1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * lib/bitmap.c 4 * Helper functions for bitmap.h. 5 */ 6 #include <linux/export.h> 7 #include <linux/thread_info.h> 8 #include <linux/ctype.h> 9 #include <linux/errno.h> 10 #include <linux/bitmap.h> 11 #include <linux/bitops.h> 12 #include <linux/bug.h> 13 #include <linux/kernel.h> 14 #include <linux/mm.h> 15 #include <linux/slab.h> 16 #include <linux/string.h> 17 #include <linux/uaccess.h> 18 19 #include <asm/page.h> 20 21 #include "kstrtox.h" 22 23 /** 24 * DOC: bitmap introduction 25 * 26 * bitmaps provide an array of bits, implemented using an 27 * array of unsigned longs. The number of valid bits in a 28 * given bitmap does _not_ need to be an exact multiple of 29 * BITS_PER_LONG. 30 * 31 * The possible unused bits in the last, partially used word 32 * of a bitmap are 'don't care'. The implementation makes 33 * no particular effort to keep them zero. It ensures that 34 * their value will not affect the results of any operation. 35 * The bitmap operations that return Boolean (bitmap_empty, 36 * for example) or scalar (bitmap_weight, for example) results 37 * carefully filter out these unused bits from impacting their 38 * results. 39 * 40 * The byte ordering of bitmaps is more natural on little 41 * endian architectures. See the big-endian headers 42 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h 43 * for the best explanations of this ordering. 44 */ 45 46 int __bitmap_equal(const unsigned long *bitmap1, 47 const unsigned long *bitmap2, unsigned int bits) 48 { 49 unsigned int k, lim = bits/BITS_PER_LONG; 50 for (k = 0; k < lim; ++k) 51 if (bitmap1[k] != bitmap2[k]) 52 return 0; 53 54 if (bits % BITS_PER_LONG) 55 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 56 return 0; 57 58 return 1; 59 } 60 EXPORT_SYMBOL(__bitmap_equal); 61 62 bool __bitmap_or_equal(const unsigned long *bitmap1, 63 const unsigned long *bitmap2, 64 const unsigned long *bitmap3, 65 unsigned int bits) 66 { 67 unsigned int k, lim = bits / BITS_PER_LONG; 68 unsigned long tmp; 69 70 for (k = 0; k < lim; ++k) { 71 if ((bitmap1[k] | bitmap2[k]) != bitmap3[k]) 72 return false; 73 } 74 75 if (!(bits % BITS_PER_LONG)) 76 return true; 77 78 tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k]; 79 return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0; 80 } 81 82 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits) 83 { 84 unsigned int k, lim = BITS_TO_LONGS(bits); 85 for (k = 0; k < lim; ++k) 86 dst[k] = ~src[k]; 87 } 88 EXPORT_SYMBOL(__bitmap_complement); 89 90 /** 91 * __bitmap_shift_right - logical right shift of the bits in a bitmap 92 * @dst : destination bitmap 93 * @src : source bitmap 94 * @shift : shift by this many bits 95 * @nbits : bitmap size, in bits 96 * 97 * Shifting right (dividing) means moving bits in the MS -> LS bit 98 * direction. Zeros are fed into the vacated MS positions and the 99 * LS bits shifted off the bottom are lost. 100 */ 101 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src, 102 unsigned shift, unsigned nbits) 103 { 104 unsigned k, lim = BITS_TO_LONGS(nbits); 105 unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; 106 unsigned long mask = BITMAP_LAST_WORD_MASK(nbits); 107 for (k = 0; off + k < lim; ++k) { 108 unsigned long upper, lower; 109 110 /* 111 * If shift is not word aligned, take lower rem bits of 112 * word above and make them the top rem bits of result. 113 */ 114 if (!rem || off + k + 1 >= lim) 115 upper = 0; 116 else { 117 upper = src[off + k + 1]; 118 if (off + k + 1 == lim - 1) 119 upper &= mask; 120 upper <<= (BITS_PER_LONG - rem); 121 } 122 lower = src[off + k]; 123 if (off + k == lim - 1) 124 lower &= mask; 125 lower >>= rem; 126 dst[k] = lower | upper; 127 } 128 if (off) 129 memset(&dst[lim - off], 0, off*sizeof(unsigned long)); 130 } 131 EXPORT_SYMBOL(__bitmap_shift_right); 132 133 134 /** 135 * __bitmap_shift_left - logical left shift of the bits in a bitmap 136 * @dst : destination bitmap 137 * @src : source bitmap 138 * @shift : shift by this many bits 139 * @nbits : bitmap size, in bits 140 * 141 * Shifting left (multiplying) means moving bits in the LS -> MS 142 * direction. Zeros are fed into the vacated LS bit positions 143 * and those MS bits shifted off the top are lost. 144 */ 145 146 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src, 147 unsigned int shift, unsigned int nbits) 148 { 149 int k; 150 unsigned int lim = BITS_TO_LONGS(nbits); 151 unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; 152 for (k = lim - off - 1; k >= 0; --k) { 153 unsigned long upper, lower; 154 155 /* 156 * If shift is not word aligned, take upper rem bits of 157 * word below and make them the bottom rem bits of result. 158 */ 159 if (rem && k > 0) 160 lower = src[k - 1] >> (BITS_PER_LONG - rem); 161 else 162 lower = 0; 163 upper = src[k] << rem; 164 dst[k + off] = lower | upper; 165 } 166 if (off) 167 memset(dst, 0, off*sizeof(unsigned long)); 168 } 169 EXPORT_SYMBOL(__bitmap_shift_left); 170 171 /** 172 * bitmap_cut() - remove bit region from bitmap and right shift remaining bits 173 * @dst: destination bitmap, might overlap with src 174 * @src: source bitmap 175 * @first: start bit of region to be removed 176 * @cut: number of bits to remove 177 * @nbits: bitmap size, in bits 178 * 179 * Set the n-th bit of @dst iff the n-th bit of @src is set and 180 * n is less than @first, or the m-th bit of @src is set for any 181 * m such that @first <= n < nbits, and m = n + @cut. 182 * 183 * In pictures, example for a big-endian 32-bit architecture: 184 * 185 * The @src bitmap is:: 186 * 187 * 31 63 188 * | | 189 * 10000000 11000001 11110010 00010101 10000000 11000001 01110010 00010101 190 * | | | | 191 * 16 14 0 32 192 * 193 * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is:: 194 * 195 * 31 63 196 * | | 197 * 10110000 00011000 00110010 00010101 00010000 00011000 00101110 01000010 198 * | | | 199 * 14 (bit 17 0 32 200 * from @src) 201 * 202 * Note that @dst and @src might overlap partially or entirely. 203 * 204 * This is implemented in the obvious way, with a shift and carry 205 * step for each moved bit. Optimisation is left as an exercise 206 * for the compiler. 207 */ 208 void bitmap_cut(unsigned long *dst, const unsigned long *src, 209 unsigned int first, unsigned int cut, unsigned int nbits) 210 { 211 unsigned int len = BITS_TO_LONGS(nbits); 212 unsigned long keep = 0, carry; 213 int i; 214 215 if (first % BITS_PER_LONG) { 216 keep = src[first / BITS_PER_LONG] & 217 (~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG)); 218 } 219 220 memmove(dst, src, len * sizeof(*dst)); 221 222 while (cut--) { 223 for (i = first / BITS_PER_LONG; i < len; i++) { 224 if (i < len - 1) 225 carry = dst[i + 1] & 1UL; 226 else 227 carry = 0; 228 229 dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1)); 230 } 231 } 232 233 dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG); 234 dst[first / BITS_PER_LONG] |= keep; 235 } 236 EXPORT_SYMBOL(bitmap_cut); 237 238 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1, 239 const unsigned long *bitmap2, unsigned int bits) 240 { 241 unsigned int k; 242 unsigned int lim = bits/BITS_PER_LONG; 243 unsigned long result = 0; 244 245 for (k = 0; k < lim; k++) 246 result |= (dst[k] = bitmap1[k] & bitmap2[k]); 247 if (bits % BITS_PER_LONG) 248 result |= (dst[k] = bitmap1[k] & bitmap2[k] & 249 BITMAP_LAST_WORD_MASK(bits)); 250 return result != 0; 251 } 252 EXPORT_SYMBOL(__bitmap_and); 253 254 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1, 255 const unsigned long *bitmap2, unsigned int bits) 256 { 257 unsigned int k; 258 unsigned int nr = BITS_TO_LONGS(bits); 259 260 for (k = 0; k < nr; k++) 261 dst[k] = bitmap1[k] | bitmap2[k]; 262 } 263 EXPORT_SYMBOL(__bitmap_or); 264 265 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, 266 const unsigned long *bitmap2, unsigned int bits) 267 { 268 unsigned int k; 269 unsigned int nr = BITS_TO_LONGS(bits); 270 271 for (k = 0; k < nr; k++) 272 dst[k] = bitmap1[k] ^ bitmap2[k]; 273 } 274 EXPORT_SYMBOL(__bitmap_xor); 275 276 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, 277 const unsigned long *bitmap2, unsigned int bits) 278 { 279 unsigned int k; 280 unsigned int lim = bits/BITS_PER_LONG; 281 unsigned long result = 0; 282 283 for (k = 0; k < lim; k++) 284 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]); 285 if (bits % BITS_PER_LONG) 286 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] & 287 BITMAP_LAST_WORD_MASK(bits)); 288 return result != 0; 289 } 290 EXPORT_SYMBOL(__bitmap_andnot); 291 292 void __bitmap_replace(unsigned long *dst, 293 const unsigned long *old, const unsigned long *new, 294 const unsigned long *mask, unsigned int nbits) 295 { 296 unsigned int k; 297 unsigned int nr = BITS_TO_LONGS(nbits); 298 299 for (k = 0; k < nr; k++) 300 dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]); 301 } 302 EXPORT_SYMBOL(__bitmap_replace); 303 304 int __bitmap_intersects(const unsigned long *bitmap1, 305 const unsigned long *bitmap2, unsigned int bits) 306 { 307 unsigned int k, lim = bits/BITS_PER_LONG; 308 for (k = 0; k < lim; ++k) 309 if (bitmap1[k] & bitmap2[k]) 310 return 1; 311 312 if (bits % BITS_PER_LONG) 313 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 314 return 1; 315 return 0; 316 } 317 EXPORT_SYMBOL(__bitmap_intersects); 318 319 int __bitmap_subset(const unsigned long *bitmap1, 320 const unsigned long *bitmap2, unsigned int bits) 321 { 322 unsigned int k, lim = bits/BITS_PER_LONG; 323 for (k = 0; k < lim; ++k) 324 if (bitmap1[k] & ~bitmap2[k]) 325 return 0; 326 327 if (bits % BITS_PER_LONG) 328 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 329 return 0; 330 return 1; 331 } 332 EXPORT_SYMBOL(__bitmap_subset); 333 334 int __bitmap_weight(const unsigned long *bitmap, unsigned int bits) 335 { 336 unsigned int k, lim = bits/BITS_PER_LONG; 337 int w = 0; 338 339 for (k = 0; k < lim; k++) 340 w += hweight_long(bitmap[k]); 341 342 if (bits % BITS_PER_LONG) 343 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits)); 344 345 return w; 346 } 347 EXPORT_SYMBOL(__bitmap_weight); 348 349 void __bitmap_set(unsigned long *map, unsigned int start, int len) 350 { 351 unsigned long *p = map + BIT_WORD(start); 352 const unsigned int size = start + len; 353 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG); 354 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start); 355 356 while (len - bits_to_set >= 0) { 357 *p |= mask_to_set; 358 len -= bits_to_set; 359 bits_to_set = BITS_PER_LONG; 360 mask_to_set = ~0UL; 361 p++; 362 } 363 if (len) { 364 mask_to_set &= BITMAP_LAST_WORD_MASK(size); 365 *p |= mask_to_set; 366 } 367 } 368 EXPORT_SYMBOL(__bitmap_set); 369 370 void __bitmap_clear(unsigned long *map, unsigned int start, int len) 371 { 372 unsigned long *p = map + BIT_WORD(start); 373 const unsigned int size = start + len; 374 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG); 375 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start); 376 377 while (len - bits_to_clear >= 0) { 378 *p &= ~mask_to_clear; 379 len -= bits_to_clear; 380 bits_to_clear = BITS_PER_LONG; 381 mask_to_clear = ~0UL; 382 p++; 383 } 384 if (len) { 385 mask_to_clear &= BITMAP_LAST_WORD_MASK(size); 386 *p &= ~mask_to_clear; 387 } 388 } 389 EXPORT_SYMBOL(__bitmap_clear); 390 391 /** 392 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area 393 * @map: The address to base the search on 394 * @size: The bitmap size in bits 395 * @start: The bitnumber to start searching at 396 * @nr: The number of zeroed bits we're looking for 397 * @align_mask: Alignment mask for zero area 398 * @align_offset: Alignment offset for zero area. 399 * 400 * The @align_mask should be one less than a power of 2; the effect is that 401 * the bit offset of all zero areas this function finds plus @align_offset 402 * is multiple of that power of 2. 403 */ 404 unsigned long bitmap_find_next_zero_area_off(unsigned long *map, 405 unsigned long size, 406 unsigned long start, 407 unsigned int nr, 408 unsigned long align_mask, 409 unsigned long align_offset) 410 { 411 unsigned long index, end, i; 412 again: 413 index = find_next_zero_bit(map, size, start); 414 415 /* Align allocation */ 416 index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset; 417 418 end = index + nr; 419 if (end > size) 420 return end; 421 i = find_next_bit(map, end, index); 422 if (i < end) { 423 start = i + 1; 424 goto again; 425 } 426 return index; 427 } 428 EXPORT_SYMBOL(bitmap_find_next_zero_area_off); 429 430 /* 431 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers, 432 * second version by Paul Jackson, third by Joe Korty. 433 */ 434 435 /** 436 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap 437 * 438 * @ubuf: pointer to user buffer containing string. 439 * @ulen: buffer size in bytes. If string is smaller than this 440 * then it must be terminated with a \0. 441 * @maskp: pointer to bitmap array that will contain result. 442 * @nmaskbits: size of bitmap, in bits. 443 */ 444 int bitmap_parse_user(const char __user *ubuf, 445 unsigned int ulen, unsigned long *maskp, 446 int nmaskbits) 447 { 448 char *buf; 449 int ret; 450 451 buf = memdup_user_nul(ubuf, ulen); 452 if (IS_ERR(buf)) 453 return PTR_ERR(buf); 454 455 ret = bitmap_parse(buf, UINT_MAX, maskp, nmaskbits); 456 457 kfree(buf); 458 return ret; 459 } 460 EXPORT_SYMBOL(bitmap_parse_user); 461 462 /** 463 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string 464 * @list: indicates whether the bitmap must be list 465 * @buf: page aligned buffer into which string is placed 466 * @maskp: pointer to bitmap to convert 467 * @nmaskbits: size of bitmap, in bits 468 * 469 * Output format is a comma-separated list of decimal numbers and 470 * ranges if list is specified or hex digits grouped into comma-separated 471 * sets of 8 digits/set. Returns the number of characters written to buf. 472 * 473 * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned 474 * area and that sufficient storage remains at @buf to accommodate the 475 * bitmap_print_to_pagebuf() output. Returns the number of characters 476 * actually printed to @buf, excluding terminating '\0'. 477 */ 478 int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp, 479 int nmaskbits) 480 { 481 ptrdiff_t len = PAGE_SIZE - offset_in_page(buf); 482 483 return list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) : 484 scnprintf(buf, len, "%*pb\n", nmaskbits, maskp); 485 } 486 EXPORT_SYMBOL(bitmap_print_to_pagebuf); 487 488 /* 489 * Region 9-38:4/10 describes the following bitmap structure: 490 * 0 9 12 18 38 N 491 * .........****......****......****.................. 492 * ^ ^ ^ ^ ^ 493 * start off group_len end nbits 494 */ 495 struct region { 496 unsigned int start; 497 unsigned int off; 498 unsigned int group_len; 499 unsigned int end; 500 unsigned int nbits; 501 }; 502 503 static void bitmap_set_region(const struct region *r, unsigned long *bitmap) 504 { 505 unsigned int start; 506 507 for (start = r->start; start <= r->end; start += r->group_len) 508 bitmap_set(bitmap, start, min(r->end - start + 1, r->off)); 509 } 510 511 static int bitmap_check_region(const struct region *r) 512 { 513 if (r->start > r->end || r->group_len == 0 || r->off > r->group_len) 514 return -EINVAL; 515 516 if (r->end >= r->nbits) 517 return -ERANGE; 518 519 return 0; 520 } 521 522 static const char *bitmap_getnum(const char *str, unsigned int *num, 523 unsigned int lastbit) 524 { 525 unsigned long long n; 526 unsigned int len; 527 528 if (str[0] == 'N') { 529 *num = lastbit; 530 return str + 1; 531 } 532 533 len = _parse_integer(str, 10, &n); 534 if (!len) 535 return ERR_PTR(-EINVAL); 536 if (len & KSTRTOX_OVERFLOW || n != (unsigned int)n) 537 return ERR_PTR(-EOVERFLOW); 538 539 *num = n; 540 return str + len; 541 } 542 543 static inline bool end_of_str(char c) 544 { 545 return c == '\0' || c == '\n'; 546 } 547 548 static inline bool __end_of_region(char c) 549 { 550 return isspace(c) || c == ','; 551 } 552 553 static inline bool end_of_region(char c) 554 { 555 return __end_of_region(c) || end_of_str(c); 556 } 557 558 /* 559 * The format allows commas and whitespaces at the beginning 560 * of the region. 561 */ 562 static const char *bitmap_find_region(const char *str) 563 { 564 while (__end_of_region(*str)) 565 str++; 566 567 return end_of_str(*str) ? NULL : str; 568 } 569 570 static const char *bitmap_find_region_reverse(const char *start, const char *end) 571 { 572 while (start <= end && __end_of_region(*end)) 573 end--; 574 575 return end; 576 } 577 578 static const char *bitmap_parse_region(const char *str, struct region *r) 579 { 580 unsigned int lastbit = r->nbits - 1; 581 582 str = bitmap_getnum(str, &r->start, lastbit); 583 if (IS_ERR(str)) 584 return str; 585 586 if (end_of_region(*str)) 587 goto no_end; 588 589 if (*str != '-') 590 return ERR_PTR(-EINVAL); 591 592 str = bitmap_getnum(str + 1, &r->end, lastbit); 593 if (IS_ERR(str)) 594 return str; 595 596 if (end_of_region(*str)) 597 goto no_pattern; 598 599 if (*str != ':') 600 return ERR_PTR(-EINVAL); 601 602 str = bitmap_getnum(str + 1, &r->off, lastbit); 603 if (IS_ERR(str)) 604 return str; 605 606 if (*str != '/') 607 return ERR_PTR(-EINVAL); 608 609 return bitmap_getnum(str + 1, &r->group_len, lastbit); 610 611 no_end: 612 r->end = r->start; 613 no_pattern: 614 r->off = r->end + 1; 615 r->group_len = r->end + 1; 616 617 return end_of_str(*str) ? NULL : str; 618 } 619 620 /** 621 * bitmap_parselist - convert list format ASCII string to bitmap 622 * @buf: read user string from this buffer; must be terminated 623 * with a \0 or \n. 624 * @maskp: write resulting mask here 625 * @nmaskbits: number of bits in mask to be written 626 * 627 * Input format is a comma-separated list of decimal numbers and 628 * ranges. Consecutively set bits are shown as two hyphen-separated 629 * decimal numbers, the smallest and largest bit numbers set in 630 * the range. 631 * Optionally each range can be postfixed to denote that only parts of it 632 * should be set. The range will divided to groups of specific size. 633 * From each group will be used only defined amount of bits. 634 * Syntax: range:used_size/group_size 635 * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769 636 * The value 'N' can be used as a dynamically substituted token for the 637 * maximum allowed value; i.e (nmaskbits - 1). Keep in mind that it is 638 * dynamic, so if system changes cause the bitmap width to change, such 639 * as more cores in a CPU list, then any ranges using N will also change. 640 * 641 * Returns: 0 on success, -errno on invalid input strings. Error values: 642 * 643 * - ``-EINVAL``: wrong region format 644 * - ``-EINVAL``: invalid character in string 645 * - ``-ERANGE``: bit number specified too large for mask 646 * - ``-EOVERFLOW``: integer overflow in the input parameters 647 */ 648 int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits) 649 { 650 struct region r; 651 long ret; 652 653 r.nbits = nmaskbits; 654 bitmap_zero(maskp, r.nbits); 655 656 while (buf) { 657 buf = bitmap_find_region(buf); 658 if (buf == NULL) 659 return 0; 660 661 buf = bitmap_parse_region(buf, &r); 662 if (IS_ERR(buf)) 663 return PTR_ERR(buf); 664 665 ret = bitmap_check_region(&r); 666 if (ret) 667 return ret; 668 669 bitmap_set_region(&r, maskp); 670 } 671 672 return 0; 673 } 674 EXPORT_SYMBOL(bitmap_parselist); 675 676 677 /** 678 * bitmap_parselist_user() 679 * 680 * @ubuf: pointer to user buffer containing string. 681 * @ulen: buffer size in bytes. If string is smaller than this 682 * then it must be terminated with a \0. 683 * @maskp: pointer to bitmap array that will contain result. 684 * @nmaskbits: size of bitmap, in bits. 685 * 686 * Wrapper for bitmap_parselist(), providing it with user buffer. 687 */ 688 int bitmap_parselist_user(const char __user *ubuf, 689 unsigned int ulen, unsigned long *maskp, 690 int nmaskbits) 691 { 692 char *buf; 693 int ret; 694 695 buf = memdup_user_nul(ubuf, ulen); 696 if (IS_ERR(buf)) 697 return PTR_ERR(buf); 698 699 ret = bitmap_parselist(buf, maskp, nmaskbits); 700 701 kfree(buf); 702 return ret; 703 } 704 EXPORT_SYMBOL(bitmap_parselist_user); 705 706 static const char *bitmap_get_x32_reverse(const char *start, 707 const char *end, u32 *num) 708 { 709 u32 ret = 0; 710 int c, i; 711 712 for (i = 0; i < 32; i += 4) { 713 c = hex_to_bin(*end--); 714 if (c < 0) 715 return ERR_PTR(-EINVAL); 716 717 ret |= c << i; 718 719 if (start > end || __end_of_region(*end)) 720 goto out; 721 } 722 723 if (hex_to_bin(*end--) >= 0) 724 return ERR_PTR(-EOVERFLOW); 725 out: 726 *num = ret; 727 return end; 728 } 729 730 /** 731 * bitmap_parse - convert an ASCII hex string into a bitmap. 732 * @start: pointer to buffer containing string. 733 * @buflen: buffer size in bytes. If string is smaller than this 734 * then it must be terminated with a \0 or \n. In that case, 735 * UINT_MAX may be provided instead of string length. 736 * @maskp: pointer to bitmap array that will contain result. 737 * @nmaskbits: size of bitmap, in bits. 738 * 739 * Commas group hex digits into chunks. Each chunk defines exactly 32 740 * bits of the resultant bitmask. No chunk may specify a value larger 741 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value 742 * then leading 0-bits are prepended. %-EINVAL is returned for illegal 743 * characters. Grouping such as "1,,5", ",44", "," or "" is allowed. 744 * Leading, embedded and trailing whitespace accepted. 745 */ 746 int bitmap_parse(const char *start, unsigned int buflen, 747 unsigned long *maskp, int nmaskbits) 748 { 749 const char *end = strnchrnul(start, buflen, '\n') - 1; 750 int chunks = BITS_TO_U32(nmaskbits); 751 u32 *bitmap = (u32 *)maskp; 752 int unset_bit; 753 int chunk; 754 755 for (chunk = 0; ; chunk++) { 756 end = bitmap_find_region_reverse(start, end); 757 if (start > end) 758 break; 759 760 if (!chunks--) 761 return -EOVERFLOW; 762 763 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN) 764 end = bitmap_get_x32_reverse(start, end, &bitmap[chunk ^ 1]); 765 #else 766 end = bitmap_get_x32_reverse(start, end, &bitmap[chunk]); 767 #endif 768 if (IS_ERR(end)) 769 return PTR_ERR(end); 770 } 771 772 unset_bit = (BITS_TO_U32(nmaskbits) - chunks) * 32; 773 if (unset_bit < nmaskbits) { 774 bitmap_clear(maskp, unset_bit, nmaskbits - unset_bit); 775 return 0; 776 } 777 778 if (find_next_bit(maskp, unset_bit, nmaskbits) != unset_bit) 779 return -EOVERFLOW; 780 781 return 0; 782 } 783 EXPORT_SYMBOL(bitmap_parse); 784 785 786 #ifdef CONFIG_NUMA 787 /** 788 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap 789 * @buf: pointer to a bitmap 790 * @pos: a bit position in @buf (0 <= @pos < @nbits) 791 * @nbits: number of valid bit positions in @buf 792 * 793 * Map the bit at position @pos in @buf (of length @nbits) to the 794 * ordinal of which set bit it is. If it is not set or if @pos 795 * is not a valid bit position, map to -1. 796 * 797 * If for example, just bits 4 through 7 are set in @buf, then @pos 798 * values 4 through 7 will get mapped to 0 through 3, respectively, 799 * and other @pos values will get mapped to -1. When @pos value 7 800 * gets mapped to (returns) @ord value 3 in this example, that means 801 * that bit 7 is the 3rd (starting with 0th) set bit in @buf. 802 * 803 * The bit positions 0 through @bits are valid positions in @buf. 804 */ 805 static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits) 806 { 807 if (pos >= nbits || !test_bit(pos, buf)) 808 return -1; 809 810 return __bitmap_weight(buf, pos); 811 } 812 813 /** 814 * bitmap_ord_to_pos - find position of n-th set bit in bitmap 815 * @buf: pointer to bitmap 816 * @ord: ordinal bit position (n-th set bit, n >= 0) 817 * @nbits: number of valid bit positions in @buf 818 * 819 * Map the ordinal offset of bit @ord in @buf to its position in @buf. 820 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord 821 * >= weight(buf), returns @nbits. 822 * 823 * If for example, just bits 4 through 7 are set in @buf, then @ord 824 * values 0 through 3 will get mapped to 4 through 7, respectively, 825 * and all other @ord values returns @nbits. When @ord value 3 826 * gets mapped to (returns) @pos value 7 in this example, that means 827 * that the 3rd set bit (starting with 0th) is at position 7 in @buf. 828 * 829 * The bit positions 0 through @nbits-1 are valid positions in @buf. 830 */ 831 unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits) 832 { 833 unsigned int pos; 834 835 for (pos = find_first_bit(buf, nbits); 836 pos < nbits && ord; 837 pos = find_next_bit(buf, nbits, pos + 1)) 838 ord--; 839 840 return pos; 841 } 842 843 /** 844 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap 845 * @dst: remapped result 846 * @src: subset to be remapped 847 * @old: defines domain of map 848 * @new: defines range of map 849 * @nbits: number of bits in each of these bitmaps 850 * 851 * Let @old and @new define a mapping of bit positions, such that 852 * whatever position is held by the n-th set bit in @old is mapped 853 * to the n-th set bit in @new. In the more general case, allowing 854 * for the possibility that the weight 'w' of @new is less than the 855 * weight of @old, map the position of the n-th set bit in @old to 856 * the position of the m-th set bit in @new, where m == n % w. 857 * 858 * If either of the @old and @new bitmaps are empty, or if @src and 859 * @dst point to the same location, then this routine copies @src 860 * to @dst. 861 * 862 * The positions of unset bits in @old are mapped to themselves 863 * (the identify map). 864 * 865 * Apply the above specified mapping to @src, placing the result in 866 * @dst, clearing any bits previously set in @dst. 867 * 868 * For example, lets say that @old has bits 4 through 7 set, and 869 * @new has bits 12 through 15 set. This defines the mapping of bit 870 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other 871 * bit positions unchanged. So if say @src comes into this routine 872 * with bits 1, 5 and 7 set, then @dst should leave with bits 1, 873 * 13 and 15 set. 874 */ 875 void bitmap_remap(unsigned long *dst, const unsigned long *src, 876 const unsigned long *old, const unsigned long *new, 877 unsigned int nbits) 878 { 879 unsigned int oldbit, w; 880 881 if (dst == src) /* following doesn't handle inplace remaps */ 882 return; 883 bitmap_zero(dst, nbits); 884 885 w = bitmap_weight(new, nbits); 886 for_each_set_bit(oldbit, src, nbits) { 887 int n = bitmap_pos_to_ord(old, oldbit, nbits); 888 889 if (n < 0 || w == 0) 890 set_bit(oldbit, dst); /* identity map */ 891 else 892 set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst); 893 } 894 } 895 896 /** 897 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit 898 * @oldbit: bit position to be mapped 899 * @old: defines domain of map 900 * @new: defines range of map 901 * @bits: number of bits in each of these bitmaps 902 * 903 * Let @old and @new define a mapping of bit positions, such that 904 * whatever position is held by the n-th set bit in @old is mapped 905 * to the n-th set bit in @new. In the more general case, allowing 906 * for the possibility that the weight 'w' of @new is less than the 907 * weight of @old, map the position of the n-th set bit in @old to 908 * the position of the m-th set bit in @new, where m == n % w. 909 * 910 * The positions of unset bits in @old are mapped to themselves 911 * (the identify map). 912 * 913 * Apply the above specified mapping to bit position @oldbit, returning 914 * the new bit position. 915 * 916 * For example, lets say that @old has bits 4 through 7 set, and 917 * @new has bits 12 through 15 set. This defines the mapping of bit 918 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other 919 * bit positions unchanged. So if say @oldbit is 5, then this routine 920 * returns 13. 921 */ 922 int bitmap_bitremap(int oldbit, const unsigned long *old, 923 const unsigned long *new, int bits) 924 { 925 int w = bitmap_weight(new, bits); 926 int n = bitmap_pos_to_ord(old, oldbit, bits); 927 if (n < 0 || w == 0) 928 return oldbit; 929 else 930 return bitmap_ord_to_pos(new, n % w, bits); 931 } 932 933 /** 934 * bitmap_onto - translate one bitmap relative to another 935 * @dst: resulting translated bitmap 936 * @orig: original untranslated bitmap 937 * @relmap: bitmap relative to which translated 938 * @bits: number of bits in each of these bitmaps 939 * 940 * Set the n-th bit of @dst iff there exists some m such that the 941 * n-th bit of @relmap is set, the m-th bit of @orig is set, and 942 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap. 943 * (If you understood the previous sentence the first time your 944 * read it, you're overqualified for your current job.) 945 * 946 * In other words, @orig is mapped onto (surjectively) @dst, 947 * using the map { <n, m> | the n-th bit of @relmap is the 948 * m-th set bit of @relmap }. 949 * 950 * Any set bits in @orig above bit number W, where W is the 951 * weight of (number of set bits in) @relmap are mapped nowhere. 952 * In particular, if for all bits m set in @orig, m >= W, then 953 * @dst will end up empty. In situations where the possibility 954 * of such an empty result is not desired, one way to avoid it is 955 * to use the bitmap_fold() operator, below, to first fold the 956 * @orig bitmap over itself so that all its set bits x are in the 957 * range 0 <= x < W. The bitmap_fold() operator does this by 958 * setting the bit (m % W) in @dst, for each bit (m) set in @orig. 959 * 960 * Example [1] for bitmap_onto(): 961 * Let's say @relmap has bits 30-39 set, and @orig has bits 962 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine, 963 * @dst will have bits 31, 33, 35, 37 and 39 set. 964 * 965 * When bit 0 is set in @orig, it means turn on the bit in 966 * @dst corresponding to whatever is the first bit (if any) 967 * that is turned on in @relmap. Since bit 0 was off in the 968 * above example, we leave off that bit (bit 30) in @dst. 969 * 970 * When bit 1 is set in @orig (as in the above example), it 971 * means turn on the bit in @dst corresponding to whatever 972 * is the second bit that is turned on in @relmap. The second 973 * bit in @relmap that was turned on in the above example was 974 * bit 31, so we turned on bit 31 in @dst. 975 * 976 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst, 977 * because they were the 4th, 6th, 8th and 10th set bits 978 * set in @relmap, and the 4th, 6th, 8th and 10th bits of 979 * @orig (i.e. bits 3, 5, 7 and 9) were also set. 980 * 981 * When bit 11 is set in @orig, it means turn on the bit in 982 * @dst corresponding to whatever is the twelfth bit that is 983 * turned on in @relmap. In the above example, there were 984 * only ten bits turned on in @relmap (30..39), so that bit 985 * 11 was set in @orig had no affect on @dst. 986 * 987 * Example [2] for bitmap_fold() + bitmap_onto(): 988 * Let's say @relmap has these ten bits set:: 989 * 990 * 40 41 42 43 45 48 53 61 74 95 991 * 992 * (for the curious, that's 40 plus the first ten terms of the 993 * Fibonacci sequence.) 994 * 995 * Further lets say we use the following code, invoking 996 * bitmap_fold() then bitmap_onto, as suggested above to 997 * avoid the possibility of an empty @dst result:: 998 * 999 * unsigned long *tmp; // a temporary bitmap's bits 1000 * 1001 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits); 1002 * bitmap_onto(dst, tmp, relmap, bits); 1003 * 1004 * Then this table shows what various values of @dst would be, for 1005 * various @orig's. I list the zero-based positions of each set bit. 1006 * The tmp column shows the intermediate result, as computed by 1007 * using bitmap_fold() to fold the @orig bitmap modulo ten 1008 * (the weight of @relmap): 1009 * 1010 * =============== ============== ================= 1011 * @orig tmp @dst 1012 * 0 0 40 1013 * 1 1 41 1014 * 9 9 95 1015 * 10 0 40 [#f1]_ 1016 * 1 3 5 7 1 3 5 7 41 43 48 61 1017 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45 1018 * 0 9 18 27 0 9 8 7 40 61 74 95 1019 * 0 10 20 30 0 40 1020 * 0 11 22 33 0 1 2 3 40 41 42 43 1021 * 0 12 24 36 0 2 4 6 40 42 45 53 1022 * 78 102 211 1 2 8 41 42 74 [#f1]_ 1023 * =============== ============== ================= 1024 * 1025 * .. [#f1] 1026 * 1027 * For these marked lines, if we hadn't first done bitmap_fold() 1028 * into tmp, then the @dst result would have been empty. 1029 * 1030 * If either of @orig or @relmap is empty (no set bits), then @dst 1031 * will be returned empty. 1032 * 1033 * If (as explained above) the only set bits in @orig are in positions 1034 * m where m >= W, (where W is the weight of @relmap) then @dst will 1035 * once again be returned empty. 1036 * 1037 * All bits in @dst not set by the above rule are cleared. 1038 */ 1039 void bitmap_onto(unsigned long *dst, const unsigned long *orig, 1040 const unsigned long *relmap, unsigned int bits) 1041 { 1042 unsigned int n, m; /* same meaning as in above comment */ 1043 1044 if (dst == orig) /* following doesn't handle inplace mappings */ 1045 return; 1046 bitmap_zero(dst, bits); 1047 1048 /* 1049 * The following code is a more efficient, but less 1050 * obvious, equivalent to the loop: 1051 * for (m = 0; m < bitmap_weight(relmap, bits); m++) { 1052 * n = bitmap_ord_to_pos(orig, m, bits); 1053 * if (test_bit(m, orig)) 1054 * set_bit(n, dst); 1055 * } 1056 */ 1057 1058 m = 0; 1059 for_each_set_bit(n, relmap, bits) { 1060 /* m == bitmap_pos_to_ord(relmap, n, bits) */ 1061 if (test_bit(m, orig)) 1062 set_bit(n, dst); 1063 m++; 1064 } 1065 } 1066 1067 /** 1068 * bitmap_fold - fold larger bitmap into smaller, modulo specified size 1069 * @dst: resulting smaller bitmap 1070 * @orig: original larger bitmap 1071 * @sz: specified size 1072 * @nbits: number of bits in each of these bitmaps 1073 * 1074 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst. 1075 * Clear all other bits in @dst. See further the comment and 1076 * Example [2] for bitmap_onto() for why and how to use this. 1077 */ 1078 void bitmap_fold(unsigned long *dst, const unsigned long *orig, 1079 unsigned int sz, unsigned int nbits) 1080 { 1081 unsigned int oldbit; 1082 1083 if (dst == orig) /* following doesn't handle inplace mappings */ 1084 return; 1085 bitmap_zero(dst, nbits); 1086 1087 for_each_set_bit(oldbit, orig, nbits) 1088 set_bit(oldbit % sz, dst); 1089 } 1090 #endif /* CONFIG_NUMA */ 1091 1092 /* 1093 * Common code for bitmap_*_region() routines. 1094 * bitmap: array of unsigned longs corresponding to the bitmap 1095 * pos: the beginning of the region 1096 * order: region size (log base 2 of number of bits) 1097 * reg_op: operation(s) to perform on that region of bitmap 1098 * 1099 * Can set, verify and/or release a region of bits in a bitmap, 1100 * depending on which combination of REG_OP_* flag bits is set. 1101 * 1102 * A region of a bitmap is a sequence of bits in the bitmap, of 1103 * some size '1 << order' (a power of two), aligned to that same 1104 * '1 << order' power of two. 1105 * 1106 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits). 1107 * Returns 0 in all other cases and reg_ops. 1108 */ 1109 1110 enum { 1111 REG_OP_ISFREE, /* true if region is all zero bits */ 1112 REG_OP_ALLOC, /* set all bits in region */ 1113 REG_OP_RELEASE, /* clear all bits in region */ 1114 }; 1115 1116 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op) 1117 { 1118 int nbits_reg; /* number of bits in region */ 1119 int index; /* index first long of region in bitmap */ 1120 int offset; /* bit offset region in bitmap[index] */ 1121 int nlongs_reg; /* num longs spanned by region in bitmap */ 1122 int nbitsinlong; /* num bits of region in each spanned long */ 1123 unsigned long mask; /* bitmask for one long of region */ 1124 int i; /* scans bitmap by longs */ 1125 int ret = 0; /* return value */ 1126 1127 /* 1128 * Either nlongs_reg == 1 (for small orders that fit in one long) 1129 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.) 1130 */ 1131 nbits_reg = 1 << order; 1132 index = pos / BITS_PER_LONG; 1133 offset = pos - (index * BITS_PER_LONG); 1134 nlongs_reg = BITS_TO_LONGS(nbits_reg); 1135 nbitsinlong = min(nbits_reg, BITS_PER_LONG); 1136 1137 /* 1138 * Can't do "mask = (1UL << nbitsinlong) - 1", as that 1139 * overflows if nbitsinlong == BITS_PER_LONG. 1140 */ 1141 mask = (1UL << (nbitsinlong - 1)); 1142 mask += mask - 1; 1143 mask <<= offset; 1144 1145 switch (reg_op) { 1146 case REG_OP_ISFREE: 1147 for (i = 0; i < nlongs_reg; i++) { 1148 if (bitmap[index + i] & mask) 1149 goto done; 1150 } 1151 ret = 1; /* all bits in region free (zero) */ 1152 break; 1153 1154 case REG_OP_ALLOC: 1155 for (i = 0; i < nlongs_reg; i++) 1156 bitmap[index + i] |= mask; 1157 break; 1158 1159 case REG_OP_RELEASE: 1160 for (i = 0; i < nlongs_reg; i++) 1161 bitmap[index + i] &= ~mask; 1162 break; 1163 } 1164 done: 1165 return ret; 1166 } 1167 1168 /** 1169 * bitmap_find_free_region - find a contiguous aligned mem region 1170 * @bitmap: array of unsigned longs corresponding to the bitmap 1171 * @bits: number of bits in the bitmap 1172 * @order: region size (log base 2 of number of bits) to find 1173 * 1174 * Find a region of free (zero) bits in a @bitmap of @bits bits and 1175 * allocate them (set them to one). Only consider regions of length 1176 * a power (@order) of two, aligned to that power of two, which 1177 * makes the search algorithm much faster. 1178 * 1179 * Return the bit offset in bitmap of the allocated region, 1180 * or -errno on failure. 1181 */ 1182 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order) 1183 { 1184 unsigned int pos, end; /* scans bitmap by regions of size order */ 1185 1186 for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) { 1187 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) 1188 continue; 1189 __reg_op(bitmap, pos, order, REG_OP_ALLOC); 1190 return pos; 1191 } 1192 return -ENOMEM; 1193 } 1194 EXPORT_SYMBOL(bitmap_find_free_region); 1195 1196 /** 1197 * bitmap_release_region - release allocated bitmap region 1198 * @bitmap: array of unsigned longs corresponding to the bitmap 1199 * @pos: beginning of bit region to release 1200 * @order: region size (log base 2 of number of bits) to release 1201 * 1202 * This is the complement to __bitmap_find_free_region() and releases 1203 * the found region (by clearing it in the bitmap). 1204 * 1205 * No return value. 1206 */ 1207 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order) 1208 { 1209 __reg_op(bitmap, pos, order, REG_OP_RELEASE); 1210 } 1211 EXPORT_SYMBOL(bitmap_release_region); 1212 1213 /** 1214 * bitmap_allocate_region - allocate bitmap region 1215 * @bitmap: array of unsigned longs corresponding to the bitmap 1216 * @pos: beginning of bit region to allocate 1217 * @order: region size (log base 2 of number of bits) to allocate 1218 * 1219 * Allocate (set bits in) a specified region of a bitmap. 1220 * 1221 * Return 0 on success, or %-EBUSY if specified region wasn't 1222 * free (not all bits were zero). 1223 */ 1224 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order) 1225 { 1226 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) 1227 return -EBUSY; 1228 return __reg_op(bitmap, pos, order, REG_OP_ALLOC); 1229 } 1230 EXPORT_SYMBOL(bitmap_allocate_region); 1231 1232 /** 1233 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order. 1234 * @dst: destination buffer 1235 * @src: bitmap to copy 1236 * @nbits: number of bits in the bitmap 1237 * 1238 * Require nbits % BITS_PER_LONG == 0. 1239 */ 1240 #ifdef __BIG_ENDIAN 1241 void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits) 1242 { 1243 unsigned int i; 1244 1245 for (i = 0; i < nbits/BITS_PER_LONG; i++) { 1246 if (BITS_PER_LONG == 64) 1247 dst[i] = cpu_to_le64(src[i]); 1248 else 1249 dst[i] = cpu_to_le32(src[i]); 1250 } 1251 } 1252 EXPORT_SYMBOL(bitmap_copy_le); 1253 #endif 1254 1255 unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags) 1256 { 1257 return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long), 1258 flags); 1259 } 1260 EXPORT_SYMBOL(bitmap_alloc); 1261 1262 unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags) 1263 { 1264 return bitmap_alloc(nbits, flags | __GFP_ZERO); 1265 } 1266 EXPORT_SYMBOL(bitmap_zalloc); 1267 1268 void bitmap_free(const unsigned long *bitmap) 1269 { 1270 kfree(bitmap); 1271 } 1272 EXPORT_SYMBOL(bitmap_free); 1273 1274 #if BITS_PER_LONG == 64 1275 /** 1276 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap 1277 * @bitmap: array of unsigned longs, the destination bitmap 1278 * @buf: array of u32 (in host byte order), the source bitmap 1279 * @nbits: number of bits in @bitmap 1280 */ 1281 void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits) 1282 { 1283 unsigned int i, halfwords; 1284 1285 halfwords = DIV_ROUND_UP(nbits, 32); 1286 for (i = 0; i < halfwords; i++) { 1287 bitmap[i/2] = (unsigned long) buf[i]; 1288 if (++i < halfwords) 1289 bitmap[i/2] |= ((unsigned long) buf[i]) << 32; 1290 } 1291 1292 /* Clear tail bits in last word beyond nbits. */ 1293 if (nbits % BITS_PER_LONG) 1294 bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits); 1295 } 1296 EXPORT_SYMBOL(bitmap_from_arr32); 1297 1298 /** 1299 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits 1300 * @buf: array of u32 (in host byte order), the dest bitmap 1301 * @bitmap: array of unsigned longs, the source bitmap 1302 * @nbits: number of bits in @bitmap 1303 */ 1304 void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits) 1305 { 1306 unsigned int i, halfwords; 1307 1308 halfwords = DIV_ROUND_UP(nbits, 32); 1309 for (i = 0; i < halfwords; i++) { 1310 buf[i] = (u32) (bitmap[i/2] & UINT_MAX); 1311 if (++i < halfwords) 1312 buf[i] = (u32) (bitmap[i/2] >> 32); 1313 } 1314 1315 /* Clear tail bits in last element of array beyond nbits. */ 1316 if (nbits % BITS_PER_LONG) 1317 buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31)); 1318 } 1319 EXPORT_SYMBOL(bitmap_to_arr32); 1320 1321 #endif 1322