1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * lib/bitmap.c 4 * Helper functions for bitmap.h. 5 */ 6 7 #include <linux/bitmap.h> 8 #include <linux/bitops.h> 9 #include <linux/bug.h> 10 #include <linux/ctype.h> 11 #include <linux/device.h> 12 #include <linux/errno.h> 13 #include <linux/export.h> 14 #include <linux/kernel.h> 15 #include <linux/mm.h> 16 #include <linux/slab.h> 17 #include <linux/string.h> 18 #include <linux/thread_info.h> 19 #include <linux/uaccess.h> 20 21 #include <asm/page.h> 22 23 #include "kstrtox.h" 24 25 /** 26 * DOC: bitmap introduction 27 * 28 * bitmaps provide an array of bits, implemented using an 29 * array of unsigned longs. The number of valid bits in a 30 * given bitmap does _not_ need to be an exact multiple of 31 * BITS_PER_LONG. 32 * 33 * The possible unused bits in the last, partially used word 34 * of a bitmap are 'don't care'. The implementation makes 35 * no particular effort to keep them zero. It ensures that 36 * their value will not affect the results of any operation. 37 * The bitmap operations that return Boolean (bitmap_empty, 38 * for example) or scalar (bitmap_weight, for example) results 39 * carefully filter out these unused bits from impacting their 40 * results. 41 * 42 * The byte ordering of bitmaps is more natural on little 43 * endian architectures. See the big-endian headers 44 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h 45 * for the best explanations of this ordering. 46 */ 47 48 int __bitmap_equal(const unsigned long *bitmap1, 49 const unsigned long *bitmap2, unsigned int bits) 50 { 51 unsigned int k, lim = bits/BITS_PER_LONG; 52 for (k = 0; k < lim; ++k) 53 if (bitmap1[k] != bitmap2[k]) 54 return 0; 55 56 if (bits % BITS_PER_LONG) 57 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 58 return 0; 59 60 return 1; 61 } 62 EXPORT_SYMBOL(__bitmap_equal); 63 64 bool __bitmap_or_equal(const unsigned long *bitmap1, 65 const unsigned long *bitmap2, 66 const unsigned long *bitmap3, 67 unsigned int bits) 68 { 69 unsigned int k, lim = bits / BITS_PER_LONG; 70 unsigned long tmp; 71 72 for (k = 0; k < lim; ++k) { 73 if ((bitmap1[k] | bitmap2[k]) != bitmap3[k]) 74 return false; 75 } 76 77 if (!(bits % BITS_PER_LONG)) 78 return true; 79 80 tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k]; 81 return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0; 82 } 83 84 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits) 85 { 86 unsigned int k, lim = BITS_TO_LONGS(bits); 87 for (k = 0; k < lim; ++k) 88 dst[k] = ~src[k]; 89 } 90 EXPORT_SYMBOL(__bitmap_complement); 91 92 /** 93 * __bitmap_shift_right - logical right shift of the bits in a bitmap 94 * @dst : destination bitmap 95 * @src : source bitmap 96 * @shift : shift by this many bits 97 * @nbits : bitmap size, in bits 98 * 99 * Shifting right (dividing) means moving bits in the MS -> LS bit 100 * direction. Zeros are fed into the vacated MS positions and the 101 * LS bits shifted off the bottom are lost. 102 */ 103 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src, 104 unsigned shift, unsigned nbits) 105 { 106 unsigned k, lim = BITS_TO_LONGS(nbits); 107 unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; 108 unsigned long mask = BITMAP_LAST_WORD_MASK(nbits); 109 for (k = 0; off + k < lim; ++k) { 110 unsigned long upper, lower; 111 112 /* 113 * If shift is not word aligned, take lower rem bits of 114 * word above and make them the top rem bits of result. 115 */ 116 if (!rem || off + k + 1 >= lim) 117 upper = 0; 118 else { 119 upper = src[off + k + 1]; 120 if (off + k + 1 == lim - 1) 121 upper &= mask; 122 upper <<= (BITS_PER_LONG - rem); 123 } 124 lower = src[off + k]; 125 if (off + k == lim - 1) 126 lower &= mask; 127 lower >>= rem; 128 dst[k] = lower | upper; 129 } 130 if (off) 131 memset(&dst[lim - off], 0, off*sizeof(unsigned long)); 132 } 133 EXPORT_SYMBOL(__bitmap_shift_right); 134 135 136 /** 137 * __bitmap_shift_left - logical left shift of the bits in a bitmap 138 * @dst : destination bitmap 139 * @src : source bitmap 140 * @shift : shift by this many bits 141 * @nbits : bitmap size, in bits 142 * 143 * Shifting left (multiplying) means moving bits in the LS -> MS 144 * direction. Zeros are fed into the vacated LS bit positions 145 * and those MS bits shifted off the top are lost. 146 */ 147 148 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src, 149 unsigned int shift, unsigned int nbits) 150 { 151 int k; 152 unsigned int lim = BITS_TO_LONGS(nbits); 153 unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; 154 for (k = lim - off - 1; k >= 0; --k) { 155 unsigned long upper, lower; 156 157 /* 158 * If shift is not word aligned, take upper rem bits of 159 * word below and make them the bottom rem bits of result. 160 */ 161 if (rem && k > 0) 162 lower = src[k - 1] >> (BITS_PER_LONG - rem); 163 else 164 lower = 0; 165 upper = src[k] << rem; 166 dst[k + off] = lower | upper; 167 } 168 if (off) 169 memset(dst, 0, off*sizeof(unsigned long)); 170 } 171 EXPORT_SYMBOL(__bitmap_shift_left); 172 173 /** 174 * bitmap_cut() - remove bit region from bitmap and right shift remaining bits 175 * @dst: destination bitmap, might overlap with src 176 * @src: source bitmap 177 * @first: start bit of region to be removed 178 * @cut: number of bits to remove 179 * @nbits: bitmap size, in bits 180 * 181 * Set the n-th bit of @dst iff the n-th bit of @src is set and 182 * n is less than @first, or the m-th bit of @src is set for any 183 * m such that @first <= n < nbits, and m = n + @cut. 184 * 185 * In pictures, example for a big-endian 32-bit architecture: 186 * 187 * The @src bitmap is:: 188 * 189 * 31 63 190 * | | 191 * 10000000 11000001 11110010 00010101 10000000 11000001 01110010 00010101 192 * | | | | 193 * 16 14 0 32 194 * 195 * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is:: 196 * 197 * 31 63 198 * | | 199 * 10110000 00011000 00110010 00010101 00010000 00011000 00101110 01000010 200 * | | | 201 * 14 (bit 17 0 32 202 * from @src) 203 * 204 * Note that @dst and @src might overlap partially or entirely. 205 * 206 * This is implemented in the obvious way, with a shift and carry 207 * step for each moved bit. Optimisation is left as an exercise 208 * for the compiler. 209 */ 210 void bitmap_cut(unsigned long *dst, const unsigned long *src, 211 unsigned int first, unsigned int cut, unsigned int nbits) 212 { 213 unsigned int len = BITS_TO_LONGS(nbits); 214 unsigned long keep = 0, carry; 215 int i; 216 217 if (first % BITS_PER_LONG) { 218 keep = src[first / BITS_PER_LONG] & 219 (~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG)); 220 } 221 222 memmove(dst, src, len * sizeof(*dst)); 223 224 while (cut--) { 225 for (i = first / BITS_PER_LONG; i < len; i++) { 226 if (i < len - 1) 227 carry = dst[i + 1] & 1UL; 228 else 229 carry = 0; 230 231 dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1)); 232 } 233 } 234 235 dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG); 236 dst[first / BITS_PER_LONG] |= keep; 237 } 238 EXPORT_SYMBOL(bitmap_cut); 239 240 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1, 241 const unsigned long *bitmap2, unsigned int bits) 242 { 243 unsigned int k; 244 unsigned int lim = bits/BITS_PER_LONG; 245 unsigned long result = 0; 246 247 for (k = 0; k < lim; k++) 248 result |= (dst[k] = bitmap1[k] & bitmap2[k]); 249 if (bits % BITS_PER_LONG) 250 result |= (dst[k] = bitmap1[k] & bitmap2[k] & 251 BITMAP_LAST_WORD_MASK(bits)); 252 return result != 0; 253 } 254 EXPORT_SYMBOL(__bitmap_and); 255 256 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1, 257 const unsigned long *bitmap2, unsigned int bits) 258 { 259 unsigned int k; 260 unsigned int nr = BITS_TO_LONGS(bits); 261 262 for (k = 0; k < nr; k++) 263 dst[k] = bitmap1[k] | bitmap2[k]; 264 } 265 EXPORT_SYMBOL(__bitmap_or); 266 267 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, 268 const unsigned long *bitmap2, unsigned int bits) 269 { 270 unsigned int k; 271 unsigned int nr = BITS_TO_LONGS(bits); 272 273 for (k = 0; k < nr; k++) 274 dst[k] = bitmap1[k] ^ bitmap2[k]; 275 } 276 EXPORT_SYMBOL(__bitmap_xor); 277 278 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, 279 const unsigned long *bitmap2, unsigned int bits) 280 { 281 unsigned int k; 282 unsigned int lim = bits/BITS_PER_LONG; 283 unsigned long result = 0; 284 285 for (k = 0; k < lim; k++) 286 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]); 287 if (bits % BITS_PER_LONG) 288 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] & 289 BITMAP_LAST_WORD_MASK(bits)); 290 return result != 0; 291 } 292 EXPORT_SYMBOL(__bitmap_andnot); 293 294 void __bitmap_replace(unsigned long *dst, 295 const unsigned long *old, const unsigned long *new, 296 const unsigned long *mask, unsigned int nbits) 297 { 298 unsigned int k; 299 unsigned int nr = BITS_TO_LONGS(nbits); 300 301 for (k = 0; k < nr; k++) 302 dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]); 303 } 304 EXPORT_SYMBOL(__bitmap_replace); 305 306 int __bitmap_intersects(const unsigned long *bitmap1, 307 const unsigned long *bitmap2, unsigned int bits) 308 { 309 unsigned int k, lim = bits/BITS_PER_LONG; 310 for (k = 0; k < lim; ++k) 311 if (bitmap1[k] & bitmap2[k]) 312 return 1; 313 314 if (bits % BITS_PER_LONG) 315 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 316 return 1; 317 return 0; 318 } 319 EXPORT_SYMBOL(__bitmap_intersects); 320 321 int __bitmap_subset(const unsigned long *bitmap1, 322 const unsigned long *bitmap2, unsigned int bits) 323 { 324 unsigned int k, lim = bits/BITS_PER_LONG; 325 for (k = 0; k < lim; ++k) 326 if (bitmap1[k] & ~bitmap2[k]) 327 return 0; 328 329 if (bits % BITS_PER_LONG) 330 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 331 return 0; 332 return 1; 333 } 334 EXPORT_SYMBOL(__bitmap_subset); 335 336 int __bitmap_weight(const unsigned long *bitmap, unsigned int bits) 337 { 338 unsigned int k, lim = bits/BITS_PER_LONG; 339 int w = 0; 340 341 for (k = 0; k < lim; k++) 342 w += hweight_long(bitmap[k]); 343 344 if (bits % BITS_PER_LONG) 345 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits)); 346 347 return w; 348 } 349 EXPORT_SYMBOL(__bitmap_weight); 350 351 void __bitmap_set(unsigned long *map, unsigned int start, int len) 352 { 353 unsigned long *p = map + BIT_WORD(start); 354 const unsigned int size = start + len; 355 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG); 356 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start); 357 358 while (len - bits_to_set >= 0) { 359 *p |= mask_to_set; 360 len -= bits_to_set; 361 bits_to_set = BITS_PER_LONG; 362 mask_to_set = ~0UL; 363 p++; 364 } 365 if (len) { 366 mask_to_set &= BITMAP_LAST_WORD_MASK(size); 367 *p |= mask_to_set; 368 } 369 } 370 EXPORT_SYMBOL(__bitmap_set); 371 372 void __bitmap_clear(unsigned long *map, unsigned int start, int len) 373 { 374 unsigned long *p = map + BIT_WORD(start); 375 const unsigned int size = start + len; 376 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG); 377 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start); 378 379 while (len - bits_to_clear >= 0) { 380 *p &= ~mask_to_clear; 381 len -= bits_to_clear; 382 bits_to_clear = BITS_PER_LONG; 383 mask_to_clear = ~0UL; 384 p++; 385 } 386 if (len) { 387 mask_to_clear &= BITMAP_LAST_WORD_MASK(size); 388 *p &= ~mask_to_clear; 389 } 390 } 391 EXPORT_SYMBOL(__bitmap_clear); 392 393 /** 394 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area 395 * @map: The address to base the search on 396 * @size: The bitmap size in bits 397 * @start: The bitnumber to start searching at 398 * @nr: The number of zeroed bits we're looking for 399 * @align_mask: Alignment mask for zero area 400 * @align_offset: Alignment offset for zero area. 401 * 402 * The @align_mask should be one less than a power of 2; the effect is that 403 * the bit offset of all zero areas this function finds plus @align_offset 404 * is multiple of that power of 2. 405 */ 406 unsigned long bitmap_find_next_zero_area_off(unsigned long *map, 407 unsigned long size, 408 unsigned long start, 409 unsigned int nr, 410 unsigned long align_mask, 411 unsigned long align_offset) 412 { 413 unsigned long index, end, i; 414 again: 415 index = find_next_zero_bit(map, size, start); 416 417 /* Align allocation */ 418 index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset; 419 420 end = index + nr; 421 if (end > size) 422 return end; 423 i = find_next_bit(map, end, index); 424 if (i < end) { 425 start = i + 1; 426 goto again; 427 } 428 return index; 429 } 430 EXPORT_SYMBOL(bitmap_find_next_zero_area_off); 431 432 /* 433 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers, 434 * second version by Paul Jackson, third by Joe Korty. 435 */ 436 437 /** 438 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap 439 * 440 * @ubuf: pointer to user buffer containing string. 441 * @ulen: buffer size in bytes. If string is smaller than this 442 * then it must be terminated with a \0. 443 * @maskp: pointer to bitmap array that will contain result. 444 * @nmaskbits: size of bitmap, in bits. 445 */ 446 int bitmap_parse_user(const char __user *ubuf, 447 unsigned int ulen, unsigned long *maskp, 448 int nmaskbits) 449 { 450 char *buf; 451 int ret; 452 453 buf = memdup_user_nul(ubuf, ulen); 454 if (IS_ERR(buf)) 455 return PTR_ERR(buf); 456 457 ret = bitmap_parse(buf, UINT_MAX, maskp, nmaskbits); 458 459 kfree(buf); 460 return ret; 461 } 462 EXPORT_SYMBOL(bitmap_parse_user); 463 464 /** 465 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string 466 * @list: indicates whether the bitmap must be list 467 * @buf: page aligned buffer into which string is placed 468 * @maskp: pointer to bitmap to convert 469 * @nmaskbits: size of bitmap, in bits 470 * 471 * Output format is a comma-separated list of decimal numbers and 472 * ranges if list is specified or hex digits grouped into comma-separated 473 * sets of 8 digits/set. Returns the number of characters written to buf. 474 * 475 * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned 476 * area and that sufficient storage remains at @buf to accommodate the 477 * bitmap_print_to_pagebuf() output. Returns the number of characters 478 * actually printed to @buf, excluding terminating '\0'. 479 */ 480 int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp, 481 int nmaskbits) 482 { 483 ptrdiff_t len = PAGE_SIZE - offset_in_page(buf); 484 485 return list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) : 486 scnprintf(buf, len, "%*pb\n", nmaskbits, maskp); 487 } 488 EXPORT_SYMBOL(bitmap_print_to_pagebuf); 489 490 /** 491 * bitmap_print_to_buf - convert bitmap to list or hex format ASCII string 492 * @list: indicates whether the bitmap must be list 493 * true: print in decimal list format 494 * false: print in hexadecimal bitmask format 495 * @buf: buffer into which string is placed 496 * @maskp: pointer to bitmap to convert 497 * @nmaskbits: size of bitmap, in bits 498 * @off: in the string from which we are copying, We copy to @buf 499 * @count: the maximum number of bytes to print 500 */ 501 static int bitmap_print_to_buf(bool list, char *buf, const unsigned long *maskp, 502 int nmaskbits, loff_t off, size_t count) 503 { 504 const char *fmt = list ? "%*pbl\n" : "%*pb\n"; 505 ssize_t size; 506 void *data; 507 508 data = kasprintf(GFP_KERNEL, fmt, nmaskbits, maskp); 509 if (!data) 510 return -ENOMEM; 511 512 size = memory_read_from_buffer(buf, count, &off, data, strlen(data) + 1); 513 kfree(data); 514 515 return size; 516 } 517 518 /** 519 * bitmap_print_bitmask_to_buf - convert bitmap to hex bitmask format ASCII string 520 * @buf: buffer into which string is placed 521 * @maskp: pointer to bitmap to convert 522 * @nmaskbits: size of bitmap, in bits 523 * @off: in the string from which we are copying, We copy to @buf 524 * @count: the maximum number of bytes to print 525 * 526 * The bitmap_print_to_pagebuf() is used indirectly via its cpumap wrapper 527 * cpumap_print_to_pagebuf() or directly by drivers to export hexadecimal 528 * bitmask and decimal list to userspace by sysfs ABI. 529 * Drivers might be using a normal attribute for this kind of ABIs. A 530 * normal attribute typically has show entry as below: 531 * static ssize_t example_attribute_show(struct device *dev, 532 * struct device_attribute *attr, char *buf) 533 * { 534 * ... 535 * return bitmap_print_to_pagebuf(true, buf, &mask, nr_trig_max); 536 * } 537 * show entry of attribute has no offset and count parameters and this 538 * means the file is limited to one page only. 539 * bitmap_print_to_pagebuf() API works terribly well for this kind of 540 * normal attribute with buf parameter and without offset, count: 541 * bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp, 542 * int nmaskbits) 543 * { 544 * } 545 * The problem is once we have a large bitmap, we have a chance to get a 546 * bitmask or list more than one page. Especially for list, it could be 547 * as complex as 0,3,5,7,9,... We have no simple way to know it exact size. 548 * It turns out bin_attribute is a way to break this limit. bin_attribute 549 * has show entry as below: 550 * static ssize_t 551 * example_bin_attribute_show(struct file *filp, struct kobject *kobj, 552 * struct bin_attribute *attr, char *buf, 553 * loff_t offset, size_t count) 554 * { 555 * ... 556 * } 557 * With the new offset and count parameters, this makes sysfs ABI be able 558 * to support file size more than one page. For example, offset could be 559 * >= 4096. 560 * bitmap_print_bitmask_to_buf(), bitmap_print_list_to_buf() wit their 561 * cpumap wrapper cpumap_print_bitmask_to_buf(), cpumap_print_list_to_buf() 562 * make those drivers be able to support large bitmask and list after they 563 * move to use bin_attribute. In result, we have to pass the corresponding 564 * parameters such as off, count from bin_attribute show entry to this API. 565 * 566 * The role of cpumap_print_bitmask_to_buf() and cpumap_print_list_to_buf() 567 * is similar with cpumap_print_to_pagebuf(), the difference is that 568 * bitmap_print_to_pagebuf() mainly serves sysfs attribute with the assumption 569 * the destination buffer is exactly one page and won't be more than one page. 570 * cpumap_print_bitmask_to_buf() and cpumap_print_list_to_buf(), on the other 571 * hand, mainly serves bin_attribute which doesn't work with exact one page, 572 * and it can break the size limit of converted decimal list and hexadecimal 573 * bitmask. 574 * 575 * WARNING! 576 * 577 * This function is not a replacement for sprintf() or bitmap_print_to_pagebuf(). 578 * It is intended to workaround sysfs limitations discussed above and should be 579 * used carefully in general case for the following reasons: 580 * - Time complexity is O(nbits^2/count), comparing to O(nbits) for snprintf(). 581 * - Memory complexity is O(nbits), comparing to O(1) for snprintf(). 582 * - @off and @count are NOT offset and number of bits to print. 583 * - If printing part of bitmap as list, the resulting string is not a correct 584 * list representation of bitmap. Particularly, some bits within or out of 585 * related interval may be erroneously set or unset. The format of the string 586 * may be broken, so bitmap_parselist-like parser may fail parsing it. 587 * - If printing the whole bitmap as list by parts, user must ensure the order 588 * of calls of the function such that the offset is incremented linearly. 589 * - If printing the whole bitmap as list by parts, user must keep bitmap 590 * unchanged between the very first and very last call. Otherwise concatenated 591 * result may be incorrect, and format may be broken. 592 * 593 * Returns the number of characters actually printed to @buf 594 */ 595 int bitmap_print_bitmask_to_buf(char *buf, const unsigned long *maskp, 596 int nmaskbits, loff_t off, size_t count) 597 { 598 return bitmap_print_to_buf(false, buf, maskp, nmaskbits, off, count); 599 } 600 EXPORT_SYMBOL(bitmap_print_bitmask_to_buf); 601 602 /** 603 * bitmap_print_list_to_buf - convert bitmap to decimal list format ASCII string 604 * @buf: buffer into which string is placed 605 * @maskp: pointer to bitmap to convert 606 * @nmaskbits: size of bitmap, in bits 607 * @off: in the string from which we are copying, We copy to @buf 608 * @count: the maximum number of bytes to print 609 * 610 * Everything is same with the above bitmap_print_bitmask_to_buf() except 611 * the print format. 612 */ 613 int bitmap_print_list_to_buf(char *buf, const unsigned long *maskp, 614 int nmaskbits, loff_t off, size_t count) 615 { 616 return bitmap_print_to_buf(true, buf, maskp, nmaskbits, off, count); 617 } 618 EXPORT_SYMBOL(bitmap_print_list_to_buf); 619 620 /* 621 * Region 9-38:4/10 describes the following bitmap structure: 622 * 0 9 12 18 38 N 623 * .........****......****......****.................. 624 * ^ ^ ^ ^ ^ 625 * start off group_len end nbits 626 */ 627 struct region { 628 unsigned int start; 629 unsigned int off; 630 unsigned int group_len; 631 unsigned int end; 632 unsigned int nbits; 633 }; 634 635 static void bitmap_set_region(const struct region *r, unsigned long *bitmap) 636 { 637 unsigned int start; 638 639 for (start = r->start; start <= r->end; start += r->group_len) 640 bitmap_set(bitmap, start, min(r->end - start + 1, r->off)); 641 } 642 643 static int bitmap_check_region(const struct region *r) 644 { 645 if (r->start > r->end || r->group_len == 0 || r->off > r->group_len) 646 return -EINVAL; 647 648 if (r->end >= r->nbits) 649 return -ERANGE; 650 651 return 0; 652 } 653 654 static const char *bitmap_getnum(const char *str, unsigned int *num, 655 unsigned int lastbit) 656 { 657 unsigned long long n; 658 unsigned int len; 659 660 if (str[0] == 'N') { 661 *num = lastbit; 662 return str + 1; 663 } 664 665 len = _parse_integer(str, 10, &n); 666 if (!len) 667 return ERR_PTR(-EINVAL); 668 if (len & KSTRTOX_OVERFLOW || n != (unsigned int)n) 669 return ERR_PTR(-EOVERFLOW); 670 671 *num = n; 672 return str + len; 673 } 674 675 static inline bool end_of_str(char c) 676 { 677 return c == '\0' || c == '\n'; 678 } 679 680 static inline bool __end_of_region(char c) 681 { 682 return isspace(c) || c == ','; 683 } 684 685 static inline bool end_of_region(char c) 686 { 687 return __end_of_region(c) || end_of_str(c); 688 } 689 690 /* 691 * The format allows commas and whitespaces at the beginning 692 * of the region. 693 */ 694 static const char *bitmap_find_region(const char *str) 695 { 696 while (__end_of_region(*str)) 697 str++; 698 699 return end_of_str(*str) ? NULL : str; 700 } 701 702 static const char *bitmap_find_region_reverse(const char *start, const char *end) 703 { 704 while (start <= end && __end_of_region(*end)) 705 end--; 706 707 return end; 708 } 709 710 static const char *bitmap_parse_region(const char *str, struct region *r) 711 { 712 unsigned int lastbit = r->nbits - 1; 713 714 if (!strncasecmp(str, "all", 3)) { 715 r->start = 0; 716 r->end = lastbit; 717 str += 3; 718 719 goto check_pattern; 720 } 721 722 str = bitmap_getnum(str, &r->start, lastbit); 723 if (IS_ERR(str)) 724 return str; 725 726 if (end_of_region(*str)) 727 goto no_end; 728 729 if (*str != '-') 730 return ERR_PTR(-EINVAL); 731 732 str = bitmap_getnum(str + 1, &r->end, lastbit); 733 if (IS_ERR(str)) 734 return str; 735 736 check_pattern: 737 if (end_of_region(*str)) 738 goto no_pattern; 739 740 if (*str != ':') 741 return ERR_PTR(-EINVAL); 742 743 str = bitmap_getnum(str + 1, &r->off, lastbit); 744 if (IS_ERR(str)) 745 return str; 746 747 if (*str != '/') 748 return ERR_PTR(-EINVAL); 749 750 return bitmap_getnum(str + 1, &r->group_len, lastbit); 751 752 no_end: 753 r->end = r->start; 754 no_pattern: 755 r->off = r->end + 1; 756 r->group_len = r->end + 1; 757 758 return end_of_str(*str) ? NULL : str; 759 } 760 761 /** 762 * bitmap_parselist - convert list format ASCII string to bitmap 763 * @buf: read user string from this buffer; must be terminated 764 * with a \0 or \n. 765 * @maskp: write resulting mask here 766 * @nmaskbits: number of bits in mask to be written 767 * 768 * Input format is a comma-separated list of decimal numbers and 769 * ranges. Consecutively set bits are shown as two hyphen-separated 770 * decimal numbers, the smallest and largest bit numbers set in 771 * the range. 772 * Optionally each range can be postfixed to denote that only parts of it 773 * should be set. The range will divided to groups of specific size. 774 * From each group will be used only defined amount of bits. 775 * Syntax: range:used_size/group_size 776 * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769 777 * The value 'N' can be used as a dynamically substituted token for the 778 * maximum allowed value; i.e (nmaskbits - 1). Keep in mind that it is 779 * dynamic, so if system changes cause the bitmap width to change, such 780 * as more cores in a CPU list, then any ranges using N will also change. 781 * 782 * Returns: 0 on success, -errno on invalid input strings. Error values: 783 * 784 * - ``-EINVAL``: wrong region format 785 * - ``-EINVAL``: invalid character in string 786 * - ``-ERANGE``: bit number specified too large for mask 787 * - ``-EOVERFLOW``: integer overflow in the input parameters 788 */ 789 int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits) 790 { 791 struct region r; 792 long ret; 793 794 r.nbits = nmaskbits; 795 bitmap_zero(maskp, r.nbits); 796 797 while (buf) { 798 buf = bitmap_find_region(buf); 799 if (buf == NULL) 800 return 0; 801 802 buf = bitmap_parse_region(buf, &r); 803 if (IS_ERR(buf)) 804 return PTR_ERR(buf); 805 806 ret = bitmap_check_region(&r); 807 if (ret) 808 return ret; 809 810 bitmap_set_region(&r, maskp); 811 } 812 813 return 0; 814 } 815 EXPORT_SYMBOL(bitmap_parselist); 816 817 818 /** 819 * bitmap_parselist_user() - convert user buffer's list format ASCII 820 * string to bitmap 821 * 822 * @ubuf: pointer to user buffer containing string. 823 * @ulen: buffer size in bytes. If string is smaller than this 824 * then it must be terminated with a \0. 825 * @maskp: pointer to bitmap array that will contain result. 826 * @nmaskbits: size of bitmap, in bits. 827 * 828 * Wrapper for bitmap_parselist(), providing it with user buffer. 829 */ 830 int bitmap_parselist_user(const char __user *ubuf, 831 unsigned int ulen, unsigned long *maskp, 832 int nmaskbits) 833 { 834 char *buf; 835 int ret; 836 837 buf = memdup_user_nul(ubuf, ulen); 838 if (IS_ERR(buf)) 839 return PTR_ERR(buf); 840 841 ret = bitmap_parselist(buf, maskp, nmaskbits); 842 843 kfree(buf); 844 return ret; 845 } 846 EXPORT_SYMBOL(bitmap_parselist_user); 847 848 static const char *bitmap_get_x32_reverse(const char *start, 849 const char *end, u32 *num) 850 { 851 u32 ret = 0; 852 int c, i; 853 854 for (i = 0; i < 32; i += 4) { 855 c = hex_to_bin(*end--); 856 if (c < 0) 857 return ERR_PTR(-EINVAL); 858 859 ret |= c << i; 860 861 if (start > end || __end_of_region(*end)) 862 goto out; 863 } 864 865 if (hex_to_bin(*end--) >= 0) 866 return ERR_PTR(-EOVERFLOW); 867 out: 868 *num = ret; 869 return end; 870 } 871 872 /** 873 * bitmap_parse - convert an ASCII hex string into a bitmap. 874 * @start: pointer to buffer containing string. 875 * @buflen: buffer size in bytes. If string is smaller than this 876 * then it must be terminated with a \0 or \n. In that case, 877 * UINT_MAX may be provided instead of string length. 878 * @maskp: pointer to bitmap array that will contain result. 879 * @nmaskbits: size of bitmap, in bits. 880 * 881 * Commas group hex digits into chunks. Each chunk defines exactly 32 882 * bits of the resultant bitmask. No chunk may specify a value larger 883 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value 884 * then leading 0-bits are prepended. %-EINVAL is returned for illegal 885 * characters. Grouping such as "1,,5", ",44", "," or "" is allowed. 886 * Leading, embedded and trailing whitespace accepted. 887 */ 888 int bitmap_parse(const char *start, unsigned int buflen, 889 unsigned long *maskp, int nmaskbits) 890 { 891 const char *end = strnchrnul(start, buflen, '\n') - 1; 892 int chunks = BITS_TO_U32(nmaskbits); 893 u32 *bitmap = (u32 *)maskp; 894 int unset_bit; 895 int chunk; 896 897 for (chunk = 0; ; chunk++) { 898 end = bitmap_find_region_reverse(start, end); 899 if (start > end) 900 break; 901 902 if (!chunks--) 903 return -EOVERFLOW; 904 905 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN) 906 end = bitmap_get_x32_reverse(start, end, &bitmap[chunk ^ 1]); 907 #else 908 end = bitmap_get_x32_reverse(start, end, &bitmap[chunk]); 909 #endif 910 if (IS_ERR(end)) 911 return PTR_ERR(end); 912 } 913 914 unset_bit = (BITS_TO_U32(nmaskbits) - chunks) * 32; 915 if (unset_bit < nmaskbits) { 916 bitmap_clear(maskp, unset_bit, nmaskbits - unset_bit); 917 return 0; 918 } 919 920 if (find_next_bit(maskp, unset_bit, nmaskbits) != unset_bit) 921 return -EOVERFLOW; 922 923 return 0; 924 } 925 EXPORT_SYMBOL(bitmap_parse); 926 927 /** 928 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap 929 * @buf: pointer to a bitmap 930 * @pos: a bit position in @buf (0 <= @pos < @nbits) 931 * @nbits: number of valid bit positions in @buf 932 * 933 * Map the bit at position @pos in @buf (of length @nbits) to the 934 * ordinal of which set bit it is. If it is not set or if @pos 935 * is not a valid bit position, map to -1. 936 * 937 * If for example, just bits 4 through 7 are set in @buf, then @pos 938 * values 4 through 7 will get mapped to 0 through 3, respectively, 939 * and other @pos values will get mapped to -1. When @pos value 7 940 * gets mapped to (returns) @ord value 3 in this example, that means 941 * that bit 7 is the 3rd (starting with 0th) set bit in @buf. 942 * 943 * The bit positions 0 through @bits are valid positions in @buf. 944 */ 945 static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits) 946 { 947 if (pos >= nbits || !test_bit(pos, buf)) 948 return -1; 949 950 return __bitmap_weight(buf, pos); 951 } 952 953 /** 954 * bitmap_ord_to_pos - find position of n-th set bit in bitmap 955 * @buf: pointer to bitmap 956 * @ord: ordinal bit position (n-th set bit, n >= 0) 957 * @nbits: number of valid bit positions in @buf 958 * 959 * Map the ordinal offset of bit @ord in @buf to its position in @buf. 960 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord 961 * >= weight(buf), returns @nbits. 962 * 963 * If for example, just bits 4 through 7 are set in @buf, then @ord 964 * values 0 through 3 will get mapped to 4 through 7, respectively, 965 * and all other @ord values returns @nbits. When @ord value 3 966 * gets mapped to (returns) @pos value 7 in this example, that means 967 * that the 3rd set bit (starting with 0th) is at position 7 in @buf. 968 * 969 * The bit positions 0 through @nbits-1 are valid positions in @buf. 970 */ 971 unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits) 972 { 973 unsigned int pos; 974 975 for (pos = find_first_bit(buf, nbits); 976 pos < nbits && ord; 977 pos = find_next_bit(buf, nbits, pos + 1)) 978 ord--; 979 980 return pos; 981 } 982 983 /** 984 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap 985 * @dst: remapped result 986 * @src: subset to be remapped 987 * @old: defines domain of map 988 * @new: defines range of map 989 * @nbits: number of bits in each of these bitmaps 990 * 991 * Let @old and @new define a mapping of bit positions, such that 992 * whatever position is held by the n-th set bit in @old is mapped 993 * to the n-th set bit in @new. In the more general case, allowing 994 * for the possibility that the weight 'w' of @new is less than the 995 * weight of @old, map the position of the n-th set bit in @old to 996 * the position of the m-th set bit in @new, where m == n % w. 997 * 998 * If either of the @old and @new bitmaps are empty, or if @src and 999 * @dst point to the same location, then this routine copies @src 1000 * to @dst. 1001 * 1002 * The positions of unset bits in @old are mapped to themselves 1003 * (the identify map). 1004 * 1005 * Apply the above specified mapping to @src, placing the result in 1006 * @dst, clearing any bits previously set in @dst. 1007 * 1008 * For example, lets say that @old has bits 4 through 7 set, and 1009 * @new has bits 12 through 15 set. This defines the mapping of bit 1010 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other 1011 * bit positions unchanged. So if say @src comes into this routine 1012 * with bits 1, 5 and 7 set, then @dst should leave with bits 1, 1013 * 13 and 15 set. 1014 */ 1015 void bitmap_remap(unsigned long *dst, const unsigned long *src, 1016 const unsigned long *old, const unsigned long *new, 1017 unsigned int nbits) 1018 { 1019 unsigned int oldbit, w; 1020 1021 if (dst == src) /* following doesn't handle inplace remaps */ 1022 return; 1023 bitmap_zero(dst, nbits); 1024 1025 w = bitmap_weight(new, nbits); 1026 for_each_set_bit(oldbit, src, nbits) { 1027 int n = bitmap_pos_to_ord(old, oldbit, nbits); 1028 1029 if (n < 0 || w == 0) 1030 set_bit(oldbit, dst); /* identity map */ 1031 else 1032 set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst); 1033 } 1034 } 1035 EXPORT_SYMBOL(bitmap_remap); 1036 1037 /** 1038 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit 1039 * @oldbit: bit position to be mapped 1040 * @old: defines domain of map 1041 * @new: defines range of map 1042 * @bits: number of bits in each of these bitmaps 1043 * 1044 * Let @old and @new define a mapping of bit positions, such that 1045 * whatever position is held by the n-th set bit in @old is mapped 1046 * to the n-th set bit in @new. In the more general case, allowing 1047 * for the possibility that the weight 'w' of @new is less than the 1048 * weight of @old, map the position of the n-th set bit in @old to 1049 * the position of the m-th set bit in @new, where m == n % w. 1050 * 1051 * The positions of unset bits in @old are mapped to themselves 1052 * (the identify map). 1053 * 1054 * Apply the above specified mapping to bit position @oldbit, returning 1055 * the new bit position. 1056 * 1057 * For example, lets say that @old has bits 4 through 7 set, and 1058 * @new has bits 12 through 15 set. This defines the mapping of bit 1059 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other 1060 * bit positions unchanged. So if say @oldbit is 5, then this routine 1061 * returns 13. 1062 */ 1063 int bitmap_bitremap(int oldbit, const unsigned long *old, 1064 const unsigned long *new, int bits) 1065 { 1066 int w = bitmap_weight(new, bits); 1067 int n = bitmap_pos_to_ord(old, oldbit, bits); 1068 if (n < 0 || w == 0) 1069 return oldbit; 1070 else 1071 return bitmap_ord_to_pos(new, n % w, bits); 1072 } 1073 EXPORT_SYMBOL(bitmap_bitremap); 1074 1075 #ifdef CONFIG_NUMA 1076 /** 1077 * bitmap_onto - translate one bitmap relative to another 1078 * @dst: resulting translated bitmap 1079 * @orig: original untranslated bitmap 1080 * @relmap: bitmap relative to which translated 1081 * @bits: number of bits in each of these bitmaps 1082 * 1083 * Set the n-th bit of @dst iff there exists some m such that the 1084 * n-th bit of @relmap is set, the m-th bit of @orig is set, and 1085 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap. 1086 * (If you understood the previous sentence the first time your 1087 * read it, you're overqualified for your current job.) 1088 * 1089 * In other words, @orig is mapped onto (surjectively) @dst, 1090 * using the map { <n, m> | the n-th bit of @relmap is the 1091 * m-th set bit of @relmap }. 1092 * 1093 * Any set bits in @orig above bit number W, where W is the 1094 * weight of (number of set bits in) @relmap are mapped nowhere. 1095 * In particular, if for all bits m set in @orig, m >= W, then 1096 * @dst will end up empty. In situations where the possibility 1097 * of such an empty result is not desired, one way to avoid it is 1098 * to use the bitmap_fold() operator, below, to first fold the 1099 * @orig bitmap over itself so that all its set bits x are in the 1100 * range 0 <= x < W. The bitmap_fold() operator does this by 1101 * setting the bit (m % W) in @dst, for each bit (m) set in @orig. 1102 * 1103 * Example [1] for bitmap_onto(): 1104 * Let's say @relmap has bits 30-39 set, and @orig has bits 1105 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine, 1106 * @dst will have bits 31, 33, 35, 37 and 39 set. 1107 * 1108 * When bit 0 is set in @orig, it means turn on the bit in 1109 * @dst corresponding to whatever is the first bit (if any) 1110 * that is turned on in @relmap. Since bit 0 was off in the 1111 * above example, we leave off that bit (bit 30) in @dst. 1112 * 1113 * When bit 1 is set in @orig (as in the above example), it 1114 * means turn on the bit in @dst corresponding to whatever 1115 * is the second bit that is turned on in @relmap. The second 1116 * bit in @relmap that was turned on in the above example was 1117 * bit 31, so we turned on bit 31 in @dst. 1118 * 1119 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst, 1120 * because they were the 4th, 6th, 8th and 10th set bits 1121 * set in @relmap, and the 4th, 6th, 8th and 10th bits of 1122 * @orig (i.e. bits 3, 5, 7 and 9) were also set. 1123 * 1124 * When bit 11 is set in @orig, it means turn on the bit in 1125 * @dst corresponding to whatever is the twelfth bit that is 1126 * turned on in @relmap. In the above example, there were 1127 * only ten bits turned on in @relmap (30..39), so that bit 1128 * 11 was set in @orig had no affect on @dst. 1129 * 1130 * Example [2] for bitmap_fold() + bitmap_onto(): 1131 * Let's say @relmap has these ten bits set:: 1132 * 1133 * 40 41 42 43 45 48 53 61 74 95 1134 * 1135 * (for the curious, that's 40 plus the first ten terms of the 1136 * Fibonacci sequence.) 1137 * 1138 * Further lets say we use the following code, invoking 1139 * bitmap_fold() then bitmap_onto, as suggested above to 1140 * avoid the possibility of an empty @dst result:: 1141 * 1142 * unsigned long *tmp; // a temporary bitmap's bits 1143 * 1144 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits); 1145 * bitmap_onto(dst, tmp, relmap, bits); 1146 * 1147 * Then this table shows what various values of @dst would be, for 1148 * various @orig's. I list the zero-based positions of each set bit. 1149 * The tmp column shows the intermediate result, as computed by 1150 * using bitmap_fold() to fold the @orig bitmap modulo ten 1151 * (the weight of @relmap): 1152 * 1153 * =============== ============== ================= 1154 * @orig tmp @dst 1155 * 0 0 40 1156 * 1 1 41 1157 * 9 9 95 1158 * 10 0 40 [#f1]_ 1159 * 1 3 5 7 1 3 5 7 41 43 48 61 1160 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45 1161 * 0 9 18 27 0 9 8 7 40 61 74 95 1162 * 0 10 20 30 0 40 1163 * 0 11 22 33 0 1 2 3 40 41 42 43 1164 * 0 12 24 36 0 2 4 6 40 42 45 53 1165 * 78 102 211 1 2 8 41 42 74 [#f1]_ 1166 * =============== ============== ================= 1167 * 1168 * .. [#f1] 1169 * 1170 * For these marked lines, if we hadn't first done bitmap_fold() 1171 * into tmp, then the @dst result would have been empty. 1172 * 1173 * If either of @orig or @relmap is empty (no set bits), then @dst 1174 * will be returned empty. 1175 * 1176 * If (as explained above) the only set bits in @orig are in positions 1177 * m where m >= W, (where W is the weight of @relmap) then @dst will 1178 * once again be returned empty. 1179 * 1180 * All bits in @dst not set by the above rule are cleared. 1181 */ 1182 void bitmap_onto(unsigned long *dst, const unsigned long *orig, 1183 const unsigned long *relmap, unsigned int bits) 1184 { 1185 unsigned int n, m; /* same meaning as in above comment */ 1186 1187 if (dst == orig) /* following doesn't handle inplace mappings */ 1188 return; 1189 bitmap_zero(dst, bits); 1190 1191 /* 1192 * The following code is a more efficient, but less 1193 * obvious, equivalent to the loop: 1194 * for (m = 0; m < bitmap_weight(relmap, bits); m++) { 1195 * n = bitmap_ord_to_pos(orig, m, bits); 1196 * if (test_bit(m, orig)) 1197 * set_bit(n, dst); 1198 * } 1199 */ 1200 1201 m = 0; 1202 for_each_set_bit(n, relmap, bits) { 1203 /* m == bitmap_pos_to_ord(relmap, n, bits) */ 1204 if (test_bit(m, orig)) 1205 set_bit(n, dst); 1206 m++; 1207 } 1208 } 1209 1210 /** 1211 * bitmap_fold - fold larger bitmap into smaller, modulo specified size 1212 * @dst: resulting smaller bitmap 1213 * @orig: original larger bitmap 1214 * @sz: specified size 1215 * @nbits: number of bits in each of these bitmaps 1216 * 1217 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst. 1218 * Clear all other bits in @dst. See further the comment and 1219 * Example [2] for bitmap_onto() for why and how to use this. 1220 */ 1221 void bitmap_fold(unsigned long *dst, const unsigned long *orig, 1222 unsigned int sz, unsigned int nbits) 1223 { 1224 unsigned int oldbit; 1225 1226 if (dst == orig) /* following doesn't handle inplace mappings */ 1227 return; 1228 bitmap_zero(dst, nbits); 1229 1230 for_each_set_bit(oldbit, orig, nbits) 1231 set_bit(oldbit % sz, dst); 1232 } 1233 #endif /* CONFIG_NUMA */ 1234 1235 /* 1236 * Common code for bitmap_*_region() routines. 1237 * bitmap: array of unsigned longs corresponding to the bitmap 1238 * pos: the beginning of the region 1239 * order: region size (log base 2 of number of bits) 1240 * reg_op: operation(s) to perform on that region of bitmap 1241 * 1242 * Can set, verify and/or release a region of bits in a bitmap, 1243 * depending on which combination of REG_OP_* flag bits is set. 1244 * 1245 * A region of a bitmap is a sequence of bits in the bitmap, of 1246 * some size '1 << order' (a power of two), aligned to that same 1247 * '1 << order' power of two. 1248 * 1249 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits). 1250 * Returns 0 in all other cases and reg_ops. 1251 */ 1252 1253 enum { 1254 REG_OP_ISFREE, /* true if region is all zero bits */ 1255 REG_OP_ALLOC, /* set all bits in region */ 1256 REG_OP_RELEASE, /* clear all bits in region */ 1257 }; 1258 1259 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op) 1260 { 1261 int nbits_reg; /* number of bits in region */ 1262 int index; /* index first long of region in bitmap */ 1263 int offset; /* bit offset region in bitmap[index] */ 1264 int nlongs_reg; /* num longs spanned by region in bitmap */ 1265 int nbitsinlong; /* num bits of region in each spanned long */ 1266 unsigned long mask; /* bitmask for one long of region */ 1267 int i; /* scans bitmap by longs */ 1268 int ret = 0; /* return value */ 1269 1270 /* 1271 * Either nlongs_reg == 1 (for small orders that fit in one long) 1272 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.) 1273 */ 1274 nbits_reg = 1 << order; 1275 index = pos / BITS_PER_LONG; 1276 offset = pos - (index * BITS_PER_LONG); 1277 nlongs_reg = BITS_TO_LONGS(nbits_reg); 1278 nbitsinlong = min(nbits_reg, BITS_PER_LONG); 1279 1280 /* 1281 * Can't do "mask = (1UL << nbitsinlong) - 1", as that 1282 * overflows if nbitsinlong == BITS_PER_LONG. 1283 */ 1284 mask = (1UL << (nbitsinlong - 1)); 1285 mask += mask - 1; 1286 mask <<= offset; 1287 1288 switch (reg_op) { 1289 case REG_OP_ISFREE: 1290 for (i = 0; i < nlongs_reg; i++) { 1291 if (bitmap[index + i] & mask) 1292 goto done; 1293 } 1294 ret = 1; /* all bits in region free (zero) */ 1295 break; 1296 1297 case REG_OP_ALLOC: 1298 for (i = 0; i < nlongs_reg; i++) 1299 bitmap[index + i] |= mask; 1300 break; 1301 1302 case REG_OP_RELEASE: 1303 for (i = 0; i < nlongs_reg; i++) 1304 bitmap[index + i] &= ~mask; 1305 break; 1306 } 1307 done: 1308 return ret; 1309 } 1310 1311 /** 1312 * bitmap_find_free_region - find a contiguous aligned mem region 1313 * @bitmap: array of unsigned longs corresponding to the bitmap 1314 * @bits: number of bits in the bitmap 1315 * @order: region size (log base 2 of number of bits) to find 1316 * 1317 * Find a region of free (zero) bits in a @bitmap of @bits bits and 1318 * allocate them (set them to one). Only consider regions of length 1319 * a power (@order) of two, aligned to that power of two, which 1320 * makes the search algorithm much faster. 1321 * 1322 * Return the bit offset in bitmap of the allocated region, 1323 * or -errno on failure. 1324 */ 1325 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order) 1326 { 1327 unsigned int pos, end; /* scans bitmap by regions of size order */ 1328 1329 for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) { 1330 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) 1331 continue; 1332 __reg_op(bitmap, pos, order, REG_OP_ALLOC); 1333 return pos; 1334 } 1335 return -ENOMEM; 1336 } 1337 EXPORT_SYMBOL(bitmap_find_free_region); 1338 1339 /** 1340 * bitmap_release_region - release allocated bitmap region 1341 * @bitmap: array of unsigned longs corresponding to the bitmap 1342 * @pos: beginning of bit region to release 1343 * @order: region size (log base 2 of number of bits) to release 1344 * 1345 * This is the complement to __bitmap_find_free_region() and releases 1346 * the found region (by clearing it in the bitmap). 1347 * 1348 * No return value. 1349 */ 1350 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order) 1351 { 1352 __reg_op(bitmap, pos, order, REG_OP_RELEASE); 1353 } 1354 EXPORT_SYMBOL(bitmap_release_region); 1355 1356 /** 1357 * bitmap_allocate_region - allocate bitmap region 1358 * @bitmap: array of unsigned longs corresponding to the bitmap 1359 * @pos: beginning of bit region to allocate 1360 * @order: region size (log base 2 of number of bits) to allocate 1361 * 1362 * Allocate (set bits in) a specified region of a bitmap. 1363 * 1364 * Return 0 on success, or %-EBUSY if specified region wasn't 1365 * free (not all bits were zero). 1366 */ 1367 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order) 1368 { 1369 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) 1370 return -EBUSY; 1371 return __reg_op(bitmap, pos, order, REG_OP_ALLOC); 1372 } 1373 EXPORT_SYMBOL(bitmap_allocate_region); 1374 1375 /** 1376 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order. 1377 * @dst: destination buffer 1378 * @src: bitmap to copy 1379 * @nbits: number of bits in the bitmap 1380 * 1381 * Require nbits % BITS_PER_LONG == 0. 1382 */ 1383 #ifdef __BIG_ENDIAN 1384 void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits) 1385 { 1386 unsigned int i; 1387 1388 for (i = 0; i < nbits/BITS_PER_LONG; i++) { 1389 if (BITS_PER_LONG == 64) 1390 dst[i] = cpu_to_le64(src[i]); 1391 else 1392 dst[i] = cpu_to_le32(src[i]); 1393 } 1394 } 1395 EXPORT_SYMBOL(bitmap_copy_le); 1396 #endif 1397 1398 unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags) 1399 { 1400 return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long), 1401 flags); 1402 } 1403 EXPORT_SYMBOL(bitmap_alloc); 1404 1405 unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags) 1406 { 1407 return bitmap_alloc(nbits, flags | __GFP_ZERO); 1408 } 1409 EXPORT_SYMBOL(bitmap_zalloc); 1410 1411 unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node) 1412 { 1413 return kmalloc_array_node(BITS_TO_LONGS(nbits), sizeof(unsigned long), 1414 flags, node); 1415 } 1416 EXPORT_SYMBOL(bitmap_alloc_node); 1417 1418 unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node) 1419 { 1420 return bitmap_alloc_node(nbits, flags | __GFP_ZERO, node); 1421 } 1422 EXPORT_SYMBOL(bitmap_zalloc_node); 1423 1424 void bitmap_free(const unsigned long *bitmap) 1425 { 1426 kfree(bitmap); 1427 } 1428 EXPORT_SYMBOL(bitmap_free); 1429 1430 static void devm_bitmap_free(void *data) 1431 { 1432 unsigned long *bitmap = data; 1433 1434 bitmap_free(bitmap); 1435 } 1436 1437 unsigned long *devm_bitmap_alloc(struct device *dev, 1438 unsigned int nbits, gfp_t flags) 1439 { 1440 unsigned long *bitmap; 1441 int ret; 1442 1443 bitmap = bitmap_alloc(nbits, flags); 1444 if (!bitmap) 1445 return NULL; 1446 1447 ret = devm_add_action_or_reset(dev, devm_bitmap_free, bitmap); 1448 if (ret) 1449 return NULL; 1450 1451 return bitmap; 1452 } 1453 EXPORT_SYMBOL_GPL(devm_bitmap_alloc); 1454 1455 unsigned long *devm_bitmap_zalloc(struct device *dev, 1456 unsigned int nbits, gfp_t flags) 1457 { 1458 return devm_bitmap_alloc(dev, nbits, flags | __GFP_ZERO); 1459 } 1460 EXPORT_SYMBOL_GPL(devm_bitmap_zalloc); 1461 1462 #if BITS_PER_LONG == 64 1463 /** 1464 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap 1465 * @bitmap: array of unsigned longs, the destination bitmap 1466 * @buf: array of u32 (in host byte order), the source bitmap 1467 * @nbits: number of bits in @bitmap 1468 */ 1469 void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits) 1470 { 1471 unsigned int i, halfwords; 1472 1473 halfwords = DIV_ROUND_UP(nbits, 32); 1474 for (i = 0; i < halfwords; i++) { 1475 bitmap[i/2] = (unsigned long) buf[i]; 1476 if (++i < halfwords) 1477 bitmap[i/2] |= ((unsigned long) buf[i]) << 32; 1478 } 1479 1480 /* Clear tail bits in last word beyond nbits. */ 1481 if (nbits % BITS_PER_LONG) 1482 bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits); 1483 } 1484 EXPORT_SYMBOL(bitmap_from_arr32); 1485 1486 /** 1487 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits 1488 * @buf: array of u32 (in host byte order), the dest bitmap 1489 * @bitmap: array of unsigned longs, the source bitmap 1490 * @nbits: number of bits in @bitmap 1491 */ 1492 void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits) 1493 { 1494 unsigned int i, halfwords; 1495 1496 halfwords = DIV_ROUND_UP(nbits, 32); 1497 for (i = 0; i < halfwords; i++) { 1498 buf[i] = (u32) (bitmap[i/2] & UINT_MAX); 1499 if (++i < halfwords) 1500 buf[i] = (u32) (bitmap[i/2] >> 32); 1501 } 1502 1503 /* Clear tail bits in last element of array beyond nbits. */ 1504 if (nbits % BITS_PER_LONG) 1505 buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31)); 1506 } 1507 EXPORT_SYMBOL(bitmap_to_arr32); 1508 1509 #endif 1510