1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * lib/bitmap.c 4 * Helper functions for bitmap.h. 5 */ 6 7 #include <linux/bitmap.h> 8 #include <linux/bitops.h> 9 #include <linux/bug.h> 10 #include <linux/ctype.h> 11 #include <linux/device.h> 12 #include <linux/errno.h> 13 #include <linux/export.h> 14 #include <linux/kernel.h> 15 #include <linux/mm.h> 16 #include <linux/slab.h> 17 #include <linux/string.h> 18 #include <linux/thread_info.h> 19 #include <linux/uaccess.h> 20 21 #include <asm/page.h> 22 23 #include "kstrtox.h" 24 25 /** 26 * DOC: bitmap introduction 27 * 28 * bitmaps provide an array of bits, implemented using an 29 * array of unsigned longs. The number of valid bits in a 30 * given bitmap does _not_ need to be an exact multiple of 31 * BITS_PER_LONG. 32 * 33 * The possible unused bits in the last, partially used word 34 * of a bitmap are 'don't care'. The implementation makes 35 * no particular effort to keep them zero. It ensures that 36 * their value will not affect the results of any operation. 37 * The bitmap operations that return Boolean (bitmap_empty, 38 * for example) or scalar (bitmap_weight, for example) results 39 * carefully filter out these unused bits from impacting their 40 * results. 41 * 42 * The byte ordering of bitmaps is more natural on little 43 * endian architectures. See the big-endian headers 44 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h 45 * for the best explanations of this ordering. 46 */ 47 48 int __bitmap_equal(const unsigned long *bitmap1, 49 const unsigned long *bitmap2, unsigned int bits) 50 { 51 unsigned int k, lim = bits/BITS_PER_LONG; 52 for (k = 0; k < lim; ++k) 53 if (bitmap1[k] != bitmap2[k]) 54 return 0; 55 56 if (bits % BITS_PER_LONG) 57 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 58 return 0; 59 60 return 1; 61 } 62 EXPORT_SYMBOL(__bitmap_equal); 63 64 bool __bitmap_or_equal(const unsigned long *bitmap1, 65 const unsigned long *bitmap2, 66 const unsigned long *bitmap3, 67 unsigned int bits) 68 { 69 unsigned int k, lim = bits / BITS_PER_LONG; 70 unsigned long tmp; 71 72 for (k = 0; k < lim; ++k) { 73 if ((bitmap1[k] | bitmap2[k]) != bitmap3[k]) 74 return false; 75 } 76 77 if (!(bits % BITS_PER_LONG)) 78 return true; 79 80 tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k]; 81 return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0; 82 } 83 84 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits) 85 { 86 unsigned int k, lim = BITS_TO_LONGS(bits); 87 for (k = 0; k < lim; ++k) 88 dst[k] = ~src[k]; 89 } 90 EXPORT_SYMBOL(__bitmap_complement); 91 92 /** 93 * __bitmap_shift_right - logical right shift of the bits in a bitmap 94 * @dst : destination bitmap 95 * @src : source bitmap 96 * @shift : shift by this many bits 97 * @nbits : bitmap size, in bits 98 * 99 * Shifting right (dividing) means moving bits in the MS -> LS bit 100 * direction. Zeros are fed into the vacated MS positions and the 101 * LS bits shifted off the bottom are lost. 102 */ 103 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src, 104 unsigned shift, unsigned nbits) 105 { 106 unsigned k, lim = BITS_TO_LONGS(nbits); 107 unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; 108 unsigned long mask = BITMAP_LAST_WORD_MASK(nbits); 109 for (k = 0; off + k < lim; ++k) { 110 unsigned long upper, lower; 111 112 /* 113 * If shift is not word aligned, take lower rem bits of 114 * word above and make them the top rem bits of result. 115 */ 116 if (!rem || off + k + 1 >= lim) 117 upper = 0; 118 else { 119 upper = src[off + k + 1]; 120 if (off + k + 1 == lim - 1) 121 upper &= mask; 122 upper <<= (BITS_PER_LONG - rem); 123 } 124 lower = src[off + k]; 125 if (off + k == lim - 1) 126 lower &= mask; 127 lower >>= rem; 128 dst[k] = lower | upper; 129 } 130 if (off) 131 memset(&dst[lim - off], 0, off*sizeof(unsigned long)); 132 } 133 EXPORT_SYMBOL(__bitmap_shift_right); 134 135 136 /** 137 * __bitmap_shift_left - logical left shift of the bits in a bitmap 138 * @dst : destination bitmap 139 * @src : source bitmap 140 * @shift : shift by this many bits 141 * @nbits : bitmap size, in bits 142 * 143 * Shifting left (multiplying) means moving bits in the LS -> MS 144 * direction. Zeros are fed into the vacated LS bit positions 145 * and those MS bits shifted off the top are lost. 146 */ 147 148 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src, 149 unsigned int shift, unsigned int nbits) 150 { 151 int k; 152 unsigned int lim = BITS_TO_LONGS(nbits); 153 unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; 154 for (k = lim - off - 1; k >= 0; --k) { 155 unsigned long upper, lower; 156 157 /* 158 * If shift is not word aligned, take upper rem bits of 159 * word below and make them the bottom rem bits of result. 160 */ 161 if (rem && k > 0) 162 lower = src[k - 1] >> (BITS_PER_LONG - rem); 163 else 164 lower = 0; 165 upper = src[k] << rem; 166 dst[k + off] = lower | upper; 167 } 168 if (off) 169 memset(dst, 0, off*sizeof(unsigned long)); 170 } 171 EXPORT_SYMBOL(__bitmap_shift_left); 172 173 /** 174 * bitmap_cut() - remove bit region from bitmap and right shift remaining bits 175 * @dst: destination bitmap, might overlap with src 176 * @src: source bitmap 177 * @first: start bit of region to be removed 178 * @cut: number of bits to remove 179 * @nbits: bitmap size, in bits 180 * 181 * Set the n-th bit of @dst iff the n-th bit of @src is set and 182 * n is less than @first, or the m-th bit of @src is set for any 183 * m such that @first <= n < nbits, and m = n + @cut. 184 * 185 * In pictures, example for a big-endian 32-bit architecture: 186 * 187 * The @src bitmap is:: 188 * 189 * 31 63 190 * | | 191 * 10000000 11000001 11110010 00010101 10000000 11000001 01110010 00010101 192 * | | | | 193 * 16 14 0 32 194 * 195 * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is:: 196 * 197 * 31 63 198 * | | 199 * 10110000 00011000 00110010 00010101 00010000 00011000 00101110 01000010 200 * | | | 201 * 14 (bit 17 0 32 202 * from @src) 203 * 204 * Note that @dst and @src might overlap partially or entirely. 205 * 206 * This is implemented in the obvious way, with a shift and carry 207 * step for each moved bit. Optimisation is left as an exercise 208 * for the compiler. 209 */ 210 void bitmap_cut(unsigned long *dst, const unsigned long *src, 211 unsigned int first, unsigned int cut, unsigned int nbits) 212 { 213 unsigned int len = BITS_TO_LONGS(nbits); 214 unsigned long keep = 0, carry; 215 int i; 216 217 if (first % BITS_PER_LONG) { 218 keep = src[first / BITS_PER_LONG] & 219 (~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG)); 220 } 221 222 memmove(dst, src, len * sizeof(*dst)); 223 224 while (cut--) { 225 for (i = first / BITS_PER_LONG; i < len; i++) { 226 if (i < len - 1) 227 carry = dst[i + 1] & 1UL; 228 else 229 carry = 0; 230 231 dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1)); 232 } 233 } 234 235 dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG); 236 dst[first / BITS_PER_LONG] |= keep; 237 } 238 EXPORT_SYMBOL(bitmap_cut); 239 240 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1, 241 const unsigned long *bitmap2, unsigned int bits) 242 { 243 unsigned int k; 244 unsigned int lim = bits/BITS_PER_LONG; 245 unsigned long result = 0; 246 247 for (k = 0; k < lim; k++) 248 result |= (dst[k] = bitmap1[k] & bitmap2[k]); 249 if (bits % BITS_PER_LONG) 250 result |= (dst[k] = bitmap1[k] & bitmap2[k] & 251 BITMAP_LAST_WORD_MASK(bits)); 252 return result != 0; 253 } 254 EXPORT_SYMBOL(__bitmap_and); 255 256 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1, 257 const unsigned long *bitmap2, unsigned int bits) 258 { 259 unsigned int k; 260 unsigned int nr = BITS_TO_LONGS(bits); 261 262 for (k = 0; k < nr; k++) 263 dst[k] = bitmap1[k] | bitmap2[k]; 264 } 265 EXPORT_SYMBOL(__bitmap_or); 266 267 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, 268 const unsigned long *bitmap2, unsigned int bits) 269 { 270 unsigned int k; 271 unsigned int nr = BITS_TO_LONGS(bits); 272 273 for (k = 0; k < nr; k++) 274 dst[k] = bitmap1[k] ^ bitmap2[k]; 275 } 276 EXPORT_SYMBOL(__bitmap_xor); 277 278 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, 279 const unsigned long *bitmap2, unsigned int bits) 280 { 281 unsigned int k; 282 unsigned int lim = bits/BITS_PER_LONG; 283 unsigned long result = 0; 284 285 for (k = 0; k < lim; k++) 286 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]); 287 if (bits % BITS_PER_LONG) 288 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] & 289 BITMAP_LAST_WORD_MASK(bits)); 290 return result != 0; 291 } 292 EXPORT_SYMBOL(__bitmap_andnot); 293 294 void __bitmap_replace(unsigned long *dst, 295 const unsigned long *old, const unsigned long *new, 296 const unsigned long *mask, unsigned int nbits) 297 { 298 unsigned int k; 299 unsigned int nr = BITS_TO_LONGS(nbits); 300 301 for (k = 0; k < nr; k++) 302 dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]); 303 } 304 EXPORT_SYMBOL(__bitmap_replace); 305 306 int __bitmap_intersects(const unsigned long *bitmap1, 307 const unsigned long *bitmap2, unsigned int bits) 308 { 309 unsigned int k, lim = bits/BITS_PER_LONG; 310 for (k = 0; k < lim; ++k) 311 if (bitmap1[k] & bitmap2[k]) 312 return 1; 313 314 if (bits % BITS_PER_LONG) 315 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 316 return 1; 317 return 0; 318 } 319 EXPORT_SYMBOL(__bitmap_intersects); 320 321 int __bitmap_subset(const unsigned long *bitmap1, 322 const unsigned long *bitmap2, unsigned int bits) 323 { 324 unsigned int k, lim = bits/BITS_PER_LONG; 325 for (k = 0; k < lim; ++k) 326 if (bitmap1[k] & ~bitmap2[k]) 327 return 0; 328 329 if (bits % BITS_PER_LONG) 330 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 331 return 0; 332 return 1; 333 } 334 EXPORT_SYMBOL(__bitmap_subset); 335 336 int __bitmap_weight(const unsigned long *bitmap, unsigned int bits) 337 { 338 unsigned int k, lim = bits/BITS_PER_LONG; 339 int w = 0; 340 341 for (k = 0; k < lim; k++) 342 w += hweight_long(bitmap[k]); 343 344 if (bits % BITS_PER_LONG) 345 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits)); 346 347 return w; 348 } 349 EXPORT_SYMBOL(__bitmap_weight); 350 351 void __bitmap_set(unsigned long *map, unsigned int start, int len) 352 { 353 unsigned long *p = map + BIT_WORD(start); 354 const unsigned int size = start + len; 355 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG); 356 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start); 357 358 while (len - bits_to_set >= 0) { 359 *p |= mask_to_set; 360 len -= bits_to_set; 361 bits_to_set = BITS_PER_LONG; 362 mask_to_set = ~0UL; 363 p++; 364 } 365 if (len) { 366 mask_to_set &= BITMAP_LAST_WORD_MASK(size); 367 *p |= mask_to_set; 368 } 369 } 370 EXPORT_SYMBOL(__bitmap_set); 371 372 void __bitmap_clear(unsigned long *map, unsigned int start, int len) 373 { 374 unsigned long *p = map + BIT_WORD(start); 375 const unsigned int size = start + len; 376 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG); 377 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start); 378 379 while (len - bits_to_clear >= 0) { 380 *p &= ~mask_to_clear; 381 len -= bits_to_clear; 382 bits_to_clear = BITS_PER_LONG; 383 mask_to_clear = ~0UL; 384 p++; 385 } 386 if (len) { 387 mask_to_clear &= BITMAP_LAST_WORD_MASK(size); 388 *p &= ~mask_to_clear; 389 } 390 } 391 EXPORT_SYMBOL(__bitmap_clear); 392 393 /** 394 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area 395 * @map: The address to base the search on 396 * @size: The bitmap size in bits 397 * @start: The bitnumber to start searching at 398 * @nr: The number of zeroed bits we're looking for 399 * @align_mask: Alignment mask for zero area 400 * @align_offset: Alignment offset for zero area. 401 * 402 * The @align_mask should be one less than a power of 2; the effect is that 403 * the bit offset of all zero areas this function finds plus @align_offset 404 * is multiple of that power of 2. 405 */ 406 unsigned long bitmap_find_next_zero_area_off(unsigned long *map, 407 unsigned long size, 408 unsigned long start, 409 unsigned int nr, 410 unsigned long align_mask, 411 unsigned long align_offset) 412 { 413 unsigned long index, end, i; 414 again: 415 index = find_next_zero_bit(map, size, start); 416 417 /* Align allocation */ 418 index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset; 419 420 end = index + nr; 421 if (end > size) 422 return end; 423 i = find_next_bit(map, end, index); 424 if (i < end) { 425 start = i + 1; 426 goto again; 427 } 428 return index; 429 } 430 EXPORT_SYMBOL(bitmap_find_next_zero_area_off); 431 432 /* 433 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers, 434 * second version by Paul Jackson, third by Joe Korty. 435 */ 436 437 /** 438 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap 439 * 440 * @ubuf: pointer to user buffer containing string. 441 * @ulen: buffer size in bytes. If string is smaller than this 442 * then it must be terminated with a \0. 443 * @maskp: pointer to bitmap array that will contain result. 444 * @nmaskbits: size of bitmap, in bits. 445 */ 446 int bitmap_parse_user(const char __user *ubuf, 447 unsigned int ulen, unsigned long *maskp, 448 int nmaskbits) 449 { 450 char *buf; 451 int ret; 452 453 buf = memdup_user_nul(ubuf, ulen); 454 if (IS_ERR(buf)) 455 return PTR_ERR(buf); 456 457 ret = bitmap_parse(buf, UINT_MAX, maskp, nmaskbits); 458 459 kfree(buf); 460 return ret; 461 } 462 EXPORT_SYMBOL(bitmap_parse_user); 463 464 /** 465 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string 466 * @list: indicates whether the bitmap must be list 467 * @buf: page aligned buffer into which string is placed 468 * @maskp: pointer to bitmap to convert 469 * @nmaskbits: size of bitmap, in bits 470 * 471 * Output format is a comma-separated list of decimal numbers and 472 * ranges if list is specified or hex digits grouped into comma-separated 473 * sets of 8 digits/set. Returns the number of characters written to buf. 474 * 475 * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned 476 * area and that sufficient storage remains at @buf to accommodate the 477 * bitmap_print_to_pagebuf() output. Returns the number of characters 478 * actually printed to @buf, excluding terminating '\0'. 479 */ 480 int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp, 481 int nmaskbits) 482 { 483 ptrdiff_t len = PAGE_SIZE - offset_in_page(buf); 484 485 return list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) : 486 scnprintf(buf, len, "%*pb\n", nmaskbits, maskp); 487 } 488 EXPORT_SYMBOL(bitmap_print_to_pagebuf); 489 490 /* 491 * Region 9-38:4/10 describes the following bitmap structure: 492 * 0 9 12 18 38 N 493 * .........****......****......****.................. 494 * ^ ^ ^ ^ ^ 495 * start off group_len end nbits 496 */ 497 struct region { 498 unsigned int start; 499 unsigned int off; 500 unsigned int group_len; 501 unsigned int end; 502 unsigned int nbits; 503 }; 504 505 static void bitmap_set_region(const struct region *r, unsigned long *bitmap) 506 { 507 unsigned int start; 508 509 for (start = r->start; start <= r->end; start += r->group_len) 510 bitmap_set(bitmap, start, min(r->end - start + 1, r->off)); 511 } 512 513 static int bitmap_check_region(const struct region *r) 514 { 515 if (r->start > r->end || r->group_len == 0 || r->off > r->group_len) 516 return -EINVAL; 517 518 if (r->end >= r->nbits) 519 return -ERANGE; 520 521 return 0; 522 } 523 524 static const char *bitmap_getnum(const char *str, unsigned int *num, 525 unsigned int lastbit) 526 { 527 unsigned long long n; 528 unsigned int len; 529 530 if (str[0] == 'N') { 531 *num = lastbit; 532 return str + 1; 533 } 534 535 len = _parse_integer(str, 10, &n); 536 if (!len) 537 return ERR_PTR(-EINVAL); 538 if (len & KSTRTOX_OVERFLOW || n != (unsigned int)n) 539 return ERR_PTR(-EOVERFLOW); 540 541 *num = n; 542 return str + len; 543 } 544 545 static inline bool end_of_str(char c) 546 { 547 return c == '\0' || c == '\n'; 548 } 549 550 static inline bool __end_of_region(char c) 551 { 552 return isspace(c) || c == ','; 553 } 554 555 static inline bool end_of_region(char c) 556 { 557 return __end_of_region(c) || end_of_str(c); 558 } 559 560 /* 561 * The format allows commas and whitespaces at the beginning 562 * of the region. 563 */ 564 static const char *bitmap_find_region(const char *str) 565 { 566 while (__end_of_region(*str)) 567 str++; 568 569 return end_of_str(*str) ? NULL : str; 570 } 571 572 static const char *bitmap_find_region_reverse(const char *start, const char *end) 573 { 574 while (start <= end && __end_of_region(*end)) 575 end--; 576 577 return end; 578 } 579 580 static const char *bitmap_parse_region(const char *str, struct region *r) 581 { 582 unsigned int lastbit = r->nbits - 1; 583 584 str = bitmap_getnum(str, &r->start, lastbit); 585 if (IS_ERR(str)) 586 return str; 587 588 if (end_of_region(*str)) 589 goto no_end; 590 591 if (*str != '-') 592 return ERR_PTR(-EINVAL); 593 594 str = bitmap_getnum(str + 1, &r->end, lastbit); 595 if (IS_ERR(str)) 596 return str; 597 598 if (end_of_region(*str)) 599 goto no_pattern; 600 601 if (*str != ':') 602 return ERR_PTR(-EINVAL); 603 604 str = bitmap_getnum(str + 1, &r->off, lastbit); 605 if (IS_ERR(str)) 606 return str; 607 608 if (*str != '/') 609 return ERR_PTR(-EINVAL); 610 611 return bitmap_getnum(str + 1, &r->group_len, lastbit); 612 613 no_end: 614 r->end = r->start; 615 no_pattern: 616 r->off = r->end + 1; 617 r->group_len = r->end + 1; 618 619 return end_of_str(*str) ? NULL : str; 620 } 621 622 /** 623 * bitmap_parselist - convert list format ASCII string to bitmap 624 * @buf: read user string from this buffer; must be terminated 625 * with a \0 or \n. 626 * @maskp: write resulting mask here 627 * @nmaskbits: number of bits in mask to be written 628 * 629 * Input format is a comma-separated list of decimal numbers and 630 * ranges. Consecutively set bits are shown as two hyphen-separated 631 * decimal numbers, the smallest and largest bit numbers set in 632 * the range. 633 * Optionally each range can be postfixed to denote that only parts of it 634 * should be set. The range will divided to groups of specific size. 635 * From each group will be used only defined amount of bits. 636 * Syntax: range:used_size/group_size 637 * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769 638 * The value 'N' can be used as a dynamically substituted token for the 639 * maximum allowed value; i.e (nmaskbits - 1). Keep in mind that it is 640 * dynamic, so if system changes cause the bitmap width to change, such 641 * as more cores in a CPU list, then any ranges using N will also change. 642 * 643 * Returns: 0 on success, -errno on invalid input strings. Error values: 644 * 645 * - ``-EINVAL``: wrong region format 646 * - ``-EINVAL``: invalid character in string 647 * - ``-ERANGE``: bit number specified too large for mask 648 * - ``-EOVERFLOW``: integer overflow in the input parameters 649 */ 650 int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits) 651 { 652 struct region r; 653 long ret; 654 655 r.nbits = nmaskbits; 656 bitmap_zero(maskp, r.nbits); 657 658 while (buf) { 659 buf = bitmap_find_region(buf); 660 if (buf == NULL) 661 return 0; 662 663 buf = bitmap_parse_region(buf, &r); 664 if (IS_ERR(buf)) 665 return PTR_ERR(buf); 666 667 ret = bitmap_check_region(&r); 668 if (ret) 669 return ret; 670 671 bitmap_set_region(&r, maskp); 672 } 673 674 return 0; 675 } 676 EXPORT_SYMBOL(bitmap_parselist); 677 678 679 /** 680 * bitmap_parselist_user() 681 * 682 * @ubuf: pointer to user buffer containing string. 683 * @ulen: buffer size in bytes. If string is smaller than this 684 * then it must be terminated with a \0. 685 * @maskp: pointer to bitmap array that will contain result. 686 * @nmaskbits: size of bitmap, in bits. 687 * 688 * Wrapper for bitmap_parselist(), providing it with user buffer. 689 */ 690 int bitmap_parselist_user(const char __user *ubuf, 691 unsigned int ulen, unsigned long *maskp, 692 int nmaskbits) 693 { 694 char *buf; 695 int ret; 696 697 buf = memdup_user_nul(ubuf, ulen); 698 if (IS_ERR(buf)) 699 return PTR_ERR(buf); 700 701 ret = bitmap_parselist(buf, maskp, nmaskbits); 702 703 kfree(buf); 704 return ret; 705 } 706 EXPORT_SYMBOL(bitmap_parselist_user); 707 708 static const char *bitmap_get_x32_reverse(const char *start, 709 const char *end, u32 *num) 710 { 711 u32 ret = 0; 712 int c, i; 713 714 for (i = 0; i < 32; i += 4) { 715 c = hex_to_bin(*end--); 716 if (c < 0) 717 return ERR_PTR(-EINVAL); 718 719 ret |= c << i; 720 721 if (start > end || __end_of_region(*end)) 722 goto out; 723 } 724 725 if (hex_to_bin(*end--) >= 0) 726 return ERR_PTR(-EOVERFLOW); 727 out: 728 *num = ret; 729 return end; 730 } 731 732 /** 733 * bitmap_parse - convert an ASCII hex string into a bitmap. 734 * @start: pointer to buffer containing string. 735 * @buflen: buffer size in bytes. If string is smaller than this 736 * then it must be terminated with a \0 or \n. In that case, 737 * UINT_MAX may be provided instead of string length. 738 * @maskp: pointer to bitmap array that will contain result. 739 * @nmaskbits: size of bitmap, in bits. 740 * 741 * Commas group hex digits into chunks. Each chunk defines exactly 32 742 * bits of the resultant bitmask. No chunk may specify a value larger 743 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value 744 * then leading 0-bits are prepended. %-EINVAL is returned for illegal 745 * characters. Grouping such as "1,,5", ",44", "," or "" is allowed. 746 * Leading, embedded and trailing whitespace accepted. 747 */ 748 int bitmap_parse(const char *start, unsigned int buflen, 749 unsigned long *maskp, int nmaskbits) 750 { 751 const char *end = strnchrnul(start, buflen, '\n') - 1; 752 int chunks = BITS_TO_U32(nmaskbits); 753 u32 *bitmap = (u32 *)maskp; 754 int unset_bit; 755 int chunk; 756 757 for (chunk = 0; ; chunk++) { 758 end = bitmap_find_region_reverse(start, end); 759 if (start > end) 760 break; 761 762 if (!chunks--) 763 return -EOVERFLOW; 764 765 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN) 766 end = bitmap_get_x32_reverse(start, end, &bitmap[chunk ^ 1]); 767 #else 768 end = bitmap_get_x32_reverse(start, end, &bitmap[chunk]); 769 #endif 770 if (IS_ERR(end)) 771 return PTR_ERR(end); 772 } 773 774 unset_bit = (BITS_TO_U32(nmaskbits) - chunks) * 32; 775 if (unset_bit < nmaskbits) { 776 bitmap_clear(maskp, unset_bit, nmaskbits - unset_bit); 777 return 0; 778 } 779 780 if (find_next_bit(maskp, unset_bit, nmaskbits) != unset_bit) 781 return -EOVERFLOW; 782 783 return 0; 784 } 785 EXPORT_SYMBOL(bitmap_parse); 786 787 788 #ifdef CONFIG_NUMA 789 /** 790 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap 791 * @buf: pointer to a bitmap 792 * @pos: a bit position in @buf (0 <= @pos < @nbits) 793 * @nbits: number of valid bit positions in @buf 794 * 795 * Map the bit at position @pos in @buf (of length @nbits) to the 796 * ordinal of which set bit it is. If it is not set or if @pos 797 * is not a valid bit position, map to -1. 798 * 799 * If for example, just bits 4 through 7 are set in @buf, then @pos 800 * values 4 through 7 will get mapped to 0 through 3, respectively, 801 * and other @pos values will get mapped to -1. When @pos value 7 802 * gets mapped to (returns) @ord value 3 in this example, that means 803 * that bit 7 is the 3rd (starting with 0th) set bit in @buf. 804 * 805 * The bit positions 0 through @bits are valid positions in @buf. 806 */ 807 static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits) 808 { 809 if (pos >= nbits || !test_bit(pos, buf)) 810 return -1; 811 812 return __bitmap_weight(buf, pos); 813 } 814 815 /** 816 * bitmap_ord_to_pos - find position of n-th set bit in bitmap 817 * @buf: pointer to bitmap 818 * @ord: ordinal bit position (n-th set bit, n >= 0) 819 * @nbits: number of valid bit positions in @buf 820 * 821 * Map the ordinal offset of bit @ord in @buf to its position in @buf. 822 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord 823 * >= weight(buf), returns @nbits. 824 * 825 * If for example, just bits 4 through 7 are set in @buf, then @ord 826 * values 0 through 3 will get mapped to 4 through 7, respectively, 827 * and all other @ord values returns @nbits. When @ord value 3 828 * gets mapped to (returns) @pos value 7 in this example, that means 829 * that the 3rd set bit (starting with 0th) is at position 7 in @buf. 830 * 831 * The bit positions 0 through @nbits-1 are valid positions in @buf. 832 */ 833 unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits) 834 { 835 unsigned int pos; 836 837 for (pos = find_first_bit(buf, nbits); 838 pos < nbits && ord; 839 pos = find_next_bit(buf, nbits, pos + 1)) 840 ord--; 841 842 return pos; 843 } 844 845 /** 846 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap 847 * @dst: remapped result 848 * @src: subset to be remapped 849 * @old: defines domain of map 850 * @new: defines range of map 851 * @nbits: number of bits in each of these bitmaps 852 * 853 * Let @old and @new define a mapping of bit positions, such that 854 * whatever position is held by the n-th set bit in @old is mapped 855 * to the n-th set bit in @new. In the more general case, allowing 856 * for the possibility that the weight 'w' of @new is less than the 857 * weight of @old, map the position of the n-th set bit in @old to 858 * the position of the m-th set bit in @new, where m == n % w. 859 * 860 * If either of the @old and @new bitmaps are empty, or if @src and 861 * @dst point to the same location, then this routine copies @src 862 * to @dst. 863 * 864 * The positions of unset bits in @old are mapped to themselves 865 * (the identify map). 866 * 867 * Apply the above specified mapping to @src, placing the result in 868 * @dst, clearing any bits previously set in @dst. 869 * 870 * For example, lets say that @old has bits 4 through 7 set, and 871 * @new has bits 12 through 15 set. This defines the mapping of bit 872 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other 873 * bit positions unchanged. So if say @src comes into this routine 874 * with bits 1, 5 and 7 set, then @dst should leave with bits 1, 875 * 13 and 15 set. 876 */ 877 void bitmap_remap(unsigned long *dst, const unsigned long *src, 878 const unsigned long *old, const unsigned long *new, 879 unsigned int nbits) 880 { 881 unsigned int oldbit, w; 882 883 if (dst == src) /* following doesn't handle inplace remaps */ 884 return; 885 bitmap_zero(dst, nbits); 886 887 w = bitmap_weight(new, nbits); 888 for_each_set_bit(oldbit, src, nbits) { 889 int n = bitmap_pos_to_ord(old, oldbit, nbits); 890 891 if (n < 0 || w == 0) 892 set_bit(oldbit, dst); /* identity map */ 893 else 894 set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst); 895 } 896 } 897 898 /** 899 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit 900 * @oldbit: bit position to be mapped 901 * @old: defines domain of map 902 * @new: defines range of map 903 * @bits: number of bits in each of these bitmaps 904 * 905 * Let @old and @new define a mapping of bit positions, such that 906 * whatever position is held by the n-th set bit in @old is mapped 907 * to the n-th set bit in @new. In the more general case, allowing 908 * for the possibility that the weight 'w' of @new is less than the 909 * weight of @old, map the position of the n-th set bit in @old to 910 * the position of the m-th set bit in @new, where m == n % w. 911 * 912 * The positions of unset bits in @old are mapped to themselves 913 * (the identify map). 914 * 915 * Apply the above specified mapping to bit position @oldbit, returning 916 * the new bit position. 917 * 918 * For example, lets say that @old has bits 4 through 7 set, and 919 * @new has bits 12 through 15 set. This defines the mapping of bit 920 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other 921 * bit positions unchanged. So if say @oldbit is 5, then this routine 922 * returns 13. 923 */ 924 int bitmap_bitremap(int oldbit, const unsigned long *old, 925 const unsigned long *new, int bits) 926 { 927 int w = bitmap_weight(new, bits); 928 int n = bitmap_pos_to_ord(old, oldbit, bits); 929 if (n < 0 || w == 0) 930 return oldbit; 931 else 932 return bitmap_ord_to_pos(new, n % w, bits); 933 } 934 935 /** 936 * bitmap_onto - translate one bitmap relative to another 937 * @dst: resulting translated bitmap 938 * @orig: original untranslated bitmap 939 * @relmap: bitmap relative to which translated 940 * @bits: number of bits in each of these bitmaps 941 * 942 * Set the n-th bit of @dst iff there exists some m such that the 943 * n-th bit of @relmap is set, the m-th bit of @orig is set, and 944 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap. 945 * (If you understood the previous sentence the first time your 946 * read it, you're overqualified for your current job.) 947 * 948 * In other words, @orig is mapped onto (surjectively) @dst, 949 * using the map { <n, m> | the n-th bit of @relmap is the 950 * m-th set bit of @relmap }. 951 * 952 * Any set bits in @orig above bit number W, where W is the 953 * weight of (number of set bits in) @relmap are mapped nowhere. 954 * In particular, if for all bits m set in @orig, m >= W, then 955 * @dst will end up empty. In situations where the possibility 956 * of such an empty result is not desired, one way to avoid it is 957 * to use the bitmap_fold() operator, below, to first fold the 958 * @orig bitmap over itself so that all its set bits x are in the 959 * range 0 <= x < W. The bitmap_fold() operator does this by 960 * setting the bit (m % W) in @dst, for each bit (m) set in @orig. 961 * 962 * Example [1] for bitmap_onto(): 963 * Let's say @relmap has bits 30-39 set, and @orig has bits 964 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine, 965 * @dst will have bits 31, 33, 35, 37 and 39 set. 966 * 967 * When bit 0 is set in @orig, it means turn on the bit in 968 * @dst corresponding to whatever is the first bit (if any) 969 * that is turned on in @relmap. Since bit 0 was off in the 970 * above example, we leave off that bit (bit 30) in @dst. 971 * 972 * When bit 1 is set in @orig (as in the above example), it 973 * means turn on the bit in @dst corresponding to whatever 974 * is the second bit that is turned on in @relmap. The second 975 * bit in @relmap that was turned on in the above example was 976 * bit 31, so we turned on bit 31 in @dst. 977 * 978 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst, 979 * because they were the 4th, 6th, 8th and 10th set bits 980 * set in @relmap, and the 4th, 6th, 8th and 10th bits of 981 * @orig (i.e. bits 3, 5, 7 and 9) were also set. 982 * 983 * When bit 11 is set in @orig, it means turn on the bit in 984 * @dst corresponding to whatever is the twelfth bit that is 985 * turned on in @relmap. In the above example, there were 986 * only ten bits turned on in @relmap (30..39), so that bit 987 * 11 was set in @orig had no affect on @dst. 988 * 989 * Example [2] for bitmap_fold() + bitmap_onto(): 990 * Let's say @relmap has these ten bits set:: 991 * 992 * 40 41 42 43 45 48 53 61 74 95 993 * 994 * (for the curious, that's 40 plus the first ten terms of the 995 * Fibonacci sequence.) 996 * 997 * Further lets say we use the following code, invoking 998 * bitmap_fold() then bitmap_onto, as suggested above to 999 * avoid the possibility of an empty @dst result:: 1000 * 1001 * unsigned long *tmp; // a temporary bitmap's bits 1002 * 1003 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits); 1004 * bitmap_onto(dst, tmp, relmap, bits); 1005 * 1006 * Then this table shows what various values of @dst would be, for 1007 * various @orig's. I list the zero-based positions of each set bit. 1008 * The tmp column shows the intermediate result, as computed by 1009 * using bitmap_fold() to fold the @orig bitmap modulo ten 1010 * (the weight of @relmap): 1011 * 1012 * =============== ============== ================= 1013 * @orig tmp @dst 1014 * 0 0 40 1015 * 1 1 41 1016 * 9 9 95 1017 * 10 0 40 [#f1]_ 1018 * 1 3 5 7 1 3 5 7 41 43 48 61 1019 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45 1020 * 0 9 18 27 0 9 8 7 40 61 74 95 1021 * 0 10 20 30 0 40 1022 * 0 11 22 33 0 1 2 3 40 41 42 43 1023 * 0 12 24 36 0 2 4 6 40 42 45 53 1024 * 78 102 211 1 2 8 41 42 74 [#f1]_ 1025 * =============== ============== ================= 1026 * 1027 * .. [#f1] 1028 * 1029 * For these marked lines, if we hadn't first done bitmap_fold() 1030 * into tmp, then the @dst result would have been empty. 1031 * 1032 * If either of @orig or @relmap is empty (no set bits), then @dst 1033 * will be returned empty. 1034 * 1035 * If (as explained above) the only set bits in @orig are in positions 1036 * m where m >= W, (where W is the weight of @relmap) then @dst will 1037 * once again be returned empty. 1038 * 1039 * All bits in @dst not set by the above rule are cleared. 1040 */ 1041 void bitmap_onto(unsigned long *dst, const unsigned long *orig, 1042 const unsigned long *relmap, unsigned int bits) 1043 { 1044 unsigned int n, m; /* same meaning as in above comment */ 1045 1046 if (dst == orig) /* following doesn't handle inplace mappings */ 1047 return; 1048 bitmap_zero(dst, bits); 1049 1050 /* 1051 * The following code is a more efficient, but less 1052 * obvious, equivalent to the loop: 1053 * for (m = 0; m < bitmap_weight(relmap, bits); m++) { 1054 * n = bitmap_ord_to_pos(orig, m, bits); 1055 * if (test_bit(m, orig)) 1056 * set_bit(n, dst); 1057 * } 1058 */ 1059 1060 m = 0; 1061 for_each_set_bit(n, relmap, bits) { 1062 /* m == bitmap_pos_to_ord(relmap, n, bits) */ 1063 if (test_bit(m, orig)) 1064 set_bit(n, dst); 1065 m++; 1066 } 1067 } 1068 1069 /** 1070 * bitmap_fold - fold larger bitmap into smaller, modulo specified size 1071 * @dst: resulting smaller bitmap 1072 * @orig: original larger bitmap 1073 * @sz: specified size 1074 * @nbits: number of bits in each of these bitmaps 1075 * 1076 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst. 1077 * Clear all other bits in @dst. See further the comment and 1078 * Example [2] for bitmap_onto() for why and how to use this. 1079 */ 1080 void bitmap_fold(unsigned long *dst, const unsigned long *orig, 1081 unsigned int sz, unsigned int nbits) 1082 { 1083 unsigned int oldbit; 1084 1085 if (dst == orig) /* following doesn't handle inplace mappings */ 1086 return; 1087 bitmap_zero(dst, nbits); 1088 1089 for_each_set_bit(oldbit, orig, nbits) 1090 set_bit(oldbit % sz, dst); 1091 } 1092 #endif /* CONFIG_NUMA */ 1093 1094 /* 1095 * Common code for bitmap_*_region() routines. 1096 * bitmap: array of unsigned longs corresponding to the bitmap 1097 * pos: the beginning of the region 1098 * order: region size (log base 2 of number of bits) 1099 * reg_op: operation(s) to perform on that region of bitmap 1100 * 1101 * Can set, verify and/or release a region of bits in a bitmap, 1102 * depending on which combination of REG_OP_* flag bits is set. 1103 * 1104 * A region of a bitmap is a sequence of bits in the bitmap, of 1105 * some size '1 << order' (a power of two), aligned to that same 1106 * '1 << order' power of two. 1107 * 1108 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits). 1109 * Returns 0 in all other cases and reg_ops. 1110 */ 1111 1112 enum { 1113 REG_OP_ISFREE, /* true if region is all zero bits */ 1114 REG_OP_ALLOC, /* set all bits in region */ 1115 REG_OP_RELEASE, /* clear all bits in region */ 1116 }; 1117 1118 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op) 1119 { 1120 int nbits_reg; /* number of bits in region */ 1121 int index; /* index first long of region in bitmap */ 1122 int offset; /* bit offset region in bitmap[index] */ 1123 int nlongs_reg; /* num longs spanned by region in bitmap */ 1124 int nbitsinlong; /* num bits of region in each spanned long */ 1125 unsigned long mask; /* bitmask for one long of region */ 1126 int i; /* scans bitmap by longs */ 1127 int ret = 0; /* return value */ 1128 1129 /* 1130 * Either nlongs_reg == 1 (for small orders that fit in one long) 1131 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.) 1132 */ 1133 nbits_reg = 1 << order; 1134 index = pos / BITS_PER_LONG; 1135 offset = pos - (index * BITS_PER_LONG); 1136 nlongs_reg = BITS_TO_LONGS(nbits_reg); 1137 nbitsinlong = min(nbits_reg, BITS_PER_LONG); 1138 1139 /* 1140 * Can't do "mask = (1UL << nbitsinlong) - 1", as that 1141 * overflows if nbitsinlong == BITS_PER_LONG. 1142 */ 1143 mask = (1UL << (nbitsinlong - 1)); 1144 mask += mask - 1; 1145 mask <<= offset; 1146 1147 switch (reg_op) { 1148 case REG_OP_ISFREE: 1149 for (i = 0; i < nlongs_reg; i++) { 1150 if (bitmap[index + i] & mask) 1151 goto done; 1152 } 1153 ret = 1; /* all bits in region free (zero) */ 1154 break; 1155 1156 case REG_OP_ALLOC: 1157 for (i = 0; i < nlongs_reg; i++) 1158 bitmap[index + i] |= mask; 1159 break; 1160 1161 case REG_OP_RELEASE: 1162 for (i = 0; i < nlongs_reg; i++) 1163 bitmap[index + i] &= ~mask; 1164 break; 1165 } 1166 done: 1167 return ret; 1168 } 1169 1170 /** 1171 * bitmap_find_free_region - find a contiguous aligned mem region 1172 * @bitmap: array of unsigned longs corresponding to the bitmap 1173 * @bits: number of bits in the bitmap 1174 * @order: region size (log base 2 of number of bits) to find 1175 * 1176 * Find a region of free (zero) bits in a @bitmap of @bits bits and 1177 * allocate them (set them to one). Only consider regions of length 1178 * a power (@order) of two, aligned to that power of two, which 1179 * makes the search algorithm much faster. 1180 * 1181 * Return the bit offset in bitmap of the allocated region, 1182 * or -errno on failure. 1183 */ 1184 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order) 1185 { 1186 unsigned int pos, end; /* scans bitmap by regions of size order */ 1187 1188 for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) { 1189 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) 1190 continue; 1191 __reg_op(bitmap, pos, order, REG_OP_ALLOC); 1192 return pos; 1193 } 1194 return -ENOMEM; 1195 } 1196 EXPORT_SYMBOL(bitmap_find_free_region); 1197 1198 /** 1199 * bitmap_release_region - release allocated bitmap region 1200 * @bitmap: array of unsigned longs corresponding to the bitmap 1201 * @pos: beginning of bit region to release 1202 * @order: region size (log base 2 of number of bits) to release 1203 * 1204 * This is the complement to __bitmap_find_free_region() and releases 1205 * the found region (by clearing it in the bitmap). 1206 * 1207 * No return value. 1208 */ 1209 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order) 1210 { 1211 __reg_op(bitmap, pos, order, REG_OP_RELEASE); 1212 } 1213 EXPORT_SYMBOL(bitmap_release_region); 1214 1215 /** 1216 * bitmap_allocate_region - allocate bitmap region 1217 * @bitmap: array of unsigned longs corresponding to the bitmap 1218 * @pos: beginning of bit region to allocate 1219 * @order: region size (log base 2 of number of bits) to allocate 1220 * 1221 * Allocate (set bits in) a specified region of a bitmap. 1222 * 1223 * Return 0 on success, or %-EBUSY if specified region wasn't 1224 * free (not all bits were zero). 1225 */ 1226 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order) 1227 { 1228 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) 1229 return -EBUSY; 1230 return __reg_op(bitmap, pos, order, REG_OP_ALLOC); 1231 } 1232 EXPORT_SYMBOL(bitmap_allocate_region); 1233 1234 /** 1235 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order. 1236 * @dst: destination buffer 1237 * @src: bitmap to copy 1238 * @nbits: number of bits in the bitmap 1239 * 1240 * Require nbits % BITS_PER_LONG == 0. 1241 */ 1242 #ifdef __BIG_ENDIAN 1243 void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits) 1244 { 1245 unsigned int i; 1246 1247 for (i = 0; i < nbits/BITS_PER_LONG; i++) { 1248 if (BITS_PER_LONG == 64) 1249 dst[i] = cpu_to_le64(src[i]); 1250 else 1251 dst[i] = cpu_to_le32(src[i]); 1252 } 1253 } 1254 EXPORT_SYMBOL(bitmap_copy_le); 1255 #endif 1256 1257 unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags) 1258 { 1259 return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long), 1260 flags); 1261 } 1262 EXPORT_SYMBOL(bitmap_alloc); 1263 1264 unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags) 1265 { 1266 return bitmap_alloc(nbits, flags | __GFP_ZERO); 1267 } 1268 EXPORT_SYMBOL(bitmap_zalloc); 1269 1270 void bitmap_free(const unsigned long *bitmap) 1271 { 1272 kfree(bitmap); 1273 } 1274 EXPORT_SYMBOL(bitmap_free); 1275 1276 static void devm_bitmap_free(void *data) 1277 { 1278 unsigned long *bitmap = data; 1279 1280 bitmap_free(bitmap); 1281 } 1282 1283 unsigned long *devm_bitmap_alloc(struct device *dev, 1284 unsigned int nbits, gfp_t flags) 1285 { 1286 unsigned long *bitmap; 1287 int ret; 1288 1289 bitmap = bitmap_alloc(nbits, flags); 1290 if (!bitmap) 1291 return NULL; 1292 1293 ret = devm_add_action_or_reset(dev, devm_bitmap_free, bitmap); 1294 if (ret) 1295 return NULL; 1296 1297 return bitmap; 1298 } 1299 EXPORT_SYMBOL_GPL(devm_bitmap_alloc); 1300 1301 unsigned long *devm_bitmap_zalloc(struct device *dev, 1302 unsigned int nbits, gfp_t flags) 1303 { 1304 return devm_bitmap_alloc(dev, nbits, flags | __GFP_ZERO); 1305 } 1306 EXPORT_SYMBOL_GPL(devm_bitmap_zalloc); 1307 1308 #if BITS_PER_LONG == 64 1309 /** 1310 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap 1311 * @bitmap: array of unsigned longs, the destination bitmap 1312 * @buf: array of u32 (in host byte order), the source bitmap 1313 * @nbits: number of bits in @bitmap 1314 */ 1315 void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits) 1316 { 1317 unsigned int i, halfwords; 1318 1319 halfwords = DIV_ROUND_UP(nbits, 32); 1320 for (i = 0; i < halfwords; i++) { 1321 bitmap[i/2] = (unsigned long) buf[i]; 1322 if (++i < halfwords) 1323 bitmap[i/2] |= ((unsigned long) buf[i]) << 32; 1324 } 1325 1326 /* Clear tail bits in last word beyond nbits. */ 1327 if (nbits % BITS_PER_LONG) 1328 bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits); 1329 } 1330 EXPORT_SYMBOL(bitmap_from_arr32); 1331 1332 /** 1333 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits 1334 * @buf: array of u32 (in host byte order), the dest bitmap 1335 * @bitmap: array of unsigned longs, the source bitmap 1336 * @nbits: number of bits in @bitmap 1337 */ 1338 void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits) 1339 { 1340 unsigned int i, halfwords; 1341 1342 halfwords = DIV_ROUND_UP(nbits, 32); 1343 for (i = 0; i < halfwords; i++) { 1344 buf[i] = (u32) (bitmap[i/2] & UINT_MAX); 1345 if (++i < halfwords) 1346 buf[i] = (u32) (bitmap[i/2] >> 32); 1347 } 1348 1349 /* Clear tail bits in last element of array beyond nbits. */ 1350 if (nbits % BITS_PER_LONG) 1351 buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31)); 1352 } 1353 EXPORT_SYMBOL(bitmap_to_arr32); 1354 1355 #endif 1356