1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * lib/bitmap.c 4 * Helper functions for bitmap.h. 5 */ 6 7 #include <linux/bitmap.h> 8 #include <linux/bitops.h> 9 #include <linux/bug.h> 10 #include <linux/ctype.h> 11 #include <linux/device.h> 12 #include <linux/errno.h> 13 #include <linux/export.h> 14 #include <linux/kernel.h> 15 #include <linux/mm.h> 16 #include <linux/slab.h> 17 #include <linux/string.h> 18 #include <linux/thread_info.h> 19 #include <linux/uaccess.h> 20 21 #include <asm/page.h> 22 23 #include "kstrtox.h" 24 25 /** 26 * DOC: bitmap introduction 27 * 28 * bitmaps provide an array of bits, implemented using an 29 * array of unsigned longs. The number of valid bits in a 30 * given bitmap does _not_ need to be an exact multiple of 31 * BITS_PER_LONG. 32 * 33 * The possible unused bits in the last, partially used word 34 * of a bitmap are 'don't care'. The implementation makes 35 * no particular effort to keep them zero. It ensures that 36 * their value will not affect the results of any operation. 37 * The bitmap operations that return Boolean (bitmap_empty, 38 * for example) or scalar (bitmap_weight, for example) results 39 * carefully filter out these unused bits from impacting their 40 * results. 41 * 42 * The byte ordering of bitmaps is more natural on little 43 * endian architectures. See the big-endian headers 44 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h 45 * for the best explanations of this ordering. 46 */ 47 48 bool __bitmap_equal(const unsigned long *bitmap1, 49 const unsigned long *bitmap2, unsigned int bits) 50 { 51 unsigned int k, lim = bits/BITS_PER_LONG; 52 for (k = 0; k < lim; ++k) 53 if (bitmap1[k] != bitmap2[k]) 54 return false; 55 56 if (bits % BITS_PER_LONG) 57 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 58 return false; 59 60 return true; 61 } 62 EXPORT_SYMBOL(__bitmap_equal); 63 64 bool __bitmap_or_equal(const unsigned long *bitmap1, 65 const unsigned long *bitmap2, 66 const unsigned long *bitmap3, 67 unsigned int bits) 68 { 69 unsigned int k, lim = bits / BITS_PER_LONG; 70 unsigned long tmp; 71 72 for (k = 0; k < lim; ++k) { 73 if ((bitmap1[k] | bitmap2[k]) != bitmap3[k]) 74 return false; 75 } 76 77 if (!(bits % BITS_PER_LONG)) 78 return true; 79 80 tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k]; 81 return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0; 82 } 83 84 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits) 85 { 86 unsigned int k, lim = BITS_TO_LONGS(bits); 87 for (k = 0; k < lim; ++k) 88 dst[k] = ~src[k]; 89 } 90 EXPORT_SYMBOL(__bitmap_complement); 91 92 /** 93 * __bitmap_shift_right - logical right shift of the bits in a bitmap 94 * @dst : destination bitmap 95 * @src : source bitmap 96 * @shift : shift by this many bits 97 * @nbits : bitmap size, in bits 98 * 99 * Shifting right (dividing) means moving bits in the MS -> LS bit 100 * direction. Zeros are fed into the vacated MS positions and the 101 * LS bits shifted off the bottom are lost. 102 */ 103 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src, 104 unsigned shift, unsigned nbits) 105 { 106 unsigned k, lim = BITS_TO_LONGS(nbits); 107 unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; 108 unsigned long mask = BITMAP_LAST_WORD_MASK(nbits); 109 for (k = 0; off + k < lim; ++k) { 110 unsigned long upper, lower; 111 112 /* 113 * If shift is not word aligned, take lower rem bits of 114 * word above and make them the top rem bits of result. 115 */ 116 if (!rem || off + k + 1 >= lim) 117 upper = 0; 118 else { 119 upper = src[off + k + 1]; 120 if (off + k + 1 == lim - 1) 121 upper &= mask; 122 upper <<= (BITS_PER_LONG - rem); 123 } 124 lower = src[off + k]; 125 if (off + k == lim - 1) 126 lower &= mask; 127 lower >>= rem; 128 dst[k] = lower | upper; 129 } 130 if (off) 131 memset(&dst[lim - off], 0, off*sizeof(unsigned long)); 132 } 133 EXPORT_SYMBOL(__bitmap_shift_right); 134 135 136 /** 137 * __bitmap_shift_left - logical left shift of the bits in a bitmap 138 * @dst : destination bitmap 139 * @src : source bitmap 140 * @shift : shift by this many bits 141 * @nbits : bitmap size, in bits 142 * 143 * Shifting left (multiplying) means moving bits in the LS -> MS 144 * direction. Zeros are fed into the vacated LS bit positions 145 * and those MS bits shifted off the top are lost. 146 */ 147 148 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src, 149 unsigned int shift, unsigned int nbits) 150 { 151 int k; 152 unsigned int lim = BITS_TO_LONGS(nbits); 153 unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; 154 for (k = lim - off - 1; k >= 0; --k) { 155 unsigned long upper, lower; 156 157 /* 158 * If shift is not word aligned, take upper rem bits of 159 * word below and make them the bottom rem bits of result. 160 */ 161 if (rem && k > 0) 162 lower = src[k - 1] >> (BITS_PER_LONG - rem); 163 else 164 lower = 0; 165 upper = src[k] << rem; 166 dst[k + off] = lower | upper; 167 } 168 if (off) 169 memset(dst, 0, off*sizeof(unsigned long)); 170 } 171 EXPORT_SYMBOL(__bitmap_shift_left); 172 173 /** 174 * bitmap_cut() - remove bit region from bitmap and right shift remaining bits 175 * @dst: destination bitmap, might overlap with src 176 * @src: source bitmap 177 * @first: start bit of region to be removed 178 * @cut: number of bits to remove 179 * @nbits: bitmap size, in bits 180 * 181 * Set the n-th bit of @dst iff the n-th bit of @src is set and 182 * n is less than @first, or the m-th bit of @src is set for any 183 * m such that @first <= n < nbits, and m = n + @cut. 184 * 185 * In pictures, example for a big-endian 32-bit architecture: 186 * 187 * The @src bitmap is:: 188 * 189 * 31 63 190 * | | 191 * 10000000 11000001 11110010 00010101 10000000 11000001 01110010 00010101 192 * | | | | 193 * 16 14 0 32 194 * 195 * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is:: 196 * 197 * 31 63 198 * | | 199 * 10110000 00011000 00110010 00010101 00010000 00011000 00101110 01000010 200 * | | | 201 * 14 (bit 17 0 32 202 * from @src) 203 * 204 * Note that @dst and @src might overlap partially or entirely. 205 * 206 * This is implemented in the obvious way, with a shift and carry 207 * step for each moved bit. Optimisation is left as an exercise 208 * for the compiler. 209 */ 210 void bitmap_cut(unsigned long *dst, const unsigned long *src, 211 unsigned int first, unsigned int cut, unsigned int nbits) 212 { 213 unsigned int len = BITS_TO_LONGS(nbits); 214 unsigned long keep = 0, carry; 215 int i; 216 217 if (first % BITS_PER_LONG) { 218 keep = src[first / BITS_PER_LONG] & 219 (~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG)); 220 } 221 222 memmove(dst, src, len * sizeof(*dst)); 223 224 while (cut--) { 225 for (i = first / BITS_PER_LONG; i < len; i++) { 226 if (i < len - 1) 227 carry = dst[i + 1] & 1UL; 228 else 229 carry = 0; 230 231 dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1)); 232 } 233 } 234 235 dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG); 236 dst[first / BITS_PER_LONG] |= keep; 237 } 238 EXPORT_SYMBOL(bitmap_cut); 239 240 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1, 241 const unsigned long *bitmap2, unsigned int bits) 242 { 243 unsigned int k; 244 unsigned int lim = bits/BITS_PER_LONG; 245 unsigned long result = 0; 246 247 for (k = 0; k < lim; k++) 248 result |= (dst[k] = bitmap1[k] & bitmap2[k]); 249 if (bits % BITS_PER_LONG) 250 result |= (dst[k] = bitmap1[k] & bitmap2[k] & 251 BITMAP_LAST_WORD_MASK(bits)); 252 return result != 0; 253 } 254 EXPORT_SYMBOL(__bitmap_and); 255 256 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1, 257 const unsigned long *bitmap2, unsigned int bits) 258 { 259 unsigned int k; 260 unsigned int nr = BITS_TO_LONGS(bits); 261 262 for (k = 0; k < nr; k++) 263 dst[k] = bitmap1[k] | bitmap2[k]; 264 } 265 EXPORT_SYMBOL(__bitmap_or); 266 267 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, 268 const unsigned long *bitmap2, unsigned int bits) 269 { 270 unsigned int k; 271 unsigned int nr = BITS_TO_LONGS(bits); 272 273 for (k = 0; k < nr; k++) 274 dst[k] = bitmap1[k] ^ bitmap2[k]; 275 } 276 EXPORT_SYMBOL(__bitmap_xor); 277 278 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, 279 const unsigned long *bitmap2, unsigned int bits) 280 { 281 unsigned int k; 282 unsigned int lim = bits/BITS_PER_LONG; 283 unsigned long result = 0; 284 285 for (k = 0; k < lim; k++) 286 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]); 287 if (bits % BITS_PER_LONG) 288 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] & 289 BITMAP_LAST_WORD_MASK(bits)); 290 return result != 0; 291 } 292 EXPORT_SYMBOL(__bitmap_andnot); 293 294 void __bitmap_replace(unsigned long *dst, 295 const unsigned long *old, const unsigned long *new, 296 const unsigned long *mask, unsigned int nbits) 297 { 298 unsigned int k; 299 unsigned int nr = BITS_TO_LONGS(nbits); 300 301 for (k = 0; k < nr; k++) 302 dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]); 303 } 304 EXPORT_SYMBOL(__bitmap_replace); 305 306 bool __bitmap_intersects(const unsigned long *bitmap1, 307 const unsigned long *bitmap2, unsigned int bits) 308 { 309 unsigned int k, lim = bits/BITS_PER_LONG; 310 for (k = 0; k < lim; ++k) 311 if (bitmap1[k] & bitmap2[k]) 312 return true; 313 314 if (bits % BITS_PER_LONG) 315 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 316 return true; 317 return false; 318 } 319 EXPORT_SYMBOL(__bitmap_intersects); 320 321 bool __bitmap_subset(const unsigned long *bitmap1, 322 const unsigned long *bitmap2, unsigned int bits) 323 { 324 unsigned int k, lim = bits/BITS_PER_LONG; 325 for (k = 0; k < lim; ++k) 326 if (bitmap1[k] & ~bitmap2[k]) 327 return false; 328 329 if (bits % BITS_PER_LONG) 330 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 331 return false; 332 return true; 333 } 334 EXPORT_SYMBOL(__bitmap_subset); 335 336 int __bitmap_weight(const unsigned long *bitmap, unsigned int bits) 337 { 338 unsigned int k, lim = bits/BITS_PER_LONG; 339 int w = 0; 340 341 for (k = 0; k < lim; k++) 342 w += hweight_long(bitmap[k]); 343 344 if (bits % BITS_PER_LONG) 345 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits)); 346 347 return w; 348 } 349 EXPORT_SYMBOL(__bitmap_weight); 350 351 void __bitmap_set(unsigned long *map, unsigned int start, int len) 352 { 353 unsigned long *p = map + BIT_WORD(start); 354 const unsigned int size = start + len; 355 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG); 356 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start); 357 358 while (len - bits_to_set >= 0) { 359 *p |= mask_to_set; 360 len -= bits_to_set; 361 bits_to_set = BITS_PER_LONG; 362 mask_to_set = ~0UL; 363 p++; 364 } 365 if (len) { 366 mask_to_set &= BITMAP_LAST_WORD_MASK(size); 367 *p |= mask_to_set; 368 } 369 } 370 EXPORT_SYMBOL(__bitmap_set); 371 372 void __bitmap_clear(unsigned long *map, unsigned int start, int len) 373 { 374 unsigned long *p = map + BIT_WORD(start); 375 const unsigned int size = start + len; 376 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG); 377 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start); 378 379 while (len - bits_to_clear >= 0) { 380 *p &= ~mask_to_clear; 381 len -= bits_to_clear; 382 bits_to_clear = BITS_PER_LONG; 383 mask_to_clear = ~0UL; 384 p++; 385 } 386 if (len) { 387 mask_to_clear &= BITMAP_LAST_WORD_MASK(size); 388 *p &= ~mask_to_clear; 389 } 390 } 391 EXPORT_SYMBOL(__bitmap_clear); 392 393 /** 394 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area 395 * @map: The address to base the search on 396 * @size: The bitmap size in bits 397 * @start: The bitnumber to start searching at 398 * @nr: The number of zeroed bits we're looking for 399 * @align_mask: Alignment mask for zero area 400 * @align_offset: Alignment offset for zero area. 401 * 402 * The @align_mask should be one less than a power of 2; the effect is that 403 * the bit offset of all zero areas this function finds plus @align_offset 404 * is multiple of that power of 2. 405 */ 406 unsigned long bitmap_find_next_zero_area_off(unsigned long *map, 407 unsigned long size, 408 unsigned long start, 409 unsigned int nr, 410 unsigned long align_mask, 411 unsigned long align_offset) 412 { 413 unsigned long index, end, i; 414 again: 415 index = find_next_zero_bit(map, size, start); 416 417 /* Align allocation */ 418 index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset; 419 420 end = index + nr; 421 if (end > size) 422 return end; 423 i = find_next_bit(map, end, index); 424 if (i < end) { 425 start = i + 1; 426 goto again; 427 } 428 return index; 429 } 430 EXPORT_SYMBOL(bitmap_find_next_zero_area_off); 431 432 /* 433 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers, 434 * second version by Paul Jackson, third by Joe Korty. 435 */ 436 437 /** 438 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap 439 * 440 * @ubuf: pointer to user buffer containing string. 441 * @ulen: buffer size in bytes. If string is smaller than this 442 * then it must be terminated with a \0. 443 * @maskp: pointer to bitmap array that will contain result. 444 * @nmaskbits: size of bitmap, in bits. 445 */ 446 int bitmap_parse_user(const char __user *ubuf, 447 unsigned int ulen, unsigned long *maskp, 448 int nmaskbits) 449 { 450 char *buf; 451 int ret; 452 453 buf = memdup_user_nul(ubuf, ulen); 454 if (IS_ERR(buf)) 455 return PTR_ERR(buf); 456 457 ret = bitmap_parse(buf, UINT_MAX, maskp, nmaskbits); 458 459 kfree(buf); 460 return ret; 461 } 462 EXPORT_SYMBOL(bitmap_parse_user); 463 464 /** 465 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string 466 * @list: indicates whether the bitmap must be list 467 * @buf: page aligned buffer into which string is placed 468 * @maskp: pointer to bitmap to convert 469 * @nmaskbits: size of bitmap, in bits 470 * 471 * Output format is a comma-separated list of decimal numbers and 472 * ranges if list is specified or hex digits grouped into comma-separated 473 * sets of 8 digits/set. Returns the number of characters written to buf. 474 * 475 * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned 476 * area and that sufficient storage remains at @buf to accommodate the 477 * bitmap_print_to_pagebuf() output. Returns the number of characters 478 * actually printed to @buf, excluding terminating '\0'. 479 */ 480 int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp, 481 int nmaskbits) 482 { 483 ptrdiff_t len = PAGE_SIZE - offset_in_page(buf); 484 485 return list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) : 486 scnprintf(buf, len, "%*pb\n", nmaskbits, maskp); 487 } 488 EXPORT_SYMBOL(bitmap_print_to_pagebuf); 489 490 /** 491 * bitmap_print_to_buf - convert bitmap to list or hex format ASCII string 492 * @list: indicates whether the bitmap must be list 493 * true: print in decimal list format 494 * false: print in hexadecimal bitmask format 495 * @buf: buffer into which string is placed 496 * @maskp: pointer to bitmap to convert 497 * @nmaskbits: size of bitmap, in bits 498 * @off: in the string from which we are copying, We copy to @buf 499 * @count: the maximum number of bytes to print 500 */ 501 static int bitmap_print_to_buf(bool list, char *buf, const unsigned long *maskp, 502 int nmaskbits, loff_t off, size_t count) 503 { 504 const char *fmt = list ? "%*pbl\n" : "%*pb\n"; 505 ssize_t size; 506 void *data; 507 508 data = kasprintf(GFP_KERNEL, fmt, nmaskbits, maskp); 509 if (!data) 510 return -ENOMEM; 511 512 size = memory_read_from_buffer(buf, count, &off, data, strlen(data) + 1); 513 kfree(data); 514 515 return size; 516 } 517 518 /** 519 * bitmap_print_bitmask_to_buf - convert bitmap to hex bitmask format ASCII string 520 * @buf: buffer into which string is placed 521 * @maskp: pointer to bitmap to convert 522 * @nmaskbits: size of bitmap, in bits 523 * @off: in the string from which we are copying, We copy to @buf 524 * @count: the maximum number of bytes to print 525 * 526 * The bitmap_print_to_pagebuf() is used indirectly via its cpumap wrapper 527 * cpumap_print_to_pagebuf() or directly by drivers to export hexadecimal 528 * bitmask and decimal list to userspace by sysfs ABI. 529 * Drivers might be using a normal attribute for this kind of ABIs. A 530 * normal attribute typically has show entry as below:: 531 * 532 * static ssize_t example_attribute_show(struct device *dev, 533 * struct device_attribute *attr, char *buf) 534 * { 535 * ... 536 * return bitmap_print_to_pagebuf(true, buf, &mask, nr_trig_max); 537 * } 538 * 539 * show entry of attribute has no offset and count parameters and this 540 * means the file is limited to one page only. 541 * bitmap_print_to_pagebuf() API works terribly well for this kind of 542 * normal attribute with buf parameter and without offset, count:: 543 * 544 * bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp, 545 * int nmaskbits) 546 * { 547 * } 548 * 549 * The problem is once we have a large bitmap, we have a chance to get a 550 * bitmask or list more than one page. Especially for list, it could be 551 * as complex as 0,3,5,7,9,... We have no simple way to know it exact size. 552 * It turns out bin_attribute is a way to break this limit. bin_attribute 553 * has show entry as below:: 554 * 555 * static ssize_t 556 * example_bin_attribute_show(struct file *filp, struct kobject *kobj, 557 * struct bin_attribute *attr, char *buf, 558 * loff_t offset, size_t count) 559 * { 560 * ... 561 * } 562 * 563 * With the new offset and count parameters, this makes sysfs ABI be able 564 * to support file size more than one page. For example, offset could be 565 * >= 4096. 566 * bitmap_print_bitmask_to_buf(), bitmap_print_list_to_buf() wit their 567 * cpumap wrapper cpumap_print_bitmask_to_buf(), cpumap_print_list_to_buf() 568 * make those drivers be able to support large bitmask and list after they 569 * move to use bin_attribute. In result, we have to pass the corresponding 570 * parameters such as off, count from bin_attribute show entry to this API. 571 * 572 * The role of cpumap_print_bitmask_to_buf() and cpumap_print_list_to_buf() 573 * is similar with cpumap_print_to_pagebuf(), the difference is that 574 * bitmap_print_to_pagebuf() mainly serves sysfs attribute with the assumption 575 * the destination buffer is exactly one page and won't be more than one page. 576 * cpumap_print_bitmask_to_buf() and cpumap_print_list_to_buf(), on the other 577 * hand, mainly serves bin_attribute which doesn't work with exact one page, 578 * and it can break the size limit of converted decimal list and hexadecimal 579 * bitmask. 580 * 581 * WARNING! 582 * 583 * This function is not a replacement for sprintf() or bitmap_print_to_pagebuf(). 584 * It is intended to workaround sysfs limitations discussed above and should be 585 * used carefully in general case for the following reasons: 586 * 587 * - Time complexity is O(nbits^2/count), comparing to O(nbits) for snprintf(). 588 * - Memory complexity is O(nbits), comparing to O(1) for snprintf(). 589 * - @off and @count are NOT offset and number of bits to print. 590 * - If printing part of bitmap as list, the resulting string is not a correct 591 * list representation of bitmap. Particularly, some bits within or out of 592 * related interval may be erroneously set or unset. The format of the string 593 * may be broken, so bitmap_parselist-like parser may fail parsing it. 594 * - If printing the whole bitmap as list by parts, user must ensure the order 595 * of calls of the function such that the offset is incremented linearly. 596 * - If printing the whole bitmap as list by parts, user must keep bitmap 597 * unchanged between the very first and very last call. Otherwise concatenated 598 * result may be incorrect, and format may be broken. 599 * 600 * Returns the number of characters actually printed to @buf 601 */ 602 int bitmap_print_bitmask_to_buf(char *buf, const unsigned long *maskp, 603 int nmaskbits, loff_t off, size_t count) 604 { 605 return bitmap_print_to_buf(false, buf, maskp, nmaskbits, off, count); 606 } 607 EXPORT_SYMBOL(bitmap_print_bitmask_to_buf); 608 609 /** 610 * bitmap_print_list_to_buf - convert bitmap to decimal list format ASCII string 611 * @buf: buffer into which string is placed 612 * @maskp: pointer to bitmap to convert 613 * @nmaskbits: size of bitmap, in bits 614 * @off: in the string from which we are copying, We copy to @buf 615 * @count: the maximum number of bytes to print 616 * 617 * Everything is same with the above bitmap_print_bitmask_to_buf() except 618 * the print format. 619 */ 620 int bitmap_print_list_to_buf(char *buf, const unsigned long *maskp, 621 int nmaskbits, loff_t off, size_t count) 622 { 623 return bitmap_print_to_buf(true, buf, maskp, nmaskbits, off, count); 624 } 625 EXPORT_SYMBOL(bitmap_print_list_to_buf); 626 627 /* 628 * Region 9-38:4/10 describes the following bitmap structure: 629 * 0 9 12 18 38 N 630 * .........****......****......****.................. 631 * ^ ^ ^ ^ ^ 632 * start off group_len end nbits 633 */ 634 struct region { 635 unsigned int start; 636 unsigned int off; 637 unsigned int group_len; 638 unsigned int end; 639 unsigned int nbits; 640 }; 641 642 static void bitmap_set_region(const struct region *r, unsigned long *bitmap) 643 { 644 unsigned int start; 645 646 for (start = r->start; start <= r->end; start += r->group_len) 647 bitmap_set(bitmap, start, min(r->end - start + 1, r->off)); 648 } 649 650 static int bitmap_check_region(const struct region *r) 651 { 652 if (r->start > r->end || r->group_len == 0 || r->off > r->group_len) 653 return -EINVAL; 654 655 if (r->end >= r->nbits) 656 return -ERANGE; 657 658 return 0; 659 } 660 661 static const char *bitmap_getnum(const char *str, unsigned int *num, 662 unsigned int lastbit) 663 { 664 unsigned long long n; 665 unsigned int len; 666 667 if (str[0] == 'N') { 668 *num = lastbit; 669 return str + 1; 670 } 671 672 len = _parse_integer(str, 10, &n); 673 if (!len) 674 return ERR_PTR(-EINVAL); 675 if (len & KSTRTOX_OVERFLOW || n != (unsigned int)n) 676 return ERR_PTR(-EOVERFLOW); 677 678 *num = n; 679 return str + len; 680 } 681 682 static inline bool end_of_str(char c) 683 { 684 return c == '\0' || c == '\n'; 685 } 686 687 static inline bool __end_of_region(char c) 688 { 689 return isspace(c) || c == ','; 690 } 691 692 static inline bool end_of_region(char c) 693 { 694 return __end_of_region(c) || end_of_str(c); 695 } 696 697 /* 698 * The format allows commas and whitespaces at the beginning 699 * of the region. 700 */ 701 static const char *bitmap_find_region(const char *str) 702 { 703 while (__end_of_region(*str)) 704 str++; 705 706 return end_of_str(*str) ? NULL : str; 707 } 708 709 static const char *bitmap_find_region_reverse(const char *start, const char *end) 710 { 711 while (start <= end && __end_of_region(*end)) 712 end--; 713 714 return end; 715 } 716 717 static const char *bitmap_parse_region(const char *str, struct region *r) 718 { 719 unsigned int lastbit = r->nbits - 1; 720 721 if (!strncasecmp(str, "all", 3)) { 722 r->start = 0; 723 r->end = lastbit; 724 str += 3; 725 726 goto check_pattern; 727 } 728 729 str = bitmap_getnum(str, &r->start, lastbit); 730 if (IS_ERR(str)) 731 return str; 732 733 if (end_of_region(*str)) 734 goto no_end; 735 736 if (*str != '-') 737 return ERR_PTR(-EINVAL); 738 739 str = bitmap_getnum(str + 1, &r->end, lastbit); 740 if (IS_ERR(str)) 741 return str; 742 743 check_pattern: 744 if (end_of_region(*str)) 745 goto no_pattern; 746 747 if (*str != ':') 748 return ERR_PTR(-EINVAL); 749 750 str = bitmap_getnum(str + 1, &r->off, lastbit); 751 if (IS_ERR(str)) 752 return str; 753 754 if (*str != '/') 755 return ERR_PTR(-EINVAL); 756 757 return bitmap_getnum(str + 1, &r->group_len, lastbit); 758 759 no_end: 760 r->end = r->start; 761 no_pattern: 762 r->off = r->end + 1; 763 r->group_len = r->end + 1; 764 765 return end_of_str(*str) ? NULL : str; 766 } 767 768 /** 769 * bitmap_parselist - convert list format ASCII string to bitmap 770 * @buf: read user string from this buffer; must be terminated 771 * with a \0 or \n. 772 * @maskp: write resulting mask here 773 * @nmaskbits: number of bits in mask to be written 774 * 775 * Input format is a comma-separated list of decimal numbers and 776 * ranges. Consecutively set bits are shown as two hyphen-separated 777 * decimal numbers, the smallest and largest bit numbers set in 778 * the range. 779 * Optionally each range can be postfixed to denote that only parts of it 780 * should be set. The range will divided to groups of specific size. 781 * From each group will be used only defined amount of bits. 782 * Syntax: range:used_size/group_size 783 * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769 784 * The value 'N' can be used as a dynamically substituted token for the 785 * maximum allowed value; i.e (nmaskbits - 1). Keep in mind that it is 786 * dynamic, so if system changes cause the bitmap width to change, such 787 * as more cores in a CPU list, then any ranges using N will also change. 788 * 789 * Returns: 0 on success, -errno on invalid input strings. Error values: 790 * 791 * - ``-EINVAL``: wrong region format 792 * - ``-EINVAL``: invalid character in string 793 * - ``-ERANGE``: bit number specified too large for mask 794 * - ``-EOVERFLOW``: integer overflow in the input parameters 795 */ 796 int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits) 797 { 798 struct region r; 799 long ret; 800 801 r.nbits = nmaskbits; 802 bitmap_zero(maskp, r.nbits); 803 804 while (buf) { 805 buf = bitmap_find_region(buf); 806 if (buf == NULL) 807 return 0; 808 809 buf = bitmap_parse_region(buf, &r); 810 if (IS_ERR(buf)) 811 return PTR_ERR(buf); 812 813 ret = bitmap_check_region(&r); 814 if (ret) 815 return ret; 816 817 bitmap_set_region(&r, maskp); 818 } 819 820 return 0; 821 } 822 EXPORT_SYMBOL(bitmap_parselist); 823 824 825 /** 826 * bitmap_parselist_user() - convert user buffer's list format ASCII 827 * string to bitmap 828 * 829 * @ubuf: pointer to user buffer containing string. 830 * @ulen: buffer size in bytes. If string is smaller than this 831 * then it must be terminated with a \0. 832 * @maskp: pointer to bitmap array that will contain result. 833 * @nmaskbits: size of bitmap, in bits. 834 * 835 * Wrapper for bitmap_parselist(), providing it with user buffer. 836 */ 837 int bitmap_parselist_user(const char __user *ubuf, 838 unsigned int ulen, unsigned long *maskp, 839 int nmaskbits) 840 { 841 char *buf; 842 int ret; 843 844 buf = memdup_user_nul(ubuf, ulen); 845 if (IS_ERR(buf)) 846 return PTR_ERR(buf); 847 848 ret = bitmap_parselist(buf, maskp, nmaskbits); 849 850 kfree(buf); 851 return ret; 852 } 853 EXPORT_SYMBOL(bitmap_parselist_user); 854 855 static const char *bitmap_get_x32_reverse(const char *start, 856 const char *end, u32 *num) 857 { 858 u32 ret = 0; 859 int c, i; 860 861 for (i = 0; i < 32; i += 4) { 862 c = hex_to_bin(*end--); 863 if (c < 0) 864 return ERR_PTR(-EINVAL); 865 866 ret |= c << i; 867 868 if (start > end || __end_of_region(*end)) 869 goto out; 870 } 871 872 if (hex_to_bin(*end--) >= 0) 873 return ERR_PTR(-EOVERFLOW); 874 out: 875 *num = ret; 876 return end; 877 } 878 879 /** 880 * bitmap_parse - convert an ASCII hex string into a bitmap. 881 * @start: pointer to buffer containing string. 882 * @buflen: buffer size in bytes. If string is smaller than this 883 * then it must be terminated with a \0 or \n. In that case, 884 * UINT_MAX may be provided instead of string length. 885 * @maskp: pointer to bitmap array that will contain result. 886 * @nmaskbits: size of bitmap, in bits. 887 * 888 * Commas group hex digits into chunks. Each chunk defines exactly 32 889 * bits of the resultant bitmask. No chunk may specify a value larger 890 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value 891 * then leading 0-bits are prepended. %-EINVAL is returned for illegal 892 * characters. Grouping such as "1,,5", ",44", "," or "" is allowed. 893 * Leading, embedded and trailing whitespace accepted. 894 */ 895 int bitmap_parse(const char *start, unsigned int buflen, 896 unsigned long *maskp, int nmaskbits) 897 { 898 const char *end = strnchrnul(start, buflen, '\n') - 1; 899 int chunks = BITS_TO_U32(nmaskbits); 900 u32 *bitmap = (u32 *)maskp; 901 int unset_bit; 902 int chunk; 903 904 for (chunk = 0; ; chunk++) { 905 end = bitmap_find_region_reverse(start, end); 906 if (start > end) 907 break; 908 909 if (!chunks--) 910 return -EOVERFLOW; 911 912 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN) 913 end = bitmap_get_x32_reverse(start, end, &bitmap[chunk ^ 1]); 914 #else 915 end = bitmap_get_x32_reverse(start, end, &bitmap[chunk]); 916 #endif 917 if (IS_ERR(end)) 918 return PTR_ERR(end); 919 } 920 921 unset_bit = (BITS_TO_U32(nmaskbits) - chunks) * 32; 922 if (unset_bit < nmaskbits) { 923 bitmap_clear(maskp, unset_bit, nmaskbits - unset_bit); 924 return 0; 925 } 926 927 if (find_next_bit(maskp, unset_bit, nmaskbits) != unset_bit) 928 return -EOVERFLOW; 929 930 return 0; 931 } 932 EXPORT_SYMBOL(bitmap_parse); 933 934 /** 935 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap 936 * @buf: pointer to a bitmap 937 * @pos: a bit position in @buf (0 <= @pos < @nbits) 938 * @nbits: number of valid bit positions in @buf 939 * 940 * Map the bit at position @pos in @buf (of length @nbits) to the 941 * ordinal of which set bit it is. If it is not set or if @pos 942 * is not a valid bit position, map to -1. 943 * 944 * If for example, just bits 4 through 7 are set in @buf, then @pos 945 * values 4 through 7 will get mapped to 0 through 3, respectively, 946 * and other @pos values will get mapped to -1. When @pos value 7 947 * gets mapped to (returns) @ord value 3 in this example, that means 948 * that bit 7 is the 3rd (starting with 0th) set bit in @buf. 949 * 950 * The bit positions 0 through @bits are valid positions in @buf. 951 */ 952 static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits) 953 { 954 if (pos >= nbits || !test_bit(pos, buf)) 955 return -1; 956 957 return __bitmap_weight(buf, pos); 958 } 959 960 /** 961 * bitmap_ord_to_pos - find position of n-th set bit in bitmap 962 * @buf: pointer to bitmap 963 * @ord: ordinal bit position (n-th set bit, n >= 0) 964 * @nbits: number of valid bit positions in @buf 965 * 966 * Map the ordinal offset of bit @ord in @buf to its position in @buf. 967 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord 968 * >= weight(buf), returns @nbits. 969 * 970 * If for example, just bits 4 through 7 are set in @buf, then @ord 971 * values 0 through 3 will get mapped to 4 through 7, respectively, 972 * and all other @ord values returns @nbits. When @ord value 3 973 * gets mapped to (returns) @pos value 7 in this example, that means 974 * that the 3rd set bit (starting with 0th) is at position 7 in @buf. 975 * 976 * The bit positions 0 through @nbits-1 are valid positions in @buf. 977 */ 978 unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits) 979 { 980 unsigned int pos; 981 982 for (pos = find_first_bit(buf, nbits); 983 pos < nbits && ord; 984 pos = find_next_bit(buf, nbits, pos + 1)) 985 ord--; 986 987 return pos; 988 } 989 990 /** 991 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap 992 * @dst: remapped result 993 * @src: subset to be remapped 994 * @old: defines domain of map 995 * @new: defines range of map 996 * @nbits: number of bits in each of these bitmaps 997 * 998 * Let @old and @new define a mapping of bit positions, such that 999 * whatever position is held by the n-th set bit in @old is mapped 1000 * to the n-th set bit in @new. In the more general case, allowing 1001 * for the possibility that the weight 'w' of @new is less than the 1002 * weight of @old, map the position of the n-th set bit in @old to 1003 * the position of the m-th set bit in @new, where m == n % w. 1004 * 1005 * If either of the @old and @new bitmaps are empty, or if @src and 1006 * @dst point to the same location, then this routine copies @src 1007 * to @dst. 1008 * 1009 * The positions of unset bits in @old are mapped to themselves 1010 * (the identify map). 1011 * 1012 * Apply the above specified mapping to @src, placing the result in 1013 * @dst, clearing any bits previously set in @dst. 1014 * 1015 * For example, lets say that @old has bits 4 through 7 set, and 1016 * @new has bits 12 through 15 set. This defines the mapping of bit 1017 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other 1018 * bit positions unchanged. So if say @src comes into this routine 1019 * with bits 1, 5 and 7 set, then @dst should leave with bits 1, 1020 * 13 and 15 set. 1021 */ 1022 void bitmap_remap(unsigned long *dst, const unsigned long *src, 1023 const unsigned long *old, const unsigned long *new, 1024 unsigned int nbits) 1025 { 1026 unsigned int oldbit, w; 1027 1028 if (dst == src) /* following doesn't handle inplace remaps */ 1029 return; 1030 bitmap_zero(dst, nbits); 1031 1032 w = bitmap_weight(new, nbits); 1033 for_each_set_bit(oldbit, src, nbits) { 1034 int n = bitmap_pos_to_ord(old, oldbit, nbits); 1035 1036 if (n < 0 || w == 0) 1037 set_bit(oldbit, dst); /* identity map */ 1038 else 1039 set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst); 1040 } 1041 } 1042 EXPORT_SYMBOL(bitmap_remap); 1043 1044 /** 1045 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit 1046 * @oldbit: bit position to be mapped 1047 * @old: defines domain of map 1048 * @new: defines range of map 1049 * @bits: number of bits in each of these bitmaps 1050 * 1051 * Let @old and @new define a mapping of bit positions, such that 1052 * whatever position is held by the n-th set bit in @old is mapped 1053 * to the n-th set bit in @new. In the more general case, allowing 1054 * for the possibility that the weight 'w' of @new is less than the 1055 * weight of @old, map the position of the n-th set bit in @old to 1056 * the position of the m-th set bit in @new, where m == n % w. 1057 * 1058 * The positions of unset bits in @old are mapped to themselves 1059 * (the identify map). 1060 * 1061 * Apply the above specified mapping to bit position @oldbit, returning 1062 * the new bit position. 1063 * 1064 * For example, lets say that @old has bits 4 through 7 set, and 1065 * @new has bits 12 through 15 set. This defines the mapping of bit 1066 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other 1067 * bit positions unchanged. So if say @oldbit is 5, then this routine 1068 * returns 13. 1069 */ 1070 int bitmap_bitremap(int oldbit, const unsigned long *old, 1071 const unsigned long *new, int bits) 1072 { 1073 int w = bitmap_weight(new, bits); 1074 int n = bitmap_pos_to_ord(old, oldbit, bits); 1075 if (n < 0 || w == 0) 1076 return oldbit; 1077 else 1078 return bitmap_ord_to_pos(new, n % w, bits); 1079 } 1080 EXPORT_SYMBOL(bitmap_bitremap); 1081 1082 #ifdef CONFIG_NUMA 1083 /** 1084 * bitmap_onto - translate one bitmap relative to another 1085 * @dst: resulting translated bitmap 1086 * @orig: original untranslated bitmap 1087 * @relmap: bitmap relative to which translated 1088 * @bits: number of bits in each of these bitmaps 1089 * 1090 * Set the n-th bit of @dst iff there exists some m such that the 1091 * n-th bit of @relmap is set, the m-th bit of @orig is set, and 1092 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap. 1093 * (If you understood the previous sentence the first time your 1094 * read it, you're overqualified for your current job.) 1095 * 1096 * In other words, @orig is mapped onto (surjectively) @dst, 1097 * using the map { <n, m> | the n-th bit of @relmap is the 1098 * m-th set bit of @relmap }. 1099 * 1100 * Any set bits in @orig above bit number W, where W is the 1101 * weight of (number of set bits in) @relmap are mapped nowhere. 1102 * In particular, if for all bits m set in @orig, m >= W, then 1103 * @dst will end up empty. In situations where the possibility 1104 * of such an empty result is not desired, one way to avoid it is 1105 * to use the bitmap_fold() operator, below, to first fold the 1106 * @orig bitmap over itself so that all its set bits x are in the 1107 * range 0 <= x < W. The bitmap_fold() operator does this by 1108 * setting the bit (m % W) in @dst, for each bit (m) set in @orig. 1109 * 1110 * Example [1] for bitmap_onto(): 1111 * Let's say @relmap has bits 30-39 set, and @orig has bits 1112 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine, 1113 * @dst will have bits 31, 33, 35, 37 and 39 set. 1114 * 1115 * When bit 0 is set in @orig, it means turn on the bit in 1116 * @dst corresponding to whatever is the first bit (if any) 1117 * that is turned on in @relmap. Since bit 0 was off in the 1118 * above example, we leave off that bit (bit 30) in @dst. 1119 * 1120 * When bit 1 is set in @orig (as in the above example), it 1121 * means turn on the bit in @dst corresponding to whatever 1122 * is the second bit that is turned on in @relmap. The second 1123 * bit in @relmap that was turned on in the above example was 1124 * bit 31, so we turned on bit 31 in @dst. 1125 * 1126 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst, 1127 * because they were the 4th, 6th, 8th and 10th set bits 1128 * set in @relmap, and the 4th, 6th, 8th and 10th bits of 1129 * @orig (i.e. bits 3, 5, 7 and 9) were also set. 1130 * 1131 * When bit 11 is set in @orig, it means turn on the bit in 1132 * @dst corresponding to whatever is the twelfth bit that is 1133 * turned on in @relmap. In the above example, there were 1134 * only ten bits turned on in @relmap (30..39), so that bit 1135 * 11 was set in @orig had no affect on @dst. 1136 * 1137 * Example [2] for bitmap_fold() + bitmap_onto(): 1138 * Let's say @relmap has these ten bits set:: 1139 * 1140 * 40 41 42 43 45 48 53 61 74 95 1141 * 1142 * (for the curious, that's 40 plus the first ten terms of the 1143 * Fibonacci sequence.) 1144 * 1145 * Further lets say we use the following code, invoking 1146 * bitmap_fold() then bitmap_onto, as suggested above to 1147 * avoid the possibility of an empty @dst result:: 1148 * 1149 * unsigned long *tmp; // a temporary bitmap's bits 1150 * 1151 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits); 1152 * bitmap_onto(dst, tmp, relmap, bits); 1153 * 1154 * Then this table shows what various values of @dst would be, for 1155 * various @orig's. I list the zero-based positions of each set bit. 1156 * The tmp column shows the intermediate result, as computed by 1157 * using bitmap_fold() to fold the @orig bitmap modulo ten 1158 * (the weight of @relmap): 1159 * 1160 * =============== ============== ================= 1161 * @orig tmp @dst 1162 * 0 0 40 1163 * 1 1 41 1164 * 9 9 95 1165 * 10 0 40 [#f1]_ 1166 * 1 3 5 7 1 3 5 7 41 43 48 61 1167 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45 1168 * 0 9 18 27 0 9 8 7 40 61 74 95 1169 * 0 10 20 30 0 40 1170 * 0 11 22 33 0 1 2 3 40 41 42 43 1171 * 0 12 24 36 0 2 4 6 40 42 45 53 1172 * 78 102 211 1 2 8 41 42 74 [#f1]_ 1173 * =============== ============== ================= 1174 * 1175 * .. [#f1] 1176 * 1177 * For these marked lines, if we hadn't first done bitmap_fold() 1178 * into tmp, then the @dst result would have been empty. 1179 * 1180 * If either of @orig or @relmap is empty (no set bits), then @dst 1181 * will be returned empty. 1182 * 1183 * If (as explained above) the only set bits in @orig are in positions 1184 * m where m >= W, (where W is the weight of @relmap) then @dst will 1185 * once again be returned empty. 1186 * 1187 * All bits in @dst not set by the above rule are cleared. 1188 */ 1189 void bitmap_onto(unsigned long *dst, const unsigned long *orig, 1190 const unsigned long *relmap, unsigned int bits) 1191 { 1192 unsigned int n, m; /* same meaning as in above comment */ 1193 1194 if (dst == orig) /* following doesn't handle inplace mappings */ 1195 return; 1196 bitmap_zero(dst, bits); 1197 1198 /* 1199 * The following code is a more efficient, but less 1200 * obvious, equivalent to the loop: 1201 * for (m = 0; m < bitmap_weight(relmap, bits); m++) { 1202 * n = bitmap_ord_to_pos(orig, m, bits); 1203 * if (test_bit(m, orig)) 1204 * set_bit(n, dst); 1205 * } 1206 */ 1207 1208 m = 0; 1209 for_each_set_bit(n, relmap, bits) { 1210 /* m == bitmap_pos_to_ord(relmap, n, bits) */ 1211 if (test_bit(m, orig)) 1212 set_bit(n, dst); 1213 m++; 1214 } 1215 } 1216 1217 /** 1218 * bitmap_fold - fold larger bitmap into smaller, modulo specified size 1219 * @dst: resulting smaller bitmap 1220 * @orig: original larger bitmap 1221 * @sz: specified size 1222 * @nbits: number of bits in each of these bitmaps 1223 * 1224 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst. 1225 * Clear all other bits in @dst. See further the comment and 1226 * Example [2] for bitmap_onto() for why and how to use this. 1227 */ 1228 void bitmap_fold(unsigned long *dst, const unsigned long *orig, 1229 unsigned int sz, unsigned int nbits) 1230 { 1231 unsigned int oldbit; 1232 1233 if (dst == orig) /* following doesn't handle inplace mappings */ 1234 return; 1235 bitmap_zero(dst, nbits); 1236 1237 for_each_set_bit(oldbit, orig, nbits) 1238 set_bit(oldbit % sz, dst); 1239 } 1240 #endif /* CONFIG_NUMA */ 1241 1242 /* 1243 * Common code for bitmap_*_region() routines. 1244 * bitmap: array of unsigned longs corresponding to the bitmap 1245 * pos: the beginning of the region 1246 * order: region size (log base 2 of number of bits) 1247 * reg_op: operation(s) to perform on that region of bitmap 1248 * 1249 * Can set, verify and/or release a region of bits in a bitmap, 1250 * depending on which combination of REG_OP_* flag bits is set. 1251 * 1252 * A region of a bitmap is a sequence of bits in the bitmap, of 1253 * some size '1 << order' (a power of two), aligned to that same 1254 * '1 << order' power of two. 1255 * 1256 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits). 1257 * Returns 0 in all other cases and reg_ops. 1258 */ 1259 1260 enum { 1261 REG_OP_ISFREE, /* true if region is all zero bits */ 1262 REG_OP_ALLOC, /* set all bits in region */ 1263 REG_OP_RELEASE, /* clear all bits in region */ 1264 }; 1265 1266 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op) 1267 { 1268 int nbits_reg; /* number of bits in region */ 1269 int index; /* index first long of region in bitmap */ 1270 int offset; /* bit offset region in bitmap[index] */ 1271 int nlongs_reg; /* num longs spanned by region in bitmap */ 1272 int nbitsinlong; /* num bits of region in each spanned long */ 1273 unsigned long mask; /* bitmask for one long of region */ 1274 int i; /* scans bitmap by longs */ 1275 int ret = 0; /* return value */ 1276 1277 /* 1278 * Either nlongs_reg == 1 (for small orders that fit in one long) 1279 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.) 1280 */ 1281 nbits_reg = 1 << order; 1282 index = pos / BITS_PER_LONG; 1283 offset = pos - (index * BITS_PER_LONG); 1284 nlongs_reg = BITS_TO_LONGS(nbits_reg); 1285 nbitsinlong = min(nbits_reg, BITS_PER_LONG); 1286 1287 /* 1288 * Can't do "mask = (1UL << nbitsinlong) - 1", as that 1289 * overflows if nbitsinlong == BITS_PER_LONG. 1290 */ 1291 mask = (1UL << (nbitsinlong - 1)); 1292 mask += mask - 1; 1293 mask <<= offset; 1294 1295 switch (reg_op) { 1296 case REG_OP_ISFREE: 1297 for (i = 0; i < nlongs_reg; i++) { 1298 if (bitmap[index + i] & mask) 1299 goto done; 1300 } 1301 ret = 1; /* all bits in region free (zero) */ 1302 break; 1303 1304 case REG_OP_ALLOC: 1305 for (i = 0; i < nlongs_reg; i++) 1306 bitmap[index + i] |= mask; 1307 break; 1308 1309 case REG_OP_RELEASE: 1310 for (i = 0; i < nlongs_reg; i++) 1311 bitmap[index + i] &= ~mask; 1312 break; 1313 } 1314 done: 1315 return ret; 1316 } 1317 1318 /** 1319 * bitmap_find_free_region - find a contiguous aligned mem region 1320 * @bitmap: array of unsigned longs corresponding to the bitmap 1321 * @bits: number of bits in the bitmap 1322 * @order: region size (log base 2 of number of bits) to find 1323 * 1324 * Find a region of free (zero) bits in a @bitmap of @bits bits and 1325 * allocate them (set them to one). Only consider regions of length 1326 * a power (@order) of two, aligned to that power of two, which 1327 * makes the search algorithm much faster. 1328 * 1329 * Return the bit offset in bitmap of the allocated region, 1330 * or -errno on failure. 1331 */ 1332 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order) 1333 { 1334 unsigned int pos, end; /* scans bitmap by regions of size order */ 1335 1336 for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) { 1337 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) 1338 continue; 1339 __reg_op(bitmap, pos, order, REG_OP_ALLOC); 1340 return pos; 1341 } 1342 return -ENOMEM; 1343 } 1344 EXPORT_SYMBOL(bitmap_find_free_region); 1345 1346 /** 1347 * bitmap_release_region - release allocated bitmap region 1348 * @bitmap: array of unsigned longs corresponding to the bitmap 1349 * @pos: beginning of bit region to release 1350 * @order: region size (log base 2 of number of bits) to release 1351 * 1352 * This is the complement to __bitmap_find_free_region() and releases 1353 * the found region (by clearing it in the bitmap). 1354 * 1355 * No return value. 1356 */ 1357 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order) 1358 { 1359 __reg_op(bitmap, pos, order, REG_OP_RELEASE); 1360 } 1361 EXPORT_SYMBOL(bitmap_release_region); 1362 1363 /** 1364 * bitmap_allocate_region - allocate bitmap region 1365 * @bitmap: array of unsigned longs corresponding to the bitmap 1366 * @pos: beginning of bit region to allocate 1367 * @order: region size (log base 2 of number of bits) to allocate 1368 * 1369 * Allocate (set bits in) a specified region of a bitmap. 1370 * 1371 * Return 0 on success, or %-EBUSY if specified region wasn't 1372 * free (not all bits were zero). 1373 */ 1374 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order) 1375 { 1376 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) 1377 return -EBUSY; 1378 return __reg_op(bitmap, pos, order, REG_OP_ALLOC); 1379 } 1380 EXPORT_SYMBOL(bitmap_allocate_region); 1381 1382 /** 1383 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order. 1384 * @dst: destination buffer 1385 * @src: bitmap to copy 1386 * @nbits: number of bits in the bitmap 1387 * 1388 * Require nbits % BITS_PER_LONG == 0. 1389 */ 1390 #ifdef __BIG_ENDIAN 1391 void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits) 1392 { 1393 unsigned int i; 1394 1395 for (i = 0; i < nbits/BITS_PER_LONG; i++) { 1396 if (BITS_PER_LONG == 64) 1397 dst[i] = cpu_to_le64(src[i]); 1398 else 1399 dst[i] = cpu_to_le32(src[i]); 1400 } 1401 } 1402 EXPORT_SYMBOL(bitmap_copy_le); 1403 #endif 1404 1405 unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags) 1406 { 1407 return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long), 1408 flags); 1409 } 1410 EXPORT_SYMBOL(bitmap_alloc); 1411 1412 unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags) 1413 { 1414 return bitmap_alloc(nbits, flags | __GFP_ZERO); 1415 } 1416 EXPORT_SYMBOL(bitmap_zalloc); 1417 1418 unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node) 1419 { 1420 return kmalloc_array_node(BITS_TO_LONGS(nbits), sizeof(unsigned long), 1421 flags, node); 1422 } 1423 EXPORT_SYMBOL(bitmap_alloc_node); 1424 1425 unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node) 1426 { 1427 return bitmap_alloc_node(nbits, flags | __GFP_ZERO, node); 1428 } 1429 EXPORT_SYMBOL(bitmap_zalloc_node); 1430 1431 void bitmap_free(const unsigned long *bitmap) 1432 { 1433 kfree(bitmap); 1434 } 1435 EXPORT_SYMBOL(bitmap_free); 1436 1437 static void devm_bitmap_free(void *data) 1438 { 1439 unsigned long *bitmap = data; 1440 1441 bitmap_free(bitmap); 1442 } 1443 1444 unsigned long *devm_bitmap_alloc(struct device *dev, 1445 unsigned int nbits, gfp_t flags) 1446 { 1447 unsigned long *bitmap; 1448 int ret; 1449 1450 bitmap = bitmap_alloc(nbits, flags); 1451 if (!bitmap) 1452 return NULL; 1453 1454 ret = devm_add_action_or_reset(dev, devm_bitmap_free, bitmap); 1455 if (ret) 1456 return NULL; 1457 1458 return bitmap; 1459 } 1460 EXPORT_SYMBOL_GPL(devm_bitmap_alloc); 1461 1462 unsigned long *devm_bitmap_zalloc(struct device *dev, 1463 unsigned int nbits, gfp_t flags) 1464 { 1465 return devm_bitmap_alloc(dev, nbits, flags | __GFP_ZERO); 1466 } 1467 EXPORT_SYMBOL_GPL(devm_bitmap_zalloc); 1468 1469 #if BITS_PER_LONG == 64 1470 /** 1471 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap 1472 * @bitmap: array of unsigned longs, the destination bitmap 1473 * @buf: array of u32 (in host byte order), the source bitmap 1474 * @nbits: number of bits in @bitmap 1475 */ 1476 void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits) 1477 { 1478 unsigned int i, halfwords; 1479 1480 halfwords = DIV_ROUND_UP(nbits, 32); 1481 for (i = 0; i < halfwords; i++) { 1482 bitmap[i/2] = (unsigned long) buf[i]; 1483 if (++i < halfwords) 1484 bitmap[i/2] |= ((unsigned long) buf[i]) << 32; 1485 } 1486 1487 /* Clear tail bits in last word beyond nbits. */ 1488 if (nbits % BITS_PER_LONG) 1489 bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits); 1490 } 1491 EXPORT_SYMBOL(bitmap_from_arr32); 1492 1493 /** 1494 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits 1495 * @buf: array of u32 (in host byte order), the dest bitmap 1496 * @bitmap: array of unsigned longs, the source bitmap 1497 * @nbits: number of bits in @bitmap 1498 */ 1499 void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits) 1500 { 1501 unsigned int i, halfwords; 1502 1503 halfwords = DIV_ROUND_UP(nbits, 32); 1504 for (i = 0; i < halfwords; i++) { 1505 buf[i] = (u32) (bitmap[i/2] & UINT_MAX); 1506 if (++i < halfwords) 1507 buf[i] = (u32) (bitmap[i/2] >> 32); 1508 } 1509 1510 /* Clear tail bits in last element of array beyond nbits. */ 1511 if (nbits % BITS_PER_LONG) 1512 buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31)); 1513 } 1514 EXPORT_SYMBOL(bitmap_to_arr32); 1515 #endif 1516 1517 #if (BITS_PER_LONG == 32) && defined(__BIG_ENDIAN) 1518 /** 1519 * bitmap_from_arr64 - copy the contents of u64 array of bits to bitmap 1520 * @bitmap: array of unsigned longs, the destination bitmap 1521 * @buf: array of u64 (in host byte order), the source bitmap 1522 * @nbits: number of bits in @bitmap 1523 */ 1524 void bitmap_from_arr64(unsigned long *bitmap, const u64 *buf, unsigned int nbits) 1525 { 1526 int n; 1527 1528 for (n = nbits; n > 0; n -= 64) { 1529 u64 val = *buf++; 1530 1531 *bitmap++ = val; 1532 if (n > 32) 1533 *bitmap++ = val >> 32; 1534 } 1535 1536 /* 1537 * Clear tail bits in the last word beyond nbits. 1538 * 1539 * Negative index is OK because here we point to the word next 1540 * to the last word of the bitmap, except for nbits == 0, which 1541 * is tested implicitly. 1542 */ 1543 if (nbits % BITS_PER_LONG) 1544 bitmap[-1] &= BITMAP_LAST_WORD_MASK(nbits); 1545 } 1546 EXPORT_SYMBOL(bitmap_from_arr64); 1547 1548 /** 1549 * bitmap_to_arr64 - copy the contents of bitmap to a u64 array of bits 1550 * @buf: array of u64 (in host byte order), the dest bitmap 1551 * @bitmap: array of unsigned longs, the source bitmap 1552 * @nbits: number of bits in @bitmap 1553 */ 1554 void bitmap_to_arr64(u64 *buf, const unsigned long *bitmap, unsigned int nbits) 1555 { 1556 const unsigned long *end = bitmap + BITS_TO_LONGS(nbits); 1557 1558 while (bitmap < end) { 1559 *buf = *bitmap++; 1560 if (bitmap < end) 1561 *buf |= (u64)(*bitmap++) << 32; 1562 buf++; 1563 } 1564 1565 /* Clear tail bits in the last element of array beyond nbits. */ 1566 if (nbits % 64) 1567 buf[-1] &= GENMASK_ULL(nbits % 64, 0); 1568 } 1569 EXPORT_SYMBOL(bitmap_to_arr64); 1570 #endif 1571