1024 mod p(x) */ 784*190c253dSEric Biggers .octa 0x0000000039b400000000000051d10000 785*190c253dSEric Biggers 786*190c253dSEric Biggers.short_constants: 787*190c253dSEric Biggers 788*190c253dSEric Biggers /* Reduce final 1024-2048 bits to 64 bits, shifting 32 bits to include the trailing 32 bits of zeros */ 789*190c253dSEric Biggers /* x^2048 mod p(x), x^2016 mod p(x), x^1984 mod p(x), x^1952 mod p(x) */ 790*190c253dSEric Biggers .octa 0xefe20000dccf00009440000033590000 791*190c253dSEric Biggers 792*190c253dSEric Biggers /* x^1920 mod p(x), x^1888 mod p(x), x^1856 mod p(x), x^1824 mod p(x) */ 793*190c253dSEric Biggers .octa 0xee6300002f3f000062180000e0ed0000 794*190c253dSEric Biggers 795*190c253dSEric Biggers /* x^1792 mod p(x), x^1760 mod p(x), x^1728 mod p(x), x^1696 mod p(x) */ 796*190c253dSEric Biggers .octa 0xcf5f000017ef0000ccbe000023d30000 797*190c253dSEric Biggers 798*190c253dSEric Biggers /* x^1664 mod p(x), x^1632 mod p(x), x^1600 mod p(x), x^1568 mod p(x) */ 799*190c253dSEric Biggers .octa 0x6d0c0000a30e00000920000042630000 800*190c253dSEric Biggers 801*190c253dSEric Biggers /* x^1536 mod p(x), x^1504 mod p(x), x^1472 mod p(x), x^1440 mod p(x) */ 802*190c253dSEric Biggers .octa 0x21d30000932b0000a7a00000efcc0000 803*190c253dSEric Biggers 804*190c253dSEric Biggers /* x^1408 mod p(x), x^1376 mod p(x), x^1344 mod p(x), x^1312 mod p(x) */ 805*190c253dSEric Biggers .octa 0x10be00000b310000666f00000d1c0000 806*190c253dSEric Biggers 807*190c253dSEric Biggers /* x^1280 mod p(x), x^1248 mod p(x), x^1216 mod p(x), x^1184 mod p(x) */ 808*190c253dSEric Biggers .octa 0x1f240000ce9e0000caad0000589e0000 809*190c253dSEric Biggers 810*190c253dSEric Biggers /* x^1152 mod p(x), x^1120 mod p(x), x^1088 mod p(x), x^1056 mod p(x) */ 811*190c253dSEric Biggers .octa 0x29610000d02b000039b400007cf50000 812*190c253dSEric Biggers 813*190c253dSEric Biggers /* x^1024 mod p(x), x^992 mod p(x), x^960 mod p(x), x^928 mod p(x) */ 814*190c253dSEric Biggers .octa 0x51d100009d9d00003c0e0000bfd60000 815*190c253dSEric Biggers 816*190c253dSEric Biggers /* x^896 mod p(x), x^864 mod p(x), x^832 mod p(x), x^800 mod p(x) */ 817*190c253dSEric Biggers .octa 0xda390000ceae000013830000713c0000 818*190c253dSEric Biggers 819*190c253dSEric Biggers /* x^768 mod p(x), x^736 mod p(x), x^704 mod p(x), x^672 mod p(x) */ 820*190c253dSEric Biggers .octa 0xb67800001e16000085c0000080a60000 821*190c253dSEric Biggers 822*190c253dSEric Biggers /* x^640 mod p(x), x^608 mod p(x), x^576 mod p(x), x^544 mod p(x) */ 823*190c253dSEric Biggers .octa 0x0db40000f7f90000371d0000e6580000 824*190c253dSEric Biggers 825*190c253dSEric Biggers /* x^512 mod p(x), x^480 mod p(x), x^448 mod p(x), x^416 mod p(x) */ 826*190c253dSEric Biggers .octa 0x87e70000044c0000aadb0000a4970000 827*190c253dSEric Biggers 828*190c253dSEric Biggers /* x^384 mod p(x), x^352 mod p(x), x^320 mod p(x), x^288 mod p(x) */ 829*190c253dSEric Biggers .octa 0x1f990000ad180000d8b30000e7b50000 830*190c253dSEric Biggers 831*190c253dSEric Biggers /* x^256 mod p(x), x^224 mod p(x), x^192 mod p(x), x^160 mod p(x) */ 832*190c253dSEric Biggers .octa 0xbe6c00006ee300004c1a000006df0000 833*190c253dSEric Biggers 834*190c253dSEric Biggers /* x^128 mod p(x), x^96 mod p(x), x^64 mod p(x), x^32 mod p(x) */ 835*190c253dSEric Biggers .octa 0xfb0b00002d560000136800008bb70000 836*190c253dSEric Biggers 837*190c253dSEric Biggers 838*190c253dSEric Biggers.barrett_constants: 839*190c253dSEric Biggers /* Barrett constant m - (4^32)/n */ 840*190c253dSEric Biggers .octa 0x000000000000000000000001f65a57f8 /* x^64 div p(x) */ 841*190c253dSEric Biggers /* Barrett constant n */ 842*190c253dSEric Biggers .octa 0x0000000000000000000000018bb70000 843*190c253dSEric Biggers 844*190c253dSEric Biggers#define CRC_FUNCTION_NAME __crct10dif_vpmsum 845*190c253dSEric Biggers#include "crc-vpmsum-template.S" 846