xref: /linux/lib/bitmap.c (revision d19e470b6605c900db21fc7b34c66b6891a79983)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * lib/bitmap.c
4  * Helper functions for bitmap.h.
5  */
6 #include <linux/export.h>
7 #include <linux/thread_info.h>
8 #include <linux/ctype.h>
9 #include <linux/errno.h>
10 #include <linux/bitmap.h>
11 #include <linux/bitops.h>
12 #include <linux/bug.h>
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/slab.h>
16 #include <linux/string.h>
17 #include <linux/uaccess.h>
18 
19 #include <asm/page.h>
20 
21 #include "kstrtox.h"
22 
23 /**
24  * DOC: bitmap introduction
25  *
26  * bitmaps provide an array of bits, implemented using an an
27  * array of unsigned longs.  The number of valid bits in a
28  * given bitmap does _not_ need to be an exact multiple of
29  * BITS_PER_LONG.
30  *
31  * The possible unused bits in the last, partially used word
32  * of a bitmap are 'don't care'.  The implementation makes
33  * no particular effort to keep them zero.  It ensures that
34  * their value will not affect the results of any operation.
35  * The bitmap operations that return Boolean (bitmap_empty,
36  * for example) or scalar (bitmap_weight, for example) results
37  * carefully filter out these unused bits from impacting their
38  * results.
39  *
40  * The byte ordering of bitmaps is more natural on little
41  * endian architectures.  See the big-endian headers
42  * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
43  * for the best explanations of this ordering.
44  */
45 
46 int __bitmap_equal(const unsigned long *bitmap1,
47 		const unsigned long *bitmap2, unsigned int bits)
48 {
49 	unsigned int k, lim = bits/BITS_PER_LONG;
50 	for (k = 0; k < lim; ++k)
51 		if (bitmap1[k] != bitmap2[k])
52 			return 0;
53 
54 	if (bits % BITS_PER_LONG)
55 		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
56 			return 0;
57 
58 	return 1;
59 }
60 EXPORT_SYMBOL(__bitmap_equal);
61 
62 bool __bitmap_or_equal(const unsigned long *bitmap1,
63 		       const unsigned long *bitmap2,
64 		       const unsigned long *bitmap3,
65 		       unsigned int bits)
66 {
67 	unsigned int k, lim = bits / BITS_PER_LONG;
68 	unsigned long tmp;
69 
70 	for (k = 0; k < lim; ++k) {
71 		if ((bitmap1[k] | bitmap2[k]) != bitmap3[k])
72 			return false;
73 	}
74 
75 	if (!(bits % BITS_PER_LONG))
76 		return true;
77 
78 	tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k];
79 	return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0;
80 }
81 
82 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
83 {
84 	unsigned int k, lim = BITS_TO_LONGS(bits);
85 	for (k = 0; k < lim; ++k)
86 		dst[k] = ~src[k];
87 }
88 EXPORT_SYMBOL(__bitmap_complement);
89 
90 /**
91  * __bitmap_shift_right - logical right shift of the bits in a bitmap
92  *   @dst : destination bitmap
93  *   @src : source bitmap
94  *   @shift : shift by this many bits
95  *   @nbits : bitmap size, in bits
96  *
97  * Shifting right (dividing) means moving bits in the MS -> LS bit
98  * direction.  Zeros are fed into the vacated MS positions and the
99  * LS bits shifted off the bottom are lost.
100  */
101 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
102 			unsigned shift, unsigned nbits)
103 {
104 	unsigned k, lim = BITS_TO_LONGS(nbits);
105 	unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
106 	unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
107 	for (k = 0; off + k < lim; ++k) {
108 		unsigned long upper, lower;
109 
110 		/*
111 		 * If shift is not word aligned, take lower rem bits of
112 		 * word above and make them the top rem bits of result.
113 		 */
114 		if (!rem || off + k + 1 >= lim)
115 			upper = 0;
116 		else {
117 			upper = src[off + k + 1];
118 			if (off + k + 1 == lim - 1)
119 				upper &= mask;
120 			upper <<= (BITS_PER_LONG - rem);
121 		}
122 		lower = src[off + k];
123 		if (off + k == lim - 1)
124 			lower &= mask;
125 		lower >>= rem;
126 		dst[k] = lower | upper;
127 	}
128 	if (off)
129 		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
130 }
131 EXPORT_SYMBOL(__bitmap_shift_right);
132 
133 
134 /**
135  * __bitmap_shift_left - logical left shift of the bits in a bitmap
136  *   @dst : destination bitmap
137  *   @src : source bitmap
138  *   @shift : shift by this many bits
139  *   @nbits : bitmap size, in bits
140  *
141  * Shifting left (multiplying) means moving bits in the LS -> MS
142  * direction.  Zeros are fed into the vacated LS bit positions
143  * and those MS bits shifted off the top are lost.
144  */
145 
146 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
147 			unsigned int shift, unsigned int nbits)
148 {
149 	int k;
150 	unsigned int lim = BITS_TO_LONGS(nbits);
151 	unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
152 	for (k = lim - off - 1; k >= 0; --k) {
153 		unsigned long upper, lower;
154 
155 		/*
156 		 * If shift is not word aligned, take upper rem bits of
157 		 * word below and make them the bottom rem bits of result.
158 		 */
159 		if (rem && k > 0)
160 			lower = src[k - 1] >> (BITS_PER_LONG - rem);
161 		else
162 			lower = 0;
163 		upper = src[k] << rem;
164 		dst[k + off] = lower | upper;
165 	}
166 	if (off)
167 		memset(dst, 0, off*sizeof(unsigned long));
168 }
169 EXPORT_SYMBOL(__bitmap_shift_left);
170 
171 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
172 				const unsigned long *bitmap2, unsigned int bits)
173 {
174 	unsigned int k;
175 	unsigned int lim = bits/BITS_PER_LONG;
176 	unsigned long result = 0;
177 
178 	for (k = 0; k < lim; k++)
179 		result |= (dst[k] = bitmap1[k] & bitmap2[k]);
180 	if (bits % BITS_PER_LONG)
181 		result |= (dst[k] = bitmap1[k] & bitmap2[k] &
182 			   BITMAP_LAST_WORD_MASK(bits));
183 	return result != 0;
184 }
185 EXPORT_SYMBOL(__bitmap_and);
186 
187 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
188 				const unsigned long *bitmap2, unsigned int bits)
189 {
190 	unsigned int k;
191 	unsigned int nr = BITS_TO_LONGS(bits);
192 
193 	for (k = 0; k < nr; k++)
194 		dst[k] = bitmap1[k] | bitmap2[k];
195 }
196 EXPORT_SYMBOL(__bitmap_or);
197 
198 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
199 				const unsigned long *bitmap2, unsigned int bits)
200 {
201 	unsigned int k;
202 	unsigned int nr = BITS_TO_LONGS(bits);
203 
204 	for (k = 0; k < nr; k++)
205 		dst[k] = bitmap1[k] ^ bitmap2[k];
206 }
207 EXPORT_SYMBOL(__bitmap_xor);
208 
209 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
210 				const unsigned long *bitmap2, unsigned int bits)
211 {
212 	unsigned int k;
213 	unsigned int lim = bits/BITS_PER_LONG;
214 	unsigned long result = 0;
215 
216 	for (k = 0; k < lim; k++)
217 		result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
218 	if (bits % BITS_PER_LONG)
219 		result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
220 			   BITMAP_LAST_WORD_MASK(bits));
221 	return result != 0;
222 }
223 EXPORT_SYMBOL(__bitmap_andnot);
224 
225 void __bitmap_replace(unsigned long *dst,
226 		      const unsigned long *old, const unsigned long *new,
227 		      const unsigned long *mask, unsigned int nbits)
228 {
229 	unsigned int k;
230 	unsigned int nr = BITS_TO_LONGS(nbits);
231 
232 	for (k = 0; k < nr; k++)
233 		dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]);
234 }
235 EXPORT_SYMBOL(__bitmap_replace);
236 
237 int __bitmap_intersects(const unsigned long *bitmap1,
238 			const unsigned long *bitmap2, unsigned int bits)
239 {
240 	unsigned int k, lim = bits/BITS_PER_LONG;
241 	for (k = 0; k < lim; ++k)
242 		if (bitmap1[k] & bitmap2[k])
243 			return 1;
244 
245 	if (bits % BITS_PER_LONG)
246 		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
247 			return 1;
248 	return 0;
249 }
250 EXPORT_SYMBOL(__bitmap_intersects);
251 
252 int __bitmap_subset(const unsigned long *bitmap1,
253 		    const unsigned long *bitmap2, unsigned int bits)
254 {
255 	unsigned int k, lim = bits/BITS_PER_LONG;
256 	for (k = 0; k < lim; ++k)
257 		if (bitmap1[k] & ~bitmap2[k])
258 			return 0;
259 
260 	if (bits % BITS_PER_LONG)
261 		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
262 			return 0;
263 	return 1;
264 }
265 EXPORT_SYMBOL(__bitmap_subset);
266 
267 int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
268 {
269 	unsigned int k, lim = bits/BITS_PER_LONG;
270 	int w = 0;
271 
272 	for (k = 0; k < lim; k++)
273 		w += hweight_long(bitmap[k]);
274 
275 	if (bits % BITS_PER_LONG)
276 		w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
277 
278 	return w;
279 }
280 EXPORT_SYMBOL(__bitmap_weight);
281 
282 void __bitmap_set(unsigned long *map, unsigned int start, int len)
283 {
284 	unsigned long *p = map + BIT_WORD(start);
285 	const unsigned int size = start + len;
286 	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
287 	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
288 
289 	while (len - bits_to_set >= 0) {
290 		*p |= mask_to_set;
291 		len -= bits_to_set;
292 		bits_to_set = BITS_PER_LONG;
293 		mask_to_set = ~0UL;
294 		p++;
295 	}
296 	if (len) {
297 		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
298 		*p |= mask_to_set;
299 	}
300 }
301 EXPORT_SYMBOL(__bitmap_set);
302 
303 void __bitmap_clear(unsigned long *map, unsigned int start, int len)
304 {
305 	unsigned long *p = map + BIT_WORD(start);
306 	const unsigned int size = start + len;
307 	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
308 	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
309 
310 	while (len - bits_to_clear >= 0) {
311 		*p &= ~mask_to_clear;
312 		len -= bits_to_clear;
313 		bits_to_clear = BITS_PER_LONG;
314 		mask_to_clear = ~0UL;
315 		p++;
316 	}
317 	if (len) {
318 		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
319 		*p &= ~mask_to_clear;
320 	}
321 }
322 EXPORT_SYMBOL(__bitmap_clear);
323 
324 /**
325  * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
326  * @map: The address to base the search on
327  * @size: The bitmap size in bits
328  * @start: The bitnumber to start searching at
329  * @nr: The number of zeroed bits we're looking for
330  * @align_mask: Alignment mask for zero area
331  * @align_offset: Alignment offset for zero area.
332  *
333  * The @align_mask should be one less than a power of 2; the effect is that
334  * the bit offset of all zero areas this function finds plus @align_offset
335  * is multiple of that power of 2.
336  */
337 unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
338 					     unsigned long size,
339 					     unsigned long start,
340 					     unsigned int nr,
341 					     unsigned long align_mask,
342 					     unsigned long align_offset)
343 {
344 	unsigned long index, end, i;
345 again:
346 	index = find_next_zero_bit(map, size, start);
347 
348 	/* Align allocation */
349 	index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
350 
351 	end = index + nr;
352 	if (end > size)
353 		return end;
354 	i = find_next_bit(map, end, index);
355 	if (i < end) {
356 		start = i + 1;
357 		goto again;
358 	}
359 	return index;
360 }
361 EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
362 
363 /*
364  * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
365  * second version by Paul Jackson, third by Joe Korty.
366  */
367 
368 #define CHUNKSZ				32
369 #define nbits_to_hold_value(val)	fls(val)
370 #define BASEDEC 10		/* fancier cpuset lists input in decimal */
371 
372 /**
373  * __bitmap_parse - convert an ASCII hex string into a bitmap.
374  * @buf: pointer to buffer containing string.
375  * @buflen: buffer size in bytes.  If string is smaller than this
376  *    then it must be terminated with a \0.
377  * @is_user: location of buffer, 0 indicates kernel space
378  * @maskp: pointer to bitmap array that will contain result.
379  * @nmaskbits: size of bitmap, in bits.
380  *
381  * Commas group hex digits into chunks.  Each chunk defines exactly 32
382  * bits of the resultant bitmask.  No chunk may specify a value larger
383  * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
384  * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
385  * characters and for grouping errors such as "1,,5", ",44", "," and "".
386  * Leading and trailing whitespace accepted, but not embedded whitespace.
387  */
388 int __bitmap_parse(const char *buf, unsigned int buflen,
389 		int is_user, unsigned long *maskp,
390 		int nmaskbits)
391 {
392 	int c, old_c, totaldigits, ndigits, nchunks, nbits;
393 	u32 chunk;
394 	const char __user __force *ubuf = (const char __user __force *)buf;
395 
396 	bitmap_zero(maskp, nmaskbits);
397 
398 	nchunks = nbits = totaldigits = c = 0;
399 	do {
400 		chunk = 0;
401 		ndigits = totaldigits;
402 
403 		/* Get the next chunk of the bitmap */
404 		while (buflen) {
405 			old_c = c;
406 			if (is_user) {
407 				if (__get_user(c, ubuf++))
408 					return -EFAULT;
409 			}
410 			else
411 				c = *buf++;
412 			buflen--;
413 			if (isspace(c))
414 				continue;
415 
416 			/*
417 			 * If the last character was a space and the current
418 			 * character isn't '\0', we've got embedded whitespace.
419 			 * This is a no-no, so throw an error.
420 			 */
421 			if (totaldigits && c && isspace(old_c))
422 				return -EINVAL;
423 
424 			/* A '\0' or a ',' signal the end of the chunk */
425 			if (c == '\0' || c == ',')
426 				break;
427 
428 			if (!isxdigit(c))
429 				return -EINVAL;
430 
431 			/*
432 			 * Make sure there are at least 4 free bits in 'chunk'.
433 			 * If not, this hexdigit will overflow 'chunk', so
434 			 * throw an error.
435 			 */
436 			if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
437 				return -EOVERFLOW;
438 
439 			chunk = (chunk << 4) | hex_to_bin(c);
440 			totaldigits++;
441 		}
442 		if (ndigits == totaldigits)
443 			return -EINVAL;
444 		if (nchunks == 0 && chunk == 0)
445 			continue;
446 
447 		__bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
448 		*maskp |= chunk;
449 		nchunks++;
450 		nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
451 		if (nbits > nmaskbits)
452 			return -EOVERFLOW;
453 	} while (buflen && c == ',');
454 
455 	return 0;
456 }
457 EXPORT_SYMBOL(__bitmap_parse);
458 
459 /**
460  * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
461  *
462  * @ubuf: pointer to user buffer containing string.
463  * @ulen: buffer size in bytes.  If string is smaller than this
464  *    then it must be terminated with a \0.
465  * @maskp: pointer to bitmap array that will contain result.
466  * @nmaskbits: size of bitmap, in bits.
467  *
468  * Wrapper for __bitmap_parse(), providing it with user buffer.
469  *
470  * We cannot have this as an inline function in bitmap.h because it needs
471  * linux/uaccess.h to get the access_ok() declaration and this causes
472  * cyclic dependencies.
473  */
474 int bitmap_parse_user(const char __user *ubuf,
475 			unsigned int ulen, unsigned long *maskp,
476 			int nmaskbits)
477 {
478 	if (!access_ok(ubuf, ulen))
479 		return -EFAULT;
480 	return __bitmap_parse((const char __force *)ubuf,
481 				ulen, 1, maskp, nmaskbits);
482 
483 }
484 EXPORT_SYMBOL(bitmap_parse_user);
485 
486 /**
487  * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
488  * @list: indicates whether the bitmap must be list
489  * @buf: page aligned buffer into which string is placed
490  * @maskp: pointer to bitmap to convert
491  * @nmaskbits: size of bitmap, in bits
492  *
493  * Output format is a comma-separated list of decimal numbers and
494  * ranges if list is specified or hex digits grouped into comma-separated
495  * sets of 8 digits/set. Returns the number of characters written to buf.
496  *
497  * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned
498  * area and that sufficient storage remains at @buf to accommodate the
499  * bitmap_print_to_pagebuf() output. Returns the number of characters
500  * actually printed to @buf, excluding terminating '\0'.
501  */
502 int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
503 			    int nmaskbits)
504 {
505 	ptrdiff_t len = PAGE_SIZE - offset_in_page(buf);
506 
507 	return list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
508 		      scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
509 }
510 EXPORT_SYMBOL(bitmap_print_to_pagebuf);
511 
512 /*
513  * Region 9-38:4/10 describes the following bitmap structure:
514  * 0	   9  12    18			38
515  * .........****......****......****......
516  *	    ^  ^     ^			 ^
517  *      start  off   group_len	       end
518  */
519 struct region {
520 	unsigned int start;
521 	unsigned int off;
522 	unsigned int group_len;
523 	unsigned int end;
524 };
525 
526 static int bitmap_set_region(const struct region *r,
527 				unsigned long *bitmap, int nbits)
528 {
529 	unsigned int start;
530 
531 	if (r->end >= nbits)
532 		return -ERANGE;
533 
534 	for (start = r->start; start <= r->end; start += r->group_len)
535 		bitmap_set(bitmap, start, min(r->end - start + 1, r->off));
536 
537 	return 0;
538 }
539 
540 static int bitmap_check_region(const struct region *r)
541 {
542 	if (r->start > r->end || r->group_len == 0 || r->off > r->group_len)
543 		return -EINVAL;
544 
545 	return 0;
546 }
547 
548 static const char *bitmap_getnum(const char *str, unsigned int *num)
549 {
550 	unsigned long long n;
551 	unsigned int len;
552 
553 	len = _parse_integer(str, 10, &n);
554 	if (!len)
555 		return ERR_PTR(-EINVAL);
556 	if (len & KSTRTOX_OVERFLOW || n != (unsigned int)n)
557 		return ERR_PTR(-EOVERFLOW);
558 
559 	*num = n;
560 	return str + len;
561 }
562 
563 static inline bool end_of_str(char c)
564 {
565 	return c == '\0' || c == '\n';
566 }
567 
568 static inline bool __end_of_region(char c)
569 {
570 	return isspace(c) || c == ',';
571 }
572 
573 static inline bool end_of_region(char c)
574 {
575 	return __end_of_region(c) || end_of_str(c);
576 }
577 
578 /*
579  * The format allows commas and whitespases at the beginning
580  * of the region.
581  */
582 static const char *bitmap_find_region(const char *str)
583 {
584 	while (__end_of_region(*str))
585 		str++;
586 
587 	return end_of_str(*str) ? NULL : str;
588 }
589 
590 static const char *bitmap_parse_region(const char *str, struct region *r)
591 {
592 	str = bitmap_getnum(str, &r->start);
593 	if (IS_ERR(str))
594 		return str;
595 
596 	if (end_of_region(*str))
597 		goto no_end;
598 
599 	if (*str != '-')
600 		return ERR_PTR(-EINVAL);
601 
602 	str = bitmap_getnum(str + 1, &r->end);
603 	if (IS_ERR(str))
604 		return str;
605 
606 	if (end_of_region(*str))
607 		goto no_pattern;
608 
609 	if (*str != ':')
610 		return ERR_PTR(-EINVAL);
611 
612 	str = bitmap_getnum(str + 1, &r->off);
613 	if (IS_ERR(str))
614 		return str;
615 
616 	if (*str != '/')
617 		return ERR_PTR(-EINVAL);
618 
619 	return bitmap_getnum(str + 1, &r->group_len);
620 
621 no_end:
622 	r->end = r->start;
623 no_pattern:
624 	r->off = r->end + 1;
625 	r->group_len = r->end + 1;
626 
627 	return end_of_str(*str) ? NULL : str;
628 }
629 
630 /**
631  * bitmap_parselist - convert list format ASCII string to bitmap
632  * @buf: read user string from this buffer; must be terminated
633  *    with a \0 or \n.
634  * @maskp: write resulting mask here
635  * @nmaskbits: number of bits in mask to be written
636  *
637  * Input format is a comma-separated list of decimal numbers and
638  * ranges.  Consecutively set bits are shown as two hyphen-separated
639  * decimal numbers, the smallest and largest bit numbers set in
640  * the range.
641  * Optionally each range can be postfixed to denote that only parts of it
642  * should be set. The range will divided to groups of specific size.
643  * From each group will be used only defined amount of bits.
644  * Syntax: range:used_size/group_size
645  * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
646  *
647  * Returns: 0 on success, -errno on invalid input strings. Error values:
648  *
649  *   - ``-EINVAL``: wrong region format
650  *   - ``-EINVAL``: invalid character in string
651  *   - ``-ERANGE``: bit number specified too large for mask
652  *   - ``-EOVERFLOW``: integer overflow in the input parameters
653  */
654 int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits)
655 {
656 	struct region r;
657 	long ret;
658 
659 	bitmap_zero(maskp, nmaskbits);
660 
661 	while (buf) {
662 		buf = bitmap_find_region(buf);
663 		if (buf == NULL)
664 			return 0;
665 
666 		buf = bitmap_parse_region(buf, &r);
667 		if (IS_ERR(buf))
668 			return PTR_ERR(buf);
669 
670 		ret = bitmap_check_region(&r);
671 		if (ret)
672 			return ret;
673 
674 		ret = bitmap_set_region(&r, maskp, nmaskbits);
675 		if (ret)
676 			return ret;
677 	}
678 
679 	return 0;
680 }
681 EXPORT_SYMBOL(bitmap_parselist);
682 
683 
684 /**
685  * bitmap_parselist_user()
686  *
687  * @ubuf: pointer to user buffer containing string.
688  * @ulen: buffer size in bytes.  If string is smaller than this
689  *    then it must be terminated with a \0.
690  * @maskp: pointer to bitmap array that will contain result.
691  * @nmaskbits: size of bitmap, in bits.
692  *
693  * Wrapper for bitmap_parselist(), providing it with user buffer.
694  */
695 int bitmap_parselist_user(const char __user *ubuf,
696 			unsigned int ulen, unsigned long *maskp,
697 			int nmaskbits)
698 {
699 	char *buf;
700 	int ret;
701 
702 	buf = memdup_user_nul(ubuf, ulen);
703 	if (IS_ERR(buf))
704 		return PTR_ERR(buf);
705 
706 	ret = bitmap_parselist(buf, maskp, nmaskbits);
707 
708 	kfree(buf);
709 	return ret;
710 }
711 EXPORT_SYMBOL(bitmap_parselist_user);
712 
713 
714 #ifdef CONFIG_NUMA
715 /**
716  * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
717  *	@buf: pointer to a bitmap
718  *	@pos: a bit position in @buf (0 <= @pos < @nbits)
719  *	@nbits: number of valid bit positions in @buf
720  *
721  * Map the bit at position @pos in @buf (of length @nbits) to the
722  * ordinal of which set bit it is.  If it is not set or if @pos
723  * is not a valid bit position, map to -1.
724  *
725  * If for example, just bits 4 through 7 are set in @buf, then @pos
726  * values 4 through 7 will get mapped to 0 through 3, respectively,
727  * and other @pos values will get mapped to -1.  When @pos value 7
728  * gets mapped to (returns) @ord value 3 in this example, that means
729  * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
730  *
731  * The bit positions 0 through @bits are valid positions in @buf.
732  */
733 static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
734 {
735 	if (pos >= nbits || !test_bit(pos, buf))
736 		return -1;
737 
738 	return __bitmap_weight(buf, pos);
739 }
740 
741 /**
742  * bitmap_ord_to_pos - find position of n-th set bit in bitmap
743  *	@buf: pointer to bitmap
744  *	@ord: ordinal bit position (n-th set bit, n >= 0)
745  *	@nbits: number of valid bit positions in @buf
746  *
747  * Map the ordinal offset of bit @ord in @buf to its position in @buf.
748  * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
749  * >= weight(buf), returns @nbits.
750  *
751  * If for example, just bits 4 through 7 are set in @buf, then @ord
752  * values 0 through 3 will get mapped to 4 through 7, respectively,
753  * and all other @ord values returns @nbits.  When @ord value 3
754  * gets mapped to (returns) @pos value 7 in this example, that means
755  * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
756  *
757  * The bit positions 0 through @nbits-1 are valid positions in @buf.
758  */
759 unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
760 {
761 	unsigned int pos;
762 
763 	for (pos = find_first_bit(buf, nbits);
764 	     pos < nbits && ord;
765 	     pos = find_next_bit(buf, nbits, pos + 1))
766 		ord--;
767 
768 	return pos;
769 }
770 
771 /**
772  * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
773  *	@dst: remapped result
774  *	@src: subset to be remapped
775  *	@old: defines domain of map
776  *	@new: defines range of map
777  *	@nbits: number of bits in each of these bitmaps
778  *
779  * Let @old and @new define a mapping of bit positions, such that
780  * whatever position is held by the n-th set bit in @old is mapped
781  * to the n-th set bit in @new.  In the more general case, allowing
782  * for the possibility that the weight 'w' of @new is less than the
783  * weight of @old, map the position of the n-th set bit in @old to
784  * the position of the m-th set bit in @new, where m == n % w.
785  *
786  * If either of the @old and @new bitmaps are empty, or if @src and
787  * @dst point to the same location, then this routine copies @src
788  * to @dst.
789  *
790  * The positions of unset bits in @old are mapped to themselves
791  * (the identify map).
792  *
793  * Apply the above specified mapping to @src, placing the result in
794  * @dst, clearing any bits previously set in @dst.
795  *
796  * For example, lets say that @old has bits 4 through 7 set, and
797  * @new has bits 12 through 15 set.  This defines the mapping of bit
798  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
799  * bit positions unchanged.  So if say @src comes into this routine
800  * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
801  * 13 and 15 set.
802  */
803 void bitmap_remap(unsigned long *dst, const unsigned long *src,
804 		const unsigned long *old, const unsigned long *new,
805 		unsigned int nbits)
806 {
807 	unsigned int oldbit, w;
808 
809 	if (dst == src)		/* following doesn't handle inplace remaps */
810 		return;
811 	bitmap_zero(dst, nbits);
812 
813 	w = bitmap_weight(new, nbits);
814 	for_each_set_bit(oldbit, src, nbits) {
815 		int n = bitmap_pos_to_ord(old, oldbit, nbits);
816 
817 		if (n < 0 || w == 0)
818 			set_bit(oldbit, dst);	/* identity map */
819 		else
820 			set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
821 	}
822 }
823 
824 /**
825  * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
826  *	@oldbit: bit position to be mapped
827  *	@old: defines domain of map
828  *	@new: defines range of map
829  *	@bits: number of bits in each of these bitmaps
830  *
831  * Let @old and @new define a mapping of bit positions, such that
832  * whatever position is held by the n-th set bit in @old is mapped
833  * to the n-th set bit in @new.  In the more general case, allowing
834  * for the possibility that the weight 'w' of @new is less than the
835  * weight of @old, map the position of the n-th set bit in @old to
836  * the position of the m-th set bit in @new, where m == n % w.
837  *
838  * The positions of unset bits in @old are mapped to themselves
839  * (the identify map).
840  *
841  * Apply the above specified mapping to bit position @oldbit, returning
842  * the new bit position.
843  *
844  * For example, lets say that @old has bits 4 through 7 set, and
845  * @new has bits 12 through 15 set.  This defines the mapping of bit
846  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
847  * bit positions unchanged.  So if say @oldbit is 5, then this routine
848  * returns 13.
849  */
850 int bitmap_bitremap(int oldbit, const unsigned long *old,
851 				const unsigned long *new, int bits)
852 {
853 	int w = bitmap_weight(new, bits);
854 	int n = bitmap_pos_to_ord(old, oldbit, bits);
855 	if (n < 0 || w == 0)
856 		return oldbit;
857 	else
858 		return bitmap_ord_to_pos(new, n % w, bits);
859 }
860 
861 /**
862  * bitmap_onto - translate one bitmap relative to another
863  *	@dst: resulting translated bitmap
864  * 	@orig: original untranslated bitmap
865  * 	@relmap: bitmap relative to which translated
866  *	@bits: number of bits in each of these bitmaps
867  *
868  * Set the n-th bit of @dst iff there exists some m such that the
869  * n-th bit of @relmap is set, the m-th bit of @orig is set, and
870  * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
871  * (If you understood the previous sentence the first time your
872  * read it, you're overqualified for your current job.)
873  *
874  * In other words, @orig is mapped onto (surjectively) @dst,
875  * using the map { <n, m> | the n-th bit of @relmap is the
876  * m-th set bit of @relmap }.
877  *
878  * Any set bits in @orig above bit number W, where W is the
879  * weight of (number of set bits in) @relmap are mapped nowhere.
880  * In particular, if for all bits m set in @orig, m >= W, then
881  * @dst will end up empty.  In situations where the possibility
882  * of such an empty result is not desired, one way to avoid it is
883  * to use the bitmap_fold() operator, below, to first fold the
884  * @orig bitmap over itself so that all its set bits x are in the
885  * range 0 <= x < W.  The bitmap_fold() operator does this by
886  * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
887  *
888  * Example [1] for bitmap_onto():
889  *  Let's say @relmap has bits 30-39 set, and @orig has bits
890  *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
891  *  @dst will have bits 31, 33, 35, 37 and 39 set.
892  *
893  *  When bit 0 is set in @orig, it means turn on the bit in
894  *  @dst corresponding to whatever is the first bit (if any)
895  *  that is turned on in @relmap.  Since bit 0 was off in the
896  *  above example, we leave off that bit (bit 30) in @dst.
897  *
898  *  When bit 1 is set in @orig (as in the above example), it
899  *  means turn on the bit in @dst corresponding to whatever
900  *  is the second bit that is turned on in @relmap.  The second
901  *  bit in @relmap that was turned on in the above example was
902  *  bit 31, so we turned on bit 31 in @dst.
903  *
904  *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
905  *  because they were the 4th, 6th, 8th and 10th set bits
906  *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
907  *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
908  *
909  *  When bit 11 is set in @orig, it means turn on the bit in
910  *  @dst corresponding to whatever is the twelfth bit that is
911  *  turned on in @relmap.  In the above example, there were
912  *  only ten bits turned on in @relmap (30..39), so that bit
913  *  11 was set in @orig had no affect on @dst.
914  *
915  * Example [2] for bitmap_fold() + bitmap_onto():
916  *  Let's say @relmap has these ten bits set::
917  *
918  *		40 41 42 43 45 48 53 61 74 95
919  *
920  *  (for the curious, that's 40 plus the first ten terms of the
921  *  Fibonacci sequence.)
922  *
923  *  Further lets say we use the following code, invoking
924  *  bitmap_fold() then bitmap_onto, as suggested above to
925  *  avoid the possibility of an empty @dst result::
926  *
927  *	unsigned long *tmp;	// a temporary bitmap's bits
928  *
929  *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
930  *	bitmap_onto(dst, tmp, relmap, bits);
931  *
932  *  Then this table shows what various values of @dst would be, for
933  *  various @orig's.  I list the zero-based positions of each set bit.
934  *  The tmp column shows the intermediate result, as computed by
935  *  using bitmap_fold() to fold the @orig bitmap modulo ten
936  *  (the weight of @relmap):
937  *
938  *      =============== ============== =================
939  *      @orig           tmp            @dst
940  *      0                0             40
941  *      1                1             41
942  *      9                9             95
943  *      10               0             40 [#f1]_
944  *      1 3 5 7          1 3 5 7       41 43 48 61
945  *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
946  *      0 9 18 27        0 9 8 7       40 61 74 95
947  *      0 10 20 30       0             40
948  *      0 11 22 33       0 1 2 3       40 41 42 43
949  *      0 12 24 36       0 2 4 6       40 42 45 53
950  *      78 102 211       1 2 8         41 42 74 [#f1]_
951  *      =============== ============== =================
952  *
953  * .. [#f1]
954  *
955  *     For these marked lines, if we hadn't first done bitmap_fold()
956  *     into tmp, then the @dst result would have been empty.
957  *
958  * If either of @orig or @relmap is empty (no set bits), then @dst
959  * will be returned empty.
960  *
961  * If (as explained above) the only set bits in @orig are in positions
962  * m where m >= W, (where W is the weight of @relmap) then @dst will
963  * once again be returned empty.
964  *
965  * All bits in @dst not set by the above rule are cleared.
966  */
967 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
968 			const unsigned long *relmap, unsigned int bits)
969 {
970 	unsigned int n, m;	/* same meaning as in above comment */
971 
972 	if (dst == orig)	/* following doesn't handle inplace mappings */
973 		return;
974 	bitmap_zero(dst, bits);
975 
976 	/*
977 	 * The following code is a more efficient, but less
978 	 * obvious, equivalent to the loop:
979 	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) {
980 	 *		n = bitmap_ord_to_pos(orig, m, bits);
981 	 *		if (test_bit(m, orig))
982 	 *			set_bit(n, dst);
983 	 *	}
984 	 */
985 
986 	m = 0;
987 	for_each_set_bit(n, relmap, bits) {
988 		/* m == bitmap_pos_to_ord(relmap, n, bits) */
989 		if (test_bit(m, orig))
990 			set_bit(n, dst);
991 		m++;
992 	}
993 }
994 
995 /**
996  * bitmap_fold - fold larger bitmap into smaller, modulo specified size
997  *	@dst: resulting smaller bitmap
998  *	@orig: original larger bitmap
999  *	@sz: specified size
1000  *	@nbits: number of bits in each of these bitmaps
1001  *
1002  * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
1003  * Clear all other bits in @dst.  See further the comment and
1004  * Example [2] for bitmap_onto() for why and how to use this.
1005  */
1006 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
1007 			unsigned int sz, unsigned int nbits)
1008 {
1009 	unsigned int oldbit;
1010 
1011 	if (dst == orig)	/* following doesn't handle inplace mappings */
1012 		return;
1013 	bitmap_zero(dst, nbits);
1014 
1015 	for_each_set_bit(oldbit, orig, nbits)
1016 		set_bit(oldbit % sz, dst);
1017 }
1018 #endif /* CONFIG_NUMA */
1019 
1020 /*
1021  * Common code for bitmap_*_region() routines.
1022  *	bitmap: array of unsigned longs corresponding to the bitmap
1023  *	pos: the beginning of the region
1024  *	order: region size (log base 2 of number of bits)
1025  *	reg_op: operation(s) to perform on that region of bitmap
1026  *
1027  * Can set, verify and/or release a region of bits in a bitmap,
1028  * depending on which combination of REG_OP_* flag bits is set.
1029  *
1030  * A region of a bitmap is a sequence of bits in the bitmap, of
1031  * some size '1 << order' (a power of two), aligned to that same
1032  * '1 << order' power of two.
1033  *
1034  * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
1035  * Returns 0 in all other cases and reg_ops.
1036  */
1037 
1038 enum {
1039 	REG_OP_ISFREE,		/* true if region is all zero bits */
1040 	REG_OP_ALLOC,		/* set all bits in region */
1041 	REG_OP_RELEASE,		/* clear all bits in region */
1042 };
1043 
1044 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
1045 {
1046 	int nbits_reg;		/* number of bits in region */
1047 	int index;		/* index first long of region in bitmap */
1048 	int offset;		/* bit offset region in bitmap[index] */
1049 	int nlongs_reg;		/* num longs spanned by region in bitmap */
1050 	int nbitsinlong;	/* num bits of region in each spanned long */
1051 	unsigned long mask;	/* bitmask for one long of region */
1052 	int i;			/* scans bitmap by longs */
1053 	int ret = 0;		/* return value */
1054 
1055 	/*
1056 	 * Either nlongs_reg == 1 (for small orders that fit in one long)
1057 	 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1058 	 */
1059 	nbits_reg = 1 << order;
1060 	index = pos / BITS_PER_LONG;
1061 	offset = pos - (index * BITS_PER_LONG);
1062 	nlongs_reg = BITS_TO_LONGS(nbits_reg);
1063 	nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
1064 
1065 	/*
1066 	 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1067 	 * overflows if nbitsinlong == BITS_PER_LONG.
1068 	 */
1069 	mask = (1UL << (nbitsinlong - 1));
1070 	mask += mask - 1;
1071 	mask <<= offset;
1072 
1073 	switch (reg_op) {
1074 	case REG_OP_ISFREE:
1075 		for (i = 0; i < nlongs_reg; i++) {
1076 			if (bitmap[index + i] & mask)
1077 				goto done;
1078 		}
1079 		ret = 1;	/* all bits in region free (zero) */
1080 		break;
1081 
1082 	case REG_OP_ALLOC:
1083 		for (i = 0; i < nlongs_reg; i++)
1084 			bitmap[index + i] |= mask;
1085 		break;
1086 
1087 	case REG_OP_RELEASE:
1088 		for (i = 0; i < nlongs_reg; i++)
1089 			bitmap[index + i] &= ~mask;
1090 		break;
1091 	}
1092 done:
1093 	return ret;
1094 }
1095 
1096 /**
1097  * bitmap_find_free_region - find a contiguous aligned mem region
1098  *	@bitmap: array of unsigned longs corresponding to the bitmap
1099  *	@bits: number of bits in the bitmap
1100  *	@order: region size (log base 2 of number of bits) to find
1101  *
1102  * Find a region of free (zero) bits in a @bitmap of @bits bits and
1103  * allocate them (set them to one).  Only consider regions of length
1104  * a power (@order) of two, aligned to that power of two, which
1105  * makes the search algorithm much faster.
1106  *
1107  * Return the bit offset in bitmap of the allocated region,
1108  * or -errno on failure.
1109  */
1110 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
1111 {
1112 	unsigned int pos, end;		/* scans bitmap by regions of size order */
1113 
1114 	for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
1115 		if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1116 			continue;
1117 		__reg_op(bitmap, pos, order, REG_OP_ALLOC);
1118 		return pos;
1119 	}
1120 	return -ENOMEM;
1121 }
1122 EXPORT_SYMBOL(bitmap_find_free_region);
1123 
1124 /**
1125  * bitmap_release_region - release allocated bitmap region
1126  *	@bitmap: array of unsigned longs corresponding to the bitmap
1127  *	@pos: beginning of bit region to release
1128  *	@order: region size (log base 2 of number of bits) to release
1129  *
1130  * This is the complement to __bitmap_find_free_region() and releases
1131  * the found region (by clearing it in the bitmap).
1132  *
1133  * No return value.
1134  */
1135 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1136 {
1137 	__reg_op(bitmap, pos, order, REG_OP_RELEASE);
1138 }
1139 EXPORT_SYMBOL(bitmap_release_region);
1140 
1141 /**
1142  * bitmap_allocate_region - allocate bitmap region
1143  *	@bitmap: array of unsigned longs corresponding to the bitmap
1144  *	@pos: beginning of bit region to allocate
1145  *	@order: region size (log base 2 of number of bits) to allocate
1146  *
1147  * Allocate (set bits in) a specified region of a bitmap.
1148  *
1149  * Return 0 on success, or %-EBUSY if specified region wasn't
1150  * free (not all bits were zero).
1151  */
1152 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1153 {
1154 	if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1155 		return -EBUSY;
1156 	return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1157 }
1158 EXPORT_SYMBOL(bitmap_allocate_region);
1159 
1160 /**
1161  * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1162  * @dst:   destination buffer
1163  * @src:   bitmap to copy
1164  * @nbits: number of bits in the bitmap
1165  *
1166  * Require nbits % BITS_PER_LONG == 0.
1167  */
1168 #ifdef __BIG_ENDIAN
1169 void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
1170 {
1171 	unsigned int i;
1172 
1173 	for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1174 		if (BITS_PER_LONG == 64)
1175 			dst[i] = cpu_to_le64(src[i]);
1176 		else
1177 			dst[i] = cpu_to_le32(src[i]);
1178 	}
1179 }
1180 EXPORT_SYMBOL(bitmap_copy_le);
1181 #endif
1182 
1183 unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
1184 {
1185 	return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
1186 			     flags);
1187 }
1188 EXPORT_SYMBOL(bitmap_alloc);
1189 
1190 unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
1191 {
1192 	return bitmap_alloc(nbits, flags | __GFP_ZERO);
1193 }
1194 EXPORT_SYMBOL(bitmap_zalloc);
1195 
1196 void bitmap_free(const unsigned long *bitmap)
1197 {
1198 	kfree(bitmap);
1199 }
1200 EXPORT_SYMBOL(bitmap_free);
1201 
1202 #if BITS_PER_LONG == 64
1203 /**
1204  * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
1205  *	@bitmap: array of unsigned longs, the destination bitmap
1206  *	@buf: array of u32 (in host byte order), the source bitmap
1207  *	@nbits: number of bits in @bitmap
1208  */
1209 void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
1210 {
1211 	unsigned int i, halfwords;
1212 
1213 	halfwords = DIV_ROUND_UP(nbits, 32);
1214 	for (i = 0; i < halfwords; i++) {
1215 		bitmap[i/2] = (unsigned long) buf[i];
1216 		if (++i < halfwords)
1217 			bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
1218 	}
1219 
1220 	/* Clear tail bits in last word beyond nbits. */
1221 	if (nbits % BITS_PER_LONG)
1222 		bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
1223 }
1224 EXPORT_SYMBOL(bitmap_from_arr32);
1225 
1226 /**
1227  * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
1228  *	@buf: array of u32 (in host byte order), the dest bitmap
1229  *	@bitmap: array of unsigned longs, the source bitmap
1230  *	@nbits: number of bits in @bitmap
1231  */
1232 void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
1233 {
1234 	unsigned int i, halfwords;
1235 
1236 	halfwords = DIV_ROUND_UP(nbits, 32);
1237 	for (i = 0; i < halfwords; i++) {
1238 		buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
1239 		if (++i < halfwords)
1240 			buf[i] = (u32) (bitmap[i/2] >> 32);
1241 	}
1242 
1243 	/* Clear tail bits in last element of array beyond nbits. */
1244 	if (nbits % BITS_PER_LONG)
1245 		buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
1246 }
1247 EXPORT_SYMBOL(bitmap_to_arr32);
1248 
1249 #endif
1250